On rank 3 groups with a multiply transitive constituent

By Eiichi BANNAI*)

(Received Sept. 1, 1971)

§ 1. Introduction.

We say that a permutation group (\mathscr{C}, Ω) is a primitive extension of rank 3 of a permutation group (G, Δ) if the following conditions are satisfied: (i) (B) is primitive and of rank 3 on the set Ω, and (ii) there exists an orbit $\Delta(a)$ of the stabilizer $\mathbb{Q}_{a}(a \in \Omega)$ such that the action of \mathbb{E}_{a} on $\Delta(a)$ is faithful and that $\left(\mathbb{S}_{a}, \Delta(a)\right)$ and (G, Δ) are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem:
Theorem 1. Let (G, Δ) be a 4-ply transitive permutation group. If (G, Δ) has a primitive extension of rank 3, then one of the following cases holds:
(I) $|\Delta|=5, G=S_{5}$,
(II) $|\Delta|=7, G=S_{7}$ or A_{7},
(III) ${ }^{1)}|\Delta|=57$ and $G \neq S_{57}, A_{57}$,
where S_{n} and A_{n} denote the symmetric and alternating groups on $\Delta(|\Delta|=n)$ respectively.

Theorem 1 is regarded as a sort of generalization of the results in T . Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo Noda for his kind criticisms, which have improved Theorem 1 to this general form. ${ }^{2)}$ The author also thanks Mr. Hikoe Enomoto for the valuable discussions we had.

§ 2. Proof of Theorem 1.

Lemma 1. Let \mathfrak{B} be a primitive rank 3 permutation group on Ω, and let \mathbb{S}_{a} be doubly transitive on one of its orbits $\Delta(a)$. Let $\Gamma(a)$ be another orbit

[^0]$(\neq\{a\}, \Delta(a))$ of \mathscr{G}_{a}, and let us set $|\Delta(a)|=k,|\Gamma(a)|=l$ and $|\Delta(a) \cap \Delta(b)|=\mu$ ($b \in \Gamma(a))$. Then
(i) $\mu l=k(k-1)$ and $0<\mu<k-1$,
(ii) if $b, c \in \Delta(a), b \neq c$, then there exist a point $d \in \Gamma(a)$ and an automorphism σ of the group $\mathbb{G}_{a, b}$ such that $\left(\mathbb{B}_{a, b, c}\right)^{\sigma} \leqq \mathbb{B}_{a, d}$.

Proof of (i). This is essentially due to Manning [4]. For an ingeneous proof of the full statement of (i), see P. J. Cameron: Proofs of some theorems of W. A. Manning, Bull. London Math. Soc., Vol. 1 (1969), 349-352.

Proof of (ii). Since the orbit $\Delta(a)$ is self-paired, there exists an element x of \mathfrak{G} which interchanges a and b. Let σ be the automorphism of $\mathbb{S}_{a, b}$ induced by the conjugation by x, then we easily have the assertion, since $c^{x}($ let us set $=d) \in \Gamma(a)$.

Remark. More strengthened form of Lemma 1 is stated in S. Montague [5] as Theorem 3.1 (page 509). However Theorem 3.1 (iii) is incorrect. For example, $U_{3}(5)$ (which is a primitive extension of rank 3 of A_{7} with subdegrees $1,7,42$) and Higman-Sims's simple group of order 44,352,000 (which is a primitive extension of rank 3 of M_{22} with subdegrees $1,22,77$) give a contradiction to Theorem 3.1 (iii) in [5].

Proof of Theorem 1. Let ((G, Ω) be a primitive extension of (G, Δ) and let $k=|\Delta(a)| \geqq 4, l=|\Gamma(a)|$ and $\mu=|\Delta(a) \cap \Delta(b)|(b \in \Gamma(a)$). Let σ (an automorphism of $\mathscr{E}_{a, b}$) and d (a point in $\Gamma(a)$) be as in the statement of Lemma 1 (ii). Then $\left(\mathbb{G}_{a, b, c}\right)^{\sigma}(b, c \in \Delta(a), b \neq c)$ is a subgroup of index $|\Delta|-1$ of the 3 -ply transitive permutation group $\left(\mathbb{C}_{a, b}, \Delta(a)-\{b\}\right)$. Thus by Satz 3 in N. Ito [2], either
(A) $\left(\mathscr{S}_{a, b, c}\right)^{\sigma}$ is transitive on $\Delta(a)-\{b\}$ or
(B) $\left(\mathbb{C}_{a, b, c}\right)^{\sigma}=\mathbb{\oiint}_{a, b, e}$ for some $e \in \Delta(a)-\{b\}$.

