Non-normal functions f(z) with $\iint_{|z|<1} |f'(z)| dxdy < \infty$

By Harold Allen and Charles Belna

(Received June 28, 1971)

1. Let f(z) be a function holomorphic in the open unit disk D. The spherical derivative of f(z) is given by

$$\rho(f(z)) = -\frac{|f'(z)|}{1+|f(z)|^2}.$$

The function f(z) is said to be *normal* in D (see [5]) if there exists a constant K > 0 such that

$$\rho(f(z)) \leq -\frac{K}{1-|z|^2}$$

for each $z \in D$; and f(z) is said to be uniformly normal in D (see [2]) if there exists a constant K > 0 such that

$$|f'(z)| \leq \frac{K}{1-|z|^2}$$

for each $z \in D$.

Using the notations

$$\mathcal{D}(f) = \iint_{D} |f'(z)|^2 dx dy$$

and

$$S(f) = \iint_{\mathcal{D}} |f'(z)| \, dx \, dy \,,$$

we state the following questions:

- (1) Does $\mathcal{D}(f) < \infty$ imply f(z) is uniformly normal?
- (2) Does f(z) uniformly normal imply $\mathfrak{D}(f) < \infty$?
- (3) Does $S(f) < \infty$ imply f(z) is uniformly normal?
- (4) Does f(z) uniformly normal imply $S(f) < \infty$?

Mathews [6] has answered question (1) in the affirmative; and questions (2) and (4) have been answered in the negative by Mergeljan [7] who has proved the existence of a bounded holomorphic function g(z) for which

$$\iint\limits_{D} |g'(z)| dxdy = \infty.$$

Here we answer question (3) in the negative; even more we show that $S(f) < \infty$ need not imply f(z) is normal.

2. Throughout we let

$$B(z) = \prod_{n=1}^{\infty} \frac{a_n - z}{1 - a_n z}$$

and

$$f_{\alpha}(z) = \frac{B(z)}{(1-z)^{\alpha}},$$

where $a_n = 1 - \frac{1}{e^n}$ and $\alpha > 0$.

LEMMA 1. The function $f_{\alpha}(z)$ is non-normal for all $\alpha > 0$.

PROOF. Bagemihl and Seidel [1, Example 4, p. 11] have shown: (1) there exists a constant K>0 such that $\rho(a_n,\,a_{n+1})< K$ for all n, where $\rho(a_n,\,a_{n+1})$ is the non-Euclidean hyperbolic distance between a_n and a_{n+1} ; and (2) there exists a sequence $\{x_n\}_{n=1}^{\infty}$ with $a_n < x_n < a_{n+1}$ and

$$\liminf_{n\to\infty} |B(x_{2n})| > 0.$$

From (2) it is clear that $f_{\alpha}(x_{2n}) \to \infty$ as $n \to \infty$ while $f_{\alpha}(a_{2n}) \to 0$ as $n \to \infty$ for all $\alpha > 0$. Also by (1) we have $\rho(a_{2n}, x_{2n}) < K$ for all n. It now follows from a result of Lappan [4, Lemma 3, p. 188] that $f_{\alpha}(z)$ is non-normal for all $\alpha > 0$.

LEMMA 2.
$$\iint_{\mathcal{D}} \frac{|B'(z)|}{|1-z|^{\alpha}} dxdy < \infty \text{ for } \alpha < \frac{1}{2}.$$

PROOF. Using logarithmic differentiation, we get

$$B'(z) = \sum_{k=1}^{\infty} B_k(z) \left\{ \frac{a_k^2 - 1}{(1 - a_k z)^2} \right\}$$
,

where

$$B_k(z) = \prod_{\substack{n=1\\n\neq k}}^{\infty} \frac{a_n - z}{1 - a_n z}.$$

Hence

$$|B'(z)| \leq \sum_{n=1}^{\infty} \frac{1-a_n^2}{|1-a_nz|^2}$$
;

and we have

$$\int_{0}^{2\pi} \frac{|B'(re^{i\theta})|}{|1 - re^{i\theta}|^{\alpha}} d\theta \leq \frac{1}{(1 - r)^{\alpha}} \sum_{n=1}^{\infty} (1 - a_{n}^{2}) \int_{0}^{2\pi} \frac{d\theta}{|1 - a_{n}re^{i\theta}|^{2}}$$

$$= \frac{2\pi}{(1 - r)^{\alpha}} \sum_{n=1}^{\infty} \frac{1 - a_{n}^{2}}{1 - (a_{n}r)^{2}}$$

$$\leq \frac{4\pi}{(1 - r)^{\alpha}} \sum_{n=1}^{\infty} \frac{1 - a_{n}}{1 - a_{n}r}.$$

