Localization of $C W$-complexes and its applications

By Mamoru Mimura, Goro Nishida and Hirosi Toda

(Received Jan. 28, 1971)

Introduction

In the algebraic topology, in particular in the homotopy theory, abelian groups are often treated by being devided into their " p-primary component" for various primes p.

In the homotopy category of 1 -connected $C W$-complexes, an isomorphism means a homotopy equivalence, which is of course an equivalence relation. As is well known, a homotopy equivalence is such a map that it induces an isomorphism on the integral homology group.

There might be three ways to generalize it in the $\bmod p$ sense.
First one is to define a p-equivalence so that it induces an isomorphism on the homology group with Z_{p}-coefficient. A p-equivalence, however, is not in general an equivalence relation even in the category of 1 -connected finite $C W$-complexes. In fact, in [11] is shown an example, for which symmetricity does not hold. To make it an equivalence relation, we have to work in the category of p-universal spaces [12].

Next one is to define that X and Y are of same p-type, if there exist a space Z and p-equivalences $f: X \rightarrow Z$ and $g: Y \rightarrow Z$. Then it is easy to see that a relation being of same p-type is an equivalence relation.

The last one is to consider a homotopy equivalence for "localized spaces $X_{(p)}$," of X at p. It is a functor of 1-connected $C W$-complexes into itself such that if $f: X \rightarrow Y$ is a p-equivalence then the localization at $p f_{(p)}: X_{(p)} \rightarrow Y_{(p)}$ is a homotopy equivalence. The localization is studied by Adams [2], Anderson [3], Bousfield-Kan and others. Our construction is a generalization of Adams' telescope [2], and has the following advantage:

Theorem 2.5. If X is a 1-connected $C W$-complex of finite type, then $H_{*}\left(X_{(p)}\right) \cong H_{*}(X) \otimes Q_{p}$ and $\pi_{*}\left(X_{(p)}\right) \cong \pi_{*}(X) \otimes Q_{p}$, where Q_{p} denotes the ring of those fractions, whose denominators, in the lowest form, are prime to p.

Also we show
Corollary 4.3. X is homotopy equivalent to $\prod_{X_{(0)}} X_{(p)}$ the pull back of $X_{(p)}$ over $X_{(0)}$.

So we can study the topological properties of X for each prime p
separately.
In this paper, $\mathfrak{\Im}_{1}$ denotes the category of 1 -connected $C W$-complexes of finite type, i. e., the i-dim integral homology group is of finite type for each i. Also we denote by \mathscr{F}_{1} the category of 1 -connected finite $C W$-complexes.

Let \boldsymbol{P} be a subset of the set of all primes. The notation (0) will be used as the vacant set ϕ. We denote by Q_{P} the ring of those fractions, the denominators of which are, in the lowest form, prime to p for all $p \in \boldsymbol{P}$. If \boldsymbol{P} is the set of all primes, then $Q_{\boldsymbol{P}}=Z$, and if $\boldsymbol{P}=(0)$, then $Q_{\boldsymbol{P}}=Q$ the set of rational numbers. Z_{p} stands for $Z / p Z$ and Z_{0} for $Q . \mathbb{E}_{P}$ is a class of finite abelian groups without \boldsymbol{P}-torsion. $H_{*}(X)$ means $H_{*}(X ; Z) . \quad X=Y$ reads that X is homotopy equivalent to Y.

Definition 0.1. A space X is \boldsymbol{P}-equivalent to Y, if there exists a map $f: X \rightarrow Y$ such that f induces isomorphisms $H_{*}\left(X ; Z_{p}\right) \cong H_{*}\left(Y ; Z_{p}\right)$ for all $p \in \boldsymbol{P}$. Then the map f is called a \boldsymbol{P}-equivalence.

Definition 0.2. A space $K \in \mathfrak{F} \mathfrak{F}_{1}$ is called \boldsymbol{P}-universal if, for any given \boldsymbol{P}-equivalence $k: X \rightarrow Y$ in the category $\mathfrak{⿷}_{1}$, and for an arbitrary map $g: K$ $\rightarrow Y$, there is a map $h: K \rightarrow X$ and there is a \boldsymbol{P}-equivalence $f: K \rightarrow K$ such that the following diagram is homotopy commutative:

or equivalently, for any given \boldsymbol{P}-equivalence $k: X \rightarrow Y$ in $\mathfrak{F} \mathscr{C}_{1}$ and for an arbitrary map $g: X \rightarrow K$, there is a map $h: Y \rightarrow K$ and there is a \boldsymbol{P}-equivalence $f: K \rightarrow K$ such that the following diagram is homotopy commutative:

Thus, for a given \boldsymbol{P}-equivalence $X \rightarrow Y$, if one of X and Y is \boldsymbol{P}-universal, there exists a converse \boldsymbol{P}-equivalence $Y \rightarrow X$, and hence a \boldsymbol{P}-equivalence is an equivalence relation in the category of \boldsymbol{P}-universal spaces as was stated earlier.

The present paper is organized as follows.
\S 1. A \boldsymbol{P}-sequence of a $C W$-complex.
§ 2. Localization of $C W$-complexes.
§3. Further properties of localization.
§ 4. The pull-back of localized spaces.
$\S 5$. Localizing \boldsymbol{P}-universal spaces.
$\S 6 . \operatorname{Mod} p H$-spaces and $\bmod p$ co- H-spaces.
§ 7. Localization of finite H-complexes.
§ 8. New finite H-complexes.
§ 9. $\operatorname{Mod} p$ decomposition of suspended spaces.
In the first three sections we define a localization at \boldsymbol{P} and show the uniqueness as well as the existence of it. We study its properties thoroughly. In $\S 4$, we reconstruct the original space X from its localized spaces $X_{(p)}$. $\S 5$ is used to see how \boldsymbol{P}-universal spaces behaves nicely under localization. For example, in the category of \boldsymbol{P}-universal spaces, X and Y are \boldsymbol{P}-equivalent if and only if X_{P} and Y_{P} are homotopy equivalent. In $\S 6$ various equivalent definitions of a $\bmod p H$-space (also of a $\bmod p \operatorname{co}-H$-space) are given. Examples for them are given, too. $\S 7$ is used to discuss the localization of finite H-complexes, e. g., it is shown that under a certain condition, a finite $C W$-complex X is an H-space if and only if $X_{(p)}$ is an H-space for all primes p. In $\S 8$, many new finite H-complexes are constructed by mixing homotopy types. The last section, $\S 9$, is devoted to give a $\bmod p$ decomposition of a suspension of the symmetric product of the Moore space of type (G, n), $G=Z$ or $Z_{p r}$, and of a suspension of an H-space with certain conditions. They can give also a $\bmod p$ decomposition of $S K(Z, n)$ and of $S K\left(Z_{p r}, n\right)$.

§ 1. A P-sequence of a $C W$-complex.

Let X be a $C W$-complex of finite type and let \boldsymbol{P} be a subset of the set of all primes.

Definition 1.1. $\left\{X_{i}, f_{i}\right\}$ is a homology \boldsymbol{P}-sequence of X, if

1) $f_{i}: X_{i-1} \rightarrow X_{i}$ is a \boldsymbol{P}-equivalence with $X_{0}=X$,
2) for any n, any i, and any prime q with (q, p)=1 for all $p \in \boldsymbol{P}$, there exists $N(>i)$ such that $\left(f_{N} \circ \cdots \circ f_{i}\right)_{*}=0: H_{n}\left(X_{i-1} ; Z_{q}\right) \rightarrow H_{n}\left(X_{N} ; Z_{q}\right)$.
Definition 1.1'. $\left\{X_{i}, f_{i}\right\}$ is a homotopy \boldsymbol{P}-sequence of X, if
1)' $f_{i}: X_{i-1} \rightarrow X_{i}$ is a P-equivalence with $X_{0}=X$,
$2)^{\prime}$ for any n, any i, and any prime q with $(q, p)=1$ for all $p \in \boldsymbol{P}$, there exists $N(>i)$ such that $\left(f_{N} \circ \cdots \circ f_{i}\right) * \otimes 1=0: \pi_{n}\left(X_{i-1}\right) \otimes Z_{q} \rightarrow \pi_{n}\left(X_{N}\right) \otimes Z_{q}$.
Theorem 1.2. Let $X, X_{i} \in \mathbb{E}_{1}$. Then $\left\{X_{i}, f_{i}\right\}$ is a homology \boldsymbol{P}-sequence of X if and only if it is a homotopy \boldsymbol{P}-sequence of X.

To prove the theorem, we need to prepare the following. For a given space X, the $(n-1)$-connective space (X, n) is a fibering over X with a fibre map $p:(X, n) \rightarrow X$ inducing isomorphisms $p_{*}: \pi_{i}((X, n)) \cong \pi_{i}(X)$ for all $i \geqq n$ and $\pi_{i}((X, n))=0$ for all $i<n$. There exists a fibering

$$
\begin{equation*}
K\left(\pi_{n}(X), n-1\right) \longrightarrow(X, n+1) \longrightarrow(X, n) . \tag{1.1}
\end{equation*}
$$

Similarly, the space (n, X) is such a space that there is a fibering $q: X \rightarrow(n, X)$ inducing isomorphisms $q_{*}: \pi_{i}(X) \cong \pi_{i}((n, X))$ for all $i \leqq n$ and $\pi_{i}((n, X))=0$ for all $i>n$. Then there exists a fibering

$$
\begin{equation*}
K\left(\pi_{n}(X), n+1\right) \longrightarrow(n+1, X) \longrightarrow(n, X) . \tag{1.2}
\end{equation*}
$$

Clearly a \boldsymbol{P}-equivalence $f: X \rightarrow Y$ induces \boldsymbol{P}-equivalences:

$$
\begin{aligned}
& f_{n, i}: K\left(\pi_{n}(X), i\right) \longrightarrow K\left(\pi_{n}(Y), i\right), \\
& f_{n}:(X, n) \longrightarrow(Y, n), \\
& { }_{n} f:(n, X) \longrightarrow(n, Y) .
\end{aligned}
$$

By the abuse of the notation, we denote them by the same notation f.
We state easy lemmas without proof.
Lemma 1.3. The condition 2) of Definition 1.1 implies
3) For any A, any i, and any prime q with $(q, p)=1$ for all $p \in \boldsymbol{P}$, there exists $N(>i)$ such that $\left(f_{N} \circ \cdots \circ f_{i}\right)_{*}=0: H_{j}\left(X_{i-1} ; Z_{q}\right) \rightarrow H_{j}\left(X_{N} ; Z_{q}\right)$ for all $0<j<A$.
Lemma 1.3'. The condition 2)' of Definition 1.1^{\prime} implies
3)' Foy any A, any i, any prime q with $(q, p)=1$ for all $p \in \boldsymbol{P}$, there exists $N(>i)$ such that $\left(f_{N} \circ \cdots \circ f_{i}\right) * \otimes 1=0: \pi_{j}\left(X_{i-1}\right) \otimes Z_{q} \rightarrow \pi_{j}\left(X_{N}\right) \otimes Z_{q}$ for all $0<j<A$.
Then we show
Lemma 1.4. The conditions 1) and 2) of Definition 1.1 imply the following (T_{n}) for all $n \geqq 2$.
$\left(T_{n}\right)$: For any A and any k, there exists $N=N(n, k, A)$ such that $f_{N, k}=$ $f_{N} \circ \cdots \circ f_{k}: X_{k-1} \rightarrow X_{N}$ induces $\left(f_{N, k}\right)_{*}=0: H_{j}\left(\left(X_{k-1}, n\right) ; Z_{q}\right) \rightarrow H_{j}\left(\left(X_{N}, n\right) ; Z_{q}\right)$ for all j with $0<j<A$.