Let us assume that the case (A) holds. Then the orbits in $\Delta(a)$ by the action of the group $G_{d}\left(=\oiint_{a, d} \geqq\left(\mathbb{®}_{a, b, c}\right)^{\sigma}\right)$ are either $\Delta(a)$ itself, or $\{b\}$ and $\Delta(a)-\{b\}$. Therefore either $\mu=1, \mu=k-1, \mu=k$ or $\mu=0$. However by Lemma 1 (i) the last three cases are impossible (i.e., contradict the primitivity of \mathbb{E}), therefore $\mu=1$. Next let us assume that the case (B) holds. From the 3-ply transitivity of G, the structure of the orbits of the group $G_{d}\left(=\mathbb{@}_{a, d} \geqq \mathfrak{C}_{a, b, e}\right)$ on Δ is one of the following: (i) Δ, (ii) $\{b\}, \Delta-\{b\}$, (iii) $\{e\}, \Delta-\{e\}$, (iv) $\{b, e\}$, $\Delta-\{b, e\}$, (v) $\{b\},\{e\}, \Delta-\{b, e\}$. Therefore either $\mu=1, \mu=2, \mu=k-2, \mu=k$, $\mu=k-1$ or $\mu=0$. The last three cases are impossible, and if $\mu=k-2$ then we have $\mu=2(k=4)$ by the relation $\mu l=k(k-1)$. Therefore we have $\mu=1$ or 2 in both cases (A) and (B). Firstly let us assume that $\mu=1$. Then from D. G. Higman [1] and 4-ply transitivity of G, we have either $k=7$ or 57. If $k=7$, then G is either A_{7} or S_{7}, and they have a unique primitive extension of rank 3 of type $\mu=1$. On the other hand, A_{57} and S_{57} have not, and so we
have the assertion in this case. (Cf. [1'], [3] and [6].) Secondly let us assume that $\mu=2$. We may assume that $k \neq 4$, since there exists no primitive group of rank 3 with subdegrees $1,4,6$. Then ($G, \Gamma(a)) \cong\left(G, G / G_{d}\right) \cong\left(G, G / G_{(b, e)}\right)$ as a permutation group, and is of rank 3 by the 4 -ply transitivity of G on 4 . The lengths of orbits of $G_{d}(d \in \Gamma(a))$ on $\Gamma(a)$ are $1,2(k-2)$ and $\frac{1}{2}(k-2)(k-3)$. Now, G_{d} is transitive on $\Delta(a) \cap \Gamma(d)$. Thus G_{d} must have an orbit $\Delta(d) \cap \Gamma(a)$ on $\Gamma(a)$ since there exists an element of \mathbb{B} interchanging a and d^{33}. If $k \neq 5$, then $|\Delta(d) \cap \Gamma(a)|=k-2 \neq 2(k-2)$ and $\neq \frac{1}{2}(k-2)(k-3)$, and this is impossible. If $k=5$, then $G=S_{5}$, and S_{5} has a unique such extension. (Cf. [$\left.1^{\prime}\right]$ and [6].) Thus we have completed the proof of Theorem 1.

University of Tokyo

References

[1] D. G. Higman, Finite permutation groups of rank 3, Math. Z., 86 (1964), 145-156.
['1'] D. G. Higman, Primitive rank 3 groups with a prime subdegree, Math. Z., 91 (1966), 70-86.
[2] N. Ito, Über die Gruppen $P S L_{n}(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged., 21 (1960), 206-217.
[3] S. Iwasaki, A note on primitive extensions of rank 3 of alternating groups, J. Fac. Sci. Hokkaido Univ., 21 (1970), 125-128.
[4] W. A. Manning, A theorem on simply transitive groups, Bull. Amer. Math. Soc., 35 (1929), 330-332.
[5] S. Montague, On rank 3 groups with a multiply transitive constituent, J. Algebra, 14 (1970), 506-522.
[6] T. Tsuzuku, On primitive extensions of rank 3 of symmetric groups, Nagoya Math. J., 27 (1966), 171-177.
[7] D. Wales, Uniqueness of the graph of a rank three group, Pacific J. Math., 30 (1969), 271-276.

Added in proof: (1) The non-existence of rank 3 groups with $k=57$ and $\mu=1$ has just been proved by M. Aschbacher: The non-existence of rank three permutation groups of degree 3250 and subdegree 57, J. Algebra, 19 (1971), 538-540.
(2) The assumption that \mathbb{G}_{a} is faithful on $\Delta(a)$ is removable in Theorem 1. (Cf. Theorem 1 of P. J. Cameron (cited in page 253), D. G. Higman [$\left.1^{\prime}\right]$ and M. Aschbacher (ibid).)

[^1]
[^0]: *) Supported in part by the Fujukai Foundation.

 1) Professor Noboru Ito has kindly shown the author the proof of the non-existence of non-trivial 4 -ply transitive permutation group of degree 57 in a letter dated on Aug. 18, 1971. Therefore the case (III) of Theorem 1 does not occur.
 2) In the original manuscript Theorem 1 is proved with the additional hypothesis that the case (B) in the proof of Theorem 1 holds.
[^1]: 3) The author has found this argument in D. Wales [7], Theorem 1.
