On transcendency of special values of arithmetic automorphic functions

By Yasuo Morita*

(Received Sept. 28, 1971)

§ 1. Introduction.

Let Γ be the modular group $S L(2, \boldsymbol{Z})$ and $\tilde{\Gamma}=G L^{+}(2, \boldsymbol{Q})$. Let H be the complex upper half plane $\{z \in C ; \operatorname{Im} z>0\}$. We define the action of an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L^{+}(2, \boldsymbol{R})$ on H by

$$
z \longmapsto \frac{a z+b}{c z+d}
$$

for $z \in H$. Then Γ and $\tilde{\Gamma}$ operate on H. Let $J(z)$ be the standard modular function of level one. Then the classical theory of complex multiplication shows:

Theorem C. If $z \in H$ is fixed by some non-scalar element of $\tilde{\Gamma}, z$ is an algebraic number and $J(z)$ generates an abelian extension of $\boldsymbol{Q}(z)$.

On the other hand, T. Schneider obtained the following theorem:
THEOREM T. Let $z \in H$ be an algebraic number. Suppose that z is not fixed by any non-scalar element of Γ. Then $J(z)$ is a transcendental number.

In this paper, we shall give a generalization of Theorem T.
Let B be an indefinite quaternion algebra over the rational number field $\boldsymbol{Q}, \mathcal{O}$ a maximal order of B, Γ the group of all the units of \mathcal{O} of reduced norm one, and $\tilde{\Gamma}$ the group of all the invertible elements of B with positive reduced norm. Now we fix an irreducible representation χ of B into $M_{2}(\boldsymbol{R})$ so that the image $\chi(B)$ is contained in $M_{2}(\overline{\boldsymbol{Q}})$, where $\overline{\boldsymbol{Q}}$ is the algebraic closure of \boldsymbol{Q} in \boldsymbol{C}. Then we may regard Γ and $\tilde{\Gamma}$ as subgroups of $G L^{+}(2, \boldsymbol{R})$ acting on H. As a generalization of the function J, G. Shimura has constructed a holomorphic map φ from H into a projective space P^{l}, satisfying the following conditions (cf. Shimura [4], §9): (i) φ induces a biregular isomorphism from $\Gamma \backslash H$ onto an algebraic curve in \boldsymbol{P}^{l}; (ii) if z is fixed by some non-scalar element of $\tilde{\Gamma}, \varphi(z)$ generates an abelian extension over a certain imaginary quadratic field. We shall call the map φ the Shimura map.

Now our main result can be stated as follows:

[^0]Theorem 1. Let $z \in H$ be an algebraic number. Suppose z is not fixed by any non-scalar element of $\tilde{\Gamma}$. Then $\varphi(z)$ is not algebraic.

It should be noted that the generalization from Theorem T to our theorem is not trivial. We use the fact that the commutor of $\chi(B)$ in $M_{2}(\boldsymbol{C})$ is the set of scalar matrices. Therefore our method cannot be applied to a more general case in which Γ is the Siegel modular group or the unit group of a quaternion algebra over a totally real algebraic number field of degree >1.

§ 2. A reformulation of Lang's result.

In [2], S. Lang considered the transcendency of the moduli of abelian varieties. In this section, we shall prove a theorem about the endomorphisms of abelian varieties, which is, though stronger than the corresponding Theorem 2 of Lang [2], essentially proved in his paper.

Let K be a finite algebraic number field, A an abelian variety defined over K. Moreover suppose every endomorphism of A is defined over K. Let $T_{0}(A)$ be the tangent space of A at its origin. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a K-base of $T_{0}(A)$, and identify $T_{0}(A)$ with C^{n} by

$$
T_{0}(A) \ni z_{1} e_{1}+\cdots+z_{n} e_{n} \longleftrightarrow\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} .
$$

Then C^{n} can be considered as a covering of A in a natural manner. Let $c_{0}: \boldsymbol{C}^{n} \rightarrow A$ be the covering map and $D=\varepsilon_{0}^{-1}(0)$. Then c_{0} induces a biregular isomorphism $\boldsymbol{C}^{n} / D \xrightarrow{\sim} A$. Let M be the set of meromorphic functions on \boldsymbol{C}^{n} which are invariant under the translations of the elements of D and K-rational as functions on A.