Proof. We prove the lemma by induction on n. For $n=2$, there is nothing to prove, since $\left(X_{k}, 2\right)=X_{k}$. Suppose $\left(T_{n}\right)$ is true and let us prove $\left(T_{n+1}\right), n \geqq 2$. Consider the homology spectral sequence $\left\{E_{p, q}^{r}\right\}$ with Z_{q}-coefficient associated with a fibering

$$
\begin{equation*}
K\left(\pi_{n}\left(X_{l}\right), n-1\right) \longrightarrow\left(X_{l}, n+1\right) \longrightarrow\left(X_{l}, n\right) . \tag{1.1}
\end{equation*}
$$

Then $E_{p, q}^{2}=H_{p}\left(\left(X_{l}, n\right) ; H_{q}\left(\pi_{n}\left(X_{l}\right), n-1 ; Z_{q}\right)\right)$. We may assume that $A \geqq n+2$. Let $N=N(n, l, A)$ and take $f_{N, l+1}: X_{l} \rightarrow X_{N}$ given in $\left(T_{n}\right)$. Then $\left(f_{N, l+1}\right) *=0$ on $H_{n}\left(\left(X_{l}, n\right) ; Z_{q}\right)$ by the assumption, and hence $\left(f_{N, l+1}\right) *=0$ on $H_{n-1}\left(\pi_{n}\left(X_{l}\right), n-1 ; Z_{q}\right)$ by the suspension isomorphism. So $\left(f_{N, l+1}\right) *=0$ on $H^{n-1}\left(\pi_{n}\left(X_{N}\right), n-1 ; Z_{q}\right)$, whence $\left(f_{N, l+1}\right) *=0$ on $H^{i}\left(\pi_{n}\left(X_{N}\right), n-1 ; Z_{q}\right)$ for all $i>0$, since any element of $H^{i}\left(\pi_{n}\left(X_{l}\right), n-1 ; Z_{q}\right)$ is written as a sum of the cup-products of elements of the form $\mathfrak{p}^{I} x$, where $x \in H^{n-1}\left(\pi_{n}\left(X_{N}\right), n-1 ; Z_{q}\right)$ and \mathfrak{p}^{I} is a cohomology operation.

Therefore $\left(f_{N, t+\dot{1}}\right)_{*}=0$ on $H_{i}\left(\pi_{n}\left(X_{l}\right), n-1 ; Z_{q}\right)$ for all $i>0$. On the other hand, $\left(f_{N, l+1}\right) *=0$ on $H_{j}\left(\left(X_{l}, n\right) ; Z_{q}\right.$) for all j with $0<j<A$ by the assumption. Thus $\left(f_{N, l+1}\right) *=0$ on $E_{i, j}^{2}$ and hence it is trivial on $E_{i, j}^{\infty}=D_{i, j} / D_{i-1, j+1}$ for any (i, j) with $j>0$ and for any ($i, 0$) with $0<i<N$, where $H_{i+j}\left(\left(X_{l}, n+1\right) ; Z_{q}\right)=D_{i+j, 0}$ $\supset D_{i \not r j-1,1} \supset \cdots \supset D_{-1, i+j+1}=0$. So the triviality of $\left(f_{N, l+1}\right) *$ on $E_{i, j}^{\infty}$ implies $\left(f_{N, l+1}\right)_{*}\left(D_{i, j}\right) \subset D_{i-1, j+1}$. We put $N_{i+1}=N\left(n, N_{i}, A\right)$ and $f_{N_{i+1}, N_{i}}=f_{N_{i+1}} \circ \cdots \circ f_{N_{i}}$: $X_{N_{i}-1} \rightarrow X_{N_{i+1}}$ inductively starting with $N_{0}=k$. Then $f_{N_{i}, k}=f_{N_{i}} \circ \cdots \circ f_{k}$: $X_{k-1} \rightarrow X_{N_{i}}$ induces the trivial homomorphism on $H_{i}\left(\left(X_{k-1}, n+1\right) ; Z_{q}\right)$. Take $N(n+1, k, A)=N_{A} \quad$ and $\quad f_{N_{A}, k}=f_{N_{A}} \circ \cdots \circ f_{k}$. Then $\left(f_{N_{A}, k}\right)_{*}=0$ on $H_{i}\left(\left(X_{k-1}\right.\right.$, $n+1) ; Z_{q}$) for all $0<i<A$, so ($T_{n * 1}$) holds.
Q. E. D.

Lemma 1.4'. The conditions 1)' and 2)' of Definition 1.1' imply the following $\left(I_{n}\right)$ for all $n \geqq 2$.
$\left(I_{n}\right)$; For any B, and any k, there exists $M=M(n, k, B)$ such that $\left(f_{M, k}\right)_{*}=0$: $H_{j}\left(\left(n, X_{k-1}\right) ; Z_{q}\right) \rightarrow H_{j}\left(\left(n, X_{M}\right) ; Z_{q}\right)$ for all j with $0<j<B$.

Proof. Clearly $n=2$ is true. For $\left(2, X_{k}\right)=K\left(\pi_{2}\left(X_{k}\right), 2\right)$, since X_{k} is 1connected. Then $\left(f_{M, k+1}\right)^{*}=0$ on $H^{*}\left(\pi_{2}\left(X_{M}\right), 2 ; Z_{q}\right)$ for some M and hence $\left(f_{M, k+1}\right)_{*}=0$ on $H_{j}\left(\pi_{2}\left(X_{k}\right), 2 ; Z_{q}\right)$ for all $j>0$ as before. The statement $\left(I_{n}\right)$ for $n>2$ is then established similarly by induction using the homology spectral sequence with Z_{q}-coefficient associated with a fibering

$$
\begin{equation*}
K\left(\pi_{n}\left(X_{l}\right), n+1\right) \longrightarrow\left(n+1, X_{l}\right) \longrightarrow\left(n, X_{l}\right) . \quad \text { Q. E. D. } \tag{1.2}
\end{equation*}
$$

(Proof of Theorem 1.2.)
Let (X_{i}, f_{i}) satisfy 1) and 2) of Definition 1.1. Then by Lemma 1.4, for any n, any i, and any prime q with $(p, q)=1$ for all $p \in \boldsymbol{P}$, there exists N such that $f_{N, k_{*}}=0: H_{n}\left(\left(X_{k-1}, n\right) ; Z_{q}\right) \rightarrow H_{n}\left(\left(X_{N}, n\right) ; Z_{q}\right)$, where $H_{n}\left(\left(X_{j}, n\right) ; Z_{q}\right)$ $\cong \pi_{n}\left(X_{j}\right) \otimes Z_{q}$ for any j. So it follows that $f_{N, k *} \otimes 1: \pi_{n}\left(X_{k-1}\right) \otimes Z_{q} \rightarrow \pi_{n}\left(X_{N}\right) \otimes Z_{q}$ is trivial.

Conversely, for any n, take sufficiently large m, then $H_{n}\left(\left(m, X_{i}\right) ; Z_{q}\right)$ $\cong H_{n}\left(X_{i} ; Z_{q}\right)$. So the condition 2) in Definition 1.1 follows from 1)' and 2)' of Definition 1.1^{\prime} by Lemma 1.4.
Q.E.D.

Remark $1.1^{\prime \prime}$. In the Definitions 1.1 and 1.1^{\prime}, the condition that q is a prime with $(q, p)=1$ for all $p \in \boldsymbol{P}$ can be replaced by that q is an integer with $(q, p)=1$ for all $p \in \boldsymbol{P}$.

From now on we call the homology \boldsymbol{P}-sequence (equivalently the homotopy \boldsymbol{P}-sequence) merely the \boldsymbol{P}-sequence by virtue of Theorem 1.2.

Definition 1.5. Let $\left\{X_{i}, q_{i}\right\}$ and $\left\{Y_{i}, h_{i}\right\}$ be \boldsymbol{P}-sequences of X and Y respectively, and let $f: X \rightarrow Y$ be a map. A morphism $\left\{f_{i}\right\}$ between two sequences: $\left\{X_{i}, g_{i}\right\} \rightarrow\left\{Y_{i}, h_{i}\right\}$ covering f is defined as follows: For any i, there exist $\rho(i)(\geqq \rho(i-1))$ and maps $f_{i}: X_{i} \rightarrow Y_{\rho(i)}$ such that $f_{0}=f: X \rightarrow Y$ and the following diagram is homotopy commutative.

where $h_{\rho(i, i-1)}=h_{\rho(i)} \circ \cdots \circ h_{\rho(i-1)+1 \cdot}$.
Definition 1.6. Let $\left\{f_{i}\right\}$ and $\left\{f_{i}^{\prime}\right\}$ be two morphisms between \boldsymbol{P}-sequences: $\left\{X_{i}, g_{i}\right\} \rightarrow\left\{Y_{i}, h_{i}\right\}$. Then $\left\{f_{i}\right\}$ and $\left\{f_{i}^{\prime}\right\}$ are homotopic, if there exists a morphism $\left\{H_{i}\right\}:\left\{X_{i} \times I, g_{i} \times 1\right\} \rightarrow\left\{Y_{\varphi(i)}, h_{\varphi(i)}\right\}$ covering the homotopy $f \sim f^{\prime}$ with $\varphi(i) \geqq \operatorname{Max}\left(\varphi(i-1), \rho^{\prime}(i), \rho(i)\right)$ such that

1) $H_{i}(, 0)=f_{i}$ and $H_{i}(, 1)=f_{i}^{\prime}$ in $Y_{\varphi(i)}$,
2) $H_{i+1} \circ\left(g_{i} \times 1\right) \cong h_{\varphi(i)} \circ H_{i}$ rel. $X_{i} \times \partial I$.

Proposition 1.7. Let $\left\{X_{i}, g_{i}\right\}$ and $\left\{Y_{i}, h_{i}\right\}$ be \boldsymbol{P}-sequences of X and Y respectively. Let $X_{i} \in \mathfrak{F} \mathbb{F}_{1}$. Let $f: X \rightarrow Y$ be arbitrary. Then there exists a morphism $\left\{f_{i}\right\}:\left\{X_{i}\right\} \rightarrow\left\{Y_{\rho(i)}\right\}$ covering f. Further, it is unique up to homotopy.

Proof. We prove it by induction starting with $f_{0}=f$. Assume that $f_{k}: X_{k} \rightarrow Y_{\rho(k)}$ is constructed;

We may consider that g_{k+1} is an inclusion of a subcomplex by taking a mapping cylinder, if necessary. The obstruction to extending f_{k} over X_{k+1} lies in $H^{i+1}\left(X_{k+1}, X_{k} ; \pi_{i}\left(Y_{\rho(k)}\right)\right)$. Remark that $H^{*}\left(X_{k+1}, X_{k}\right) \in \mathfrak{C}_{\boldsymbol{P}}$, since g_{k+1} is a \boldsymbol{P} equivalence. We assume that f_{k} is already extended over $\left(X_{k+1}, X_{k}\right)^{(r)}$ in $Y_{N_{r}}$ for some $N_{r} \geqq \rho(k)$. Then the obstruction to extending over ($\left.X_{k+1}, X_{k}\right)^{(r+1)}$ lies in $H^{r+1}\left(X_{k+1}, X_{k} ; \pi_{r}\left(Y_{N_{r}}\right)\right)$. Then by the condition 2)' in Definition 1.1', the obstruction is zero in $Y_{N_{r+1}}$ for some $N_{r * 1} \geqq N_{r}$. Since X_{k+1} is finite dimensional, we obtain a map $f_{k+1}: X_{k+1} \rightarrow X_{\rho(k+1)}$ extending f_{k}. The uniqueness up to homotopy can be proved quite similarly.
Q. E. D.

Definition 1.8. $\left\{X_{i}, g_{i}\right\}$ is homotopy equivalent to $\left\{Y_{i}, h_{i}\right\}$, if there exist morphisms $f_{i}:\left\{X_{i}, g_{i}\right\} \rightarrow\left\{Y_{i}, h_{i}\right\}$ and $f_{i}^{\prime}:\left\{Y_{i}, h_{i}\right\} \rightarrow\left\{X_{i}, g_{i}\right\}$ such that morphisms $\left\{f_{\rho_{(i)}}^{\prime} \circ f_{i}\right\}$ and $\left\{f_{\varphi(i)} \circ f_{i}^{\prime}\right\}$ cover 1_{X} and 1_{Y} respectively.

Theorem 1.9. (1) For any subset \boldsymbol{P} of the set of all primes and for any X, there exists a \boldsymbol{P}-sequence $\left\{X_{i}\right\}$ of X, where $X_{i} \in \mathfrak{F} \mathfrak{F}_{1}$, if $X \in \mathfrak{F} \mathfrak{F}_{1}$.
(2) It is unique up to homotopy type, if $X_{i} \in \mathfrak{F} \mathfrak{C}_{1}$.

Before proving, let us recall the notion of the fibred sum (or the pushout) of $C W$-complexes. Given a diagram of $C W$-complexes

construct a $C W$-complex $Y \underset{X}{\bigvee} Z=Y \bigcup_{f}(X \times I) \bigcup_{g} Z$ by identifying $(x, 0) \sim f(x)$ and $(x, 1) \sim g(x)$. Let $j_{1}: Y \rightarrow Y \bigvee_{x} Z$ and $j_{2}: Z \rightarrow Y \bigvee_{X} Z$ be the natural inclusions. Clearly $j_{1} \circ f \cong j_{2} \circ g$. Let W be another $C W$-complex, and let $a: Y \rightarrow W$ and $b: Z \rightarrow W$ be maps such that $a \circ f \cong b \circ g$. Then there exists a map $w: Y \underset{X}{\bigvee} Z \rightarrow W$ such that the following is homotopy commutative:

Lemma 1.10. f is a \boldsymbol{P}-equivalence if and only if j_{2} is a \boldsymbol{P}-equivalence. Similarly for g and j_{1}.