Now for $\alpha < \frac{1}{2}$

$$\left\{ \int_{0}^{1} \frac{dr}{(1-r)^{\alpha}(1-a_{n}r)} \right\}^{2} \leq \int_{0}^{1} \frac{dr}{(1-r)^{2\alpha}} \int_{0}^{1} \frac{dr}{(1-a_{n}r)^{2}} \\
= \left(\frac{1}{1-2\alpha} \right) \left(\frac{1}{1-a_{n}} \right).$$

It follows that for $\alpha < \frac{1}{2}$

$$\iint \frac{|B'(z)|}{|1-z|^{\alpha}} dxdy \leq \frac{4\pi}{\sqrt{1-2\alpha}} \sum_{n=1}^{\infty} \sqrt{1-a_n}$$

$$= \frac{4\pi}{\sqrt{1-2\alpha}} \sum_{n=1}^{\infty} e^{-\frac{n}{2}} < \infty,$$

and the lemma is proved.

THEOREM 1. For each $\alpha \in \left(0, \frac{1}{2}\right)$ the function $f_{\alpha}(z)$ is non-normal and

$$\iint_{\mathbf{R}} |f'_{\alpha}(z)| \, dx dy < \infty \,.$$

PROOF. Since

$$f'_{\alpha}(z) = \frac{B'(z)}{(1-z)^{\alpha}} + \frac{\alpha B(z)}{(1-z)^{1+\alpha}}$$

and

$$\iint_{\mathcal{D}} \frac{|B(z)|}{|1-z|^{1+\alpha}} dxdy \le \iint_{\mathcal{D}} \frac{dxdy}{|1-z|^{1+\alpha}} < \infty$$

for $\alpha < 1$, it follows from Lemma 2 that

$$\iint_{\mathcal{D}} |f'_{\alpha}(z)| \, dx dy < \infty$$

for $\alpha < \frac{1}{2}$. In view of Lemma 1, the theorem is proved.

3. We now consider real-valued harmonic functions in D. Such a function u(z) is said to be *normal* in D (see [3]) if there exists a constant K > 0 such that

$$\frac{\sqrt{(u_x(z))^2 + (u_y(z))^2}}{1 + |u(z)|^2} \le \frac{K}{1 - |z|^2}$$

for each $z \in D$. The surface area of u(z) is equal to

$$\iint\limits_{\mathcal{D}} \sqrt{1+(u_x(z))^2+(u_y(z))^2} \,dxdy.$$

THEOREM 2. For each $\alpha \in \left(0, -\frac{1}{2}\right)$ the function $u(z) = \operatorname{Re}\left(f_{\alpha}(z)\right)$ is a non-normal harmonic function with finite surface area.

PROOF. According to Lappan [3, Theorem 5, p. 158] u(z) is non-normal since $f_{\alpha}(z)$ is non-normal. That u(z) has finite surface area follows from Theorem 1 and the fact that

$$\sqrt{1+(u_x(z))^2+(u_y(z))^2} \leq 1+|f'_\alpha(z)|.$$

Wright State University

References

- [1] F. Bagemihl and W. Seidel, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn. AI, 280 (1960), 1-17.
- [2] P. Lappan, Some sequential properties of normal and non-normal functions with applications to automorphic functions, Comment. Math. Univ. St. Paul., 12 (1964), 41-57.
- [3] P. Lappan, Some results on harmonic normal functions, Math. Z., 90 (1965), 155-159.
- [4] P. Lappan, Non-normal sums and products of unbounded normal functions, Michigan Math. J., 8 (1961), 187-192.
- [5] O. Lehto and K.I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math., 97 (1957), 47-65.
- [6] J.H. Mathews, Coefficients of uniformly normal—Bloch functions (to appear).
- [7] S.N. Mergeljan, On an integral connected with analytic functions, Izv. Akad. Nauk SSSR Ser. Mat., 15 (1951), 395-400, (Russian).