On rank 3 groups with a multiply transitive constituent

By Eiichi BANNAI*)

(Received Sept. 1, 1971)

§1. Introduction.

We say that a permutation group (\mathfrak{G}, Ω) is a primitive extension of rank 3 of a permutation group (G, Δ) if the following conditions are satisfied: (i) \mathfrak{G} is primitive and of rank 3 on the set Ω , and (ii) there exists an orbit $\Delta(a)$ of the stabilizer \mathfrak{G}_a $(a \in \Omega)$ such that the action of \mathfrak{G}_a on $\Delta(a)$ is faithful and that $(\mathfrak{G}_a, \Delta(a))$ and (G, Δ) are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem:

THEOREM 1. Let (G, Δ) be a 4-ply transitive permutation group. If (G, Δ) has a primitive extension of rank 3, then one of the following cases holds:

(I) $|\Delta| = 5, G = S_5,$

(II) $|\Delta| = 7, G = S_7 \text{ or } A_7$,

(III)¹⁾ $|\Delta| = 57$ and $G \neq S_{57}$, A_{57} ,

where S_n and A_n denote the symmetric and alternating groups on Δ ($|\Delta| = n$) respectively.

Theorem 1 is regarded as a sort of generalization of the results in T. Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo Noda for his kind criticisms, which have improved Theorem 1 to this general form.²⁾ The author also thanks Mr. Hikoe Enomoto for the valuable discussions we had.

§2. Proof of Theorem 1.

LEMMA 1. Let \mathfrak{G} be a primitive rank 3 permutation group on Ω , and let \mathfrak{G}_a be doubly transitive on one of its orbits $\Delta(a)$. Let $\Gamma(a)$ be another orbit

^{*)} Supported in part by the Fujukai Foundation.

¹⁾ Professor Noboru Ito has kindly shown the author the proof of the non-existence of non-trivial 4-ply transitive permutation group of degree 57 in a letter dated on Aug. 18, 1971. Therefore the case (III) of Theorem 1 does not occur.

²⁾ In the original manuscript Theorem 1 is proved with the additional hypothesis that the case (B) in the proof of Theorem 1 holds.

 $(\neq \{a\}, \Delta(a))$ of \mathfrak{G}_a , and let us set $|\Delta(a)| = k$, $|\Gamma(a)| = l$ and $|\Delta(a) \cap \Delta(b)| = \mu$ $(b \in \Gamma(a))$. Then

(i) $\mu l = k(k-1)$ and $0 < \mu < k-1$,

(ii) if $b, c \in \Delta(a)$, $b \neq c$, then there exist a point $d \in \Gamma(a)$ and an automorphism σ of the group $\mathfrak{G}_{a,b}$ such that $(\mathfrak{G}_{a,b,c})^{\sigma} \leq \mathfrak{G}_{a,d}$.

PROOF OF (i). This is essentially due to Manning [4]. For an ingeneous proof of the full statement of (i), see P. J. Cameron: Proofs of some theorems of W. A. Manning, Bull. London Math. Soc., Vol. 1 (1969), 349-352.

PROOF OF (ii). Since the orbit $\Delta(a)$ is self-paired, there exists an element x of \mathfrak{G} which interchanges a and b. Let σ be the automorphism of $\mathfrak{G}_{a,b}$ induced by the conjugation by x, then we easily have the assertion, since c^x (let us set $= d \in \Gamma(a)$.

REMARK. More strengthened form of Lemma 1 is stated in S. Montague [5] as Theorem 3.1 (page 509). However Theorem 3.1 (iii) is incorrect. For example, $U_{\rm s}(5)$ (which is a primitive extension of rank 3 of A_7 with subdegrees 1, 7, 42) and Higman-Sims's simple group of order 44,352,000 (which is a primitive extension of rank 3 of M_{22} with subdegrees 1, 22, 77) give a contradiction to Theorem 3.1 (iii) in [5].

PROOF OF THEOREM 1. Let (\mathfrak{G}, Ω) be a primitive extension of (G, Δ) and let $k = |\Delta(a)| \ge 4$, $l = |\Gamma(a)|$ and $\mu = |\Delta(a) \cap \Delta(b)|$ $(b \in \Gamma(a))$. Let σ (an automorphism of $\mathfrak{G}_{a,b}$) and d (a point in $\Gamma(a)$) be as in the statement of Lemma 1 (ii). Then $(\mathfrak{G}_{a,b,c})^{\sigma}$ $(b, c \in \Delta(a), b \neq c)$ is a subgroup of index $|\Delta| - 1$ of the 3-ply transitive permutation group $(\mathfrak{G}_{a,b}, \Delta(a) - \{b\})$. Thus by Satz 3 in N. Ito [2], either

(A) $(\mathfrak{G}_{a,b,c})^{\sigma}$ is transitive on $\mathcal{J}(a) - \{b\}$ or

(B) $(\mathfrak{G}_{a,b,c})^{\sigma} = \mathfrak{G}_{a,b,e}$ for some $e \in \mathcal{A}(a) - \{b\}$.

