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We begin by recalling several aspects of Herbrand’s theorem for $L_{\omega,\omega}$ , or
more precisely, of several corollaries to Herbrand’s original theorem $([31, [6]$ ,

[8], not in these references but elsewhere in the literature these corollaries
are sometimes confused with the theorem itself). $L^{\vee}$ is an extension of $L$

by arbitrarily many function symbols of each number of arguments.
(1) Semantic versions.
(a) Reduction, for validity, to existential sentences. For every sentence $\varphi$

of $L$ there is an existential sentence $\check{\varphi}$ of $L^{\vee}$ such that $\varphi$ is valid if and only

if $\check{\varphi}$ is valid.
(b) Weak Uniformity theorem. A prenex existential sentence $\theta=\exists x_{1}\cdots$

$x_{m}\psi(x_{1}, \cdots , x_{m})$ is valid if and only if it is valid in all canonical (term) models;

i. e., if and only if for each model $\mathfrak{A}$ of $\theta$ there are terms $t_{1}$ , $\cdot$ .. , $t_{m}$ such that
$\mathfrak{A}F\psi(t_{J}, \cdots t_{m})$ .

(b)i Uniformity theorem. $\theta$ is valid if and only if for some finite set $T$

of $terms_{t_{1}}\ldots.W_{{}^{t}m\in T}\psi(t_{1}, \cdots , t_{m})$ is valid.

A third aspect of Herbrand’s theorem will be considered in (2) (b) below.
There are many possible sentences $\check{\varphi}$ which can be used for a given $\varphi$

in (1)(a). In the case that $\varphi$ is in prenex form, the validity functional form
(often called the Herbrand normal form), which is dual to the Skolem form,
always suffices. For example, if $\varphi=\exists y\forall z\varphi_{1}(y, z)$ with $\varphi_{1}$ quantifier-free, the
validity functional form of $\varphi$ is

(i) $\exists y\varphi_{1}(y, f(y))$ .
Following Denton and Dreben [3], one can directly associate existential $\check{\varphi}$

with any $\varphi;\check{\varphi}$ is an Herbrand normal form of a prenex form of $\varphi$ .
To illustrate (1)(a) and (1) $(b)^{\prime}$ , consider the sentence

1) This paper forms part of the author’s Ph. D. thesis, submitted to Stanford
University in May, 1970. We would like to thank our thesis adviser, Professor Solo-
mon Feferman, for his advice and direction and unfailing willingness to give of his
time and effort throughout our work. We also owe a special debt of thanks to Pro-
fessor Georg Kreisel for suggesting the initial direction of our research and for many
helpful suggestions.
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(ii) $\exists y\forall z(r(y)\vee\sim r(z))$

which is trivially valid. The formula $\check{\varphi}$ is then

(iii) $\exists y(r(y)\vee\sim r(f(y)))$ .
If we take a constant symbol $c$ of $L^{v}$ , we get a valid disjunction over the
finite set $T=\{c, f(c)\}$ :

(iv) $(r(c)\vee\sim r(f(c)))\vee(r(f(c))\vee\sim r(f(f(c))))$ .
A simple model-theoretic proof of (1)(a), (b) is given in Kreisel-Krivine

[8]. (1) $(b)^{\prime}$ then follows by compactness.
(2) Syntactic versions. Here we distinguish between quantitative and

qualitative refinements of (1), when, naturally, the starting point is not the
validity of a sentence $\varphi$ or $\theta$ , but a derivation by some given rules of in-
ference.

(a) Explicit definability. There are functionals (in an explicitly defined
class) which map a derivation of $\varphi$ or $\theta$ in (1)(a), resp. (1)(b), into a deriva-
tion of $\check{\varphi}$ , respectively into a set $T$ of terms, and a derivation of $t_{1}\ldots..t\in TW_{m}\psi(t_{1}$

,
$\ldots$ $t_{m}$).

(b) Herbrand-Gentzen midsequent theorem. For any derivation $\mathcal{D}$ of a
prenex formula $\varphi$ there is a derivation $\mathcal{D}^{\prime}$ in which all propositional inferences
precede all quantifier inferences. (The midsequent is the lowest quantifier-
free sequent in $\mathcal{D}^{\prime}.$)

The syntactic versions are called ”refinements” because, modulo the com-
pleteness theorem, the semantic versions follow easily from them, for exam-
ple, (1) $(b)^{\prime}$ from (2)(b). (Apart from quantitative bounds, (2)(b) follows also
from (1) $(b)^{\prime}$ using a suitable substitution of variables for terms in a derivable
disjunction

$\iota_{1}\ldots\backslash x_{t}/_{m\in T}\psi(t_{1}, \cdots , t_{m})$ . For example, in (ii) above, use the substitu-

tion instance
$(r(x)\vee\sim r(y))\vee(r(y)\vee\sim r(z))$

of (iv).) The reader not familiar with the basic proof theory of $L_{\omega,\omega}$ should
look at example 3.3 below.

In this paper we consider generalizations of (1) and (2) to $L_{\omega_{1},\omega}$ and its
admissible sublanguages $L_{A}$ and also to $L_{\kappa,\kappa}$ , where $\kappa$ is strongly inaccessible.
The main results are as follows.

(1)(a) and (1)(b) generalize, by means of the semantic proofs in \S 1. The
same methods give, as an easy corollary, a new and simpler proof of Takeuti’s
interpolation theorem for $L_{\kappa,\kappa}[12]$ ; this is done in \S 4. As is to be expected,
(1)(b)‘ does not generalize without changing the meaning of “finite.” It does
generalize, for $A=HC$ and for countable admissible $A$ , if A-finite sets of
terms $T$ are used (the terms themselves remain finite in the ordinary sense).
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\langle $2$) $(a)$ is shown in \S 2 to generalize to $L_{\omega_{J},\omega}$ . (2) $(b)$ turns out not to generalize,

at least for the natural generalization of the concept of midsequent theorem
given in \S 3.

It may be remarked that, in the literature on finite languages, obstacles
have been noted to extending Herbrand’s (original) theorem; $e$ . $g.$ , to arith-
metic [7]. But these results seem incomparable to ours.

\S 1. Herbrand uniformity theorems: semantic proof.

Unless otherwise specified, all formulas considered are in reduced (nega-

tion normal) form; we write $\varphi^{*}$ for the reduced form of $\varphi$ . In the following,

the language $L$ is to be $L_{\omega 3,\omega}$ or one of its countable admissible sublanguages
$L_{A},$ $A\neq HF$.

1.1. DEFINITION. Given a language $L,$ $L^{\vee}$ is an extension of $L$ by arbi-
trarily many function symbols of each number of arguments. Constant
symbols are regarded as O-ary function symbols. For every formula $\varphi\in L$ ,

the relation, $\check{\varphi}\in L^{\vee}$ is a validity functional form $(v. f. f.)$ of $\varphi$ , is defined induc-
tively as follows:

(i) $\varphi$ is an atomic or a negated atomic formula and $\check{\varphi}=\varphi$ ; or
(ii) $\varphi=\exists x\psi(x),\check{\psi}(x)$ is a $v$ . $f$ . $f$ . of $\psi(x)$ and $\check{\varphi}=\exists x\check{\psi}(x)$ ; or
(iii) $\varphi=\forall x\psi(x),\check{\psi}(y_{1}, \cdot .. , y_{n}, x)$ (where $y_{1}$ , $\cdot$ .. , $y_{n}$ are the free variables of

$\varphi)$ is a $v$ . $f$ . $f$ . of $\psi(x)$ , and $\check{\varphi}=\check{\psi}(y_{1}, y_{n}, f(y_{1}, y_{n}))$ where $f$ is an
n-ary function symbol not occurring in $\varphi$ ; or

(iv) $\varphi=\backslash X/\Phi(\varphi=M\Phi),$ $\Phi^{\vee}$ is a set of $v$ . $f$ . $f$ . $s\check{\psi}$ of $\psi\in\Phi$ such that $\psi_{1}$

$\neq\psi_{2}$ implies $\check{\psi}_{1},\check{\psi}_{2}$ have disjoint sets of new function symbols, and
$\check{\varphi}=W\Phi^{v}(\check{\varphi}=/X\backslash \Phi^{\vee})$ .

$\check{\varphi}$ is uniquely determined up to a renaming of the function symbols. We
shall, therefore, regard two $v$ . $f$ . $f$ . $s\check{\varphi}_{1},\check{\varphi}_{2}$ of $\varphi$ as equivalent and speak of
the validity functional form $\check{\varphi}$ of $\varphi$ .

As an example, consider

$\varphi=\exists w\forall x\exists y\forall z\psi(w, x, y, z)$ ,

$\psi$ quantifier-free. The validity functional form of $\varphi$ is

$\check{\varphi}=\exists w\exists y\psi(w, f(w),$ $y,$ $g(w, f(w),$ $y$)).

1.2. DEFINITION. The satisfiability functional form $\hat{\varphi}$ of $\varphi$ is the dual of
$\check{\varphi}$ , i. e.