Theorem 2. Let L be a \boldsymbol{C}-linear endomorphism of \boldsymbol{C}^{n}. Then the following two statements are equivalent.
(i) L maps $D \otimes_{\mathbf{z}} \boldsymbol{Q}$ into $D \otimes_{\mathbf{z}} \boldsymbol{Q}$, i.e., L is an element of $\operatorname{End}(A) \otimes_{\mathbf{z}} \boldsymbol{Q}$.
(ii) There are n elements x_{1}, \cdots, x_{n} of $D \otimes_{\mathbf{Z}} \boldsymbol{Q}$ which are linearly independent over \boldsymbol{C} and which are mapped into $D \otimes_{\mathbf{z}} \boldsymbol{Q}$ by L. Moreover the matrix representation of L by the \boldsymbol{C}-base $\left\{e_{1}, \cdots, e_{n}\right\}$ of \boldsymbol{C}^{n} is contained in $M_{n}(K)$.

Proof. First we shall show that (i) implies (ii). Multiplying by some natural number if necessary, we may assume that L is an endomorphism of A. Then, if f belongs to $M, f \circ L$ also belongs to M. For $z \in \boldsymbol{C}^{n}$, we define its components z_{1}, \cdots, z_{n} by $z=\sum_{k=1}^{n} z_{k} e_{k}$. Since $\left\{e_{1}, \cdots, e_{n}\right\}$ gives a K-base of the tangent space of the origin of $A,\left[\frac{\partial}{\partial z_{i}} f\left(z_{1}, \cdots, z_{n}\right)\right]_{z=0}$ belongs to K whenever $f(z)=f\left(z_{1}, \cdots, z_{n}\right)$ belongs to M and $\frac{\partial}{\partial z_{i}} f\left(z_{1}, \cdots, z_{n}\right)$ is finite at $z_{1}=\cdots=z_{n}=0$. Let f_{1}, \cdots, f_{n} be n elements of M satisfying $\left(\frac{\partial}{\partial z_{i}} f_{j}\right)(0)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta. Let ($\alpha_{i j}$) be the matrix representation of
L by the \boldsymbol{C}-base e_{1}, \cdots, e_{n} of \boldsymbol{C}^{n}. Then

$$
\left[\frac{\partial}{\partial z_{i}} f_{j}(L z)\right]_{z=0}=\sum_{k=1}^{n} \alpha_{k i}\left(\frac{\partial}{\partial z_{k}} f_{j}\right)(0)=\alpha_{j i}
$$

Therefore $\alpha_{j i}$ belongs to K. Since the first assertion of (ii) is obvious, we see that (i) implies (ii).

For the proof of the fact that (ii) implies (i), we need a few preparatory lemmas. Let $g(z)$ be a meromorphic functions on C^{n}. Then we say that the order of $g(z)$ is not greater than ρ if there exist a constant c and two entire functions $g_{i}(z)(i=1,2)$ such that $g(z)=g_{1}(z) / g_{2}(z), \quad g_{2}(z) \neq 0$ and $\left|g_{i}(z)\right| \leqq$ $\exp \left(c|z|^{\rho}\right)$, where $|z|^{2}=\sum_{\nu=1}^{n}\left|z_{\nu}\right|^{2}$ for $z=\left(z_{1}, \cdots, z_{n}\right)$.

