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§1. Introduction.

We say that a permutation group (@, £2) is a primitive extension of rank 3
of a permutation group (G, 4) if the following conditions are satisfied: (i) &
is primitive and of rank 3 on the set £, and (ii) there exists an orbit 4(a) of
the stabilizer @&, (a € 2) such that the action of &, on 4(a) is faithful and
that (®,, 4(a)) and (G, 4) are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem :

THEOREM 1. Let (G, 4) be a 4-ply transitive permutation group. If (G, 4)
has a primitive extension of rank 3, then one of the following cases holds:

(1) 14]=5 G=S,

(1) 41=7, G=S,; or A,

(IDY |4|=57 and G # S;,, As,,
where S, and A, denote the symmetric and alternating groups on 4 (|4}=n)
respectively.

Theorem 1 is regarded as a sort of generalization of the results in T.
Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of
symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo
Noda for his kind criticisms, which have improved Theorem 1 to this general
form.” The author also thanks Mr. Hikoe Enomoto for the valuable dis-
cussions we had.

§2. Proof of Theorem 1.

LEMMA 1. Let & be a primitive rank 3 permutation group on £, and let
®, be doubly transitive on one of its orbits A(a). Let I'(a) be another orbit

*) Supported in part by the Fujukai Foundation.

1) Professor Noboru Ito has kindly shown the author the proof of the non-existence
of non-trivial 4-ply transitive permutation group of degree 57 in a letter dated on Aug.
18, 1971. Therefore the case (III) of Theorem 1 does not occur.

2) In the original manuscript Theorem 1 is proved with the additional hypothesis
that the case (B) in the proof of Theorem 1 holds.
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(#{a}, 4(a)) of @®,, and let us set |da)|==Fk, |['(@)|=1 and |d(a)~\A(b)|=p
(besI'(a)). Then

(i) pl=kEk—1) and 0< p< k—1,

(ii) if b, c= d(a), b+#c, then there exist a point d=l'(a) and an auto-
morphism o of the group &, such that (Ggp,.)° < Gg,q

PROOF OF (i). This is essentially due to Manning [4]. For an ingeneous
proof of the full statement of (i), see P.]J. Cameron: Proofs of some theorems
of W. A. Manning, Bull. London Math. Soc., Vol. 1 (1969), 349-352.

PROOF OF (ii). Since the orbit 4(a) is self-paired, there exists an element
x of & which interchanges a and b. Let ¢ be the automorphism of &,
induced by the conjugation by x, then we easily have the assertion, since
c® (let us set =d) e I'(a).

REMARK. More strengthened form of Lemma 1 is stated in S. Montague
[5] as Theorem 3.1 (page 509). However Theorem 3.1 (iii) is incorrect. For
example, U,(5) (which is a primitive extension of rank 3 of A, with sub-
degrees 1, 7, 42) and Higman-Sims’s simple group of order 44,352,000 (which
is a primitive extension of rank 3 of M,, with subdegrees 1, 22, 77) give a
contradiction to Theorem 3.1 (iii) in [5]. .

PROOF OF THEOREM 1. Let (B, £2) be a primitive extension of (G, 4) and
let k=|4(a)|=4, |=|I(a)] and p=|d(@)N4A®b)| (bel'(a)). Let o (an auto-
morphism of &,,;) and d (a point in I'(a)) be as in the statement of Lemma
1 (ii). Then (8,,,.)° (b, c € d(a), b+ c¢) is a subgroup of index |4]|—1 of the
3-ply transitive permutation group (&, 4(a)—{b}). Thus by Satz 3 in N. Ito
[2], either

(A) (B,,5,0)° is transitive on 4(a)—{b} or

B) (Be,,c)° =G,,5,e for some e = 4(a)—{b}.

Let us assume that the case (A) holds. Then the orbits in 4(a) by the action
of the group G, (=6,,s = (By,p,.)%) are either 4(a) itself, or {b} and 4(a)—{b}.
Therefore either py=1, puy=*k—1, p=Fk or u=0. However by Lemma 1 (i)
the last three cases are impossible (i.e., contradict the primitivity of &),
therefore y=1. Next let us assume that the case (B) holds. From the 3-ply
transitivity of G, the structure of the orbits of the group G (=8,,0=®s,p,0)
on 4 is one of the following: (i) 4, (i1) {b}, 4—{b}, (iii) {e}, 4—{e}, (V) {, e},
4—{b, e}, (v) {b}, {e}, 4—{b, e}. Therefore either =1, pu=2, p=k—2, p==%,
p=Fk—1 or p=0. The last three cases are impossible, and if pg=%k—2 then
we have p=2 (k=4) by the relation pul=k(k—1). Therefore we have u=1
or 2 in both cases (A) and (B). Firstly let us assume that g=1. Then from
D.G. Higman [1] and 4-ply transitivity of G, we have either k=7 or 57. If
k=17, then G is either A; or S,, and they have a unique primitive extension
of rank 3 of type g=1. On the other hand, A4,, and S;; have not, and so we
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have the assertion in this case. (Cf. [1’], [8] and [6]) Secondly let us
assume that £=2. We may assume that k2 + 4, since there exists no primitive
group of rank 3 with subdegrees 1, 4, 6. Then (G, I'(a))=(G, G/G5)=(G, G/G )
as a permutation group, and is of rank 3 by the 4-ply transitivity of G on 4.

The lengths of orbits of G4 (d € I'(a)) on I'(a) are 1, 2(k—2) and %(k—Z)(k—B).

Now, G, is transitive on 4(a) "\ I"(d). Thus G, must have an orbit 4(d)NI"(a)
on I'(a) since there exists an element of & interchanging a and d®. If k+5,

then |4(d) N I'(@)| = k—2+ 2(k—2) and = —%—(k—Z)(k——S), and this is impossible.

If k=5, then G=S;, and S; has a unique such extension. (Cf. [1’] and [6].)
Thus we have completed the proof of Theorem 1.
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Added in proof: (1) The non-existence of rank 3 groups with 2=57 and
p#=1 has just been proved by M. Aschbacher: The non-existence of rank
three permutation groups of degree 3250 and subdegree 57, J. Algebra,
19 (1971), 538-540.

(2) The assumption that @, is faithful on 4(a) is removable in Theorem 1.
(Cf. Theorem 1 of P.J. Cameron (cited in page 253), D.G. Higman [1’] and
M. Aschbacher (ibid).)

3) The author has found this argument in D. Wales , Theorem 1.
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