$\hat{\varphi}=(\sim(\sim\varphi)^{*})^{*}\vee$ .
It is seen that $\hat{\varphi}$ can be defined inductively just as $\check{\varphi}$ by interchanging

$\exists$ and $\forall$ . Note, too, that $\check{\varphi}$ is existential and $\hat{\varphi}$ is universal.
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1.3. DEFINITION. Let $\varphi\in L,$ $T$ a countable set of terms of L. $\varphi^{(T)}$ is
defined by:

(i) If $\varphi$ is an atomic or a negated atomic formula, $\varphi^{(T)}=\varphi$ .
(ii) If $\varphi=\exists x\psi(x),$

$\varphi^{(T)}=\backslash X/\psi^{(T)}(t)t\in T$

(iii) If $\varphi=\forall x\psi(x),$
$\varphi^{(T)}=_{t\in T}/\Lambda\psi^{(T)}(f)$ .

(iv) If $\varphi=/\Lambda\Psi,$ $\Psi^{(T)}=\{\psi^{(T)} : \psi\in\Psi\}$ , then $\varphi^{(T)}=A\Psi^{(T)}$ .
(v) If $\varphi=W\Psi,$ $\varphi^{(T)}=\backslash X/\Psi^{(T)}$ .
1.4. DEFINITION. Let $\varphi\in L,\check{\varphi}\in L^{\vee},$ $T$ a countable set of terms of $L^{v}$

The Herbrand form of $\varphi$ relative to $T$ is $\check{c}^{(T)}$ .
In general, $\check{\varphi}^{(T)}$ is a formula of $L_{\omega_{1},\omega}$ . If $L=L_{\Lambda}$ , where $A$ is countable

admissible, and $T$ is A-finite, then for each $\varphi\in L,\check{\varphi},\check{\varphi}^{(T)}\in L^{v}$

1.5. DEFINITION. A canonical L-structure $\mathfrak{A}$ is one where every element
of $|\mathfrak{A}|$ is denoted by a closed term in $L$ .

Given a model $\mathfrak{A}$ and additional function symbols $f=(f_{i})_{i\in I}$ and assign-
ments $\overline{f}=(\overline{f}_{i})_{i\in I}$ , we write $\langle \mathfrak{A},\overline{f}\rangle$ for the extension of $\mathfrak{A}$ by the new functions
$(\overline{f}_{i})_{i\in I}$ .

1.6. LEMMA. Suppose $\varphi$ is a sentence of $L$ and $\mathfrak{A}$ is an L-structure.
(i) $\mathfrak{A}F\varphi\Leftrightarrow\langle \mathfrak{A},\overline{f}\rangle F\check{\varphi}$ for every assignment $\overline{f}$ to the new function sym-

bols in $\check{\varphi}$ .
(ii) $\mathfrak{A}F\varphi\Rightarrow\langle \mathfrak{A},\overline{f}\rangle\models\hat{\varphi}$ for some assignment $\overline{f}$ to the new function sym-

bols in $\hat{\varphi}$ .
PROOF. We first show $(i)\Rightarrow,$ $(ii)\Rightarrow$ . Then $\Leftarrow$ follows in both.
(i) $\Rightarrow$ is easily proved by induction on the formation of $\check{\varphi}$ .
(ii) $\Rightarrow$ is also proved by induction on the formation of $\hat{\varphi}$ . This is

straightforward, using the Axiom of Choice. One step worth noting is for
the case where $\psi$ is a subformula of $\varphi$ of the form $\psi=/X\backslash \Psi$ . Let $\Psi^{\wedge}=\{\hat{\sigma}$ ;
$\sigma\in\Psi\}$ where different formulas have disjoint sets of new function symbols.
By induction, for each $\sigma\in\Psi$ there is an extension $\langle \mathfrak{A},\overline{f}_{\sigma}\rangle$ of $\mathfrak{A}$ s. t. $\langle \mathfrak{A},\overline{f}_{\sigma}\rangle$

$F\hat{\sigma}$ (relative to a fixed assignment on the free variables of $\psi$). But now the
$\overline{f}_{\sigma}$ correspond to disjoint sets of function symbols, so by putting together all
the $\overline{f}_{\sigma}$ , we get an extension $\langle \mathfrak{A},\overline{f}\rangle s$ . $t$ . $\langle \mathfrak{A},\overline{f}\rangle F\hat{\psi}$ .

1.7. LEMMA. Let $\varphi$ be a sentence of L. $\check{\varphi}\in L^{v}$ is valid if and only if $\check{\varphi}$

is true in all canonical $L^{v}$ -structures.
PROOF. The “only if” part is trivial. For the converse, suppose we had

a model $\mathfrak{A}F\sim\check{\varphi}$ . $(\sim\check{\varphi})^{*}$ is universal and so $\sim\check{\varphi}$ is true in the canonical
$L^{\vee}$ -substructure $\mathfrak{B}\subseteqq \mathfrak{A}$ , where the domain of $\mathfrak{B}$ is the set of valuations $\overline{t}\in|\mathfrak{A}|$

for closed terms $t$ of $L^{c}$ But then $\check{\varphi}$ is false in the canonical $L^{\vee}$ -structure B.
1.8. THEOREM. Let $\varphi$ be a sentence of $L,\check{\varphi}$ in $L^{\vee},$ $T$ the set of all closed

terms in $L^{v}$ . Then $\varphi$ is valid if and only if $\check{\varphi}^{(T)}$ is valid.
PROOF. By 1.6 (i), $F\varphi$ if and only if $F\check{\varphi}$ , and by 1.7, $\check{\varphi}$ is valid if and
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only if $\check{\varphi}$ is true in all canonical $L^{\vee}$ -structures. But for any canonical $L^{v}-$

structure $\mathfrak{A}$ ,
$\mathfrak{A}F\check{\varphi}\Leftrightarrow\check{\varphi}^{(T)}$ .

Moreover, $\check{\varphi}^{(T)}$ is quantifier-free, so it is valid if and only if it is true in all
canonical $L^{\vee}$ -structures. Thus, $F\varphi$ if and only if $t=\check{\varphi}^{(T)}$ .

By using 1.8 and the compactness theorem for finitary propositional logic,
we get as in Kreisel-Krivine [8]:

1.9. THEOREM (Herbrand). Let $\varphi$ be a finitary formula in prenex form,
$\check{\varphi}=\exists x_{1}\cdots x_{n}\psi(x_{1}, \cdots x_{n}),$ $\psi$ quantifier-free. Then $\varphi$ is valid if and only if there
are terms $t_{1}^{(i)},$ $t_{n}^{(i)},$ $1\leqq i\leqq k$ , of $L^{v}s$ . $t$ .

$\psi(t_{1}^{(1)}, t_{n}^{(1)})\vee\cdots\vee\psi(t_{1}^{(k)}, \cdots t_{n}^{(k)})$

is valid.
REMARKS. (1) For $A\neq HF,$ $\varphi\in L_{A}$ , and $T$ the set of closed terms of $L_{A}$

imply that $\check{\varphi}\in L_{A}^{\vee}$ and $\check{\varphi}^{(\tau)}\in L_{A}^{\vee}$ . Thus if we generalize ”finite” to “A-finite”
then 1.8 is a generalization to $L_{A},$ $A\neq HF$, of 1.9.

(2) It happens that the counterexample we shall give to the midsequent
theorem in \S 3 provides a valid formula $\exists x\forall y\psi(x, y)$ of $L_{\omega_{1},\omega},$ $\psi$ quantifier-free
such that no finite disjunction $i\leqq kW\psi(t_{i}, f(t_{t}))$ is valid. Hence there is no uni-

formity theorem for $L_{\omega_{I},\omega}$ in which the meaning of ”finite” is kept fixed.
(3) In the finitary case we can always assume that a formula is in pre-

nex normal form, so that the disjunctions over terms in the Herbrand form
are outermost in the formula. This is not possible for $L_{\omega_{1},\omega}$ , as the following
example shows. Let

$\varphi=_{n<}M_{\omega}\exists y_{n}\forall z_{n}(r_{n}(y_{n})\vee\sim r_{n}(z_{n}))$

$\check{\varphi}=I\exists y_{n}(r_{n}(y_{n})\vee\sim r_{n}(f_{n}(y_{n})))n<\omega$

$\varphi$ and $\check{\varphi}$ are valid. Assume we have one constant symbol $c$ and let $T$ be the
closure of $\{c, f_{0}, f_{1}, \}$ . Then

$\overline{\varphi}^{(T)}=AW(r_{n}(t)\vee\sim r_{n}(f_{n}(t)))n<\omega t\in T$

is valid. The uncountable disjunction

$<tt,\cdots>\in T^{\omega}n<\omega$

is also valid, but an easy check shows that no disjunction over a countable
subset of $T^{\omega}$ is valid.
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\S 2. Herbrand uniformity theorems: syntactic proof.