Let us assume that the case (A) holds. Then the orbits in $\Delta(a)$ by the action of the group $G_d (= \bigotimes_{a,d} \ge (\bigotimes_{a,b,c})^{\sigma})$ are either $\Delta(a)$ itself, or $\{b\}$ and $\Delta(a) - \{b\}$. Therefore either $\mu = 1$, $\mu = k - 1$, $\mu = k$ or $\mu = 0$. However by Lemma 1 (i) the last three cases are impossible (i. e., contradict the primitivity of \bigotimes), therefore $\mu = 1$. Next let us assume that the case (B) holds. From the 3-ply transitivity of G, the structure of the orbits of the group $G_d (= \bigotimes_{a,d} \ge \bigotimes_{a,b,e})$ on Δ is one of the following: (i) Δ , (ii) $\{b\}, \Delta - \{b\},$ (iii) $\{e\}, \Delta - \{e\},$ (iv) $\{b, e\},$ $\Delta - \{b, e\},$ (v) $\{b\}, \{e\}, \Delta - \{b, e\}$. Therefore either $\mu = 1$, $\mu = 2$, $\mu = k - 2$, $\mu = k$, $\mu = k - 1$ or $\mu = 0$. The last three cases are impossible, and if $\mu = k - 2$ then we have $\mu = 2$ (k = 4) by the relation $\mu l = k(k - 1)$. Therefore we have $\mu = 1$ or 2 in both cases (A) and (B). Firstly let us assume that $\mu = 1$. Then from D. G. Higman [1] and 4-ply transitivity of G, we have either k = 7 or 57. If k = 7, then G is either A_7 or S_7 , and they have a unique primitive extension of rank 3 of type $\mu = 1$. On the other hand, A_{57} and S_{57} have not, and so we have the assertion in this case. (Cf. [1'], [3] and [6].) Secondly let us assume that $\mu = 2$. We may assume that $k \neq 4$, since there exists no primitive group of rank 3 with subdegrees 1, 4, 6. Then $(G, \Gamma(a)) \cong (G, G/G_d) \cong (G, G/G_{(b,e)})$ as a permutation group, and is of rank 3 by the 4-ply transitivity of G on Δ . The lengths of orbits of G_a $(d \in \Gamma(a))$ on $\Gamma(a)$ are 1, 2(k-2) and $\frac{1}{2}(k-2)(k-3)$. Now, G_a is transitive on $\Delta(a) \cap \Gamma(d)$. Thus G_a must have an orbit $\Delta(d) \cap \Gamma(a)$ on $\Gamma(a)$ since there exists an element of \mathfrak{S} interchanging a and $d^{\mathfrak{s}_2}$. If $k \neq 5$, then $|\Delta(d) \cap \Gamma(a)| = k-2 \neq 2(k-2)$ and $\neq \frac{1}{2}(k-2)(k-3)$, and this is impossible. If k=5, then $G = S_{\delta}$, and S_{δ} has a unique such extension. (Cf. [1'] and [6].) Thus we have completed the proof of Theorem 1.

University of Tokyo

References

- [1] D.G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156.
- ['1'] D.G. Higman, Primitive rank 3 groups with a prime subdegree, Math. Z., 91 (1966), 70-86.
- [2] N. Ito, Über die Gruppen $PSL_n(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged., 21 (1960), 206-217.
- [3] S. Iwasaki, A note on primitive extensions of rank 3 of alternating groups, J. Fac. Sci. Hokkaido Univ., 21 (1970), 125-128.
- W. A. Manning, A theorem on simply transitive groups, Bull. Amer. Math. Soc., 35 (1929), 330-332.
- [5] S. Montague, On rank 3 groups with a multiply transitive constituent, J. Algebra, 14 (1970), 506-522.
- [6] T. Tsuzuku, On primitive extensions of rank 3 of symmetric groups, Nagoya Math. J., 27 (1966), 171-177.
- [7] D. Wales, Uniqueness of the graph of a rank three group, Pacific J. Math., 30 (1969), 271-276.

Added in proof: (1) The non-existence of rank 3 groups with k=57 and $\mu=1$ has just been proved by M. Aschbacher: The non-existence of rank three permutation groups of degree 3250 and subdegree 57, J. Algebra, 19 (1971), 538-540.

(2) The assumption that \mathfrak{G}_a is faithful on $\Delta(a)$ is removable in Theorem 1. (Cf. Theorem 1 of P. J. Cameron (cited in page 253), D. G. Higman [1'] and M. Aschbacher (ibid).)

³⁾ The author has found this argument in D. Wales [7], Theorem 1.