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\S 1. Introduction.

Let $\Gamma$ be the modular group $SL(2, Z)$ and $\tilde{\Gamma}=GL^{+}(2, Q)$ . Let $H$ be the
complex upper half plane $\{z\in C;{\rm Im} z>0\}$ . We define the action of an
element of $GL^{+}(2, R)$ on $H$ by

$z-\frac{az+b}{cz+d}$

for $z\in H$. Then $\Gamma$ and $\tilde{\Gamma}$ operate on $H$. Let $J(z)$ be the standard modular
function of level one. Then the classical theory of complex multiplication
shows:

THEOREM C. If $z\in H$ is fixed by some non-scalar element of $\tilde{\Gamma},$

$z$ is an
algebraic number and $J(z)$ generates an abelian extension of $Q(z)$ .

On the other hand, T. Schneider obtained the following theorem:
THEOREM T. Let $z\in H$ be an algebraic number. Suppose that $z$ is not

fixed by any non-scalar element of $\Gamma$ . Then $J(z)$ is a transcendental number.
In this paper, we shall give a generalization of Theorem T.
Let $B$ be an indefinite quaternion algebra over the rational number field

$Q,$ $\mathcal{O}$ a maximal order of $B,$ $\Gamma$ the group of all the units of $\mathcal{O}$ of reduced
norm one, and $\tilde{\Gamma}$ the group of all the invertible elements of $B$ with positive
reduced norm. Now we fix an irreducible representation $\chi$ of $B$ into $M_{2}(R)$

so that the image $\chi(B)$ is contained in $M_{2}(\overline{Q})$ , where $\overline{Q}$ is the algebraic closure
of $Q$ in $C$. Then we may regard $\Gamma$ and fi as subgroups of $GL^{+}(2, R)$ acting
on $H$. As a generalization of the function $J$, G. Shimura has constructed a
holomorphic map $\varphi$ from $H$ into a projective space $P^{\iota}$ , satisfying the following
conditions (cf. Shimura [4], \S 9): (i) $\varphi$ induces a biregular isomorphism from
$\Gamma\backslash H$ onto an algebraic curve in $P^{\iota}$ ; (ii) if $z$ is fixed by some non-scalar
element of $\tilde{\Gamma},$

$\varphi(z)$ generates an abelian extension over a certain imaginary
quadratic field. We shall call the map $\varphi$ the Shimura map.

Now our main result can be stated as follows:
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THEOREM 1. Let $z\in H$ be an algebraic number. Suppose $z$ is not fixed by
any non-scalar element of $\tilde{\Gamma}$ . Then $\varphi(z)$ is not algebraic.

It should be noted that the generalization from Theorem $T$ to our theorem
is not trivial. We use the fact that the commutor of $\chi(B)$ in $M_{2}(C)$ is the
set of scalar matrices. Therefore our method cannot be applied to a more
general case in which $\Gamma$ is the Siegel modular group or the unit group of a
quaternion algebra over a totally real algebraic number field of degree $>1$ .

\S 2. A reformulation of Lang’s result.

In [2], S. Lang considered the transcendency of the moduli of abelian
varieties. In this section, we shall prove a theorem about the endomorphisms
of abelian varieties, which is, though stronger than the corresponding Theorem
2 of Lang [2], essentially proved in his paper.

Let $K$ be a finite algebraic number field, $A$ an abelian variety defined
over $K$. Moreover suppose every endomorphism of $A$ is defined over $K$. Let
$T_{0}(A)$ be the tangent space of $A$ at its origin. Let $\{e_{1}, \cdots, e_{n}\}$ be a K-base of
$T_{0}(A)$ , and identify $T_{0}(A)$ with $C^{n}$ by

$T_{0}(A)\ni z_{1}e_{1}+\cdots+z_{n}e_{n}\leftrightarrow(z_{1}, \cdots z_{n})\in C^{n}$ .
Then $C^{n}$ can be considered as a covering of $A$ in a natural manner. Let
$\iota_{0}$ : $C^{n}\rightarrow A$ be the covering map and $D=c_{0}^{-1}(0)$ . Then $\iota_{0}$ induces a biregular
isomorphism $C^{n}/D\rightarrow\sim A$ . Let $M$ be the set of meromorphic functions on $C^{n}$

which are invariant under the translations of the elements of $D$ and K-rational
as functions on $A$ .