Proof. Clearly the cofibre of g and j_{1} are naturally homotopy equivalent. So it follows from the five lemma.
Q. E. D.
(Proof of Theorem 1.9.)

1) It suffices to construct a homotopy \boldsymbol{P}-sequence. Let $i \geqq 2$ and q be a given prime with $(q, p)=1$ for all $p \in \boldsymbol{P}$. Consider a \boldsymbol{P}-equivalence $f: X \rightarrow X^{\prime}$, which induces $f_{*} \otimes 1: \pi_{i}(X) \otimes Z_{q} \rightarrow \pi_{i}\left(X^{\prime}\right) \otimes Z_{q}$. Let $g_{j}: S^{i} \rightarrow X^{\prime}, j \in J$, be representatives of a basis for the image of $f_{*} \otimes 1$. Let $\bigvee_{J} S^{i}$ be a bouquet of spheres and put $g=\bigvee_{J} g_{j}: \bigvee_{J} S^{i} \rightarrow X^{\prime}$. Let $q: \bigvee_{J} S^{i} \rightarrow \bigvee_{J} S^{i}$ be a map such that it is of degree q on each S^{i}. Take $X_{q, i}=\vee S_{V V S^{i}} X^{\prime}$ the fibred sum of g and q. Then the map $\bar{f}=j_{X}, \circ f: X \rightarrow X_{q, i}$ is a \boldsymbol{P}-equivalence by Lemma 1.10 and it induces $\bar{f}_{*} \otimes 1=0: \pi_{i}(X) \otimes Z_{q} \rightarrow \pi_{i}\left(X_{q, i}\right) \otimes Z_{q}$. Now consider the set I of triples (i, q, r) for all $i \geqq 2$, all $r \geqq 1$ and all primes q with $(q, p)=1$ for any $p \in \boldsymbol{P}$. We then give I a linear order. Starting with the identity map $1_{X}: X \rightarrow X$, we iterate the above construction for every pair (i, q) of I in that order. Then we can obtain a \boldsymbol{P}-sequence of X. Remark that $X_{i} \in \mathfrak{F} \mathfrak{C}_{1}$, if $X \in \mathfrak{F} \mathscr{C}_{1}$.
2) Let $\left\{X_{i}\right\}$ be a \boldsymbol{P}-sequence of X with $X_{i} \in \mathfrak{F} \mathscr{C}_{1}$. By the construction of the "telescope" of Adams [2], we may assume that X_{i} is a subcomplex of X_{i+1}. Then let $\bigcup_{i} X_{i}$ be the union of X_{i} and let $j_{X}: X=X_{0} \rightarrow \cup X_{i}$ be the
natural inclusion. Let Y be another space and $\left\{Y_{i}\right\}$ a \boldsymbol{P}-sequence of Y. Let $f: X \rightarrow Y$ be a given map. Then by Proposition 1.7, there exists a morphism $\left\{f_{i}\right\}:\left\{X_{i}\right\} \rightarrow\left\{Y_{\rho(i)}\right\}$. So it induces a map $\bar{f}: \cup X_{i} \rightarrow \cup Y_{i}$ compatible with f. Furthermore such \bar{f} is unique up to homotopy. In particular, taking $X=Y$ and $f=1_{X}$, (so $Y_{i} \in \mathfrak{F} ⿷_{1}$), we obtain a homotopy equivalence $1_{X}: \cup X_{i} \cong \cup Y_{i}$. Namely the complex $\cup X_{i}$ is unique up to homotopy type.
Q. E. D.

$\S 2$ Localization of $C W$-complexes.

Let \boldsymbol{P} be a given subset of the set of all primes. Let $X \in \mathfrak{F}_{1}$ and let $\left\{X_{i}\right\}$ be a \boldsymbol{P}-sequence of X. We may assume that X_{i} is a subcomplex of X_{i+1} and $X_{i} \in \mathfrak{F} \mathscr{F}_{1}$.

Definition 2.1. The localization of X at \boldsymbol{P}, denoted by $X_{\boldsymbol{P}}$, is defined to be $X_{\boldsymbol{P}}=\cup X_{i}$. For a map $f: X \rightarrow Y$, where $X \in \mathfrak{F}_{1}$, the induced map is denoted by $l_{\boldsymbol{P}}(f): X_{\boldsymbol{P}} \rightarrow Y_{\boldsymbol{P}}$, or sometimes by $f_{\boldsymbol{P}}$, if there is no misunderstanding.

By Theorem 1.9, X_{P} is determined up to homotopy type. Also by Proposition $1.7 l_{P}(f): X_{P} \rightarrow Y_{P}$ is unique up to homotopy.

Let $X \in \mathbb{E}_{1}$. Denote the n-skeleton of X by $X^{(n)}$, which is a finite complex for all n. Then $X_{P}^{(n)}$ is uniquely determined up to homotopy type. There is a natural map $X_{P}^{(n)} \rightarrow X_{P}^{(n+1)}$ induced from the inclusion $X^{(n)} \rightarrow X^{(n+1)}$.

Definition 2.2.

$$
X_{P}=\underset{n}{\lim } X_{P}^{(n)} .
$$

Let $f: X \rightarrow Y$ be a given map. Then we may assume that f is cellular, i. e. $f^{(n)}: X^{(n)} \rightarrow Y^{(n)}$. Hence it induces $l_{P}\left(f^{(n)}\right): X_{P}^{(n)} \rightarrow Y_{P}^{(n)}$, which is unique up to homotopy by Proposition 1.7. Thus we obtain a $\operatorname{map} l_{P}(f): X_{P} \rightarrow Y_{P}$.

Notation. When \boldsymbol{P} consists of one prime p, we denote $X_{P}=X_{(p)}$.
When $\boldsymbol{P}=\phi$, the vacant set, we denote $X_{\boldsymbol{P}}=X_{(0)}$.
Proposition 2.3. Let $X, Y \in \mathfrak{®}_{1}$.
(1) X_{P} is determined uniquely up to homotopy type.
(2) $f: X \rightarrow Y$ induces a map $l_{\mathbf{P}}(f): X_{\mathbf{P}} \rightarrow Y_{\boldsymbol{P}}$, which is unique up to homotopy.
The proof is obvious.
Theorem 2.4. The localization at \boldsymbol{P} has the following properties:
(1) The correspondence $X \rightarrow X_{P}$ is a functor from the homotopy category of 1-connected $C W$-complexes of finite type to the homotopy category of 1-connected countable $C W$-complexes.
(2) There exists a natural inclusion $j_{X}: X \rightarrow X_{P}$.
(3) If $f: X \rightarrow Y$ is a P-equivalence, then $f_{\boldsymbol{P}}: X_{\boldsymbol{P}} \rightarrow Y_{\boldsymbol{P}}$ is a homotopy equivalence.

Proof. (1) is Proposition 2.3. (2) is clear from the construction. (3) It suffices to prove it for X and Y of $\mathfrak{F} \mathscr{F}_{1}$. Let $f: X \rightarrow Y$ be a \boldsymbol{P}-equivalence and $\left\{Y_{i}\right\}$ a \boldsymbol{P}-sequence of Y. Then $X \rightarrow Y=Y_{0} \rightarrow Y_{1} \rightarrow Y_{2} \rightarrow \cdots$ is also a \boldsymbol{P} sequence of X. Then by the uniqueness of localization of X, we have that $X_{P}=Y_{P}$, i. e., $l_{P}(f): X_{P} \rightarrow Y_{P}$ is a homotopy equivalence.
Q. E. D.

Theorem 2.5. $X \in \mathfrak{E}_{1}$. Let $j_{X}: X \rightarrow X_{P}$ be the inclusion.
(1) $H_{*}\left(X_{P}\right) \cong H_{*}(X) \otimes Q_{P}$. Moreover $j_{X^{*}}: H_{*}(X) \rightarrow H_{*}\left(X_{P}\right)$ is equivalent to $1 \otimes j: H_{*}(X) \otimes Z \rightarrow H_{*}(X) \otimes Q_{P}$, where $j: Z \rightarrow Q_{P}$ is the canonical inclusion.
(2) $\pi_{*}\left(X_{\boldsymbol{P}}\right) \cong \pi_{*}(X) \otimes Q_{\boldsymbol{P}}$. Moreover $j_{X^{*}}: \pi_{*}(X) \rightarrow \pi_{*}\left(X_{\boldsymbol{P}}\right)$ is equivalent to $1 \otimes j: \pi_{*}(X) \otimes Z \rightarrow \pi_{*}(X) \otimes Q_{P}$.
Proof. It suffices to prove (1), since the argument is quite same for the homotopy functor.

Consider the homomorphism

$$
j_{X^{*}} \otimes 1: H_{*}(X) \otimes Q_{\boldsymbol{P}} \longrightarrow H_{*}\left(X_{\boldsymbol{P}}\right) \otimes Q_{\boldsymbol{P}}
$$

We note that $H_{*}\left(X_{\boldsymbol{P}}\right) \cong \underset{i}{\lim } H_{*}\left(X_{i}\right)$ and that $j_{X^{*}}: H_{*}(X) \rightarrow H_{*}\left(X_{\boldsymbol{P}}\right)$ is equivalent to the canonical inclusion: $H_{*}\left(X_{0}\right) \rightarrow \underset{i}{\lim } H_{*}\left(X_{i}\right)$. Since $\underset{i}{\lim }$ and $Q_{\boldsymbol{P}}$ commute, we have that

$$
\begin{aligned}
H_{*}\left(X_{\boldsymbol{P}}\right) \otimes Q_{\boldsymbol{P}} & \left.=\xrightarrow[i]{(\lim } H_{*}\left(X_{i}\right)\right) \otimes Q_{\boldsymbol{P}} \\
& =\xrightarrow[i]{\lim }\left(H_{*}\left(X_{i}\right) \otimes Q_{\boldsymbol{P}}\right)
\end{aligned}
$$

Obviously $f_{i *}: H_{*}\left(X_{i-1}\right) \rightarrow H_{*}\left(X_{i}\right)$ is $\boldsymbol{5}_{p}$-isomorphic, since $f_{i *}: H_{*}\left(X_{i-1} ; Z_{p}\right) \rightarrow$ $H_{*}\left(X_{i} ; Z_{p}\right)$ is isomorphic, and since $H_{*}\left(X_{j}\right)$ is of finite type for all j. Therefore $f_{i *} \otimes 1: H_{*}\left(X_{i-1}\right) \otimes Q_{\mathbf{P}} \rightarrow H_{*}\left(X_{i}\right) \otimes Q_{\mathbf{P}}$ is isomorphic, and hence $\xrightarrow[i]{\lim }\left(H_{*}\left(X_{i}\right) \otimes Q_{\boldsymbol{P}}\right) \cong H_{*}(X) \otimes Q_{\boldsymbol{P}}$. Now we will prove that $1 \otimes j: H_{*}\left(X_{\boldsymbol{P}}\right) \otimes Z$ $\rightarrow H_{*}\left(X_{P}\right) \otimes Q_{P}$ is isomorphic. Take an arbitrary element α from $H_{*}\left(X_{P}\right) \otimes Q_{P}$ $\cong \underset{i}{\lim _{\rightarrow}}\left(H_{*}\left(X_{i}\right) \otimes Q_{\boldsymbol{P}}\right)$ and let $x \otimes \frac{n}{m} \in H_{*}\left(X_{i}\right) \otimes Q_{\boldsymbol{P}}$ be a representative of α, where m is an integer with $(m, p)=1$ for all $p \in \boldsymbol{P}$. By the condition 2) of Definition 1.1, there exists an integer N such that $\left(f_{N, i+1}\right) * x=m y$ for some $y \in H_{*}\left(X_{N}\right)$, where $\left(f_{N, i+1}\right)_{*}: H_{*}\left(X_{i}\right) \rightarrow H_{*}\left(X_{N}\right)$. Then $(1 \otimes j)(y \otimes n)=x \otimes \frac{n}{m}$. Thus $1 \otimes j$ is epimorphic. Suppose that $(1 \otimes j)(x \otimes 1)=0$ in $H_{*}\left(X_{P}\right) \otimes Q_{P}$. Clearly x is of order d, where $(d, p)=1$ for any prime p of \boldsymbol{P}. Let $x_{m} \in H_{i}\left(X_{m}\right)$ be a representative of x. Then there exists an element $x_{m}^{\prime} \in H_{i+1}\left(X_{m} ; Z_{d}\right)$ such that $\partial x_{m}^{\prime}=x_{m}$ where $\partial: H_{i+1}\left(X_{m} ; Z_{d}\right) \rightarrow H_{i}\left(X_{m}\right)$, since x_{m} is of order d. By the definition of the \boldsymbol{P}-sequence, there exist N and a \boldsymbol{P}-equivalence $f_{m+N, m+1}$: $X_{m} \rightarrow X_{m+N}$ such that $\left(f_{m+N, m+1}\right) *=0: H_{i+1}\left(X_{m} ; Z_{d}\right) \rightarrow H_{i+1}\left(X_{m+N} ; Z_{d}\right)$. By natu-
rality we obtain that $\left(f_{m+N, m+1}\right) *\left(x_{m}\right)=0$, and hence $x=\left\{x_{m}\right\}=\left\{\left(f_{m+N, m+1}\right) *\left(x_{m}\right)\right\}$ $=0$. Thus $1 \otimes j$ is monomorphic. Then we have the following commutative diagram:

$$
\begin{aligned}
& H_{*}(X) \cong H_{*}(X) \otimes Z \xrightarrow{1 \otimes j} H_{*}(X) \otimes Q_{\boldsymbol{P}} \\
& \downarrow_{x_{x} \otimes 1} \quad 1 \otimes j \quad \cong \downarrow_{X_{.}} \otimes 1 \\
& H_{*}\left(X_{\boldsymbol{P}}\right) \cong H_{*}\left(X_{\boldsymbol{P}}\right) \otimes Z \xrightarrow{\cong} \rightarrow H_{*}\left(X_{\boldsymbol{P}}\right) \otimes Q_{\boldsymbol{P}}
\end{aligned}
$$

