On transcendency of special values of arithmetic automorphic functions

By Yasuo MORITA*

(Received Sept. 28, 1971)

§1. Introduction.

Let Γ be the modular group $SL(2, \mathbb{Z})$ and $\tilde{\Gamma} = GL^+(2, \mathbb{Q})$. Let H be the complex upper half plane $\{z \in \mathbb{C}; \text{ Im } z > 0\}$. We define the action of an element $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $GL^+(2, \mathbb{R})$ on H by

$$z \longmapsto \frac{az+b}{cz+d}$$

for $z \in H$. Then Γ and $\tilde{\Gamma}$ operate on H. Let J(z) be the standard modular function of level one. Then the classical theory of complex multiplication shows:

THEOREM C. If $z \in H$ is fixed by some non-scalar element of $\tilde{\Gamma}$, z is an algebraic number and J(z) generates an abelian extension of Q(z).

On the other hand, T. Schneider obtained the following theorem:

THEOREM T. Let $z \in H$ be an algebraic number. Suppose that z is not fixed by any non-scalar element of Γ . Then J(z) is a transcendental number.

In this paper, we shall give a generalization of Theorem T.

Let *B* be an indefinite quaternion algebra over the rational number field Q, \mathcal{O} a maximal order of *B*, Γ the group of all the units of \mathcal{O} of reduced norm one, and $\tilde{\Gamma}$ the group of all the invertible elements of *B* with positive reduced norm. Now we fix an irreducible representation χ of *B* into $M_2(\mathbb{R})$ so that the image $\chi(B)$ is contained in $M_2(\overline{Q})$, where \overline{Q} is the algebraic closure of Q in *C*. Then we may regard Γ and $\tilde{\Gamma}$ as subgroups of $GL^+(2, \mathbb{R})$ acting on *H*. As a generalization of the function *J*, *G*. Shimura has constructed a holomorphic map φ from *H* into a projective space \mathbb{P}^l , satisfying the following conditions (cf. Shimura [4], § 9): (i) φ induces a biregular isomorphism from $\Gamma \setminus H$ onto an algebraic curve in \mathbb{P}^l ; (ii) if *z* is fixed by some non-scalar element of $\tilde{\Gamma}$, $\varphi(z)$ generates an abelian extension over a certain imaginary quadratic field. We shall call the map φ the *Shimura map*.

Now our main result can be stated as follows:

^{*} This paper was partially supported by Sakkokai Foundation.

THEOREM 1. Let $z \in H$ be an algebraic number. Suppose z is not fixed by any non-scalar element of $\tilde{\Gamma}$. Then $\varphi(z)$ is not algebraic.

It should be noted that the generalization from Theorem T to our theorem is not trivial. We use the fact that the commutor of $\chi(B)$ in $M_2(C)$ is the set of scalar matrices. Therefore our method cannot be applied to a more general case in which Γ is the Siegel modular group or the unit group of a quaternion algebra over a totally real algebraic number field of degree > 1.

$\S 2$. A reformulation of Lang's result.

In [2], S. Lang considered the transcendency of the moduli of abelian varieties. In this section, we shall prove a theorem about the endomorphisms of abelian varieties, which is, though stronger than the corresponding Theorem 2 of Lang [2], essentially proved in his paper.

Let K be a finite algebraic number field, A an abelian variety defined over K. Moreover suppose every endomorphism of A is defined over K. Let $T_0(A)$ be the tangent space of A at its origin. Let $\{e_1, \dots, e_n\}$ be a K-base of $T_0(A)$, and identify $T_0(A)$ with C^n by

$$T_0(A) \ni z_1 e_1 + \cdots + z_n e_n \longleftrightarrow (z_1, \cdots, z_n) \in \mathbb{C}^n$$
.