In this section we show how to obtain from a derivation $\mathcal{D}\leftarrow\varphi$ a deriva-
tion $\mathcal{D}^{\prime}\leftarrow\check{\varphi}^{(T)}$ where $\check{\varphi}^{(T)}$ is an Herbrand form for some set of terms $T$ of $L^{v}$

$\mathcal{D}^{\prime}$ is obtained quite simply from $\mathcal{D}$ , essentially by recursion on $\prec \mathcal{D}$ the
ordering of subderivations of $\mathcal{D}$ . Moreover, the length of $\mathcal{D}^{\prime}$ is equal to or
less than the length of $\mathcal{D}$ . However, we have not analyzed in explicit func-
tional terms the construction of $\mathcal{D}^{\prime}$ from $\mathcal{D}$ .

Derivations are considered to be in a complete calculus with Gentzen-
style rules of inference. We follow Feferman [4] for details, except that we
omit the rules for negation. As axioms we shall take all sequents $\varphi\supset\varphi$ ;
$\varphi,$ $\sim\varphi\supset;\supset\varphi,$ $\sim\varphi$ for $\varphi$ atomic. We need all these axioms because we have
omitted the rules for negation. If we included negation rules we would need
as axioms only sequents $\varphi\supset\varphi$ for $\varphi$ atomic as in Feferman [4]. If one
wished to include negation rules, the definition of $\check{\varphi}$ would have to be ex-
tended to formulas not in reduced form.

2.1. DEFINITION. The length, $od(\mathcal{D})$ , of a derivation $\mathcal{D}$ is defined induc-
tively to be

$\sup$ {od $(\mathcal{D}^{\prime})+1;\mathcal{D}^{\prime}$ is a proper subderivation of $\mathcal{D}$ }.

The terminology in the following definition is from Takeuti [13].

2.2. DEFINITION. Let
$\Gamma_{h}\supset\Delta_{h}(h\in H)_{-}-$

be an instance of a rule $(R)$ . The$\Gamma\supset\Delta$

immediate successors of an occurrence of a formula $\psi_{h}$ in $\Gamma_{h}(\Delta_{h})$ are defined
as follows:

$\Gamma\supset\Delta$

(i) If the rule is a structural rule $(S)$
$\Gamma^{\prime}\supset\Delta$ ’ , the immediate succes-

sors of $\psi$ in $\Gamma(\Delta)$ are all occurrences of $\psi$ in $\Gamma^{\prime}(\Delta^{\prime})$ .
(ii) If the rule is $(C)$ and $\psi_{h}$ is the cut-formula (in $\Delta,$ $\Gamma^{\prime}$), $\psi_{h}$ has no

immediate successor. The immediate successors of other formulas
in $\Gamma\supset\Delta,$ $\Gamma^{\prime}\supset\Delta^{\prime}$ are the same formulas in $\Gamma,$ $\Gamma^{\gamma}-\varphi\supset\Delta-\varphi,$ $\Delta^{\gamma}$ at
the corresponding occurrences.

(iii) If $\psi_{h}$ is the active formula in $\Gamma_{h}\supset\Delta_{h}$ , its immediate successor is
the active formula in $\Gamma\supset\Delta$ .

(iv) If $\psi_{h}$ is a passive formula in $\Gamma_{\hslash}\supset\Delta_{h}$ its immediate successor is
the same formula in $\Gamma\supset\Delta$ at the corresponding occurrence.

A fiber in a derivation $\mathcal{D}$ is a maximal chain of formulas $\psi_{1}$ , , $\psi_{n}$ s. t. each
$\psi_{k+1}$ is an immediate successor of $\psi_{k}$ . An occurrence of a formula $\varphi$ in $\mathcal{D}$ is
a successor of an occurrence of $\psi$ if $\varphi$ and $\psi$ are in the same fiber and $\varphi$

comes after $\psi$ in the chain $\psi_{1}$ , $\cdot$ , $\psi_{n}$ .
It is clear that every fiber begins with a formula which is either in a

beginning sequent (an axiom) or is introduced by weakening, and ends either
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with a cut-formula or a formula in the end-sequent.
2.3. DEFINITION. A free variable $w$ in a derivation $\mathcal{D}$ occurs as an eigen-

variable of $\mathcal{D}$ if

$\frac{\Gamma\supset\Delta,\psi(w)}{\Gamma\supset\Delta,\forall y\psi(y)}(\supset\forall)$ or $\frac{\Gamma,\psi(w)\supset\Delta}{\Gamma,\exists y\psi(y)\supset\Delta}(\exists\supset)$

occurs in $\mathcal{D}$ .
We shall assume throughout this section and the next that eigenvariables

of a derivation $\mathcal{D}$ have unique occurrences as variables of instances of $(\supset\forall)$ ,
$(\exists\supset)$ . Moreover, an eigenvariable occurs only in sequents which precede
the sequent where it occurs as an eigenvariable. This is done without loss
of generality.

2.4. LEMMA. With any derivation $\mathcal{D}$ of a formula $\varphi$ we can associate a
derivation $\mathcal{D}_{1}$ of $\check{\varphi}s$ . $t$ . od $(\mathcal{D}_{1})\leqq od(\mathcal{D})$ . Moreover, if $\mathcal{D}$ is cut-free, so is $\mathcal{D}_{1}$ .

PROOF. Let $\Gamma\supset\Delta$ be a sequent in $\mathcal{D}$ and let
$\check{\Delta}=$ { $\check{\psi}:\psi\in\Delta$ and $\varphi$ is a successor of $\psi$ } $\cup$

{ $\psi:\psi\in\Delta$ and $\varphi$ is not a successor of $\psi$ }
$\check{\Delta}$ is well-defined. For suppose $\varphi$ is a successor of $\psi$ . We have a chain
$\psi=\psi_{1}$ , $\cdot$ .. , $\psi_{n}=\varphi$ , where $\psi_{k}$ is a substitution instance of a subformula of $\varphi$

and $\psi_{k+1}$ is an immediate successor of $\psi_{k}$ . The choice of new function sym-
bols for $\check{\varphi}$ thus gives a well-determined choice for $\check{\psi},$ $\phi_{k}$ , so that $\check{\psi},\check{\psi}_{k}$ are
the substitution instances of subformulas of $\check{\varphi}$ corresponding to the substitu-
tion instances $\psi,$ $\psi_{k}$ . We have no rules for negation, so no formula in $\Gamma$ is
a predecessor of $\varphi$ . (If we were deriving $\varphi_{1}\supset\varphi_{2}$ , we should consider $\hat{\varphi}_{1}\supset\check{\varphi}_{2}$

and define $\hat{\Gamma}$ dually to $\Delta^{\vee}.$)
By induction on the subderivation relation $\prec_{\mathcal{D}}$ , we show that for any

$\mathcal{D}^{\prime}\prec \mathcal{D}$ we get a derivation

$\Gamma\supset\check{\Delta}\downarrow\downarrow^{\mathcal{D}_{1}^{\prime}}$

from
$\Gamma\supset^{\downarrow}\Delta\downarrow^{\mathcal{D}^{\prime}}s$

. $t$ .

od $(\mathcal{D}_{1}^{\prime})\leqq od(\mathcal{D}^{\prime})$ and $\mathcal{D}_{1}^{\prime}$ is cut-free if $\mathcal{D}^{\prime}$ is cut-free. The only non-trivial step

is for instances of $(\supset\forall)$ ,

$\Gamma\supset^{\downarrow}\Delta\psi(w)\downarrow^{\mathcal{D}^{\prime\prime}}$

, $\mathcal{D}^{\prime}$

$\Gamma\supset\Delta,$ $\forall y\psi(y\overline{)}$

where $\varphi$ is a successor of $\forall y\psi(y)$ . $\forall y\psi(y)$ is a substitution instance of a
subformula of $\varphi$ and we take

$\forall y\psi(y)=\check{\psi}(t_{1}\vee, t_{n}, f(t_{1}, t_{n}))$
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to be the induced substitution instance of the corresponding subformula of $\check{\varphi}$ .
By inductive hypothesis we have

$\Gamma\supset\check{\Delta},\check{\psi}(t_{1}\downarrow^{\mathcal{D}_{1}^{\prime\prime}(w)}\downarrow, t_{n}, w)$

.
But as $w$ does not occur free in $\Gamma,\check{\Delta}$, we have

$\tau\supset^{\downarrow}\Delta^{\vee},\phi(t_{1}^{1},\cdot,t_{n}\downarrow^{\mathcal{D}_{1}^{\prime\prime}(f(t,\cdot.\cdot.\cdot,t_{n}))_{f(t_{1}}}, t_{n}))$

.
Then $\mathcal{D}_{1}^{\prime}=\mathcal{D}_{1}^{\prime\prime}(f(t_{1}, t_{n}))$ is the desired derivation. It is obvious that od $(\mathcal{D}_{1}^{\prime})$

$\leqq od$ $(\mathcal{D}$
‘

$)$ and that no cuts are introduced into $\mathcal{D}_{1}^{\prime}$ .
In case we begin with a cut-free derivation $\mathcal{D}$ of $\varphi$ it is very easy to

obtain a derivation of an Herbrand form $\check{\varphi}^{(T)}$ of $\varphi$ ; this is done in 2.5 and 2.6.
2.5. LEMMA. Let $\mathcal{D}$ be a cut-free derivation of $\varphi,$

$\mathcal{D}_{1}a$ (cut-free) deriva-
tion of $\check{\varphi}$ obtained as in 2.4. Let $\mathcal{D}_{2}$ be obtained from $\mathcal{D}_{1}$ by replacing all free
variables in $\mathcal{D}_{1}$ by a constant symbol $c$ . Then $\mathcal{D}_{2}-\check{\varphi}$ .