THEOREM 2. Let $L$ be a C-linear endomorphism of $C^{n}$ . Then the following
two statements are equivalent.

(i) $L$ maps $D\otimes_{Z}Q$ into $D\otimes_{Z}Q,$ $i$ . $e.,$ $L$ is an element of End $(A)\otimes_{Z}Q$ .
(ii) There are $n$ elements $x_{1},$ $\cdots,$ $x_{n}$ of $D\otimes_{Z}Q$ which are linearly independent

over $C$ and which are mapped into $D\otimes_{Z}Q$ by L. Moreover the matrix represen-
tation of $L$ by the C-base $\{e_{1}$ , $\cdot$ .. $e_{n}\}$ of $C^{n}$ is contained in $M_{n}(K)$ .

PROOF. First we shall show that (i) implies (ii). Multiplying by some
natural number if necessary, we may assume that $L$ is an endomorphism of
$A$ . Then, if $f$ belongs to $M,$ $f\circ L$ also belongs to $M$. For $z\in C^{n}$ , we define
its components $z_{1},$ $\cdots,$ $z_{n}$ by $z=\sum_{k=1}^{n}z_{k}e_{k}$ . Since $\{e_{1}$ , $\cdot$ .. , $e_{n}\}$ gives a K-base of

the tangent space of the origin of $A,$ $[\frac{\partial}{\partial z_{i}}f(z_{1}, \cdots, z_{n})]_{z=0}$ belongs to $K$

whenever $f(z)=f(z_{1}, \cdots, z_{n})$ belongs to $M$ and $\frac{\partial}{\partial z_{i}}f(z_{1}, \cdots, z_{n})$ is finite at

$z_{1}=$ $=z_{n}=0$ . Let $f_{1}$ , $f_{n}$ be $n$ elements of $M$ satisfying $(\frac{\partial}{\partial z_{i}}f_{j})(0)=\delta_{ij}$ ,

where $\delta_{if}$ is the Kronecker delta. Let $(\alpha_{if})$ be the matrix representation of
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$L$ by the C-base $e_{1},$ $\cdots,$ $e_{n}$ of $C^{n}$ . Then

$[\frac{\partial}{\partial z_{i}}f_{j}(Lz)]_{z=0}=\sum_{k=1}^{n}\alpha_{ki}(\frac{\partial}{\partial z_{k}}f_{f})(0)=\alpha_{ji}$ .

Therefore $\alpha_{ji}$ belongs to $K$. Since the first assertion of (ii) is obvious, we
see that (i) implies (ii).

For the proof of the fact that (ii) implies (i), we need a few preparatory
lemmas. Let $g(z)$ be a meromorphic functions on $C^{n}$ . Then we say that the
order of $g(z)$ is not greater than $\rho$ if there exist a constant $c$ and two entire
functions $g_{i}(z)(i=1,2)$ such that $g(z)=g_{1}(z)/g_{2}(z),$ $g_{2}(z)\not\equiv 0$ and $|g_{i}(z)|\leqq$

$\exp(c|z|^{\rho})$ , where $|z|^{2}=\sum_{\nu=1}^{n}|z_{\nu}|^{2}$ for $z=(z_{1}, \cdots, z_{n})$ .
LEMMA 1. Let

$\theta(z)=\sum_{m\in Z^{n}}\exp 2\pi i\{\frac{1}{2}\tau[m+g]+{}^{t}(m+g)(z+h)\}$

be a $\theta$ -function, where $g$ and $h$ are real n-vectors, $\tau$ is a complex symmetric
matrix with positive imaginary part and $\tau[m+g]={}^{t}(m+g)\tau(m+g)$ . Then there
is a constant $c$ satisfying $|\theta(z)|\leqq\exp(c|z|^{2})$ .

The proof of this lemma is easy and left to the reader.
COROLLARY. Let $C^{n}/D$ be an abelian variety. Let $f(z)$ be a meromorphic

function on $C^{n}$ invariant under the translations by the elements of D. Then
the order of $f(z)$ is not greater than 2.

PROOF. Since $f(z)$ is a meromorphic function on the abelian variety $C^{n}/D$ ,
it can be written as a rational function of some $\theta$ -functions of the above form
(cf. ex., [1], \S 2). Therefore the order of $f(z)$ is not greater than 2.