Then C^n can be considered as a covering of A in a natural manner. Let $\iota_0: C^n \to A$ be the covering map and $D = \iota_0^{-1}(0)$. Then ι_0 induces a biregular isomorphism $C^n/D \simeq A$. Let M be the set of meromorphic functions on C^n which are invariant under the translations of the elements of D and K-rational as functions on A.

THEOREM 2. Let L be a C-linear endomorphism of C^n . Then the following two statements are equivalent.

(i) L maps $D \otimes_{\mathbf{Z}} \mathbf{Q}$ into $D \otimes_{\mathbf{Z}} \mathbf{Q}$, i.e., L is an element of $End(A) \otimes_{\mathbf{Z}} \mathbf{Q}$.

(ii) There are n elements x_1, \dots, x_n of $D \otimes_{\mathbb{Z}} \mathbb{Q}$ which are linearly independent over \mathbb{C} and which are mapped into $D \otimes_{\mathbb{Z}} \mathbb{Q}$ by L. Moreover the matrix representation of L by the \mathbb{C} -base $\{e_1, \dots, e_n\}$ of \mathbb{C}^n is contained in $M_n(K)$.

PROOF. First we shall show that (i) implies (ii). Multiplying by some natural number if necessary, we may assume that L is an endomorphism of A. Then, if f belongs to M, $f \circ L$ also belongs to M. For $z \in \mathbb{C}^n$, we define its components z_1, \dots, z_n by $z = \sum_{k=1}^n z_k e_k$. Since $\{e_1, \dots, e_n\}$ gives a K-base of the tangent space of the origin of A, $\left[\frac{\partial}{\partial z_i}f(z_1, \dots, z_n)\right]_{z=0}$ belongs to K whenever $f(z) = f(z_1, \dots, z_n)$ belongs to M and $\frac{\partial}{\partial z_i}f(z_1, \dots, z_n)$ is finite at $z_1 = \dots = z_n = 0$. Let f_1, \dots, f_n be n elements of M satisfying $\left(\frac{\partial}{\partial z_i}f_j\right)(0) = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Let (α_{ij}) be the matrix representation of

L by the C-base e_1, \dots, e_n of C^n . Then

$$\left[\frac{\partial}{\partial z_i}f_j(Lz)\right]_{z=0} = \sum_{k=1}^n \alpha_{ki} \left(\frac{\partial}{\partial z_k}f_j\right)(0) = \alpha_{ji}.$$

Therefore α_{ji} belongs to K. Since the first assertion of (ii) is obvious, we see that (i) implies (ii).

For the proof of the fact that (ii) implies (i), we need a few preparatory lemmas. Let g(z) be a meromorphic functions on C^n . Then we say that the order of g(z) is not greater than ρ if there exist a constant c and two entire functions $g_i(z)$ (i=1, 2) such that $g(z) = g_1(z)/g_2(z)$, $g_2(z) \neq 0$ and $|g_i(z)| \leq 1$ exp $(c|z|^{\rho})$, where $|z|^2 = \sum_{\nu=1}^{n} |z_{\nu}|^2$ for $z = (z_1, \dots, z_n)$. LEMMA 1. Let

$$\theta(z) = \sum_{m \in \mathbb{Z}^n} \exp 2\pi i \left\{ \frac{1}{2} \tau [m+g] + {}^t (m+g)(z+h) \right\}$$

be a θ -function, where g and h are real n-vectors, τ is a complex symmetric matrix with positive imaginary part and $\tau[m+g] = t(m+g)\tau(m+g)$. Then there is a constant c satisfying $|\theta(z)| \leq \exp(c|z|^2)$.

The proof of this lemma is easy and left to the reader.

COROLLARY. Let C^n/D be an abelian variety. Let f(z) be a meromorphic function on C^n invariant under the translations by the elements of D. Then the order of f(z) is not greater than 2.

PROOF. Since f(z) is a meromorphic function on the abelian variety C^n/D , it can be written as a rational function of some θ -functions of the above form (cf. ex., [1], § 2). Therefore the order of f(z) is not greater than 2.