PROOF. There are no instances of $(\supset\forall)$ in $\mathcal{D}_{1}$ and no left-hand rules at
all since $\Gamma=0$ for all sequents $\Gamma\supset\Delta$ in $\mathcal{D}$ . Thus all instances of the rules
remain valid.

2.6. THEOREM. Let $\mathcal{D}$ be a cut-free derivation of $\varphi,$
$\mathcal{D}_{2}$ a cut-free deriva-

tion of $\check{\varphi}$ obtained from $\mathcal{D}$ as in 2.5. Let $T^{\prime}$ be the set of closed terms of $\mathcal{D}_{2}$ .
Then for any $T\supseteqq T^{\prime}$ , we can obtain a cut-free derivation $\mathcal{D}^{\prime}$ of $\check{\varphi}^{(T)}$ , such that
od $(\mathcal{D}^{\prime})\leqq od(\mathcal{D})$ .

PROOF. Let $\Delta_{T}=\{\psi^{(T)} : \psi\in\Delta\}$ for each sequent $\supset\Delta$ in $\mathcal{D}_{2}$ . Let $\mathcal{D}^{\prime}$ be
obtained from $\mathcal{D}_{2}$ by replacing $\supset\Delta$ in $\mathcal{D}_{2}$ by $\supset\Delta_{T}$ . Then $\mathcal{D}^{\prime}|-\check{\varphi}^{(T)}$ This
holds because

$-\frac{\psi}{y}\frac{t)}{(y)}(\supset\exists)\Delta^{\Delta}\exists\psi^{(}$ goes into $--(\supset W)\overline{\Delta}_{\tau W_{T}\overline{\psi}^{(T)}\overline{(s)}}^{\Delta_{\tau_{\iota\in}},\psi^{(T)}(t)}$

which is valid because $t\in T$.
It is clear that $\mathcal{D}^{\prime}$ is cut-free and that od $(\mathcal{D}^{\prime})\leqq od(\mathcal{D}_{2})$ , so od $(\mathcal{D}^{\prime})\leqq od(\mathcal{D})$ .
REMARK. If $\mathcal{D}$ is A-finite, so are $\mathcal{D}_{1},$ $\mathcal{D}_{2},$ $T^{\prime},$ $\mathcal{D}^{\prime}$ . In particular the finitary

Herbrand theorem is a special case of 2.6 (assuming the cut-elimination
theorem).

We now turn to derivations with cut. From a derivation $\mathcal{D}$ of $\varphi$ we can
pass by cut-elimination to a cut-free derivation $\mathcal{D}^{\prime}$ of $\varphi$ and then proceed to
obtain a $\mathcal{D}^{\prime\prime}-\check{\varphi}^{(T)}$ as in 2.6. It will be shown in 2.8 that such a $\mathcal{D}^{\prime\prime}$ can be
obtained directly from $\mathcal{D}$ without using cut-elimination. Of course $\mathcal{D}^{\prime/}$ may
contain cuts.

2.7. DEFINITION. Let $\mathcal{D}^{\prime}$ be a derivation of a sequent $\Gamma\supset\Delta$ . A set of
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terms $T$ is closed for $\mathcal{D}^{\prime}$ if
(1) $T$ contains the terms in $\Gamma\supset\Delta$ ,

(2) whenever $f(\overline{v})\in T$, where $\overline{v}=\langle v_{1}$ , $\cdot$ .. , $ v_{n}\rangle$ , and $\overline{t}$ is a sequence of
terms in $T$, then $f(\overline{t})\in T$, and

(3) $T$ contains no terms with occurrences of eigenvariables of $\mathcal{D}^{\prime}$ .
2.8. THEOREM. Let $\mathcal{D}$ be a derivation of $\varphi,$

$\mathcal{D}_{1}$ a derivation of $\check{\varphi}$ obtained
as in 2.4. From $\mathcal{D}_{1}$ we can obtain directly a derivation $\mathcal{D}^{\prime}\leftarrow\check{\varphi}^{(\tau)}$ for some set

of terms T. Moreover, od $(\mathcal{D}^{\prime})\leqq od(\mathcal{D})$ .
PROOF. For any set of terms $T$ and sequents $\Gamma\supset\Delta$ , let $\Gamma_{T},$ $\Delta_{\tau}$ be the

sequences of formulas $\psi^{(T)}$ corresponding to $\Gamma,$ $\Delta$ . We show by induction
on $\prec_{\mathcal{D}_{1}}$ :

Suppose we have a derivation
$\Gamma\supset\Delta\downarrow^{\mathcal{D}^{\prime}}\downarrow$

. There is a set of terms $T^{\prime}$ closed
for $\mathcal{D}^{\prime}s$ . $t$ . for all closed $T\supseteqq T^{\gamma}$ there is a derivation

$\Gamma_{T}\supset\Delta^{\prime}\downarrow\downarrow_{\mathcal{D}_{\tau_{T}}}$

.
We shall assume that $T^{\gamma}$ is minimal for $\mathcal{D}^{\prime}$ , in particular no variables should
occur in $\tau/which$ do not occur in $\mathcal{D}^{\prime}$ .

The non-trivial rules to consider are $(\supset\forall),$ $(\exists\supset)$ , and $(C)$ .
(a) Suppose the last rule is $(\supset\forall)$ ,

(i) $-\frac{\Gamma\supset^{\mathcal{D}}\downarrow\downarrow}{\supset\Delta’}-\frac{\psi^{)}(w}{y\psi}\Gamma\Delta^{\prime\prime}’,$)$(w\forall(y\overline{)}\mathcal{D}^{\prime}$ .

If $T(w)$ is a set of terms with occurrences of the free variable $w$ , and $t$ is a
term without occurrences of $w$ , we let $T(t)=\{s(t):s(w)\in T(w)\}$ . By inductive
hypothesis we have a set $T^{\prime\prime}(w)$ closed for $\mathcal{D}^{\prime\prime}(w)$ , such that for all closed
$T(w)\supseteqq T^{\prime\prime}(w)$ , there is a derivation

(ii)
$\Gamma_{T(w)}\supset\Delta_{T(w)}^{T(w)},\psi^{(\tau(w))}(w)\downarrow\downarrow_{\mathcal{D}^{\prime\prime},(w)}$

.
But now, if $T(w)$ is closed for $\mathcal{D}^{\prime\prime}(w)$ and $t,$ $s\in T(w)$ are such that $w$ does not
occur in $t,$ $s$ , then $T(s)=T(t)$ . Let $T=T(t)$ for any such term $t$ . Then also
$T=T(t)$ for any $t\in T$. Now let $T^{\prime}=T^{\prime\prime}(t)$ for $t\in T^{\prime\prime}(w)$ , such that $w$ does not
occur in $t$ . $T^{\prime}$ is closed for $\mathcal{D}^{\prime}$ , since $w$ does not occur in the terms of $T^{\prime}$ .
Moreover, any $T\supseteqq\tau/$ such that $T$ is closed for $\mathcal{D}^{\prime}$ extends to $T(w)\supseteqq T^{\prime\prime}(w)$

closed for $\mathcal{D}^{\prime\prime}(w)$ in such a way that $T=T(t)$ for any $t\in T$. Thus, for any
$T\supseteqq T^{\gamma}$ , such that $T$ is closed for $\mathcal{D}^{\prime}$ , we obtain from (ii),
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$\downarrow\iota_{\mathcal{D}_{T}^{\prime\prime}(t)}$

(iii) $\Gamma_{T}\supset\Delta_{T}^{\prime},$ $\psi^{(T)}(t)$ for all $f\in T$

and hence

$\downarrow 1_{\mathcal{D}_{T}^{\prime\prime}(t)}$

$\frac{\Gamma_{T}\supset\Delta_{T}^{\prime},\psi^{(T)}(t)fora11t\in T}{\Gamma_{\tau}\supset\Delta_{\tau,/}X\backslash \psi^{(T}(t),t\in T}(\supset A)\mathcal{D}_{T}^{\prime}$

.

The argument for $(\exists\supset)$ is dual to this.
(b) Suppose the last rule is $(C)$ ,

$-,--\frac{\Gamma^{\prime}\supset\Delta\downarrow\iota_{\mathcal{D}}}{-\varphi}-(C)\Gamma\supset^{\mathcal{D}_{12}}\Gamma,\Gamma^{\Delta}-\overline{\varphi}\supset\Delta\downarrow\downarrow,\Delta^{\prime}$

$\mathcal{D}^{\prime}$ .

