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On rank 3 groups with a multiply transitive constituent
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\S 1. Introduction.

We say that a permutation group $(\mathfrak{G}, \Omega)$ is a primitive extension of rank 3
of a permutation group $(G, \Delta)$ if the following conditions are satisfied: (i) $\mathfrak{G}$

is primitive and of rank 3 on the set $\Omega$ , and (ii) there exists an orbit $\Delta(a)$ of
the stabilizer $\mathfrak{G}_{a}(a\in\Omega)$ such that the action of $\mathfrak{G}_{a}$ on $\Delta(a)$ is faithful and
that $(\mathfrak{G}_{a}, \Delta(a))$ and $(G, \Delta)$ are isomorphic as permutation groups.

The purpose of this note is to prove the following theorem:
THEOREM 1. Let $(G, \Delta)$ be a 4-ply transitive permutation group. If $(G, \Delta)$

has a primitive extension of rank 3, then one of the following cases holds:
(I) $|\Delta|=5,$ $G=S_{\text{\’{e}}}$ ,
(1I) $|\Delta|=7,$ $G=S_{7}$ or $A_{7}$ ,
(III)1) $|\Delta|=57$ and $G\neq S_{67},$ $A_{57}$ ,

where $S_{n}$ and $A_{n}$ denote the symmetric and alternating groups on $\Delta(|\Delta|=n)$

respectively.
Theorem 1 is regarded as a sort of generalization of the results in T.

Tsuzuku [6] and S. Iwasaki [3] where primitive extensions of rank 3 of
symmetric and alternating groups are determined.

The author wishes to express his hearty thanks to Professor Ryuzaburo
Noda for his kind criticisms, which have improved Theorem 1 to this general
form.2) The author also thanks Mr. Hikoe Enomoto for the valuable $dis$ .
cussions we had.

\S 2. Proof of Theorem 1.

LEMMA 1. Let $\mathfrak{G}$ be a primitive rank 3 permutation group on $\Omega$ , and let
$\mathfrak{G}_{\alpha}$ be doubly transitive on one of its orbits $\Delta(a)$ . Let $\Gamma(a)$ be another orbit

$*)$ Supported in part by the Fujukai Foundation.
1) Professor Noboru Ito has kindly shown the author the proof of the non-existence

of non-trivial 4-ply transitive permutation group of degree 57 in a letter dated on Aug.
18, 1971. Therefore the case (III) of Theorem 1 does not occur.

2) In the original manuscript Theorem 1 is proved with the additional hypothesis
that the case (B) in the proof of Theorem 1 holds.
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$(\neq\{a\}, \Delta(a))$ of $\mathfrak{G}_{a}$ , and let us set $|\Delta(a)|=k,$ $|\Gamma(a)|=l$ and $|\Delta(a)\cap\Delta(b)|=\mu$

$(b\in\Gamma(a))$ . Then
(i) $\mu l=k(k-1)$ and $0<\mu<k-1$ ,
(ii) if $b,$ $c\in\Delta(a),$ $b\neq c$ , then there exist a point $d\in\Gamma(a)$ and an auto-

morphism $\sigma$ of the group $\mathfrak{G}_{a,b}$ such that $(\mathfrak{G}_{a,b,c})^{\sigma}\leqq \mathfrak{G}_{a,a}$ .
PROOF OF (i). This is essentially due to Manning [4]. For an ingeneous

proof of the full statement of (i), see P. J. Cameron: Proofs of some theorems
of W. A. Manning, Bull. London Math. Soc., Vol. 1 (1969), 349-352.

PROOF OF (ii). Since the orbit $\Delta(a)$ is self-paired, there exists an element
$x$ of $\mathfrak{G}$ which interchanges $a$ and $b$ . Let $\sigma$ be the automorphism of $\mathfrak{G}_{a,b}$

induced by the conjugation by $x$ , then we easily have the assertion, since
$c^{x}$ (let us set $=d$ ) $\in\Gamma(a)$ .

REMARK. More strengthened form of Lemma 1 is stated in S. Montague
[5] as Theorem 3.1 (page 509). However Theorem 3.1 (iii) is incorrect. For
example, $U_{8}(5)$ (which is a primitive extension of rank 3 of $A_{7}$ with sub-
degrees 1, 7, 42) and Higman-Sims’s simple group of order 44,352,000 (which

is a primitive extension of rank 3 of $M_{22}$ with subdegrees 1, 22, 77) give a
contradiction to Theorem 3.1 (iii) in [5].