LEMMA 2. Let K be a finite algebraic number field. Let g_1, \dots, g_M be meromorphic functions on C^n whose orders are not greater than a certain real number ρ . Suppose that the partial derivation $\frac{\partial}{\partial z_i}$ maps the ring $K[g_1, \cdots, g_M]$ into itself for every i. Moreover suppose that there are n C-linearly independent elements x_1, x_2, \dots, x_n of C^n such that $g_i(z)$ $(i=1, 2, \dots, M)$ belongs to K for any $z \in Zx_1 + Zx_2 + \cdots + Zx_n$. Then the transcendental degree of $K(g_1, \cdots, g_M)$ over K is not greater than n.

PROOF. This lemma is a special case of Lang [2], p. 181, Theorem 1.

LEMMA 3. Let C^n/D be a complex torus. Let g(z) and $f_1(z), f_2(z), \dots, f_m(z)$ be meromorphic functions on C^n . Suppose $f_1(z), \dots, f_m(z)$ are invariant under the translations by the elements of D, and

$$g(z)^{m}+f_{1}(z)g(z)^{m-1}+\cdots+f_{m}(z)=0$$
.

Then there is a natural number d such that g(dz) is invariant under the translations by the elements of D.

270

PROOF. Let V be a proper analytic subset of C^n such that $g(z), f_1(z), \dots$, $f_m(z)$ are holomorphic on $C^n - V$. By the assumption, $f_j(z+l\omega) = f_j(z)$ for any $\omega \in D$, $l \in \mathbb{Z}$ and $j = 1, \dots, m$. Therefore

$$g(z+l\omega)^{m}+f_{1}(z)g(z+l\omega)^{m-1}+\cdots+f_{m}(z)=0.$$

Now we fix ω and put

$$S_{l_1,l_2} = \{ z \in C^n - V \mid g(z+l_1\omega) = g(z+l_2\omega) \}$$

Then, since the number of the distinct roots of

$$X^{m}+f_{1}(z)X^{m-1}+\cdots+f_{m}(z)=0$$

is at most *m*, we see that the sets S_{l_1,l_2} $(0 \leq l_1 < l_2 \leq m)$ cover $C^n - V$. Since these S_{l_1,l_2} are analytic subsets of $C^n - V$, there are some $l_1, l_2 \in \mathbb{Z}$ satisfying $S_{l_1,l_2} = C^n - V$. Therefore there are $l_1 = l_1(\omega), l_2 = l_2(\omega) \in \mathbb{Z}$ such that $g(z+l_1\omega)$ $= g(z+l_2\omega)$ for all $z \in C^n - V$, hence $g(z+l_1\omega) = g(z+l_2\omega)$ for all $z \in C^n$. Putting $k(\omega) = l_2(\omega) - l_1(\omega)$, we have $g(z+k(\omega)\omega) = g(z)$ for all $z \in C^n$. Let $\{\omega_1, \dots, \omega_{2n}\}$ be a Z-base of D, and d be the least common multiple of $k(\omega_1)$, $\dots, k(\omega_{2n})$. Then d has the required property of our lemma. Q. E. D.

Now we shall start the proof of the fact that (ii) implies (i).

Let M be as before. If $f \in M$, we can write

$$f(z+w) = \sum_{i} a_i(z)b_i(w) / \sum_{j} c_j(z)d_j(w)$$

with $a_i, b_i, c_j, d_j \in M$, since M is the function field of the abelian variety C^n/D . Let w_0 be a point on C^n which gives a generic point of C^n/D over K. We see that the left hand side of (*) is defined at $z=0, w=w_0$. Therefore the right hand side of (*) is also defined at $z=0, w=w_0$. Hence it belongs to the local ring at $z=0, w=w_0$. Therefore we may assume that $a_i(0), c_j(0) \in K$ and $\sum_j c_j(0)d_j(w_0) \neq 0$. Then, since $\{z_k\}$ corresponds to a K-base of $T_0(A)$, $\frac{\partial a_i}{\partial z_k}(0)$ and $\frac{\partial c_j}{\partial z_k}(0) \in K$. From (*), we have