Let $T_{1},$ $T_{2}$ be the minimal closed sets for $\mathcal{D}_{1},$ $\mathcal{D}_{2}$ given by the inductive as-
sumption. Let $T^{\prime}$ be the closure of $T_{1}\cup T_{2}$ under (2) of 2.7. Then $T^{\gamma}$ is
closed for $\mathcal{D}^{\prime}$ , because it certainly contains the terms of $\Gamma,$ $\Gamma^{\prime}-\varphi,$ $\Delta-\varphi,$

$\Delta^{\prime}$

and contains only variables from $T_{1},$ $T_{2}$ . ( $T_{1},$ $T_{2}$ by minimality contain only
variables from $\mathcal{D}_{1},$ $\mathcal{D}_{2}$ respectively.)

Moreover, any $T\supseteqq T^{\prime}$ closed for $\mathcal{D}^{\prime}$ is also closed for $\mathcal{D}_{1},$ $\mathcal{D}_{2}$ . Thus for
each such $T$, we have by inductive assumption

$-\Gamma_{T}\supset_{\Gamma-\overline{\varphi}_{T}\supset\Delta_{T}-\varphi_{T},\Delta_{\tau}^{\tau^{\tau}}}^{\mathcal{D}_{T_{---(C)}^{T}}}\Delta_{T}^{1}\underline{\Gamma}_{\tau}^{\prime}\supset\Delta\Gamma^{T},\downarrow,\iota^{\mathcal{D}_{2,}}\downarrow\downarrow$

,
$\mathcal{D}_{T}^{\prime}$

which gives the desired result for cut.
REMARKS. (1) In the derivations without cut, we could be sure that

the disjunctions in the derived Herbrand form $\check{\varphi}^{(T)}$ were over a subset $T$ of
the closure of the terms of $\check{\varphi}$ . The disjunctions in derivations with cut may
well be over extraneous terms introduced by cut-formulas.

(2) A finite derivation $\mathcal{D}-\varphi$ with cut may well go into an infinite deri-
vation $\mathcal{D}^{\prime}|-\check{\varphi}^{(T)}$ because the branching becomes infinite in the substitution
for instances of $(\supset\forall),$ $(\exists\supset)$ . Thus the finitary Herbrand theorem does not
follow from 2.8.

(3) For $A\neq HF$, the set of terms $T^{\prime}$ in the inductive hypothesis can be
kept A-finite and so for $\varphi\in L_{A},$ $A\neq HF,$ $\mathcal{D}|-\varphi,$ $\mathcal{D}\in Der_{\Lambda}$ , we get $\mathcal{D}^{\prime}-\check{\varphi}^{(T)}$

where $\mathcal{D}^{\prime},\check{\varphi}^{(T)}$ are A-finite.
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\S 3. The Midsequent Theorem.

In this section, all derivations are assumed to be cut-free.
3.1. DEFINITION. $\mathcal{D}$ is a derivation in normal form if every propositional

inference in $\mathcal{D}$ precedes every quantifier inference. The midsequent of a deri-
vation in normal form is the lowest sequent prior to the quantifier inferences.

A proof of the following theorem may be found in Kleene [6] or Smul-
lyan [10].

3.2. $MIDSEQUENTTHEOREMFORL_{\omega,\omega}$ . $If\Gamma\supset\Delta consistsofprenexformulas$

of $L_{\omega,\omega}$ and $\Gamma\supset\Delta$ has a derivation, then $\Gamma\supset\Delta$ has a derivation in normal

form.
Suppose we have a normal form derivation of a prenex formula $\varphi$ . As

in section 2 we easily obtain a normal form derivation of $\check{\varphi}$ . The disjunction
of the forrnulas in the midsequent of the second derivation is then a deri-
vable Herbrand disjunct for $\varphi$ . Thus the Herbrand theorem for finitary logic
follows easily from 3.2.

3.3. EXAMPLE. The following is a variant of an example in Kleene [6],

p. 343. It will be useful as an illustration of some aspects of the theorems
below. $\kappa$ is a constant symbol, $\alpha$ a function symbol, $a,$ $b,$ $c,$ $d,$ $e$ free variables.

$\iota^{propositiona1}\downarrow$ rules

$\psi(\alpha(b), d, \kappa, e),$ $\psi(a, b, b, c)$ $(\supset\forall)$

$\forall z\psi(\alpha(b), d, \kappa, z),$ $\forall z\psi(a, b, b, z)$ $(\supset\exists)$

$\exists y\forall z\psi(\alpha(b), d, y, z),$ $\exists y\forall z\psi(a, b, y, z)$ $(\supset\forall)$

$\forall x\exists y\forall z\psi(\alpha(b), x, y, z),$ $\exists y\forall z\psi(a, b, y, z)$ $(\supset\exists)$

$\exists w\forall x\exists y\forall z\psi(w, x, y, z),$ $\exists y\forall z\psi(a, b, y, z)$ $(\supset\forall)$

$\exists w\forall x\exists y\forall x\psi(w-, x, y, z),$
$\forall x\exists y\forall z\psi$ ( $a,$ x, $y,$ $z$)

-

$(\supset\exists)$

$-------\exists w\forall x\exists y\overline{\forall z\psi}$ ($w,$ $x,$ y-, $z$), $\exists w\forall x\exists y\forall z\psi(w, x, y, z)$ (S)

$\exists w\forall x\exists y\forall z\psi(w, x, y, z)$

The midsequent is $\{\psi(\alpha(b), d, \kappa, e), \psi(a, b, b, c)\}$ . Let $f,$ $g$, be the new
function symbols of $L^{v}$ By 2.4 we obtain

$\psi(\alpha f(a), f\alpha f(a),$ $\kappa,$ $g(\alpha f(a), f\alpha f(a),$ $\kappa$))
$,$

$\psi(a, f(a),$ $f(a),$ $g(a, f(a),$ $f(a)))$ $(\supset\exists)$

$\exists y\psi(\alpha f(a), f\alpha f(a),$ $y,$ $g(\alpha f(a), f\alpha f(a),$ $y$))
$,$

$\exists y\psi(a, f(a),$ $y,$ $g(a, f(a),$ $y$)) $(\supset\exists)$

$\exists w\exists y\psi(w, f(w),$ $y,$ $g(w, f(w),$ $y$))
$,$

$\exists y\psi(a, f(a),$ $y,$ $g(a, f(a),$ $y$)) $(\supset\exists)$

$\exists w\exists y\psi(w, f(w),$ $y,$ $g(w, f(w),$ $y$))
$,$

$\exists w\exists y\psi(w, f(w),$ $y,$ $g(w, f(w),$ $y$)) (S)

$\exists w\exists y\psi(w, f(w),$ $y,$ $g(w, f(w),$ $y$))
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The disjunction of the midsequent is then a derivable Herbrand form
for $\exists w\forall x\exists y\forall z\psi(w, x, y, z)$ .

REMARK. Note that we allow applications of $(\supset\forall),$ $(\supset\exists)$ to several
formulas at a time. For finite sequents this modification is obviously ines-
sential. However, we shall also consider derivations with infinite sequents

below.
3.4. DEFINITION. Given a derivation $\mathcal{D}$ and an eigenvariable $v$ of $\mathcal{D}$ , the

heigh $t$ of $v$ is

$h(v)=1+\max\{h(w):w$ is an eigenvariable
distinct from $v$ and $w$ occurs free in the formula
where $v$ is used as an eigenvariable}.

It is clear that if $\mathcal{D}$ is a derivation of a sentence $\varphi,$ $h(v)$ is equal to or
less than the number of instances of the rule $(\supset\forall)$ below the sequent in
which $v$ is used as an eigenvariable.

Let $\varphi=\exists x_{1}\forall y_{1}\exists x_{2}\forall y_{2}\cdots\exists x_{n}\forall y_{n}\psi(x_{1}$ , $\cdot$ .. , $x_{n},$ $y_{1}$ , $\cdot$ .. , $y_{n})$ be a fixed prenex sen-
tence of $L_{\omega_{1},\omega}$ . We shall write $\psi=\psi(\overline{x},\overline{y}),\check{\varphi}=\exists\overline{x}\psi(\overline{x};\overline{f}),\overline{f}=\langle f_{1}$ , $\cdot$ .. , $ f_{n}\rangle$ .