Lemma 1. Let

$$
\theta(z)=\sum_{m \in Z^{n}} \exp 2 \pi i\left\{\frac{1}{2} \tau[m+g]+{ }^{t}(m+g)(z+h)\right\}
$$

be a θ-function, where g and h are real n-vectors, τ is a complex symmetric matrix with positive imaginary part and $\tau[m+g]={ }^{t}(m+g) \tau(m+g)$. Then there is a constant c satisfying $|\theta(z)| \leqq \exp \left(c|z|^{2}\right)$.

The proof of this lemma is easy and left to the reader.
Corollary. Let C^{n} / D be an abelian variety. Let $f(z)$ be a meromorphic function on C^{n} invariant under the translations by the elements of D. Then the order of $f(z)$ is not greater than 2.

Proof. Since $f(z)$ is a meromorphic function on the abelian variety C^{n} / D, it can be written as a rational function of some θ-functions of the above form (cf. ex., [1], § 2). Therefore the order of $f(z)$ is not greater than 2.

Lemma 2. Let K be a finite algebraic number field. Let g_{1}, \cdots, g_{M} be meromorphic functions on \boldsymbol{C}^{n} whose orders are not greater than a certain real number ρ. Suppose that the partial derivation $\frac{\partial}{\partial z_{i}}$ maps the ring $K\left[g_{1}, \cdots, g_{M}\right]$ into itself for every i. Moreover suppose that there are $n \boldsymbol{C}$-linearly independent elements $x_{1}, x_{2}, \cdots, x_{n}$ of C^{n} such that $g_{i}(z)(i=1,2, \cdots, M)$ belongs to K for any $\boldsymbol{z} \in \boldsymbol{Z} x_{1}+\boldsymbol{Z} x_{2}+\cdots+\boldsymbol{Z} x_{n}$. Then the transcendental degree of $K\left(g_{1}, \cdots, g_{\boldsymbol{M}}\right)$ over K is not greater than n.

Proof. This lemma is a special case of Lang [2], p. 181, Theorem 1.
Lemma 3. Let \boldsymbol{C}^{n} / D be a complex torus. Let $g(z)$ and $f_{1}(z), f_{2}(z), \cdots, f_{m}(z)$ be meromorphic functions on \boldsymbol{C}^{n}. Suppose $f_{1}(z), \cdots, f_{m}(z)$ are invariant under the translations by the elements of D, and

$$
g(z)^{m}+f_{1}(z) g(z)^{m-1}+\cdots+f_{m}(z)=0
$$

Then there is a natural number d such that $g(d z)$ is invariant under the translations by the elements of D.

Proof. Let V be a proper analytic subset of \boldsymbol{C}^{n} such that $g(z), f_{1}(z), \cdots$, $f_{m}(z)$ are holomorphic on $C^{n}-V$. By the assumption, $f_{j}(z+l \omega)=f_{j}(z)$ for any $\omega \in D, l \in \boldsymbol{Z}$ and $j=1, \cdots, m$. Therefore

$$
g(z+l \omega)^{m}+f_{1}(z) g(z+l \omega)^{m-1}+\cdots+f_{m}(z)=0 .
$$

Now we fix ω and put

$$
S_{l_{1}, l_{2}}=\left\{z \in C^{n}-V \mid g\left(z+l_{1} \omega\right)=g\left(z+l_{2} \omega\right)\right\} .
$$