PROOF OF THEOREM 1. Let $(\mathfrak{G}, \Omega)$ be a primitive extension of $(G, \Delta)$ and
let $k=|\Delta(a)|\geqq 4,$ $l=|\Gamma(a)|$ and $\mu=|\Delta(a)\cap\Delta(b)|(b\in\Gamma(a))$ . Let $\sigma$ (an auto-
morphism of $\mathfrak{G}_{\alpha,b}$) and $d$ (a point in $\Gamma(a)$) be as in the statement of Lemma
1 (ii). Then $(\mathfrak{G}_{\alpha,b,c})^{\sigma}(b, c\in\Delta(a),$ $b\neq c$) is a subgroup of index $|\Delta|-1$ of the
3-ply transitive permutation group $(\mathfrak{G}_{a,b}, \Delta(a)-\{b\})$ . Thus by Satz 3 in N. Ito
[2], either

(A) $(\mathfrak{G}_{a,b,c})^{\sigma}$ is transitive on $\Delta(a)-\{b\}$ or
(B) $(\mathfrak{G}_{a,b,c})^{\sigma}=\mathfrak{G}_{\alpha,b,e}$ for some $e\in\Delta(a)-\{b\}$ .

Let us assume that the case (A) holds. Then the orbits in $\Delta(a)$ by the action
of the group $G_{d}(=\mathfrak{G}_{a,d}\geqq(\mathfrak{G}_{a,b,c})^{\sigma})$ are either $\Delta(a)$ itself, or $\{b\}$ and $\Delta(a)-\{b\}$ .
Therefore either $\mu=1,$ $\mu=k-1,$ $\mu=k$ or $\mu=0$ . However by Lemma 1 (i)

the last three cases are impossible ( $i$ . $e.$ , contradict the primitivity of $\mathfrak{G}$),

therefore $\mu=1$ . Next let us assume that the case (B) holds. From the 3-ply
transitivity of $G$ , the structure of the orbits of the group $G_{a}(=\mathfrak{G}_{a,d}\geqq \mathfrak{G}_{a,b,e})$

on $\Delta$ is one of the following: (i) $\Delta$ , (ii) $\{b\},$ $\Delta-\{b\}$ , (iii) $\{e\},$ $\Delta-\{e\}$ , (iv) $\{b, e\}$ ,
$\Delta-\{b, e\},$ $(v)\{b\},$ $\{e\},$ $\Delta-\{b, e\}$ . Therefore either $\mu=1,$ $\mu=2,$ $\mu=k-2,$ $\mu=k$ ,
$\mu=k-1$ or $\mu=0$ . The last three cases are impossible, and if $\mu=k-2$ then
we have $\mu=2(k=4)$ by the relation $\mu l=k(k-1)$ . Therefore we have $\mu=1$

or 2 in both cases (A) and (B). Firstly let us assume that $\mu=1$ . Then from
D. G. Higman [1] and 4-ply transitivity of $G$ , we have either $k=7$ or 57. If
$k=7$, then $G$ is either $A_{7}$ or $S_{7}$ , and they have a unique primitive extension
of rank 3 of type $\mu=1$ . On the other hand, $A_{57}$ and $S_{67}$ have not, and so we
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have the assertion in this case. (Cf. $[1^{\prime}],$ $[3]$ and [6].) Secondly let us
assume that $\mu=2$. We may assume that $k\neq 4$ , since there exists no primitive
group Of rank3with subdegrees1,4,6. Then $(G, \Gamma(a))\cong(G, G/G_{a})\cong(G, G/G_{\{b,e},)$

as a permutation group, and is of rank 3 by the 4-ply transitivity of $G$ on $\Delta$ .
The lengths of orbits of $G_{a}(d\in\Gamma(a))$ on $\Gamma(a)$ are 1, $2(k-2)$ and $\frac{1}{2}(k-2)(k-3)$.
Now, $G_{a}$ is transitive on $\Delta(a)\cap\Gamma(d)$ . Thus $G_{a}$ must have an orbit $\Delta(d)\cap\Gamma(a)$

on $\Gamma(a)$ since there exists an element of $\mathfrak{G}$ interchanging $a$ and d) If $k\neq 5$ ,

then $|\Delta(d)\cap\Gamma(a)|=k-2\neq 2(k-2)$ and $\neq\frac{1}{2}(k-2)(k-3)$ , and this is impossible.

If $k=5$ , then $G=S_{\epsilon}$ , and $S_{6}$ has a unique such extension. (Cf. $[1^{J}]$ and [6].)
Thus we have completed the proof of Theorem 1.
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Added in proof: (1) The non-existence of rank 3 groups with k $=57$ and
$\mu=1$ has just been proved by M. Aschbacher: The non-existence of rank
three permutation groups of degree 3250 and subdegree 57, J. Algebra,
19 (1971), 538-540.

(2) The assumption that $\mathfrak{G}_{\alpha}$ is faithful on $\Delta(a)$ is removable in Theorem 1.
(Cf. Theorem 1 of P. J. Cameron (cited in page 253), D. G. Higman $[1^{J}]$ and
M. Aschbacher (ibid).)

3) The author has found this argument in D. Wales [7], Theorem 1.
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