Thus $j_{X}: H_{*}(X) \rightarrow H_{*}\left(X_{P}\right)$ is equivalent to $1 \otimes j: H_{*}(X) \otimes Z \rightarrow H_{*}(X) \otimes Q_{P}$.
Q. E. D.

Remark 2.6. For $X \in \mathbb{E}_{1}$, we can construct a \boldsymbol{P}-sequence $\left\{X_{i}, f_{i}\right\}$ of X in such a way that $X_{i} \in \mathfrak{E}_{1}$ for all i (cf. Theorem 1.9). This fact is used in the above proof.

Theorem 2.7. Let $\boldsymbol{P} \subset \boldsymbol{Q}$ be given subsets of the set of all primes. Then there exists a map $j_{P, Q}: X_{\boldsymbol{Q}} \rightarrow X_{\boldsymbol{P}}$ satisfying the following properties:
(1) $j_{P, Q}$ is a \boldsymbol{P}-equivalence.
(2) If \boldsymbol{Q} is the set of all primes (and hence $X_{\boldsymbol{Q}}=X$), then $j_{\boldsymbol{P}, \boldsymbol{Q}}: X_{\boldsymbol{Q}} \rightarrow X_{\boldsymbol{P}}$ coincides with the canonical inclusion.
(3) For $\boldsymbol{P} \subset \boldsymbol{Q} \subset \boldsymbol{R}, j_{\boldsymbol{P}, \boldsymbol{Q}} \bigcirc j_{\boldsymbol{Q}, \boldsymbol{R}} \cong j_{\boldsymbol{P}, \boldsymbol{R}}$.
(4) Let $X \in \mathfrak{F} \mathfrak{C}_{1}$. Then an arbitrary map $f: X_{Q} \rightarrow Y_{Q}$ induces $f_{P}: X_{P} \rightarrow Y_{P}$ such that the following diagram commutes up to homotopy:

The proof is quite easy and left to the reader.
Definition 2.8. Let $X, Y \in \mathbb{E}_{1}$. We define that X and Y have the same \boldsymbol{P}-type, if there exist $Z \in \mathbb{F}_{1}$ and two \boldsymbol{P}-equivalences $f: X \rightarrow Z$ and $g: Y \rightarrow Z$.

Proposition 2.9. If X and Y have the same \boldsymbol{P}-type, then $X_{\boldsymbol{P}}$ is homotopy equivalent to Y_{P}.

Further if either X or $Y \in \mathfrak{F} \mathfrak{C}_{1}$, then the converse is true.
If we denote by $g_{\bar{P}^{1}}$ the homotopy inverse of the homotopy equivalence g_{P}, then a homotopy equivalence from $X_{\boldsymbol{P}}$ to $Y_{\boldsymbol{P}}$ is given by $g_{\boldsymbol{P}}{ }^{-1} \circ f_{\boldsymbol{P}}$.

§ 3. Further properties of localization.

Let X, Y and $Z \in \mathbb{E}_{1}$.
THEOREM 3.1. (1) If $X \xrightarrow{f} Y \xrightarrow{g} Z$ is a cofibering, then $X_{P} \xrightarrow{f_{P}} Y_{P} \xrightarrow{g_{P}} Z_{P}$ is homotopy equivalent to a cofibering.
(2) If $X \xrightarrow{f} Y \xrightarrow{g} Z$ is a fibering, then $X_{P} \xrightarrow{f_{P}} Y_{P} \xrightarrow{g_{P}} Z_{P}$ is homotopy equivalent to a fibering.
Proof. (1) Let $C\left(f_{P}\right)$ be the cofiber of f_{P} and let $j: Y_{P} \rightarrow C\left(f_{P}\right)$ be the projection. Then there exists a map $h: C\left(f_{P}\right) \rightarrow Z_{P}$ such that g_{P} is homotopic to $h \circ j: Y_{P} \rightarrow C\left(f_{P}\right) \rightarrow Z_{P}$. Let $Z \xrightarrow{\pi} S X$ be the canonical boundary map. Then π induces $\pi_{P}: Z_{P} \rightarrow S\left(X_{P}\right)$, since clearly $(S X)_{P}=S\left(X_{P}\right)$ holds. (More general formula will be proved below.) Consider the homology exact sequence:

$$
\cdots \longrightarrow H_{i}(X) \longrightarrow H_{i}(Y) \longrightarrow H_{i}(Z) \xrightarrow{\partial} H_{i-1}(X) \longrightarrow \cdots,
$$

and hence we have an exact sequence by Theorem 2.5

$$
\cdots \longrightarrow H_{i}\left(X_{\boldsymbol{P}}\right) \longrightarrow H_{i}\left(Y_{\boldsymbol{P}}\right) \longrightarrow H_{i}\left(Z_{\boldsymbol{P}}\right) \longrightarrow H_{i-1}\left(X_{\boldsymbol{P}}\right) \longrightarrow \cdots,
$$

since tensoring Q_{P} is an exact functor. So by the five lemma we obtain that $h_{*}: H_{i}\left(C\left(f_{P}\right)\right) \rightarrow H_{i}\left(Z_{P}\right)$ is an isomorphism for all i. Thus $C\left(f_{P}\right)$ is homotopy equivalent to Z_{P}. (2) can be proved quite similarly.
Q. E. D.

Corollary 3.2.
(1) $(X \times Y)_{P}=X_{P} \times Y_{P}$.
(2) $(X \wedge Y)_{P}=X_{P} \wedge Y_{P}$.
(3) $(X \vee Y)_{P}=X_{P} \vee Y_{P}$.

Proposition 3.3.
(1) $X_{P} \wedge Y=(X \wedge Y)_{P}$.
(2) $(\Omega X)_{P}=\Omega\left(X_{P}\right)$, if X is 2-connected.

Proof. (1) will be obtained by making use of the Künneth formula. (2) Let $\left\{X_{i}, f_{i}\right\}$ be a \boldsymbol{P}-sequence of X. Then $\left\{\Omega X_{i}, \Omega f_{i}\right\}$ can be a \boldsymbol{P}-sequence of ΩX.
Q. E. D.

Let $K, X \in \mathfrak{C}_{1}$. We denote by $[K, X]$ the set of homotopy classes of maps: $K \rightarrow X$. Recall that $[K, X]$ is an abelian group, if K is a double suspended space. The canonical map $j_{p}: X \rightarrow X_{(p)}$ induces then a homomorphism $j_{p^{*}}:[K, X] \rightarrow\left[K, X_{(p)}\right]$. Then we have

Theorem 3.4. Let $K, X \in \mathfrak{F} \mathfrak{C}_{1}$. Assume that K is a double suspended space. Then an element α of $[K, X]$ is trivial if and only if $j_{p}(\alpha)=0$ in $\left[K, X_{(p)}\right]$ for every prime p.

The proof is an application of the theory of finitely generated abelian groups. (cf. Theorem 4.7)

§ 4. The pull-back of localized spaces

The purpose of this section is to reconstruct the original space X from its localized spaces X_{P}.

Let $\boldsymbol{P}_{i}, i \in I$, be subsets of the set of all primes. Put $\boldsymbol{P}=\bigcap_{I} \boldsymbol{P}_{i}$ and $\overline{\boldsymbol{P}}=\bigcup_{I} \boldsymbol{P}_{i}$. Then by Theorem 2.6 there are canonical maps $\bar{\varphi}_{i}: X_{\bar{P}} \rightarrow X_{P_{i}}, \varphi_{i}: X_{P_{i}} \rightarrow X_{P}$ and $\varphi: X_{\overline{\boldsymbol{P}}} \rightarrow X_{\boldsymbol{P}}$ according to the inclusions $\boldsymbol{P} \rightarrow \boldsymbol{P}_{i} \rightarrow \overline{\boldsymbol{P}}$. In particular, for any set \boldsymbol{Q}, there is a canonical map $\varphi_{\boldsymbol{Q}}: X_{\boldsymbol{Q}} \rightarrow X_{(0)}$, where $X_{(0)}$ is the localization at ϕ, the vacant set $(\boldsymbol{Q} \supset \phi)$. Let us denote by $\prod_{X_{P}} X_{P_{i}}$ the pull-back (or the fibred product) of φ_{i} over X_{P}. In the below, let $X \in \mathfrak{®}_{1}$.

Theorem 4.1. $\prod_{X_{P}} X_{P_{i}}$ is homotopy equivalent to $X_{\bar{P}}$.
Proof. It suffices to prove the theorem for $I=\{1,2\}$. We use the above notations. By the property of the fibred product, there exists a map $f: X_{\bar{P}} \rightarrow \prod_{X_{P}} X_{P_{i}}$ such that the following diagram is homotopy commutative:

where $q_{i}: \prod_{X_{P}} X_{P_{i}} \rightarrow X_{P_{i}}$ is the projection to the ingredient. We will show that the map f induces an isomorphism $f_{*}: \pi_{j}\left(X_{\bar{P}}\right) \rightarrow \pi_{j}\left(\prod_{X_{P}} X_{P_{i}}\right)$ for all j. Let $\alpha \in$ $\pi_{j}\left(X_{\bar{P}}\right) \cong \pi_{j}(X) \otimes Q_{\bar{P}}$ be an element such that $f_{*}(\alpha)=0$. Then $\bar{\varphi}_{1 .}(\alpha)=q_{1 *} f_{*}(\alpha)=0$, so α is a torsion element of order prime to \boldsymbol{P}_{1}. Similarly it is shown that α is of order prime to \boldsymbol{P}_{2}. Hence α is of order prime to $\overline{\boldsymbol{P}}$. Namely, $\alpha=0$ in $\pi_{j}(X) \otimes Q_{\bar{P}} \cong \pi_{j}\left(X_{\bar{P}}\right)$. Next we show that f_{*} is epimorphic. To that end, we decompose $\pi_{j}(X)$ in the following way:

$$
\pi_{j}(X) \cong F+T_{\boldsymbol{P}}+T_{\boldsymbol{P}_{1}-\boldsymbol{P}}+T_{\boldsymbol{P}_{2}-\boldsymbol{P}}+T^{\prime},
$$

where F is a free subgroup, $T_{\boldsymbol{P}}, T_{\boldsymbol{P}_{1}-\boldsymbol{P}}, T_{\boldsymbol{P}_{2}-\boldsymbol{P}}$ are \boldsymbol{P}-torsion, $\left(\boldsymbol{P}_{1}-\boldsymbol{P}\right)$-torsion, ($\boldsymbol{P}_{\mathbf{2}}-\boldsymbol{P}$)-torsion subgroups respectively, and T^{\prime} is the other torsion subgroup. Let α be an arbitrary element of $\pi_{j}\left(\prod_{X_{P}} X_{P_{i}}\right)$. Then $\varphi_{1 .} q_{1}(\alpha)=\varphi_{2} q_{2}(\alpha)$, since $\varphi_{1} \circ q_{1}$ $=\varphi_{2} \circ q_{2}$. So we can write down as

$$
q_{1 *}(\alpha)=\frac{n}{m} \alpha_{1}+\alpha_{2}+x, \quad x \in T_{P_{1-P}},
$$

$$
q_{2 *}(\alpha)=\frac{n}{m} \alpha_{1}+\alpha_{2}+y, \quad y \in T_{P_{2}-P}
$$

where $\frac{n}{m} \in Q_{\vec{P}}, \alpha_{1} \in F, \alpha_{2} \in T_{\boldsymbol{P}}$.
Put $\beta=\frac{n}{m} \alpha_{1}+\alpha_{2}+x+y \in \pi_{j}(X) \otimes Q_{\bar{P}}=\pi_{j}\left(X_{\bar{P}}\right)$. Then it is obvious that $f_{*}(\beta)=\alpha$. In fact, $\pi_{i}\left(\prod_{X_{\boldsymbol{P}}} X_{\boldsymbol{P}_{j}}\right)$ has only $\overline{\boldsymbol{P}}$-torsion.
Q. E. D.