$$\left(\frac{\partial}{\partial z_k} f \right)(w_0) = \left[\frac{\partial}{\partial z_k} f(z+w_0) \right]_{z=0}$$

$$= \frac{\left(\sum_i \frac{\partial a_i}{\partial z_k} (0) b_i(w_0) \right) (\sum_j c_j(0) d_j(w_0)) - (\sum_i a_i(0) b_i(w_0)) \left(\sum_j \frac{\partial c_j}{\partial z_k} (0) d_j(w_0) \right)}{\{ \sum_j c_j(0) d_j(w_0) \}^2}.$$

Therefore $\frac{\partial f}{\partial z_k} \in M$ whenever $f \in M$.

Now let $f_1(z), \dots, f_n(z)$ be *n* elements of *M* which are algebraically independent over *K* and defined at 0. Since *M* is finite algebraic over $K(f_1, \dots, f_n)$, the integral closure of $K[f_1, \dots, f_n]$ in *M* is a finite $K[f_1, \dots, f_n]$ module. Let $\{h_1, \dots, h_m\}$ be a finite set of elements of *M* such that $K[h_1, \dots, h_m]$ Y. MORITA

is the integral closure of $K[f_1, \dots, f_n]$ in M. Then $h_j(0)$ $(j = 1, \dots, m)$ is also defined. Since $\frac{\partial}{\partial z_i} h_j(z)$ $(z \in C^n)$ is defined whenever $h_j(z)$ is defined, $\frac{\partial}{\partial z_i} h_j$ belongs to the integral closure of $C[h_1, \dots, h_n]$ in $M \otimes_K C$. But we have seen above that $\frac{\partial}{\partial z_i} h_j$ belongs to M. Therefore it belongs to $K[h_1, \dots, h_m]$. Therefore $\frac{\partial}{\partial z_i}$ maps $K[h_1, \dots, h_m]$ into itself.

Now let $g_1(z) = h_1(z), \dots, g_m(z) = h_m(z), g_{m+1}(z) = h_1(Lz), \dots, g_{2m}(z) = h_m(Lz)$. Since L can be represented by the base z_1, \dots, z_n as (α_{ij}) with $\alpha_{ij} \in K$, $\frac{\partial}{\partial z_i}$ $(i=1, \dots, n)$ maps $K[g_1, \dots, g_{2m}]$ into itself. Let x_1, \dots, x_n be n elements of $D \otimes_{\mathbf{Z}} \mathbf{Q}$ with the property of (ii) of Theorem 2. Here we may assume $x_1, \dots, x_n, Lx_1, \dots, Lx_n \in D$, since we can multiply $x_1, \dots, x_n, Lx_1, \dots, Lx_n$ by any large natural number. By the Corollary of Lemma 1 we can apply Lemma 2. Then we see that the transcendental degree of $K(g_1, \dots, g_{2m})$ is not greater than n. Since the transcendental degree of $K(h_1, \dots, h_m)$ is n, we see that $h_1(Lz), \dots, h_m(Lz)$ are algebraically dependent on $K(h_1, \dots, h_m)$. Therefore, by Lemma 3, there is a natural number d such that $h_1(dLz), \dots, h_m$, we see that the map $f(z) \mapsto f(dLz)$ induces a rational map of $M \otimes_K C$ into itself. Therefore dL induces an endomorphism of C^n/D , so that L belongs to End $(A) \otimes_{\mathbf{Z}} \mathbf{Q}$.

§3. The proof of Theorem 1.