LEMMA 2. Let $K$ be a finite algebraic number field. Let $g_{1},$ $\cdots,$ $g_{M}$ be mero-
morphic functions on $C^{n}$ whose orders are not greater than a certain real

number $\rho$ . Suppose that the partial derivation $\frac{\partial}{\partial z_{i}}$ maps the ring $K[g_{1}, \cdots , g_{H}]$

into itself for every $i$ . Moreover suppose that there are $n$ C-linearly independent
elements $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ of $C^{n}$ such that $g_{i}(z)(i=1,2, \cdots , M)$ belongs to $K$ for any
$z\in Zx_{1}+Zx_{2}+\cdots+Zx_{n}$ . Then the transcendental degree of $K(g_{1}, \cdots g_{H})$ over
$K$ is not greater than $n$ .

PROOF. This lemma is a special case of Lang [2], p. 181, Theorem 1.
LEMMA 3. Let $C^{n}/D$ be a complex torus. Let $g(z)$ and $f_{1}(z),$ $f_{2}(z),$ $\cdots,f_{m}(z)$

be meromorphic functions on $C^{n}$ . Suppose $f_{1}(z),$ $\cdots$ , $f_{m}(z)$ are invariant under
the translations by the elements of $D$, and

$g(z)^{m}+f_{1}(z)g(z)^{m-1}+\cdots+f_{m}(z)=0$ .
Th en there is a natural number $d$ such that $g(dz)$ is invariant under the trans-
lations by the elements of $D$ .
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PROOF. Let $V$ be a proper analytic subset of $C^{n}$ such that $g(z),$ $f_{1}(z),$ $\cdots$

$f_{m}(z)$ are holomorphic on $C^{n}-V$. By the assumption, $f_{j}(z+l\omega)=f_{j}(z)$ for any
$w\in D,$ $l\in Z$ and $j=1,$ $\cdots,$ $m$ . Therefore

$g(z+l\omega)^{m}+f_{1}(z)g(z+l\omega)^{m- 1}+\cdots+f_{m}(z)=0$ .
Now we fix $\omega$ and put

$S_{\iota_{1},\iota_{2}}=\{z\in C^{n}-V|g(z+l_{1}\omega)=g(z+l_{2}\omega)\}$ .
Then, since the number of the distinct roots of

$X^{m}+f_{1}(z)X^{m-1}+\cdots+f_{m}(z)=0$

is at most $m$ , we see that the sets $S_{\iota_{1},\iota_{2}}(0\leqq l_{1}<l_{2}\leqq m)$ cover $C^{n}-V$ . Since
these $S_{l_{1},l_{2}}$ are analytic subsets of $C^{n}-V$, there are some $l_{1},$ $l_{2}\in Z$ satisfying
$S_{\iota_{1},\iota_{2}}=C^{n}-V$ . Therefore there are $l_{1}=l_{1}(\omega),$ $l_{2}=l_{2}(\omega)\in Z$ such that $g(z+l_{1}\omega)$

$=g(z+l_{2}\omega)$ for all $z\in C^{n}-V$, hence $g(z+l_{1}\omega)=g(z+l_{2}\omega)$ for all $z\in C^{n}$ .
IPutting $k(\omega)=l_{2}(\omega)-l_{1}(\omega)$ , we have $g(z+k(\omega)\omega)=g(z)$ for all $z\in C^{n}$ . Let
$\{\omega_{1}, , \omega_{2n}\}$ be a Z-base of $D$ , and $d$ be the least common multiple of $k(\omega_{1})$ ,

, $k(\omega_{2n})$ . Then $d$ has the required property of our lemma. Q. E. D.
Now we shall start the proof of the fact that (ii) implies (i).
Let $M$ be as before. If $f\in M$, we can write

$(*)$
$f(z+w)=\sum_{i}a_{i}(z)b_{t}(w)/\sum_{j}c_{j}(z)d_{j}(w)$

with $a_{i},$ $b_{i},$
$c_{f},$ $d_{j}\in M$, since $M$ is the function field of the abelian variety $C^{n}/D$ .