Then, since the number of the distinct roots of

$$
X^{m}+f_{1}(z) X^{m-1}+\cdots+f_{m}(z)=0
$$

is at most m, we see that the sets $S_{l_{1}, l_{2}}\left(0 \leqq l_{1}<l_{2} \leqq m\right)$ cover $\boldsymbol{C}^{n}-V$. Since these $S_{l_{1}, l_{2}}$ are analytic subsets of $\boldsymbol{C}^{n}-V$, there are some $l_{1}, l_{2} \in \boldsymbol{Z}$ satisfying . $S_{l_{1}, l_{2}}=\boldsymbol{C}^{n}-V$. Therefore there are $l_{1}=l_{1}(\omega), l_{2}=l_{2}(\omega) \in \boldsymbol{Z}$ such that $g\left(z+l_{1} \omega\right)$ $=g\left(z+l_{2} \omega\right)$ for all $z \in \boldsymbol{C}^{n}-V$, hence $g\left(z+l_{1} \omega\right)=g\left(z+l_{2} \omega\right)$ for all $z \in \boldsymbol{C}^{n}$. Putting $k(\omega)=l_{2}(\omega)-l_{1}(\omega)$, we have $g(z+k(\omega) \omega)=g(z)$ for all $z \in \boldsymbol{C}^{n}$. Let $\left\{\omega_{1}, \cdots, \omega_{2 n}\right\}$ be a Z-base of D, and d be the least common multiple of $k\left(\omega_{1}\right)$, $\cdots, k\left(\omega_{2 n}\right)$. Then d has the required property of our lemma.
Q. E. D.

Now we shall start the proof of the fact that (ii) implies (i).
Let M be as before. If $f \in M$, we can write

$$
\begin{equation*}
f(z+w)=\sum_{i} a_{i}(z) b_{i}(w) / \sum_{j} c_{j}(z) d_{j}(w) \tag{*}
\end{equation*}
$$

with $a_{i}, b_{i}, c_{j}, d_{j} \in M$, since M is the function field of the abelian variety C^{n} / D. Let w_{0} be a point on \boldsymbol{C}^{n} which gives a generic point of \boldsymbol{C}^{n} / D over K. We see that the left hand side of ($*$) is defined at $z=0, w=w_{0}$. Therefore the right hand side of (*) is also defined at $z=0, w=w_{0}$. Hence it belongs to the local ring at $z=0, w=w_{0}$. Therefore we may assume that $a_{i}(0), c_{j}(0) \in K$ and $\sum_{j} c_{j}(0) d_{j}\left(w_{0}\right) \neq 0$. Then, since $\left\{z_{k}\right\}$ corresponds to a K-base of $T_{0}(A)$, $\frac{\partial a_{i}}{\partial z_{k}}(0)$ and $\frac{\partial c_{j}}{\partial z_{k}}(0) \in K$. From (*), we have

$$
\begin{aligned}
\left(\frac{\partial}{\partial z_{k}} f\right)\left(w_{0}\right) & =\left[\frac{\partial}{\partial z_{k}} f\left(z+w_{0}\right)\right]_{z=0} \\
& =\frac{\left(\sum_{i} \frac{\partial a_{i}}{\partial z_{k}}(0) b_{i}\left(w_{0}\right)\right)\left(\sum_{j} c_{j}(0) d_{j}\left(w_{0}\right)\right)-\left(\sum_{i} a_{i}(0) b_{i}\left(w_{0}\right)\right)\left(\sum_{j} \frac{\partial c_{j}}{\partial z_{k}}(0) d_{j}\left(w_{0}\right)\right)}{\left\{\sum_{j} c_{j}(0) d_{j}\left(w_{0}\right)\right\}^{2}} .
\end{aligned}
$$

Therefore $\frac{\partial f}{\partial z_{k}} \in M$ whenever $f \in M$.
Now let $f_{1}(z), \cdots, f_{n}(z)$ be n elements of M which are algebraically independent over K and defined at 0 . Since M is finite algebraic over $K\left(f_{1}, \cdots, f_{n}\right)$, the integral closure of $K\left[f_{1}, \cdots, f_{n}\right]$ in M is a finite $K\left[f_{1}, \cdots, f_{n}\right]$ module. Let $\left\{h_{1}, \cdots, h_{m}\right\}$ be a finite set of elements of M such that $K\left[h_{1}, \cdots, h_{m}\right]$
is the integral closure of $K\left[f_{1}, \cdots, f_{n}\right]$ in M. Then $h_{j}(0)(j=1, \cdots, m)$ is also defined. Since $\frac{\partial}{\partial z_{i}} h_{j}(z)\left(z \in \boldsymbol{C}^{n}\right)$ is defined whenever $h_{j}(z)$ is defined, $\frac{\partial}{\partial z_{i}} h_{j}$ belongs to the integral closure of $\boldsymbol{C}\left[h_{1}, \cdots, h_{n}\right]$ in $M \otimes_{K} \boldsymbol{C}$. But we have seen above that $\frac{\partial}{\partial z_{i}} h_{j}$ belongs to M. Therefore it belongs to $K\left[h_{1}, \cdots, h_{m}\right]$. Therefore $\frac{\partial}{\partial z_{i}}$ maps $K\left[h_{1}, \cdots, h_{m}\right]$ into itself.