Now we shall prove Theorem 1, using Theorem 2 of §2. First we shall construct a family of abelian varieties following the methods of G. Shimura. For any $z \in H$, put $D_z = \chi(\mathcal{O}) {\binom{z}{1}} \subset C^2$. Then D_z is a lattice in C^2 . Let ρ be an element of \mathcal{O} such that ρ^2 is a negative rational integer. Put $E_z(\chi(\alpha) {\binom{z}{1}}, \chi(\beta) {\binom{z}{1}}) = \operatorname{tr}_{B/Q}(\rho \alpha \beta')$, where $\alpha, \beta \in B$, ' and $\operatorname{tr}_{B/Q}$ denote the canonical involution and the reduced trace respectively. Then E_z determines a Riemann form on the complex torus C^2/D_z . Let ι^* be a projective embedding $C^2/D_z \rightarrow A_z \subset P^m$ induced by E_z . Let C_z be the polarization of A_z which is induced by E_z . Since \mathcal{O} is a ring, $\chi(\gamma)$ ($\gamma \in \mathcal{O}$) maps $D_z = \chi(\mathcal{O}) {\binom{z}{1}}$ into itself. Let $\theta_z(\gamma)$ denote the element of End (A_z) defined by $\chi(\gamma)$. Then θ_z gives a ring isomorphism from \mathcal{O} into End (A_z) . Let P_z be the isomorphism class of the triple (A_z, C_z, θ_z) . Then the Shimura map φ has the following property: $Q(\varphi(z))$ is the field of moduli of P_z . (cf. Shimura [4], §9, [5], §5 and [7], §6, Theorem 6.7.) Therefore, if $\varphi(z)$ is algebraic, P_z can be defined

over a finite algebraic number field, i. e., A_z , a fixed polar divisor of C_z and all elements of $\theta_z(\mathcal{O})$ can be defined over a common finite algebraic number field (Shimura [6], p. 127, Proposition 1.5). Moreover, if z is not fixed by any non-scalar element of $\tilde{\Gamma}$, End (A_z) coincides with $\theta_z(\mathcal{O})$ (Shimura [6], p. 135, Proposition 4.2).

Now assume $z \in H$ and $\varphi(z)$ are both algebraic and that z is not fixed by any non-scalar element of $\tilde{\Gamma}$. Then there is a finite algebraic number field K satisfying the following conditions, (i) $\theta_z(B) = \text{End}(A_z) \otimes_{\mathbb{Z}} \mathbb{Q}$, (ii) $\chi(B) \subseteq M_2(K)$, (iii) A_z , every element of $\text{End}(A_z)$ and z are all rational over K. We shall prove Theorem 1 by showing that these (i), (ii), (iii) lead to a contradiction.

Let φ be the canonical homomorphism from C^2 to C^2/D_z . Let $\iota^*: C^2/D_z \rightarrow A_z$ be as before and ι be the composite map $\iota^* \circ \varphi: C^2 \rightarrow A_z$. Now fix a *K*-base of the tangent space of the origin of A_z and make a holomorphic map ι_0 from C^2 to A_z as in § 2. Let β be the linear transformation of C^2 satisfying $\iota = \iota_0 \circ \beta$. Then

$$\chi_0(a) = \beta \chi(a) \beta^{-1} \qquad (a \in \mathcal{O})$$

is the analytic representation of the endomorphism $\theta_z(a)$ with respect to this analytic coordinate system ι_0 .

Now $\chi(a)$ belongs to $M_2(K)$ by the assumption $\chi(\mathcal{O}) \subseteq M_2(K)$. Moreover, since $\theta_z(a)$ is an element of End (A_z) , $\chi_0(a)$ also belongs to $M_2(K)$ by (ii) of Theorem 2. Since $B \bigotimes_{\mathbf{Q}} K \cong M_2(K)$, we have $M_2(K) = \beta M_2(K)\beta^{-1}$ from (**). Therefore $a \mapsto \beta a \beta^{-1}$ $(a \in \mathcal{O})$ induces an automorphism of $M_2(K)$. Therefore we can write $\beta = \nu \alpha$ with $\nu \in C^{\times}$ and $\alpha \in GL(2, K)$, and we have

$$\begin{aligned} \chi_0(a) &= \alpha \chi(a) \alpha^{-1} ,\\ D &= \left\{ \nu \alpha \chi(\gamma) {\binom{z}{1}} \mid \gamma \in \mathcal{O} \right\}. \end{aligned}$$