3.5. DEFINITION. The f-rank, $\rho_{\overline{f}}$ , of a term $t$ of the language of $\check{\varphi}$ is
defined inductively by:

(i) $\rho_{\overline{f}}(t)=0$ if $f_{1},$ $f_{n}$ do not occur in $t$

(ii) $\rho_{\overline{f}}(g(t_{1}, t_{k}))=\{\sup\{\rho(t_{i})\sup\{\rho_{\overline{f}}^{\overline{f}}(t^{i})\cdot. i=1i=1, ’ k\}otherwisek\}+lifgisone$

of $f_{1},$ $f_{n}$

A set of terms $T$ is of (uniformly) bounded f-rank if there exists a $ k<\omega$

such that for every $t\in T,$ $\rho_{\overline{f}}(t)\leqq k$ .
In example 3.3, $h(b)=1,$ $h(d)=2,$ $h(e)=3,$ $h(c)=2$ . The terms correspond-

ing to $b,$ $d,$ $e,$ $c$ , in the induced derivation of $\check{\varphi}$ (in example 3.3) are $f(a)$ ,
$f\alpha f(a),$ $g(\alpha f(a), f\alpha f(a),$ $\kappa$)

$,$

$g(a, f(a),$ $f(a))$ and their $\langle f, g\rangle$ -ranks are exactly the
heights of the corresponding eigenvariables. This is easily seen to be true
in general. Since the heights of eigenvariables in a normal derivation are
bounded by the number of instances of $(\supset\forall)$ below the midsequent, the
Herbrand disjunction $\check{\varphi}^{(T)}$ obtained from a normal derivation of our fixed
prenex formula $\varphi$ would be over a set of terms $T$ of uniformly bounded $\overline{f}-$

rank.
The above analysis of the relationship between heights of eigenvariables

in a derivation and $\overline{f}$-ranks of terms depends only on the quantifier-rules.
In particular, it holds as well for derivations with countably infinite sequents;
$e$ . $g.$ ,

$\Gamma\supset\Delta\cup\{\psi_{n}(t_{n}):n<\omega\}$

$\Gamma\supset\Delta\cup\{\exists x_{n}\psi_{n}(x_{n}):^{-}n<\omega\}(\supset\exists)$

and
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$\Gamma\supset^{\supset_{\Delta^{\Delta}}}\Gamma_{-\frac{\cup\{}{\cup\{\forall}x\psi_{n}(x_{n}):n<\omega\}}\underline{\psi_{n^{n}}}(a_{n}):n<_{--}\omega\}(\supset\forall)$

when the $a_{n}$ are distinct and not free in any formula of the conclusion.
The following will be proved for derivations in which infinite sequents

are permitted.
3.6. THEOREM. $\varphi$ has a derivation in normal $ form\Leftarrow\ni$ there is a derivation

of $\check{\varphi}^{(\tau)}$ where $T$ has bounded f-rank.
We shall also show
3.7. THEOREM. There is a valid $L_{\omega_{1},\omega}$ formula $\varphi=\exists x\forall y\psi(x, y),$ $\psi$ quanti-

fier-free, such that for any collection $T$ of terms of bounded f-rank, $t^{\backslash }\in TW\psi(t, f(l))$

is not valid.
3.8. COROLLARY. There is a prenex formula $\varphi$ of $L_{\omega_{1},\omega}$ with a finite-

sequent derivation such that $\varphi$ has no derivation in normal form.
REMARK. Derivations with infinite sequents are needed in 3.6 for the

“if” direction. However, 3.8 follows from 3.7 and the “only if” part of 3.6.
PROOF OF 3.6. $(\Rightarrow)$ This follows from the fact that the $f$-ranks of the

terms in the induced derivation of $\check{\varphi}$ are bounded by the number of instances
of $(\supset\forall)$ (to possibly infinitely many formulas at a time) below the midse-
quent.

(C) This is only sketched. Note that for derivations without cut we
need only worry about the right-hand part of sequents. Let $\check{\varphi}^{(T)}=$ $W$ $\psi(\overline{t};\overline{f})$ .

$t_{1}$ , . $r_{n}\leftarrow T$

Let $\langle t_{n}\rangle_{n<\omega}$ be a 1–1 enumeration of $T\cup\{f_{i}(\overline{t}):\overline{t}\in T^{k_{i}}, 1\leqq i\leqq n\}$ , where $f_{i}$

is a $k_{i}$ -ary function symbol. Take $\langle w_{n}\rangle_{n<\omega}$ to be a 1–1 enumeration of new
variables. If $\rho_{\overline{f}}(t_{n})=l$ , we shall say that $w_{n}$ is of height 1.

We are given

$\{\psi(\overline{t};\overline{f})\}_{i<\omega}\iota_{(i)}^{\mathcal{D}}\downarrow$

where $\overline{t}^{(i)}\in T^{n}$ . Let $\psi(\overline{x}^{(t)},\overline{y}^{(i)})$ be the formula corresponding to $\psi(\overline{t}^{(i)} ; \overline{f})$

under the substitution of $w_{n}$ for $t_{n}$ . If we substitute $w_{n}$ for $t_{n}$ throughout $\mathcal{D}$

(the substitution is for maximal occurrences of $t_{n}$) we get a derivation

$\{\psi(\overline{x^{\downarrow_{(i)}}},\overline{y}^{(i)})\}_{i<\omega}\downarrow_{\mathcal{D}}/$

.
We now show how to obtain a derivation $\mathcal{D}^{\prime\prime}$ of $\varphi$ from $\mathcal{D}^{\prime}$ in a series of
quantifier steps.

We shall say that a free variable in $\psi(\overline{x}^{(i)},\overline{y}^{(t)})$ precedes another free vari-
able in $\psi$ if it has to be quantified out first in the passage from $\psi$ to $\varphi$ . For
example, if $\varphi=\exists x\forall y\psi(x, y)$ , then $w_{2}$ precedes $w_{1}$ in $\psi(w_{1}, w_{2})$ . A free variable
occurs in maximal position in a formula if no free variable precedes it in
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that formula. $w_{2}(w_{1})$ is in maximal position in $\psi(w_{1}, w_{2})(\forall y\psi(w_{1}, y))$ . An
occurrence of a free variable in the range of $\overline{y}^{(i)}$ in a formula $\psi(\overline{x}^{(t)},\overline{y}^{(i)})$ is
called an eigenvariable occurrence.

The following passage from $\mathcal{D}^{\prime}$ to $\mathcal{D}‘‘-\varphi$ is illustrated in example 3.3.
(1) Apply $(\supset\exists)$ to quantify out existentially the free variables of

$\{\psi(\overline{x}^{(i)},\overline{y}^{(i)})\}_{i<\omega}$ which do not occur as eigenvariables and are in maximal
positions. Repeat a finite number of times until the only variables in maxi-
mal positions are eigenvariables.

(2) Now look at the free variables of greatest height. They are in
maximal positions and they occur as eigenvariables, for otherwise they would
be preceded by eigenvariables of greater height. The 1–1 enumeration
$\langle t_{n}\rangle_{n<\omega}$ insures that these variables occur in unique formulas. Thus we may
use $(\supset\forall)$ to quantify them out universally. This reduces the highest rank
of variables by one.

A finite number of applications of (1) and (2) leads to the desired deri-
vation $\mathcal{D}^{\prime\prime}$ of $\varphi$ .

PROOF OF 3.7. We take a language with one constant symbol $c$ and two
sequences of unary predicate symbols $r_{n},$ $n>0$ , and $s_{m},$ $m\geqq 0$ . Let $\sigma(k)$

$=\sum_{i=0}^{k}i$ . For any $k=0,1,2,$ $\cdots$ and $m$ with $\sigma(k)<m\leqq\sigma(k+1)$ take

$\psi_{m}(x, y)=(r_{m}(x)\vee\sim r_{m}(y))v(\prime i^{\prime^{1^{\backslash }}}\backslash \sigma(k)\sigma(k)\leqq i<m$

For example, for $k=2,$ $\sigma(k)=3,$ $\sigma(k+1)=6$ and $\psi_{4},$ $\psi_{6},$ $\psi_{6}$ have the form

$\psi_{4}(x, y)=(r_{4}(x)\vee\sim r_{4}(y))\vee(s_{0}(x)\vee s_{1}(x)\vee s_{2}(x))\vee\sim s_{3}(y)\vee s_{4}(x)$

$\psi_{5}(x, y)=(r_{5}(x)\vee\sim r_{6}(y))\vee(s_{0}(x)\vee s_{1}(x)\vee s_{2}(x))\vee\sim s_{3}(y)\vee\sim s_{4}(y)\vee s_{6}(x)$

$\psi_{6}(x, y)=(r_{6}(x)\vee\sim r_{6}(y))\vee(s_{0}(x)\vee s_{1}(x)\vee s_{2}(x))\vee\sim s_{3}(y)\vee\sim s_{4}(y)\vee\sim s_{6}(y)\vee s_{6}(x)$ .
We take $\psi(x, y)=_{m>}/X\backslash _{0}\psi_{m}(x, y)$ .
The following facts $(i)-(iv)$ concerning the $\psi_{m}$ are easily checked:
(i) $\psi.(x, y)\vee\psi_{m}(y, z)$ is valid for any $m$ .
(ii) $\psi_{m_{1}}(x, y)\vee\psi_{m_{2}}(y, z)$ is valid for $\sigma(k)<m_{1}\leqq\sigma(k+1)<m_{2}$ .
(iii) $\psi_{m1}(x, y)\vee\psi_{m_{2}}(y, z)$ is valid for $\sigma(k)<m_{2}<m_{1}\leqq\sigma(k+1)$ .
(iv) $n\leqq k\backslash x/\psi_{\sigma(k)+n+1}(f^{n}(c), f^{n+1}(c))$ is not valid for any $k$ .