Now let $g_{1}(z)=h_{1}(z), \cdots, g_{m}(z)=h_{m}(z), g_{m+1}(z)=h_{1}(L z), \cdots, g_{2 m}(z)=h_{m}(L z)$. Since L can be represented by the base z_{1}, \cdots, z_{n} as ($\alpha_{i j}$) with $\alpha_{i j} \in K$, $\frac{\partial}{\partial z_{i}}(i=1, \cdots, n)$ maps $K\left[g_{1}, \cdots, g_{2 m}\right]$ into itself. Let x_{1}, \cdots, x_{n} be n elements of $D \otimes_{\mathbf{z}} \boldsymbol{Q}$ with the property of (ii) of Theorem 2. Here we may assume $x_{1}, \cdots, x_{n}, L x_{1}, \cdots, L x_{n} \in D$, since we can multiply $x_{1}, \cdots, x_{n}, L x_{1}, \cdots, L x_{n}$ by any large natural number. By the Corollary of Lemma 1 we can apply Lemma 2. Then we see that the transcendental degree of $K\left(g_{1}, \cdots, g_{2 m}\right)$ is not greater than n. Since the transcendental degree of $K\left(h_{1}, \cdots, h_{m}\right)$ is n, we see that $h_{1}(L z), \cdots, h_{m}(L z)$ are algebraically dependent on $K\left(h_{1}, \cdots, h_{m}\right)$. Therefore, by Lemma 3, there is a natural number d such that $h_{1}(d L z), \cdots$, $h_{m}(d L z)$ are meromorphic functions on \boldsymbol{C}^{n} / D. Since $M \otimes_{K} \boldsymbol{C}=\boldsymbol{C}\left(h_{1}, \cdots, h_{m}\right)$, we see that the map $f(z) \mapsto f(d L z)$ induces a rational map of $M \otimes_{K} \boldsymbol{C}$ into itself. Therefore $d L$ induces an endomorphism of C^{n} / D, so that L belongs to $\operatorname{End}(A) \otimes_{\mathbf{z}} \boldsymbol{Q}$.
Q. E. D.

§3. The proof of Theorem 1.