COROLLARY 4.2. Let \boldsymbol{P} be a subset of the set of all primes. Let $\overline{\boldsymbol{P}}$ be the complement of \boldsymbol{P} in the set. Then $X_{\boldsymbol{P}_{X_{(0)}}}^{\times} X_{\overline{\boldsymbol{P}}}$ is homotopy equivalent to X.

More generally,
COROLLARY 4.3. Let $\bigcup_{i} \boldsymbol{P}_{i}$ be a disjoint decomposition of the set of all primes. Then $\prod_{X_{(0)}}^{i} X_{P_{i}}$ is homotopy equivalent to X. In particular, X is homotopy equivalent to $\prod_{X_{(0)}}^{p} X_{(p)}$, the pull-back of $\varphi_{p}: X_{(p)} \rightarrow X_{(0)}$ over $X_{(0)}$ for all primes.

COROLLARY 4.4. X is homotopy equivalent to Y if and only if there exists a map $f: X \rightarrow Y$ inducing a homotopy equivalence $l_{(p)}(f): X_{(p)} \rightarrow Y_{(p)}$ for all primes p.

ThEOREM 4.5. Let $X, Y \in \mathfrak{F}_{1}$, and let \boldsymbol{P} and \boldsymbol{Q} be two subsets of the set of all primes. Assume that we are given a $\boldsymbol{P} \cap \boldsymbol{Q}$-equivalence $f: X \rightarrow Y$. Then there exist a space Z and $a \boldsymbol{Q}$-equivalence $g: X_{\boldsymbol{P} \cup \boldsymbol{Q}} \rightarrow Z$ and a \boldsymbol{P}-equivalence $h: Z$ $\rightarrow Y_{\boldsymbol{P} \cup \boldsymbol{Q}}$ such that $f_{\boldsymbol{P} \cup \boldsymbol{Q}}=h \circ g$. Further, $Z \in \mathfrak{F} \mathfrak{F}_{1}$, if $\boldsymbol{P} \cup \boldsymbol{Q}$ is the set of all primes.

Proof. It follows from Theorem 2.4 that $f_{P \cap Q}: X_{P \cap Q} \rightarrow Y_{P \cap Q}$ is a homotopy equivalence. Let $w_{P}: X_{P} \rightarrow X_{P \cap Q}$ and $w_{Q}: Y_{Q} \rightarrow Y_{P \cap Q}$ be the canonical maps obtained by Theorem 2.7. Denote by $Z=X_{P_{P} \cap \boldsymbol{Q}} \times_{Q}$ the pull-back of $f_{P \cap Q} \circ w_{P}$ and $w_{\boldsymbol{Q}}$ over $Y_{P \cap Q}$. Then the rest of the proof is clear from the construction of Z.
Q. E. D.

Similarly one can prove
THEOREM 4.6. (Mixing homotopy type.) (cf. [23].) Let $\bigcup_{i} \boldsymbol{P}_{i}, i \in I$, be a disjoint decomposition of the set of all primes. Let $X_{i} \in \mathcal{E}_{1}, i \in I$, satisfy that $\left(X_{i}\right)_{(0)}$ is of same homotopy type for all $i \in I$. Then there exists $X \in \mathbb{\Xi}_{1}$ with a \boldsymbol{P}_{i}-equivalence $X \rightarrow X_{i}$ for all $i \in I$. Furthermore $X \in \mathscr{F} \mathscr{C}_{1}$, if $X_{i} \in \mathscr{F}_{1}$ for all $i \in I$.

In the above theorem, the finiteness of X, when $X_{i} \in \mathfrak{F} \mathscr{F}_{1}$ for all $i \in I$, can be proved as follows. $H_{*}(X ; Q)$ is finite dimensional, since $H_{*}\left(X_{i} ; Q\right)$ is finite dimensional for all $i \in I$. Since $H_{*}\left(X_{i} ; Z_{p}\right)$ is finite dimensional, so is $H_{*}\left(X ; Z_{p}\right)$. Besides, the finite dimension has a common maximum number for Q and all primes p simultaneously. Hence $X \in \mathscr{F} \mathscr{F}_{1}$.

THEOREM 4.7. Let $X, Y \in \mathfrak{F} ⿷_{1}$. Then an element α of $[S X, Y]$ is trivial if and only if $j_{p *}(\alpha)=0$ in $\left[S X, Y_{(p)}\right]$ for every prime p, where $j_{p}: Y \rightarrow Y_{(p)}$ is the canonical map of localization at p.

Proof. The necessity is clear. We prove the sufficiency. Let p and q be primes with $(p, q)=1$. Consider the following diagram:

where the two vertical sequences are fiberings associated with the fibred product in the bottom square and $j_{p}, j_{q}, j_{p, q}$ are canonical inclusions. Similarly for $w_{p}, w_{p}^{\prime}, w_{q}, w_{q}^{\prime}$. ($Y_{(p, q)}$ denotes the localization at $\{p, q\}$). First we assume $j_{p^{*}}(\alpha)=j_{q^{*}}(\alpha)=0$. Then there exists a map $f: S X \rightarrow F_{p}$ such that $a^{\prime} \circ f \cong j_{p, q} \circ \alpha$, since $w_{p}^{\prime} \circ j_{p, q} \circ \alpha \cong j_{q} \circ \alpha \cong 0$. Also there exists a map $g: S X \rightarrow \Omega Y_{(0)}$ such that $b \circ g \cong f$, since $a \circ f \cong w_{q}^{\prime} \circ a^{\prime} \circ f \cong w_{q}^{\prime} \circ j_{p, q} \circ \alpha \cong j_{p} \circ \alpha \cong 0$. It satisfies that $j_{p, q} \circ \alpha$ $\cong a^{\prime} \circ f \cong a^{\prime} \circ b \circ g$. Next consider the commutative diagram of abelian groups:

As is well known, it is equivalent to the following commutative one:

Then a simple computation shows that the cokernel of $w_{p *}^{\prime}$ is isomorphic to that of $w_{p *}$. So the relation $j_{p, q} \circ \alpha \cong a^{\prime} \circ b \circ g$ implies that $j_{p, q} \circ \alpha \cong 0$. These arguments show that, if $j_{p} \circ \alpha \cong 0$ for every prime p of \boldsymbol{P}, then $j_{P} \circ \alpha=0$ in $\left[S X, Y_{P}\right]$. However, when \boldsymbol{P} is the set of all primes, $Y \cong Y_{P}$ and $\alpha \cong j_{\boldsymbol{P}} \circ \boldsymbol{\alpha}$ $\cong 0$.
Q. E. D.

We end this section with the following
Conjecture 4.8. Let $X, Y \in \mathfrak{F} \mathscr{C}_{1}$. Then an element α of $[X, Y]$ is trivial if and only if $j_{p *}(\alpha)=0$ in $\left[X, Y_{(p)}\right]$ for all primes p.

§ 5. Localizing P-universal spaces.

Throughout this section we work in $\mathfrak{F}_{\mathscr{C}_{1}}$.
Let \boldsymbol{P} be a subset of the set of all primes. Let us recall the following theorem which is essentially proved in [12].

Theorem 5.1. $K \in \mathfrak{F} ⿷_{1}$ is \boldsymbol{P}-universal if and only if one of the following conditions is satisfied:
(1) For any prime $q, q \notin \boldsymbol{P}$, and for any $i>0$, there exists a \boldsymbol{P}-equivalence $f: K \rightarrow K$ such that the induced homomorphism $f_{*}: H_{i}\left(K ; Z_{q}\right) \rightarrow H_{i}\left(K ; Z_{q}\right)$ is trivial.
(2) For any prime $q, q \notin \boldsymbol{P}$, and for any $i>0$, there exists a \boldsymbol{P}-equivalence $f: K \rightarrow K$ such that the induced homomorphism $f_{*} \otimes 1: \pi_{i}(K) \otimes Z_{q}$ $\rightarrow \pi_{i}(K) \otimes Z_{q}$ is trivial.
Definition 5.2. $K \in \mathscr{F} \mathscr{F}_{1}$ is called \boldsymbol{P}-convertible, if for any $L \in \mathscr{F}_{\mathbb{F}_{1}}$ and for any \boldsymbol{P}-equivalence $h: K \rightarrow L$, there exists a converse \boldsymbol{P}-equivalence $k: L \rightarrow K$.

Theorem 5.3. Let $X \in \mathfrak{F} \mathfrak{C}_{1}$.
(A) Then the following four conditions are equivalent:
(1) X is \boldsymbol{P}-universal.
(2) There exists a \boldsymbol{P}-sequence $\left\{X_{i}\right\}$ of X such that $X_{i}=X$.
(3) $l_{\boldsymbol{P}}:[Y, X] \rightarrow\left[Y_{P}, X_{\boldsymbol{P}}\right]$ is quasi-epic for any $Y \in \mathfrak{F} ⿷_{1}$, that is, for any element $\alpha \in\left[Y_{P}, X_{P}\right]$, there exist a homotopy equivalence $h: X_{P} \rightarrow X_{P}$ and a map $g: Y \rightarrow X$ such that $l_{P}(g)=h \circ \alpha$.
(4) X is \boldsymbol{P}-convertible.
(B) One of the above conditions implies the following
(5) $l_{P}:[X, Y] \rightarrow\left[X_{P}, Y_{P}\right]$ is quasi-epic in the above sense.

Proof. (A). [(1) implies (2)]. Let $\left\{X_{i}, f_{i}\right\}$ be an arbitrary \boldsymbol{P}-sequence of X. By induction we will show that X_{i} can be replaced by X for all $i \geqq 0$. The case $i=0$ is trivial, since $X_{0}=X$. We should note here that $X_{i} \in \mathfrak{F} \mathscr{F}_{1}$. Suppose $X_{i}=X$. Since $X=X_{i}$ is \boldsymbol{P}-universal, there exists a converse \boldsymbol{P} equivalence $g_{i+1}: X_{i+1} \rightarrow X=X_{i}$ for a \boldsymbol{P}-equivalence $f_{i+1}: X=X_{i} \rightarrow X_{i+1}$. Then we can replace $X_{i *-1}$ by X via g_{i+1}.
[(2) implies (1)]. Suppose we are given a \boldsymbol{P}-sequence $\left\{X_{i}, f_{i}\right\}$ of X with $X_{i}=X$. Then by definition, for any $n>0$ and for any prime $q, q \in \boldsymbol{P}$, there exists $i>0$ such that $\left(f_{i} \circ \cdots \circ f_{1}\right)_{*}=0: H_{n}\left(X_{0} ; Z_{q}\right) \rightarrow H_{n}\left(X_{i} ; Z_{q}\right)$. So the \boldsymbol{P} equivalence $f_{i} \circ \cdots \circ f_{1}$ satisfies (1) of Theorem 5.1.
[(2) implies (3)]. Let $\alpha \in\left[Y_{P}, X_{P}\right]$ be arbitrary and $f: Y \rightarrow X$ a representative of α. Let $j_{Y}: Y \rightarrow Y_{P}$ be the canonical inclusion. Then there exists $i \geqq 0$ such that the composite map $f \circ j_{Y}: Y \rightarrow Y_{P} \rightarrow X_{P}$ is factored through X_{i}, since Y is a finite complex. Namely, there exists a map $g: Y \rightarrow X_{i}$ such that $f \circ j_{Y}$ $\cong j_{i} \circ g$, where $j_{i}: X_{i} \rightarrow X_{P}$ is the obvious inclusion. Therefore $l_{P}(g)=h \circ \alpha$ with some homotopy equivalence $h: X_{P} \rightarrow X_{P}$.
[(3) implies (4)]. Let $Y \in \mathscr{F} \mathscr{C}_{1}$ be given. Let $f: X \rightarrow Y$ be an arbitrary \boldsymbol{P}-sequence. Then by Theorem $2.4 l_{\boldsymbol{P}}(f): X_{P} \rightarrow Y_{P}$ is a homotopy equivalence. Let $k: Y_{P} \rightarrow X_{P}$ be its homotopy inverse. Then by (3) there exists a map g : $Y \rightarrow X$ such that $l_{P}(g)$ is a homotopy equivalence. Hence g is a \boldsymbol{P}-equivalence.
[(4) implies (2)]. This is just the same as in [(1) implies (2)].
(B). [(1) implies (5)]. Let $f: X_{P} \rightarrow Y_{P}$ be an arbitrary map. Let $\left\{Y_{i}, h_{i}\right\}$ be a \boldsymbol{P}-equivalence of Y. Since X is a finite complex, the composite $f \circ j_{X}: X \rightarrow Y_{\boldsymbol{P}}$ is factored through Y_{i} for some i, that is, there exists a map $g: X \rightarrow Y_{i}$ such that $f \circ j_{X} \cong j_{i} \circ g$, where $j_{i}: Y_{i} \rightarrow Y_{P}$ is the obvious inclusion. Now $h_{i} \circ \cdots \circ h_{1}$: $Y=Y_{0} \rightarrow Y_{i}$ is a \boldsymbol{P}-equivalence. Since X is \boldsymbol{P}-universal, there exist a \boldsymbol{P} equivalence $k: X \rightarrow X$ and a map $d: X \rightarrow Y$ such that the following diagram is homotopy commutative:

Thus there exists a homotopy equivalence $a: Y_{\boldsymbol{P}} \rightarrow Y_{\boldsymbol{P}}$ such that $l_{\boldsymbol{P}}(d)=a \circ f$. Q. E. D.