Let $w_{0}$ be a point on $C^{n}$ which gives a generic point of $C^{n}/D$ over $K$. We
see that the left hand side of $(*)$ is defined at $z=0,$ $w=w_{0}$ . Therefore the
Tight hand side of $(*)$ is also defined at $z=0,$ $w=w_{0}$ . Hence it belongs to the
local ring at $z=0,$ $w=w_{0}$ . Therefore we may assume that $a_{i}(0)$ , $c_{j}(0)\in K$

and $\sum_{j}c_{j}(0)d_{j}(w_{0})\neq 0$ . Then, since $\{z_{k}\}$ corresponds to a K-base of $T_{0}(A)$ ,

$\frac{\partial a_{i}}{\partial z_{k}}(0)$ and $\frac{\partial c_{f}}{\partial z_{k}}(O)\in K$. From $(*)$ , we have

$t\frac{\partial}{\partial z_{k}}f)(w_{0})=[\frac{\partial}{\partial z_{k}}f(z+w_{0})]_{z=0}$

$=\underline{(i\sum_{\ovalbox{\tt\small REJECT}}}\frac{\partial a_{i}}{\partial z_{k}}(0)b_{i}(w_{0}))(\sum_{j}c_{j}(0)(w_{f^{0}}))-(\sum_{t}a_{J}(0)b_{i}(w_{0}))(\sum_{j,\{\sum_{j}^{d_{j}}c(0)d_{j}(w_{0})\}^{2}}\frac{\partial c_{f}}{\partial z_{k}}(0)d_{j}(w_{0}))$

‘Therefqre $\frac{\partial f}{\partial z_{k}}\in M$ whenever $f\in M$.
Now let $f_{1}(z),$ $\cdots$ $f_{n}(z)$ be $n$ elements of $M$ which are algebraically

$\dot{u}ndependent$ over $K$ and defined at $0$ . Since $M$ is finite algebraic over
$K(f_{1}, \cdots f_{n})$ , the integral closure of $K[f_{1}, \cdots , f_{n}]$ in $M$ is a finite $K[f_{1}, \cdots , f_{n}]-$

rnodule. Let $\{h_{1}, \cdots, h_{m}\}$ be a finite set of elements of $M$ such that $K[h_{1}, \cdots, h_{m}]$
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is the integralclosure of $K[f_{1}$ , $\cdot$ .. , $f_{n}]$ in $M$. Then $h_{i}(0)$ ( $j=1$ , $\cdot$ , m) is also

defined. Since $-\partial_{i}^{\frac{\partial}{z}}h_{j}(z)(z\in C^{n})$ is defined whenever $h_{j}(z)$ is defined, $\frac{\partial}{\partial z_{i}}h_{j}$

belongs to the:integral closure of $C[h_{1}, h_{n}]$ in $M\otimes_{K}C$. But we have seen!

above that $\frac{\partial}{\partial z_{i}}h_{j}$ belongs to $M$. Therefore it belongs to $K[h_{1}, \cdots, h_{m}]_{-}$

Therefore $-\frac{\partial}{z_{i}}\partial$ maps $K[h_{1}, \cdots h_{m}]$ into itself.

Now let $g_{1}(z)=h_{1}(z),$ $\cdots$ $g_{m}(z)=h_{m}(z),$ $g_{m+1}(z)=h_{1}(Lz),$ $\cdots$ $g_{2m}(z)=h_{m}(Lz)_{-}$

Since $L$ can be represented by the base $z_{1},$
$\cdots$ , $z_{n}$ as $(\alpha_{ij})$ with $\alpha_{if}\in K$,

$\frac{\partial}{\partial z_{i}}$ ($i=1$ , $\cdot$ .. , n) maps $K[g_{1}$ , $\cdot$ .. , $g_{2m}]$ into itself. Let $x_{1}$ , $\cdot$ .. , $x_{n}$ be $n$ elements.

of $D\otimes_{Z}Q$ with the property of (ii) of Theorem 2. Here we may assume
$x_{1},$ $\cdots$

$x_{n},$ $Lx_{1},$ $\cdots$ $Lx_{n}\in D$ , since we can multiply $x_{1},$
$\cdots$

$x_{n},$ $Lx_{1},$ $\cdots$ $Lx_{n}$ by
any large natural number. By the Corollary of Lemma 1 we can apply
Lemma 2. Then we see that the transcendental degree of $K(g_{1}, \cdots g_{2m})$ is
not greater than $n$ . Since the transcendental degree of $K(h_{1}, \cdots , h_{m})$ is $n_{r}$

we see that $h_{1}(Lz),$ $\cdots$ $h_{m}(Lz)$ are algebraically dependent on $K(h_{1}, \cdots h_{m})_{-}$