Now we shall prove Theorem 1, using Theorem 2 of § 2. First we shall construct a family of abelian varieties following the methods of G. Shimura. For any $z \in H$, put $D_{z}=\chi(\theta)\binom{z}{1} \subset C^{2}$. Then D_{z} is a lattice in C^{2}. Let ρ be an element of \mathcal{O} such that ρ^{2} is a negative rational integer. Put $E_{z}\left(\chi(\alpha)\binom{z}{1}, \chi(\beta)\binom{z}{1}\right)=\operatorname{tr}_{B / Q}\left(\rho \alpha \beta^{\prime}\right)$, where $\alpha, \beta \in B$, ' and $\operatorname{tr}_{B / Q}$ denote the canonical involution and the reduced trace respectively. Then E_{z} determines a Riemann form on the complex torus C^{2} / D_{z}. Let ι^{*} be a projective embedding $\boldsymbol{C}^{2} / D_{z} \rightarrow A_{z} \subset \boldsymbol{P}^{m}$ induced by E_{z}. Let C_{z} be the polarization of A_{z} which is induced by E_{z}. Since \mathcal{O} is a ring, $\chi(\gamma)(\gamma \in \mathcal{O})$ maps $D_{z}=\chi(\mathcal{O})\binom{z}{1}$ into itself. Let $\theta_{2}(\gamma)$ denote the element of End $\left(A_{z}\right)$ defined by $\chi(\gamma)$. Then θ_{z} gives a ring isomorphism from \mathcal{O} into End $\left(A_{z}\right)$. Let P_{z} be the isomorphism class of the triple $\left(A_{2}, C_{z}, \theta_{z}\right)$. Then the Shimura map φ has the following property: $\boldsymbol{Q}\left(\varphi(z)\right.$) is the field of moduli of P_{z}. (cf. Shimura [4], § 9, [5], §5 and [7], $\S 6$, Theorem 6.7.) Therefore, if $\varphi(z)$ is algebraic, P_{z} can be defined
over a finite algebraic number field, i. e., A_{z}, a fixed polar divisor of C_{z} and all elements of $\theta_{z}(\mathcal{O})$ can be defined over a common finite algebraic number field (Shimura [6], p. 127, Proposition 1.5). Moreover, if z is not fixed by any non-scalar element of $\tilde{\Gamma}$, End $\left(A_{z}\right)$ coincides with $\theta_{z}(\theta)$ (Shimura [6], p. 135, Proposition 4.2).

Now assume $z \in H$ and $\varphi(z)$ are both algebraic and that z is not fixed by any non-scalar element of $\tilde{\Gamma}$. Then there is a finite algebraic number field K satisfying the following conditions, (i) $\theta_{z}(B)=$ End $\left(A_{z}\right) \otimes_{\mathbf{Z}} \boldsymbol{Q}$, (ii) $\chi(B) \subseteq M_{2}(K)$, (iii) A_{z}, every element of End $\left(A_{z}\right)$ and z are all rational over K. We shall prove Theorem 1 by showing that these (i), (ii), (iii) lead to a contradiction.

Let φ be the canonical homomorphism from \boldsymbol{C}^{2} to $\boldsymbol{C}^{2} / D_{z}$. Let $\iota^{*}: \boldsymbol{C}^{2} / D_{z}$ $\rightarrow A_{z}$ be as before and ι be the composite map $\iota^{*} \circ \varphi: \boldsymbol{C}^{2} \rightarrow A_{z}$. Now fix a K-base of the tangent space of the origin of A_{z} and make a holomorphic map ℓ_{0} from \boldsymbol{C}^{2} to A_{z} as in $\S 2$. Let β be the linear transformation of \boldsymbol{C}^{2} satisfying $\iota=\iota_{0} \circ \beta$. Then
(**)

$$
\chi_{0}(a)=\beta \chi(a) \beta^{-1} \quad(a \in \mathcal{O})
$$

is the analytic representation of the endomorphism $\theta_{z}(a)$ with respect to this analytic coordinate system ι_{0}.

Now $\chi(a)$ belongs to $M_{2}(K)$ by the assumption $\chi(\mathcal{O}) \subseteq M_{2}(K)$. Moreover, since $\theta_{z}(a)$ is an element of End $\left(A_{z}\right), \chi_{0}(a)$ also belongs to $M_{2}(K)$ by (ii) of Theorem 2. Since $B \otimes_{\mathbf{Q}} K \cong M_{2}(K)$, we have $M_{2}(K)=\beta M_{2}(K) \beta^{-1}$ from (**). Therefore $a \mapsto \beta a \beta^{-1}(a \in \mathcal{O})$ induces an automorphism of $M_{2}(K)$. Therefore we can write $\beta=\nu \alpha$ with $\nu \in C^{\times}$and $\alpha \in G L(2, K)$, and we have

$$
\begin{aligned}
& \chi_{0}(a)=\alpha \chi(a) \alpha^{-1}, \\
& D=\left\{\left.\nu \alpha \chi(\gamma)\binom{z}{1} \right\rvert\, \gamma \in \mathcal{O}\right\} .
\end{aligned}
$$