Corollary 5.4. In the category of \boldsymbol{P}-universal spaces, X and Y are \boldsymbol{P} equivalent if and only if X_{P} and Y_{P} are homotopy equivalent.

Remark 5.5. Let X be \boldsymbol{P}-universal. Then X_{P} is a finite dimensional 1connected $C W$-complex. Actually, the dimension of the telescope $\cup X_{i}=$ $\operatorname{dim} X+1$, since $X=X_{i}$.

Theorem 5.6. Let X be \boldsymbol{P}-universal. Then

$$
\left[S_{\boldsymbol{P}}^{n}, X_{\boldsymbol{P}}\right] \cong \pi_{n}(X) \otimes Q_{\boldsymbol{P}} \quad \text { for } n \geqq 2 .
$$

Before proving we state an easy lemma without proof:
Lemma 5.7. Let A be a $\boldsymbol{Q}_{\boldsymbol{P}}$-module and let B be a finitely generated (as a Z-module) abelian subgroup of A. Assume that, for each element $x \in A$, there
exists m such that $m x \in B$ and (m, p)=1 for any $p \in \boldsymbol{P}$. Then $A \cong B \otimes Q_{\boldsymbol{P}}$.
(Proof of Theorem 5.6)
Consider the morphism $l_{P}:\left[S^{n}, X\right] \rightarrow\left[S_{P}^{n}, X_{P}\right]$. Since $\left[S_{P}^{n}, X_{P}\right]$ is a $Q_{P^{-}}$ module, the kernel of $l_{\boldsymbol{P}}$ contains a $\overline{\boldsymbol{P}}$-torsion subgroup of $\left[S^{n}, X\right]$, where $\overline{\boldsymbol{P}}$ denotes the complement of \boldsymbol{P} in the set of all primes. Let $\left\{X_{i}, f_{i}\right\}$ be a \boldsymbol{P} sequence of X. Take $\alpha \in\left[S^{n}, X\right] \cong \pi_{n}(X)$ such that $l_{P}(\alpha)=0$. Then there exists i such that the composite $f_{i} \circ \alpha: S^{n} \rightarrow X \rightarrow X_{i}$ is null homotopic. (Note that $X_{i}=X$, since X is \boldsymbol{P}-universal.) Thus α is a torsion element of order prime to \boldsymbol{P}. Therefore the kernel of $l_{\boldsymbol{P}}$ is isomorphic to a $\overline{\boldsymbol{P}}$-torsion subgroup of $\pi_{n}(X)$, and hence we obtain a monomorphism $l_{\boldsymbol{P}}^{\prime}: \pi_{n}(X: \boldsymbol{P}) \rightarrow\left[S_{P}^{n}, X_{\boldsymbol{P}}\right]$, where $\pi_{n}(X: \boldsymbol{P})$ denotes a \boldsymbol{P}-primary component of $\pi_{n}(X)$. The image of $l_{\boldsymbol{P}}^{\prime}$ then satisfies the condition of Lemma 5.7, since X is \boldsymbol{P}-universal. Thus we get the theorem.
Q.E. D.

§ 6. Mod $P H$-spaces and $\bmod P \operatorname{co}-H$-spaces.

In this section we work in $\mathfrak{F} \mathfrak{F}_{1}$.
Definition 6.1. A pointed complex (X, e) is called an H-space, if there exists a map $\mu: X \times X \rightarrow X$ preserving a base point such that $\mu \circ i_{1} \cong \mu \circ i_{2} \cong 1_{X}$, where $i_{j}: X \rightarrow X \times X$ is the obvious inclusion. The map μ is called a multiplication or an H-structure on X. Let \boldsymbol{P} be a subset of the set of all primes. X is called $a \bmod \boldsymbol{P} H$-space, if $\mu \circ i_{1} \cong \mu \circ i_{2} \cong l$, which is a \boldsymbol{P}-equivalence. Similarly as above, μ is called $a \bmod \boldsymbol{P}$ multiplication or $a \bmod \boldsymbol{P} H$-structure on X.

Dually we define
Definition 6.1'. A pointed complex (X, e) is called a co-H-space, if there exists a map $\varphi: X \rightarrow X \vee X$ preserving a base point such that $p_{1} \circ \varphi \cong p_{2} \circ \varphi \cong 1_{X}$, where $p_{j}: X \vee X \rightarrow X$ is the obvious projection. The map φ is called aco-Hstructure on $X . X$ is called $a \bmod \boldsymbol{P} c o-H$-space, if $p_{1} \circ \varphi \cong p_{2} \circ \varphi \cong l$, which is a \boldsymbol{P}-equivalence. The map φ is called $a \bmod \boldsymbol{P}$ co- H-structure.

Suppose we are given spaces X and Y and maps $k: X \rightarrow Y$ and $h: Y \rightarrow X$.
Definition 6.2. X is dominated (or \boldsymbol{P}-dominated) by Y, if the composite $h \circ k: X \rightarrow Y \rightarrow X$ is a homotopy equivalence $(a \bmod \boldsymbol{P}$ equivalence).

First we consider the localization at 0 of H-spaces. The following theorem is essentially due to Arkowitz-Curjel [5].

Theorem 6.3. The following statements are equivalent.
(1) X is a mod $0 H$-space.
(2) $X_{(0)}$ is an H-space.
(3) $X_{(0)}=\prod_{i \in I} K\left(Q, n_{i}\right)$, where I is a finite set and n_{i} is an odd integer.
(4) All k-invariants are of finite order in the Postnikov decomposition of X. Proof. The equivalence between (1) and (4) is just Theorem of [5].

Further according to Theorem of [5], X is a $\bmod 0 H$-space if and only if there exists a 0 -equivalence $\Pi_{i} S^{n_{i}} \rightarrow X$ with n_{i} odd, that is equivalent to that $X_{(0)}=\prod_{i} K\left(Q, n_{i}\right)$ by Theorem 2.4, since $S_{(0)}^{n_{i}}=K\left(Q, n_{i}\right)$. Now we show the equivalence between (1) and (2).
[(1) implies (2)]. By the assumption there exists a map $\mu: X \times X \rightarrow X$ such that $i_{1} \circ \mu \cong i_{2} \circ \mu \cong l$, which is a 0 -equivalence. So by localizing we get that $i_{1(0)} \circ \mu_{(0)} \cong i_{2(0)} \circ \mu_{(0)} \cong l_{(0)}$, which is a homotopy equivalence of $X_{(0)}$. Since $X_{(0)}$ is a $C W$-complex, $X_{(0)}$ is an H-space by the Dold's theorem.
[(2) implies (1)]. Note that $X_{(0)}$ is rationally finite dimensional, since $H_{*}(X ; Q) \cong H_{*}\left(X_{(0)}\right)$ by Theorem 2.5, Hence $H^{*}(X ; Q) \cong \Lambda\left(x_{1}, \cdots, x_{r}\right)$ with $\operatorname{deg} x_{i}$ odd. So by Theorem 2.5 of [11], X is 0 -universal. Now by the assumption we have a multiplication $\mu: X_{(0)} \times X_{(0)}=(X \times X)_{(0)} \rightarrow X_{(0)}$. Since $l_{0}:[X \times$ $X, X] \rightarrow\left[(X \times X)_{(0)}, X_{(0)}\right]$ is quasi-epic by Theorem 5.3, there exists a map $\bar{\mu}: X \times X \rightarrow X$ such that $\bar{\mu} \circ i_{1} \cong \bar{\mu} \circ i_{2}$ is a 0 -equivalence of X.
Q.E.D.

Dually we have ([4]) :
Theorem 6.3'. The following statements are equivalent.
(1) $\quad X$ is a mod 0 co-H-space.
(2) $X_{(0)}$ is a co-H-space.
(3)' $X_{(0)}=\bigvee_{i \in I} S_{(0)}^{n_{i}}$, where I is a finite set.
(4)' All k^{\prime}-invariants are of finite order in the homology decomposition.

Next we will discuss a $\bmod \boldsymbol{P}$ version of the above theorems.
Theorem 6.4. Let $X \in \mathfrak{F} \mathfrak{F}_{1}$. Then the following conditions are equivalent.
(1) X is $a \bmod \boldsymbol{P} H$-space.
(2) X_{P} is an H-space.
(3) X is \boldsymbol{P}-dominated by $a \bmod \boldsymbol{P} H$-space.

Proof. [(1) implies (2)]. We localize $\mu \circ i_{1}$ and $\mu \circ i_{2}$ at \boldsymbol{P}. Then they give a homotopy equivalence : $X_{P} \rightarrow(X \times X)_{P}=X_{P} \times X_{P} \rightarrow X_{P}$. So it is easy to see that X_{P} is an H-space.
[(2) implies (1)]. By the assumption we have a multiplication $\mu^{\prime}: X_{P} \times X_{P}$ $\rightarrow X_{P}$. Now X is P-universal by Theorem 2.5 of [11], since $H^{*}(X ; Q)$ $\cong H^{*}\left(X_{P} ; Q\right) \cong \Lambda\left(x_{1}, \cdots, x_{l}\right)$ with deg x_{i} odd. From Theorem 5.3 follows the existence of such a map $\mu: X \times X \rightarrow X$ that $\mu \circ i_{1} \cong \mu \circ i_{2} \cong h$, which is a \boldsymbol{P} equivalence. Hence X is a $\bmod \boldsymbol{P} H$-space.
[(1) implies (3)]. The proof is clear.
[(3) implies (1)]. Let Y be a $\bmod \boldsymbol{P} H$-space dominating X with maps $k: X \rightarrow Y$ and $h: Y \rightarrow X$ such that $h \circ k$ is a P-equivalence. Let $\mu: Y \times Y \rightarrow Y$ be a $\bmod \boldsymbol{P} H$-structure such that $\mu \circ i_{1} \cong \mu \circ i_{2} \cong l$ is a \boldsymbol{P}-equivalence. By Lemma 3.3 of [12], there exists a positive integer r such that l^{r} is the identity of $H_{*}\left(Y ; Z_{p}\right)$ for all $p \in \boldsymbol{P}$, where $l^{r}=l \circ \cdots \circ l$ the r-fold iteration. Then the
composite of maps

gives X a $\bmod \boldsymbol{P} H$-structure.
Q. E. D.

Dually we have
Theorem 6.4'. Let $X \in \mathfrak{F} \mathfrak{C}_{1}$. Then the following conditions are equivalent.
(1)' X is a $\bmod \boldsymbol{P}$ co-H-space.
(2)' X_{P} is a co- H-space.
(3)' X is \boldsymbol{P}-dominated by $a \bmod \boldsymbol{P}$ co- H-space.

Let $\mu: X \times X \rightarrow X$ be a $\bmod \boldsymbol{P} H$-structure on X such that $\mu \circ i_{1} \cong \mu \circ i_{2} \cong h$, which is a \boldsymbol{P}-equivalence.