Therefore, by Lemma 3, there is a natural number $d$ such that $h_{1}(dLz),$ $\cdots$ ,
$h_{m}(dLz)$ are meromorphic functions on $C^{n}/D$ . Since $M\otimes_{K}C=C(h_{1}, \cdots h_{m})$ ,
we see that the map $f(z)\vdash\rightarrow f(dLz)$ induces a rational map of $M\otimes_{K}C$ into
itself. Therefore $dL$ induces an endomorphism of $C^{n}/D$ , so that $L$ belongs
to End $(A)\otimes_{Z}Q$ . Q. E. D.

\S 3. The proof of Theorem 1.

Now we shall prove Theorem 1, using Theorem 2 of \S 2. First we shall
construct a family of abelian varieties following the methods of G. Shimura.

For any $z\in H$, put $D_{z}=\chi(\mathcal{O})(z1)\subset C^{2}$ . Then $D_{z}$ is a lattice in $C^{2}$ . Let $p$

be an element of $\mathcal{O}$ such that $\rho^{2}$ is a negative rational integer. Put
$E_{z}(\chi(\alpha)(z1),$ $\chi(\beta)(z1))=tr_{B/Q}(\rho\alpha\beta^{\prime})$ , where $\alpha,$ $\beta\in B$ , ’ and $tr_{B/Q}$ denote the

canonical involution and the reduced trace respectively. Then $E_{z}$ determines
a Riemann form on the complex torus $C^{2}/D_{z}$ . Let $t^{*}$ be a projective em-
bedding $C^{2}/D_{z}\rightarrow A_{f}\subset P^{m}$ induced by $E_{z}$ . Let $C_{z}$ be the polarization of $A_{a}$

which is induced by $E_{z}$ . Since $\mathcal{O}$ is a ring, $\chi(\gamma)(\gamma\in \mathcal{O})$ maps $D_{z}=\chi(\mathcal{O})$

into itself. Let $\theta_{z}(\gamma)$ denote the element of End $(A_{z})$ defined by $\chi(\gamma)$ . Then
$\theta_{z}$ gives a ring isomorphism from $\mathcal{O}$ into End $(A_{z})$ . Let $P_{z}$ be the isomorphism
class of the triple $(A_{z}, C_{z}, \theta_{l})$ . Then the Shimura map $\varphi$ has the following
property: $Q(\varphi(z))$ is the field of moduli of $P_{z}$ . (cf. Shimura [4], \S 9, [5], \S 5
and [7], \S 6, Theorem 6.7.) Therefore, if $\varphi(z)$ is algebraic, $P_{z}$ can be defined
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over a finite algebraic number field, $i$ . $e.,$ $A_{z}$ , a fixed polar divisor of $C_{z}$ and
all elements of $\theta_{z}(\mathcal{O})$ can be defined over a common finite algebraic number
field (Shimura [6], p. 127, Proposition 1.5). Moreover, if $z$ is not fixed by any
non-scalar element of $\tilde{\Gamma}$ , End $(A_{z})$ coincides with $\theta_{z}(\mathcal{O})$ (Shimura [6], p. 135,
Proposition 4.2).

Now assume $z\in H$ and $\varphi(z)$ are both algebraic and that $z$ is not fixed by
any non-scalar element of $\tilde{\Gamma}$ . Then there is a finite algebraic number field $K$

satisfying the following conditions, (i) $\theta_{z}(B)=End(A_{z})\otimes_{Z}Q$ , (ii) $\chi(B)\subseteqq M_{2}(K)$ ,
$c(iii)A_{z}$ , every element of End $(A_{z})$ and $z$ are all rational over $K$. We shall
prove Theorem 1 by showing that these (i), (ii), (iii) lead to a contradiction.