We use $(i)-(iv)$ to prove:
(1) $\exists x\psi(x, f(x))$ is valid (so $\exists x\forall y\psi(x,$ $y)$ is valid).
(2) $t\subseteq TW\psi(t, f(t))$ is not valid for any subset $T$ of $\{f^{n}(c)\}_{n<\omega}$ of bounded

$f$-rank.
PROOF OF (1). It suffices to show that $n<\omega W\psi(f^{n}(c), f^{n+1}(c))$ is valid; $i$ . $e.$ ,
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that $n<\omega 0<m<\omega W\mathfrak{R}\psi_{m}(f^{n}(c), f^{n+1}(c))$ is valid. This is equivalent to the validity of

$(^{*})$
$n_{\backslash }\omega W\psi_{r(n)}(f^{n}(c), f^{n+1}(c))$

for each $\pi;\omega\rightarrow\omega-\{0\}$ . Consider any such $\pi$ . If there is an $n$ with $\pi(n)$

$=\pi(n+1)$ , the validity of $(^{*})$ follows from (i). Suppose for all $n,$ $\pi(n)\neq\pi(n+1)$ .
Let $k$ be the least natural number for which there is some $n$ with $\pi(n)$

$\leqq\sigma(k+1)$ . Since $\sigma(0)=0$ , we have $\sigma(k)<\pi(n)$ , whenever $\pi(n)\leqq\sigma(k+1)$ . If
there is an $n$ with $\pi(n)\leqq\sigma(k+1)<\pi(n+1)$ we can apply (ii). Otherwise,
whenever $\pi(n)\leqq\sigma(k+1)$ , also $\pi(n+1)\leqq\sigma(k+1)$ . Hence for some $n,$ $\sigma(k)<\pi(n+1)$

$<\pi(n)\leqq\sigma(k+1)$ ; in this case $(^{*})$ is valid by (iii).
PROOF OF (2). It sufiices to show that for any $k,$

$n\leqq W_{k}\bigwedge_{0_{\backslash }^{\prime}m}\bigwedge_{\omega\backslash }\psi_{m}(f^{n}(c), f^{n+1}(c))$

is not valid; this is equivalent to $\pi\in(\omega\{0\})^{k+1}n\leqq k/\underline{X\backslash }W\psi_{\pi(n)}(f^{n}(c), f^{n+1}(c))$ . However,

by (iv), $n\leqq kW\psi_{\pi(n)}(f^{n}(c), f^{n+1}(c))$ is not valid for $\pi$ given by $\pi(n)=\sigma(k)+n+1$ .
This completes the proof of 3.7.

REMARKS. (1) A slightly more complicated argument in (1) of 3.7 shows
that for any $\pi:\omega\rightarrow\omega-\{0\}$ , if $\pi(0)\leqq\sigma(k+1)$ , then already

$n\leqq\sigma(k+1)W\psi_{\pi(n)}(f^{n}(c), f^{n+1}(c))$

is valid. From this we can see that the formula $\pi\in(\omega-\{0\})^{(\omega)}n\leqq m(\pi)AW\psi_{\pi(n)}(f^{n}(c)$ ,

$f^{n+1}(c))$ (where $m(\pi)$ is the least $\sigma(k+1)$ s. t. $\pi(0)\leqq\sigma(k+1)$) is valid. We can
then reduce the conjunction over $(\omega-\{0\})^{(\omega)}$ to a countable conjunction.
The bound is also helpful if we wish to construct a proof-tree for
$n<0^{\prime}\backslash mW_{\omega}/X\backslash _{<\omega}\psi_{m}(f^{n}(c), f^{n+1}(c))$ .

(2) In the above example, a set of bounded $f$-rank is finite; however, a
similar but notationally more complicated example can be given where such
sets may be infinite.

(3) The above counterexample can be easily transcribed into one for a
language with two binary relation symbols, one unary function symbol and
one constant symbol.

\S 4. Takeuti’s interpolation theorem for $L_{\kappa,\kappa}$ .
Let $\kappa$ be a strongly inaccessible cardinal. The formulas of $L_{\kappa,\kappa}$ are built

up using negation, conjunction and disjunction of sets of formulas of cardi-
nality less than $\kappa$ and quantifiers $\exists\overline{x},$

$\forall\overline{x}$ , where $\overline{x}=\langle x_{\xi}\rangle_{\xi<\lambda},$ $\lambda<\kappa$ . The latter
are called homogeneous quantifiers when the language is extended to $L_{\kappa.\kappa}^{+}$ in
4.4 below. The new function symbols of $L_{\kappa,\kappa}^{\vee}$ are to have arguments of
cardinality less than $\kappa$ and $\check{\varphi},\hat{\varphi},$ $\varphi^{(T)}$ are defined as in \S 1. 4.1, 4.2, 4.3 are
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proved by a direct extension of the arguments for $L_{\omega_{1},\omega}$ .
4.1. LEMMA. Let $\varphi$ be a sentence of $L_{\kappa,h}.$ . For any $L_{\kappa,r}$-structure $\mathfrak{A}$ , we

have
(i) $\mathfrak{A}$ : $\varphi\Leftrightarrow for$ all $L_{\iota^{\vee}.\kappa}$ -extensions $\langle?^{\gamma}.,\overline{f}\rangle,$ $\langle \mathfrak{A},\overline{f}\rangle\not\in=\check{\varphi}$ .
(ii) $\mathfrak{A}F\varphi\Leftrightarrow for$ some $L_{\kappa.\kappa}^{\vee}$ -extension $\langle \mathfrak{A},\overline{f}\rangle,$ $\langle \mathfrak{A},\overline{f}\rangle F\hat{\varphi}$ .
4.2. THEOREM. Let $\varphi$ be a sentence of $L_{\kappa^{\vee}.\kappa},$ $T$ the set of all closed terms

of $L_{\kappa.\kappa}^{\vee}$ (the language of $\check{\varphi}$). Then $\varphi$ is valid if and only if $\check{\varphi}^{(T)}$ is valid.
4.3. LEMMA (Interpolation for propositional $L_{\kappa,\kappa}$). Let $\varphi,$

$\psi$ be quantifier-

free formulas of $L_{\kappa,\kappa}$ . If $\varphi\vee\psi$ is valid, then there is a quantifier-free inter-
polant $\sigma s$ . $t$ . $\varphi\vee\sigma$ $ and\sim\sigma\vee\psi$ are valid.

We now consider the extension of $L_{\kappa,\kappa}$ using (possibly) inhomogeneous
quantifiers $Q^{-}\overline{x}$ as in [12].

4.4. DEFINITION. (a) $L_{\kappa.\kappa}^{+}$ is obtained by closing under the operations
of $L_{\kappa,\kappa}$ and the operation of forming $Q^{\tau}\overline{x}\psi(\overline{x})$ whenever $\overline{x}$ is a sequence of
distinct variables $\overline{x}=\langle x_{\alpha}\rangle_{\alpha<\lambda},$ $\lambda<\kappa,$ $\tau;\lambda\rightarrow\{\forall, \exists\}$ , and $\psi(\overline{x})\in L_{\kappa.\kappa}^{+}$ .

(b) The dual $\tau^{*}$ of $\tau$ is given by

$\tau^{*}(\alpha)=\left\{\begin{array}{l}\forall if\tau(\alpha)=\exists\\\exists if\tau(\alpha)=\forall.\end{array}\right.$

The reduced form $\varphi^{*}$ of a formula $\varphi$ of $L_{\kappa,\kappa}$ is obtained by the usual de
Morgan laws and by setting $(\sim Q^{-}\overline{x}\psi(\overline{x}))^{*}=Q^{\tau}\overline{x}(\sim\psi(\overline{x}))^{*}$ .

(c) Given $Q^{\tau}\overline{x}\psi(\overline{x})$ , let $\psi(\overline{y};f)$ be obtained from $\psi(\overline{x})$ by replacing $x_{a}$

where $\tau(\alpha)=\exists$ by (Skolem) function symbols $f$ of the variables in $\overline{y}$ which
precede $x_{\alpha}$ . A sequence $s$ from a model $\mathfrak{A}$ satisfies $Q^{-}\overline{x}\psi(\overline{x})$ if for some exten-
sion $\langle \mathfrak{A},\overline{f}\rangle,$

$s$ satisfies $\forall\overline{y}\psi(\overline{y};\overline{f})$ in \langle Ql, $\overline{f}\rangle$ .
4.5. THEOREM (Takeuti). Let $\varphi,$

$\psi$ be in $L_{\kappa,\kappa}$ . If $\varphi\vee\psi$ is valid, then there
is an interpolant $\sigma\in L_{\kappa,\kappa}^{+}$ such that $\varphi\vee\sigma$ and $(\sim\sigma)^{*}\vee\psi$ are valid.