Definition 6.5. $\quad X$ is $\bmod \boldsymbol{P}$ homotopy associative, if $\mu \circ(\mu \times h) \cong \mu \circ(h \times \mu)$.
Dually we define $a \bmod \boldsymbol{P}$ homotopy coassociativity on a $\bmod \boldsymbol{P}$ co- H -space.
Theorem 6.6. Let $X \in \mathfrak{F} \mathfrak{C}_{1}$.
(A) The following statements are equivalent.
(1) X is $a \bmod \boldsymbol{P}$ homotopy associative H-space.
(2) X_{P} is a homotopy associative H-space.
(B) Moreover if $\boldsymbol{P} \ni 2$ and 3, or if $\boldsymbol{P} \nexists 2$ nor 3, then one of (1) and (2) is equivalent to the following:
(3) X is \boldsymbol{P}-dominated by a homotopy associative H-space.

Proof. (A) The equivalence between (1) and (2) can be proved as before.
(B) The proof for $[(3)$ implies (1)] is quite analogous to that for [(3) implies (1)] of Theorem 6.4. However, the proof for [(2) implies (3)] needs further results on the localization of H-complexes. So it will be at the end of the next section.

Elementary but non-trivial examples for a $\bmod \boldsymbol{P} H$-space, $\boldsymbol{P} \nexists 2$, are odd dimensional spheres. Let p be a prime. Then, as is expected, the $\bmod p$ structure on S^{n}, n : odd, is unique for sufficiently large p. More precisely,

Theorem 6.7. Let p be an odd prime. Then the number of $\bmod p H$ structures, up to homotopy, of $S^{n}\left(n\right.$: odd) is equal to the order of $\pi_{2 n}\left(S^{n}: p\right)$.

Proof. The number of $\bmod p H$-structures on S^{n} is equal to that of H structures on $S_{(p)}^{n}$. It is equal to the number of elements of [$S_{(p)}^{n} \times S_{(p)}^{n}$, $\left.S_{(p)}^{n} \vee S_{(p)}^{n} ; S_{(p)}^{n}, *\right]$ by [15]. Then the theorem follows from the fact that $\left[S_{(p)}^{n} \times S_{(p)}^{n}, S_{(p)}^{n} \vee S_{(p)}^{n} ; S_{(p)}^{n}, *\right]=\left[S_{(p)}^{n} \wedge S_{(p)}^{n}, S_{(p)}^{n}\right]=\left[S_{(p)}^{2 n}, S_{(p)}^{n}\right]=\pi_{2 n}\left(S^{n}: p\right)$ by Theorem 5.6.
Q. E. D.

Now let us recall the notion of A_{n}-form (or A_{n}-space) due to Stasheff [20]. For example, an A_{2}-space, an A_{3}-space, an A_{∞}-space are an H-space, a homotopy associative H-space and an H-space equivalent to a loop space, respectively.

As is well known [20], $S_{(p)}^{2 n-1}$ admits an A_{p-1}-form.

Proposition 6.8. If $S_{(p)}^{2 n-1}$ admits an A_{p}-form, then $n \mid p-1$.
Proof. If $S_{(p)}^{2 n-1}$ admits an A_{p}-form, then there exists a "projective p space" X over $S_{(p)}^{2 n-1},[20]$, such that $H^{*}\left(X ; Z_{p}\right) \cong Z_{p}\left[x_{2 n}\right] /\left(x_{2 n}^{p+1}\right)$. To prove the proposition it suffices to show that \mathfrak{p}^{1} is non-trivial in $H^{*}\left(X ; Z_{p}\right)$. For, if $\mathfrak{p}^{1} x_{2 n}^{r} \neq 0$, by taking the degree, $2 p-2+2 n r=2 n k$, and hence $n \mid p-1$. Let r be such a number that $\mathfrak{p}^{p r}$ is non-trivial but $\mathfrak{p}^{p i}=0$ for $i<r$ in $H^{*}\left(X ; Z_{p}\right)$. Clearly such r exists, since $\mathfrak{p}^{n} x_{2 n}=x_{2 n}^{p} \neq 0$. Then from the structure of $H^{*}\left(X ; Z_{p}\right)$ and from the factorization of $\mathfrak{p}^{p^{r}}$ by secondary operations ($[18]$), we get $r=0$. This completes the proof.
Q. E. D.

Theorem 6.9 (Adams). (1) Let $\boldsymbol{P} \nexists 2$. Then $S^{2 n-1}$ is $a \bmod \boldsymbol{P} H$-space for all n.
(2) Let $\boldsymbol{P} \ni 2$. Then $S^{2 n-1}$ is $a \bmod \boldsymbol{P} H$-space if and only if $n=1,2,4$.
(3) Let $\boldsymbol{P} \nexists 2$ nor 3. Then $S^{2 n-1}$ is $a \bmod \boldsymbol{P}$ homotopy associative H-space for all n.
(4) Let $\boldsymbol{P} \nRightarrow 2$ and $\boldsymbol{P} \ni 3$. Then $S^{2 n-1}$ is $a \bmod \boldsymbol{P}$ homotopy associative H space if and only if $n=1,2$.
Proof. First recall the classical result that the obstruction to extend the map $c_{2 n-1} \vee c_{2 n-1}: S^{2 n-1} \vee S^{2 n-1} \rightarrow S^{2 n-1}$ over $S^{2 n-1} \times S^{2 n-1}$ is the Whitehead product $\left[\epsilon_{2 n-1}, \iota_{2 n-1}\right]$, which is trivial for $n=1,2,4$ and is of order 2 otherwise.
(1) In any case there exists a map $S^{2 n-1} \times S^{2 n-1} \rightarrow S^{2 n-1}$ of type (2,2) for any n. So, if $\boldsymbol{P} \nRightarrow 2, S^{2 n-1}$ is a $\bmod \boldsymbol{P} H$-space.
(2) Let $\boldsymbol{P} \ni 2$. If $n=1,2,4$, then $S^{2 n-1}$ is an H-space, and hence it is a $\bmod \boldsymbol{P} H$-space. If $n \neq 1,2,4$, then the obstruction $\left[\epsilon_{2 n-1}, \iota_{2 n-1}\right]_{\boldsymbol{P}} \neq 0$, and hence $S_{P}^{2 n-1}$ is not an H-space.
(3) If $\boldsymbol{P} \nexists 2,3$, then clearly $S_{\boldsymbol{P}}^{2 n-1}$ is a homotopy associative H-space, and hence $S^{2 n-1}$ is a $\bmod \boldsymbol{P}$ homotopy associative H-space.
(4) Let $\boldsymbol{P} \nexists 2$ and $\boldsymbol{P} \ni 3$. If $n=1,2$, then $S^{2 n-1}$ is an associative H-space, and hence $S^{2 n-1}$ is a $\bmod \boldsymbol{P}$ homotopy associative H-space. Conversely, suppose that $S_{P}^{2 n-1}$ is a homotopy associative H-space. Then $S_{(3)}^{2 n-1}$ is also a homotopy associative H-space. Then by Proposition 6.8 we have that $n \mid 2$, and hence $n=1,2$.
Q. E. D.

§ 7. Localization of finite H-complexes.

In this section we work in $\mathfrak{F} \mathscr{C}_{1}$ again. First we show
Theorem 7.1. (cf. [23].) Let $2 \leqq n \leqq \infty$.
(1) If X is an A_{n}-space, then $X_{(p)}$ is an A_{n}-space for every prime p and for $p=0$.
(2) If $X_{(p)}$ is an A_{n}-space and if the canonical map $\varphi_{p}: X_{(p)} \rightarrow X_{(0)}$ is an
A_{n}-map for all primes p, then X is itself an A_{n}-space.
Proof. (1) is clear. (2) follows from Corollary 4.3. Q.E.D.
When applying the above theorem, we have to check that the map $\varphi_{p}: X_{(p)}$ $\rightarrow X_{(0)}$ is an A_{n}-map. For $n=2,3$ and ∞, the following proposition gives a sufficient condition for that. In the below $\beta_{i}(X)$ and $\gamma_{i}(X)$ denote the i-th Betti number of X and the rank of $\pi_{i}(X)$ respectively.

Proposition 7.2. Let $n=2,3$ or ∞. Suppose that $\beta_{i}(X \wedge X) \gamma_{i}(X)=0$ for all i. Then X is an A_{n}-space if and only if $X_{(p)}$ is an A_{n}-space for all primes p and for $p=0$.

Proof. If $\beta_{i}(X \wedge X) \gamma_{i}(X)=0$ for all i, then it is clear that the multiplication on $X_{(0)}=\Pi K\left(Q, 2 n_{i}-1\right)$ is unique up to homotopy. Then $\varphi_{p}: X_{(p)} \rightarrow X_{(0)}$ is an A_{n}-map. The rest is clear.
Q. E. D.

More generally we will prove the following
THEOREM 7.3. Let $\bigcup_{i=1}^{n} \boldsymbol{P}_{i}$ be a disjoint decomposition of the set of all primes. Let $X_{i} \in \mathfrak{F} ⿷_{1}, 1 \leqq i \leqq r$, be $a \bmod \boldsymbol{P}_{i} H$-space such that there exists a homotopy equivalence $h_{i}:\left(X_{i}\right)_{(0)} \rightarrow\left(X_{1}\right)_{(0)}$, which is an H-map, for all i. Then there exists a finite H-complex X such that $X_{\boldsymbol{P}_{i}}=\left(X_{i}\right)_{\boldsymbol{P}_{i}}$. Further, if each X_{i} is a $\bmod \boldsymbol{P}_{\boldsymbol{i}}$ homotopy associative H-space, X is a homotopy associative H-space.

Proof. By the assumption, $\left(X_{i}\right)_{P_{i}}$ is an H-space, and hence it induces an H-structure on $\left(X_{i}\right)_{(0)}$. Denote the canonical map by $\varphi_{i}:\left(X_{i}\right)_{P} \rightarrow\left(X_{i}\right)_{(0)}$. Then the composite map $h_{i} \circ \varphi_{i}:\left(X_{i}\right)_{P} \rightarrow\left(X_{i}\right)_{(0)} \rightarrow\left(X_{1}\right)_{(0)}$ is an H-map. Put $X=\prod_{\left(X_{1}\right)(0)}\left(X_{i}\right)_{P_{i}}$, the pull back of $h_{i} \circ \varphi_{i}$ over $\left(X_{1}\right)_{(0)}$. Then by Theorem $4.6 X$ is a finite complex. Obviously X is an H-space. The rest of the theorem is clear. Q. E.D.

Lemma 7.4. Let X be a space such that $H^{*}(X ; Q) \cong \Lambda\left(x_{1}, \cdots, x_{r}\right)$ with $\operatorname{deg} x_{i}=n_{i}$ odd. Further suppose that a given H-structure on $X_{(0)}$ induces an associative Hopf algebra structure on $H^{*}\left(X_{(0)} ; Q\right)$. Then there exists a homotopy equivalence $X_{(0)} \rightarrow \prod_{i=1}^{r} K\left(Q, n_{i}\right)$, which is an H-map.

Proof. By the Hopf-Samelson theorem [16], we can choose primitive generators $y_{i}(1 \leqq i \leqq r)$ such that $H^{*}(X ; Q) \cong \Lambda\left(y_{1}, \cdots, y_{r}\right)$ with $\operatorname{deg} y_{i}=n_{i}$. We may consider that y_{i} is represented by a map $f_{i}: X \rightarrow K\left(Q, n_{i}\right)$. Then the required map is obtained by

$$
X \underset{\Delta}{\longrightarrow} \prod_{i} X \xrightarrow[f_{1} \times \cdots \times f_{r}]{ } \prod_{i=1}^{r} K\left(Q, n_{i}\right)
$$

where Δ is the diagonal map.
Q. E. D.

Corollary 7.5. Let $\bigcup_{i=1}^{r} \boldsymbol{P}_{i}$ be a disjoint decomposition of the set of all primes. Let $X_{i} \in \mathfrak{F} \mathfrak{E}_{1}, 1 \leqq i \leqq r$, be a $\bmod \boldsymbol{P}_{i} H$-space such that $H^{*}\left(X_{i} ; Q\right) \cong$ $\Lambda\left(x(i)_{1}, \cdots, x(i)_{l}\right)$ is an associative Hopf algebra for all $1 \leqq i \leqq r$, with $\operatorname{deg} x(i)_{j}$
$=n_{j}$ odd for $1 \leqq i \leqq r$. Then there exists a finite H-complex X such that $X_{P_{i}}$ $=\left(X_{i}\right)_{\boldsymbol{P}_{i}}$.