Let $\varphi$ be the canonical homomorphism from $C^{2}$ to $C^{2}/D_{z}$ . Let $\iota^{*};$ $C^{2}/D_{z}$

$\rightarrow A_{z}$ be as before and $\iota$ be the composite map $\iota^{*}\circ\varphi:C^{2}\rightarrow A_{z}$ . Now fix a
K-base of the tangent space of the origin of $A_{z}$ and make a holomorphic map
$lt_{0}$ from $C^{2}$ to $A_{z}$ as in \S 2. Let $\beta$ be the linear transformation of $C^{2}$ satisfying
$\iota=\iota_{0}\circ\beta$ . Then

$\langle**)$ $\chi_{0}(a)=\beta\chi(a)\beta^{-1}$ $(a\in \mathcal{O})$

is the analytic representation of the endomorphism $\theta_{z}(a)$ with respect to this
.analytic coordinate system $\iota_{0}$ .

Now $\chi(a)$ belongs to $M_{2}(K)$ by the assumption $\chi(\mathcal{O})\subseteqq M_{2}(K)$ . Moreover,
since $\theta_{z}(a)$ is an element of End $(A_{z}),$ $\chi_{0}(a)$ also belongs to $M_{2}(K)$ by (ii) of
‘Theorem 2. Since $B\otimes_{Q}K\cong M_{2}(K)$ , we have $M_{2}(K)=\beta M_{2}(K)\beta^{-1}$ from $(**)$ .
Therefore $a\mapsto\div\beta a\beta^{-1}(a\in \mathcal{O})$ induces an automorphism of $M_{2}(K)$ . Therefore
we can write $\beta=\nu\alpha$ with $\nu\in C^{x}$ and $\alpha\in GL(2, K)$ , and we have

$\chi_{0}(a)=\alpha\chi(a)\alpha^{-1}$ ,

$D=\{\nu\alpha\chi(\gamma)|\gamma\in \mathcal{O}\}$ .

Let $t\gamma_{1}=1,$ $\gamma_{2},$ $\gamma_{3},$ $\gamma_{4}$ } be a Z-base of $\mathcal{O}$ . Put

$x_{i}=\nu\alpha\chi(\gamma_{i})(z1)\in D$ $(i=1,2,3,4)$ .

Eere we may assume that $x_{1}$ and $x_{2}$ are linearly independent over $C$. More-
over we may assume

$\gamma_{8}\gamma_{2}\neq\gamma_{4}$ ,

since we may replace $\gamma_{4}$ by $-\gamma_{4}$

Now we note one fact. Let $\gamma,$
$\delta\in B$ . Then $\chi_{0}(\gamma)x_{1}=\chi_{0}(\delta)x_{1}$ if and only

if $\chi(\gamma)(z1)=x(\delta)(z1)$ , hence if and only if $\chi(\delta^{-1}\gamma)(z1)=(_{1}^{z})$ . But, since

$X(\delta^{-1}\gamma)=\in M_{2}(R)$ and $z\not\in R$ , the last condition implies $a=1,$ $b=0$ ,
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$c=0,$ $d=1$ , hence $\delta^{-1}\gamma=1$ . Therefore $\chi_{0}(\gamma)x_{1}=\chi_{0}(\delta)x_{1}$ if and only if $\gamma=\delta$ .
Let $L$ be the C-linear endomorphism of $C^{2}$ which maps $x_{1}$ and $x_{2}$ onto $X_{\$}$

and $x_{4}$ respectively. Then $L$ satisfies the statement (ii) of Theorem 2.
(Observe that the vectors l/ $x_{i}$

-1 have components in $K$, since $z\in K.$) Therefore.
by Theorem 2, $L$ is an element of End $(A_{z})\otimes_{Z}Q$ . Therefore, by the assump-
tion End $(A_{z})\otimes_{Z}Q=\theta_{z}(B)$ , we may write $L=x_{0}(\gamma)$ with some $\gamma\in B$ . Then, by
the definition of $L$ , we have

$x_{0}(\gamma)x_{1}=L(x_{1})=x_{3}=x_{0}(\gamma_{8})x_{1}$

and
$\chi_{0}(\gamma\gamma_{2})x_{1}=\chi_{0}(\gamma)x_{2}=Lx_{2}=x_{4}=x_{0}(\gamma_{4})x_{1}$ .

Therefore we have
$\gamma=\gamma_{3}$

and
$\gamma\gamma_{2}=\gamma_{4}$ ,

hence $\gamma_{3}\gamma_{2}=\gamma_{4}$ . This contradicts our assumption $\gamma_{3}\gamma_{2}\neq\gamma_{4}$ . Q. E. D.
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