PROOF. This follows the lines of the first proof of the finitary interpola-
tion theorem in Kreisel-Krivine [8]. We shall assume to begin with that $\varphi$ ,
$\psi$ have no constant or function symbols. Since $\varphi\vee\psi$ is valid, we have by
4.1 that $\check{\varphi}\vee\check{\psi}$ is valid. We can pull the existential quantifiers to the front
in $\check{\varphi}$ and $\emptyset$ and write

$\check{\varphi}\equiv\exists\overline{x}\varphi_{1}(\overline{x};\overline{f})$ , $\phi\equiv\exists\overline{y}\psi_{1}(\overline{x};\overline{g})$

where $\overline{\chi}\overline{y}$ are disjoint sequences of variables and $\overline{f},\overline{g}$ disjoint sequences of
function symbols. From $F\check{\varphi}\vee\emptyset$ we get $F\exists\overline{x}\exists\overline{y}(\varphi_{1}(\overline{x} ; \overline{f})\vee\psi_{1}(\overline{y};\overline{g}))$ and by

4.2 we then obtain

$|=W_{\overline{S}>}(\varphi_{1}(\overline{t};\overline{f})\vee\psi_{1}(\overline{s};\overline{g}))<\overline{t}$.
where $\overline{t},\overline{s}$ range over sequences from the set $T$ of all closed terms in the
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language of $\check{\varphi}\vee\emptyset$ . It follows that

$t=w_{\overline{t}}(\overline{r};\overline{f})_{-}$

We may now use the propositional interpolation theorem 4.3 to get a quanti-
fier-free interpolant $\sigma=\sigma(\overline{r})$ where $\overline{r}=\langle r_{\alpha}\rangle_{a<\lambda<\kappa}$ is a 1–1 enumeration of the
terms in $\sigma$ all of which belong to $T$. We can assume that these are arranged
in such a way that $\alpha<\beta$ implies $r_{\beta}$ is not a subterm of $r_{n}$ . We then have

$FW_{\overline{t}}\varphi_{1}(\overline{t};f)\ovalbox{\tt\small REJECT}\sigma(\overline{r})$ ,
$\models\sim\sigma(\overline{r})\vee W_{-}\psi_{1}(\overline{s};\overline{g})l$

Since F $W_{\overline{t}}\varphi_{1}(\overline{t};\overline{f})\rightarrow\exists\overline{x}\varphi_{1}(\overline{x};\overline{f})$ and $FW\psi_{1}(\overline{s};\overline{g})\overline{s}\rightarrow\exists\overline{y}\psi_{1}(\overline{y};\overline{g})$
, we get

$F\check{\varphi}\vee\sigma(\overline{r})$ , $F\sim\sigma(\overline{r})\vee\emptyset$ .
Define $\tau:\lambda\rightarrow t\forall,$ $\exists$ } so that

$\tau(\alpha)=\{\exists\forall ififtheoutermostfunction.symbolitisintherangeof\overline{g}$

in $r_{\alpha}$ is in the range of $f$

Let $\tau^{*}$ be the dual of $\tau,$
$Q^{\tau}\overline{x},$ $Q^{\tau^{r}}\overline{x}$ the associated (possibly) inhomogeneous

quantifiers. We claim that
$F\check{\varphi}\vee Q^{\tau}\overline{x}\sigma(\overline{x})$ and $FQ^{\tau^{*}}\overline{x}\sim\sigma(\overline{x})\vee\emptyset$ .

We prove $F\check{\varphi}\vee Q^{\tau}\overline{x}\sigma(\overline{x})$ . Let $\overline{t}$ be the subsequence from $\overline{r}$ of terms with
outermest function symbol in the range of $\overline{g}$ . Let $\overline{y}$ be a 1–1 enumeration
of new variables corresponding to $\overline{t}$ and let $\overline{r}^{\prime}=\langle r_{a}^{\prime}\rangle_{\alpha<\lambda}$ be obtained from $\overline{r}$

by substituting $y_{\alpha}$ for $t_{\alpha}$ . (The substitution is to be in the sense that for
given $r_{\alpha}$ , we look for the maximal subterms with outermost function symbol
in the range of $\overline{g}$ and substitute the corresponding $y$ for these subterms.)

Then the terms in $\overline{r}^{\prime}$ contain no occurrences of function symbols from $\overline{g}$.
Write $\overline{\gamma}^{\prime}=\langle\overline{y},\overline{s}\rangle,\overline{y}$ the sequence of new variables, $\overline{s}$ the terms with function
symbols from $\overline{f}$. Suppose we had a model $\langle \mathfrak{A}, f\rangle$ s.t.

$\langle \mathfrak{A},\overline{f}\rangle\models\sim\check{\varphi}\wedge\sim Q^{\tau}\overline{x}\sigma(\overline{x})$ .
Then $\langle \mathfrak{A},\overline{f}\rangle F\sim\check{\varphi}\wedge\sim\forall\overline{y}\sigma(\overline{y};\overline{s})$ . For we can write $\sigma(\overline{y},\overline{s})=\sigma(\overline{y};\overline{f})$ and so
$\langle \mathfrak{A},\overline{f}\rangle|=\forall\overline{y}\sigma(\overline{y},\overline{s})$ implies $\langle \mathfrak{A},\overline{f}\rangle\models\forall\overline{y}\sigma(\overline{y};\overline{f})$ and, by definition 4.4, $\mathfrak{A}FQ^{\tau}\overline{x}\sigma(\overline{x})$ .
But now $\langle \mathfrak{A},\overline{f}\rangle F\sim\check{\varphi}\wedge\exists\overline{y}\sim\sigma(\overline{y},\overline{s})$ implies that for some sequence $\overline{a}$ from
$|\mathfrak{A}|$ ,

$\langle \mathfrak{A},\overline{f}\rangle F\sim\check{\varphi}\wedge\sim\sigma(\overline{a},\overline{s})$ .
Since the function symbols from $\overline{g}$ are disjoint from $\overline{f}$, we are free to inter-
pret the terms $\overline{t}$ with outermost function symbol from $\overline{g}$ so

$\langle \mathfrak{A},\overline{f},\overline{g}\rangle F\sim\check{\varphi}\wedge\sim\sigma(\overline{t},\overline{s})$ .
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But then $\langle \mathfrak{A},\overline{f},\overline{g}\rangle F\sim\check{\varphi}\wedge\sim\sigma(\overline{r})$ , contradicting $F\check{\varphi}\vee\sigma(\overline{r})$ . Similarly, $FQ^{\tau}\overline{x}$

$\sim\sigma(\overline{x})\vee\emptyset$ .
Finally, $F\check{\varphi}\vee Q^{\tau}\overline{x}\sigma(\overline{x})$ implies $F\varphi\vee Q^{-}\overline{x}\sigma(\overline{x})$ . For suppose

$\mathfrak{A}F\sim\varphi\wedge\sim Q^{\tau}\overline{x}\sigma(\overline{x})$ .
Then for some extension $\langle \mathfrak{A}, f\rangle$ ,

$\langle \mathfrak{A}, f\rangle F(\varphi)\wedge\sim Q^{\tau}\overline{x}\sigma(\overline{x})\bigwedge_{\sim}$ .
But then $\langle \mathfrak{A}, f\rangle I=\sim\check{\varphi}\wedge\sim Q^{\tau}\overline{x}\sigma(\overline{x})$ . Similarly, $E=Q^{\tau}\overline{x}\sim\sigma(\overline{x})\vee\check{\psi}$ implies $FQ^{\tau}\overline{x}$

$\sim\sigma(\overline{x})\vee\psi$ .
The result for the case that $\varphi,$

$\psi$ have constant and function symbols is
obtained by the usual technique of reducing to relational $\varphi_{1},$

$\psi_{1}$ . $T_{1},$ $S_{1}$ ex-
press the functionality of the new relation symbols in $\varphi_{1},$

$\psi_{1}$ respectively.
Then $F\varphi\vee\psi$ implies

$F(T_{1}\rightarrow\varphi_{1})\vee(S_{1}\rightarrow\psi_{1})$ :

Given an interpolant $\sigma_{1}$ between $T_{1}\rightarrow\varphi_{1}$ and $S_{1}\rightarrow\psi_{1}$ , we obtain

$T_{1}F\varphi_{1}\vee\sigma_{1}$ and $S_{1}F\sim\sigma_{1}\vee\psi_{1}$ .
By restoring the old function symbols we then get $F\varphi\vee\sigma$ and $\mathfrak{t}=\sim\sigma\vee\psi$ .

REMARKS. (1) $Q^{\tau}\overline{x}\sim\sigma(\overline{x})$ implies $\sim Q^{\tau}\overline{x}\sigma(\overline{x})$ , but not conversely, except
for structures satisfying the axiom of determinacy.

(2) $-- 4.5$ does not give interpolation for $L_{\kappa,\kappa}$ with only homogeneous
quantifiers. Indeed, Malitz [9] shows that the interpolation theorem fails for
this language.

Stanford University and
Ateneo de Manila
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