Let $\left\{\gamma_{1}=1, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ be a \boldsymbol{Z}-base of \mathcal{O}. Put

$$
x_{i}=\nu \alpha \chi\left(\gamma_{i}\right)\binom{z}{1} \in D \quad(i=1,2,3,4) .
$$

Here we may assume that x_{1} and x_{2} are linearly independent over C. Moreover we may assume

$$
\gamma_{3} \gamma_{2} \neq \gamma_{4},
$$

since we may replace γ_{4} by $-\gamma_{4}$.
Now we note one fact. Let $\gamma, \delta \in B$. Then $\chi_{0}(\gamma) x_{1}=\chi_{0}(\delta) x_{1}$ if and only if $\chi(\gamma)\binom{z}{1}=\chi(\delta)\binom{z}{1}$, hence if and only if $\chi\left(\delta^{-1} \gamma\right)\binom{z}{1}=\binom{z}{1}$. But, since $\chi\left(\delta^{-1} \gamma\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\boldsymbol{R})$ and $z \notin \boldsymbol{R}$, the last condition implies $a=1, b=0$,
$c=0, d=1$, hence $\delta^{-1} \gamma=1$. Therefore $\chi_{0}(\gamma) x_{1}=\chi_{0}(\delta) x_{1}$ if and only if $\gamma=\delta$.
Let L be the C-linear endomorphism of C^{2} which maps x_{1} and x_{2} onto x_{3} and x_{4} respectively. Then L satisfies the statement (ii) of Theorem 2, (Observe that the vectors $j^{-1} x_{i}$ have components in K, since $z \in K$.) Therefore, by Theorem 2, L is an element of End $\left(A_{z}\right) \otimes_{\boldsymbol{z}} \boldsymbol{Q}$. Therefore, by the assumption $\operatorname{End}\left(A_{z}\right) \otimes_{z} \boldsymbol{Q}=\theta_{z}(B)$, we may write $L=\chi_{0}(\gamma)$ with some $\gamma \in B$. Then, by the definition of L, we have

$$
\chi_{0}(\gamma) x_{1}=L\left(x_{1}\right)=x_{3}=\chi_{0}\left(\gamma_{3}\right) x_{1}
$$

and

$$
\chi_{0}\left(\gamma \gamma_{2}\right) x_{1}=\chi_{0}(\gamma) x_{2}=L x_{2}=x_{4}=\chi_{0}\left(\gamma_{4}\right) x_{1} .
$$

Therefore we have

$$
\gamma=\gamma_{3}
$$

and

$$
\gamma \gamma_{2}=\gamma_{4},
$$

hence $\gamma_{3} \gamma_{2}=\gamma_{4}$. This contradicts our assumption $\gamma_{3} \gamma_{2} \neq \gamma_{4}$. Q.E.D.

University of Tokyo

References

[1] W.L. Baily, On the theory of θ-functions, the moduli of abelian varieties, and the moduli of curves, Ann. of Math., 75 (1962), 342-381.
[2] S. Lang, Algebraic values of meromorphic functions, Topology, 3 (1965), 183-191.
[3] T. Schneider, Einführung in die transcendenten Zahlen, Springer, Berlin, 1957.
[4] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math., 85 (1967), 58-159.
[5] G. Shimura, On the theory of automorphic functions, Ann. of Math., 70 (1959), 101-144.
[6] G. Shimura, On the field of definition for a field of automorphic functions: II, Ann. of Math., 81 (1965), 124-165.
[7] G. Shimura, Moduli and fibre systems of abelian varieties, Ann. of Math., 83 (1966), 294-338.
[8] G. Shimura, Algebraic number fields and symplectic discontinuous groups, Ann.. of Math., 86 (1967), 503-592.

[^0]: * This paper was partially supported by Sakkokai Foundation.