Let $\{\gamma_1=1, \gamma_2, \gamma_3, \gamma_4\}$ be a Z-base of \mathcal{O} . Put

$$x_i = \nu \alpha \chi(\gamma_i) {\binom{z}{1}} \in D \qquad (i = 1, 2, 3, 4).$$

Here we may assume that x_1 and x_2 are linearly independent over C. Moreover we may assume

$$\gamma_3\gamma_2\neq\gamma_4$$
,

since we may replace γ_4 by $-\gamma_4$.

Now we note one fact. Let γ , $\delta \in B$. Then $\chi_0(\gamma)x_1 = \chi_0(\delta)x_1$ if and only if $\chi(\gamma) \begin{pmatrix} z \\ 1 \end{pmatrix} = \chi(\delta) \begin{pmatrix} z \\ 1 \end{pmatrix}$, hence if and only if $\chi(\delta^{-1}\gamma) \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix}$. But, since $\chi(\delta^{-1}\gamma) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbf{R})$ and $z \in \mathbf{R}$, the last condition implies a = 1, b = 0, c=0, d=1, hence $\delta^{-1}\gamma=1$. Therefore $\chi_0(\gamma)x_1=\chi_0(\delta)x_1$ if and only if $\gamma=\delta$.

Let L be the C-linear endomorphism of C^2 which maps x_1 and x_2 onto x_3 and x_4 respectively. Then L satisfies the statement (ii) of Theorem 2. (Observe that the vectors $\nu^{-1}x_i$ have components in K, since $z \in K$.) Therefore, by Theorem 2, L is an element of End $(A_z) \otimes_{\mathbf{Z}} \mathbf{Q}$. Therefore, by the assumption End $(A_z) \otimes_{\mathbf{Z}} \mathbf{Q} = \theta_z(B)$, we may write $L = \chi_0(\gamma)$ with some $\gamma \in B$. Then, by the definition of L, we have

and

$$\chi_0(\gamma)x_1 = L(x_1) = x_3 = \chi_0(\gamma_3)x_1$$

$$\chi_0(\gamma\gamma_2)x_1 = \chi_0(\gamma)x_2 = Lx_2 = x_4 = \chi_0(\gamma_4)x_1.$$

Therefore we have

 $\gamma = \gamma_s$

and

$$\gamma\gamma_2 = \gamma_4$$
,

hence $\gamma_3\gamma_2 = \gamma_4$. This contradicts our assumption $\gamma_3\gamma_2 \neq \gamma_4$. Q. E. D.

University of Tokyo

References

- [1] W.L. Baily, On the theory of θ -functions, the moduli of abelian varieties, and the moduli of curves, Ann. of Math., 75 (1962), 342-381.
- [2] S. Lang, Algebraic values of meromorphic functions, Topology, 3 (1965), 183-191.
- [3] T. Schneider, Einführung in die transcendenten Zahlen, Springer, Berlin, 1957.
- [4] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math., 85 (1967), 58-159.
- [5] G. Shimura, On the theory of automorphic functions, Ann. of Math., 70 (1959), 101-144.
- [6] G. Shimura, On the field of definition for a field of automorphic functions: II, Ann. of Math., 81 (1965), 124-165.
- [7] G. Shimura, Moduli and fibre systems of abelian varieties, Ann. of Math., 83 (1966), 294-338.
- [8] G. Shimura, Algebraic number fields and symplectic discontinuous groups, Ann. of Math., 86 (1967), 503-592.

274