Proof. It suffices to show that X_{i} satisfies the condition of Theorem 7.3. Actually, we have an H-equivalence : $\left(X_{i}\right)_{(0)} \rightarrow \prod_{j=1}^{i} K\left(Q, n_{j}\right)$ for all $1 \leqq i \leqq r$.
Q.E. D.

REMARK 7.6. If each of X_{i} is of the same rational type and if each of X_{i} is one of the following, then the conditions of the theorem are satisfied.
(1) X_{i} is $\bmod \boldsymbol{P}_{i}$ homotopy associative.
(2) $\beta_{j}\left(X_{i} \wedge X_{i}\right) \gamma_{j}\left(X_{i}\right)=0$.
(3) X_{i} is \boldsymbol{P}_{i}-equivalent to a product of spaces satisfying (1) or (2).
(Proof of Theorem 6.6: continued) [(2) implies (3)].
Let $\mu: X_{P} \times X_{P} \rightarrow X_{P}$ be a homotopy associative multiplication. Then μ induces a homotopy associative multiplication $\mu_{(0)}: X_{(0)} \times X_{(0)} \rightarrow X_{(0)}$ by Theorem 2.7. Then by the Hopf-Samelson Theorem, we have that $H^{*}\left(X_{(0)} ; Q\right) \cong \Lambda\left(y_{1}\right.$, \cdots, y_{r}), where $\operatorname{deg} y_{i}=n_{i}$ is odd and y_{i} is primitive for every i. By Lemma 7.4, there is an H-equivalence $a: X_{(0)} \rightarrow \prod_{i=1}^{r} K\left(Q, n_{i}\right)$. Let \boldsymbol{Q} be the complement of \boldsymbol{P} in the set of all primes.
(Case: $\boldsymbol{P} \ni 2$, 3)
Put $Y=\prod_{i=1}^{\Gamma} S^{n_{i}}$. Then by Theorem 6.9, Y_{Q} is a homotopy associative H space. Again by Lemma 7.4 there is an H-equivalence $b: Y_{(0)} \rightarrow \prod_{i=1}^{r} K\left(Q, n_{i}\right)$. Denoting by $j_{P}: X_{P} \rightarrow X_{(0)},\left(j_{Q}: Y_{Q} \rightarrow Y_{(0)}\right)$ the canonical map, we consider the pull back $Z=X_{P_{\Pi K}\left(Q, n_{i}\right)}^{\times} Y_{Q}$ of $a \circ j_{P}$ and $b \circ j_{Q}$ over $\prod_{i=1}^{r} K\left(Q, n_{i}\right)$. Then by Theorem $7.3, Z$ is a homotopy associative finite H-complex. Further, there exists a \boldsymbol{P}-equivalence $X \rightarrow Z$ (and hence a \boldsymbol{P}-equivalence $Z \rightarrow X$, too). So X is \boldsymbol{P} dominated by a homotopy associative H-space.
(Case: $\boldsymbol{P} \nexists 2$ nor 3)
Clearly, there exist sets of integers (m_{1}, \cdots, m_{r}) and (k_{1}, \cdots, k_{s}) such that $X \times \prod_{i=1}^{r} S^{m_{i}}$ has the same 0-type of $\prod_{i=1}^{s} S U\left(k_{i}\right)$. For simplicity put $Y=\prod_{i=1}^{r} S^{m_{i}}$. Then $(X \times Y)_{P}=X_{P} \times Y_{P}$ is homotopy associative, since $\boldsymbol{P} \nexists 2$ nor 3. Similarly as above, we denote by Z the pull back over $\Pi K\left(Q, n_{i}\right) \times \Pi K\left(Q, m_{i}\right)$ of H maps $(X \times Y)_{P} \rightarrow \Pi K\left(Q, n_{i}\right) \times \Pi K\left(Q, m_{i}\right)$ and $\left(\Pi S U\left(k_{i}\right)\right)_{\boldsymbol{Q}} \rightarrow \Pi K\left(Q, n_{i}\right) \times \Pi K\left(Q, m_{i}\right)$. Then Z is a homotopy associative finite H-complex. Here the map $Z \rightarrow(X \times Y)_{\boldsymbol{P}}$ is factored as : $Z \xrightarrow{j_{Z}} Z_{\boldsymbol{P}} \xrightarrow{n}(X \times Y)_{\boldsymbol{P}}$, where j_{Z} is a natural inclusion and h is a homotopy equivalence. Since X and Z are \boldsymbol{P}-universal spaces, there exist maps $f: X \rightarrow Z$ and $g: Z \rightarrow X$ such that the following is homotopy commutative:

where i and π are the obvious inclusion and projection. Thus $g \circ f$ is a \boldsymbol{P} equivalence, and hence X is P-dominated by Z.
Q. E. D.

§ 8. New finite H-complexes.

For a simply connected finite H-complex X, the classical Hopf theorem states that $H^{*}(X ; Q) \cong \Lambda\left(x_{1}, \cdots, x_{l}\right)$ with $\operatorname{deg} x_{i}=n_{i}$ odd. Then $\sum_{i=1}^{l} n_{i}=\operatorname{dim} X$. l is called the rank of X and the sequence (n_{1}, \cdots, n_{l}) is called the (rational) type of X. Recently, Hilton-Roitberg [8] have discovered a finite H-complex of type (3,7), which is a principal S^{3}-bundle over S^{7} and not of the same homotopy type of $S p(2)$. Similar examples are also discovered by Stasheff [21]. In this section we will construct more finite H-complexes by making use of the theorems in the previous sections.

Let G be a compact, connected, simply connected topological group and let H be a closed subgroup such that $G / H=S^{2 n * 1}$, $(n \geqq 1)$. We consider a principal H-bundle: $H \rightarrow G \rightarrow S^{2 n+1}$ with a characteristic class $\alpha \in \pi_{2 n}(H)$ of finite order d. Let $k: S^{2 n+1} \rightarrow S^{2 n+1}$ be a map of degree k. We denote by E_{k} the bundle induced by k from the above principal bundle. Then k induces a bundle map $\tilde{k}: E_{k} \rightarrow G$. In the below, $\nu_{p}(k)$ denotes the exponent of p in the factorization of an integer k into prime powers.

Theorem 8.1. Suppose that $\nu_{p}(k)=0$ or $\nu_{p}(k) \geqq \nu_{p}(d)$ for any prime p. Then E_{k} is an H-space if and only if $\nu_{2}(k)=0$ or $n=1,3$. Further, E_{k} is a homotopy associative H-space if $\nu_{2}(k)=\nu_{3}(k)=0$.

Proof. Let l be minimal positive integer such that $d \mid l k$. Consider the following commutative diagram:

Note that $E_{k l}=H \times S^{2 n+1}$, since $d \mid k l$. Clearly we have: $\tilde{k}: E_{k} \rightarrow G$ is a p-equivalence, if $\nu_{p}(k)=0$. $\tilde{l}: H \times S^{2 n+1} \rightarrow E_{k}$ is a p-equivalence, if $\nu_{p}(k) \geqq \nu_{p}(d)$. Assume that $\nu_{2}(k) \neq 0$ (and hence $\nu_{2}(k) \geqq \nu_{2}(d)$). Then $\tilde{l}: H \times S^{2 n+1} \rightarrow E_{k}$ is a 2equivalence. So, if E_{k} is an H-space, $S^{2 n+1}$ is a $\bmod 2 H$-space, and hence $n=1$ or 3 by Theorem 6.9.

Now suppose that $\nu_{2}(k)=0$ or $n=1,3$. Put $\boldsymbol{P}_{1}=\left\{p\right.$ a prime $\left.\mid \nu_{p}(k)=0\right\}$. Denote by \boldsymbol{P}_{2} the complement of \boldsymbol{P}_{1} in the set of all primes. Let φ be the multiplication on G and φ^{\prime} the restriction of φ on H. Denote by s the map $S^{2 n+1} \times S^{2 n+1} \rightarrow S^{2 n+1}$ of type (2,2). Let $a: S^{2 n+1}{ }_{P_{2}} \rightarrow S^{2 n+1}{ }_{P_{2}}$ be a map dividing by 2, if $\boldsymbol{P}_{2} \nRightarrow 2$. Let $\mu=a \circ s_{\boldsymbol{P}_{2}}$, if $\boldsymbol{P}_{2} \ni 2$, and let μ be the ordinary multiplication localized at \boldsymbol{P}_{2}, if $\boldsymbol{P}_{2} \ni 2$. By introducing a multiplication $\varphi_{\boldsymbol{P}_{2}}^{\prime}$ and μ on $H_{P_{2}}$ and $\left(S^{2 n+1}\right)_{P_{2}}$ separately, we obtain a multiplication $\psi:\left(H \times S^{2 n+1}\right)_{P_{2}}$ $\times\left(H \times S^{2 n+1}\right)_{\boldsymbol{P}_{2}} \rightarrow\left(H \times S^{2 n+1}\right)_{\boldsymbol{P}_{2}}$. Since E_{k} is $\boldsymbol{P}_{1^{-}}$and \boldsymbol{P}_{2}-dominated by G and $H \times S^{2 n+1}$ respectively, E_{k} is a $\bmod \boldsymbol{P}_{i} H$-spaces. So we define a multiplication μ_{i} on $\left(E_{k}\right)_{P_{i}}$ as follows:

$$
\begin{aligned}
& \mu_{1}=\left(\tilde{k}_{\boldsymbol{P}_{1}}\right)^{-1} \circ \varphi_{\boldsymbol{P}_{1}} \circ\left(\tilde{k}_{\boldsymbol{P}_{1}} \times \tilde{k}_{\boldsymbol{P}_{1}}\right):\left(E_{k}\right)_{\boldsymbol{P}_{1}} \times\left(E_{k}\right)_{\boldsymbol{P}_{1}} \rightarrow G_{\boldsymbol{P}_{1}} \times G_{\boldsymbol{P}_{1}} \rightarrow G_{\boldsymbol{P}_{1}} \rightarrow\left(E_{k}\right)_{\boldsymbol{P}_{1}}, \\
& \mu_{2}=\tilde{l}_{\boldsymbol{P}_{2}} \circ \psi \circ\left(\left(\tilde{l}_{\boldsymbol{P}_{2}}\right)^{-1} \times\left(\tilde{l}_{\boldsymbol{P}_{2}}\right)^{-1}\right):\left(E_{k}\right)_{\boldsymbol{P}_{2}} \times\left(E_{k}\right)_{\boldsymbol{P}_{2}} \rightarrow\left(H \times S^{2 n+1}\right)_{\boldsymbol{P}_{2}} \times\left(H \times S^{2 n+1}\right)_{\boldsymbol{P}_{2}} \\
& \rightarrow\left(H \times S^{2 n+1}\right)_{\boldsymbol{P}_{2}} \rightarrow\left(E_{k}\right)_{\boldsymbol{P}_{2}},
\end{aligned}
$$

where $\left(\tilde{k}_{P_{1}}\right)^{-1}$ and $\left(\tilde{l}_{P_{2}}\right)^{-1}$ are 'homotopy inverses of $\tilde{k}_{P_{2}}$ and $\tilde{l}_{P_{2}}$ respectively. Then by the fact that $\tilde{k \circ l}=\tilde{k} \circ \tilde{l}$ and by Theorem 2.7 we obtain a homotopy commutative diagram

By (4) of Theorem $2.7 \mu_{1}$ and μ_{2} induce two multiplications $\left(\mu_{1}\right)_{(0)}$ and $\left(\mu_{2}\right)_{(0)}$ on $\left(E_{k}\right)_{(0)}$ induced by $\psi_{(0)}$ and $\varphi_{(0)}$ respectively. But by chasing the above diagram one can see that $\left(\mu_{1}\right)_{(0)}$ is homotopic to $\left(\mu_{2}\right)_{(0)}$. Hence by Theorem 7.1, E_{k} is an H-space. The assertion for homotopy associativity of E_{k}, when $\nu_{2}(k)=\nu_{3}(k)=0$, is easily checked.
Q. E. D.

Remark. This theorem is proved by Harrison by the following form: Write $\alpha=\alpha_{2}+\alpha_{3}+\cdots+\alpha_{q}$, where α_{p} is of p-power order. Write $k \alpha=\Sigma \varepsilon_{p} \alpha_{p}$.

Let $\varepsilon_{p}=0$ or ± 1 for any p. Then E_{k} is an H-space if and only if

1) $\varepsilon_{2} \neq 0$ or,
2) $n=1,3$.

But the above expression of the theorem is easily checked to be equivalent to ours.

Example 8.2 (Hilton-Roitberg-Stasheff [8], [21]). Let ($G, H)=(S p(2)$, $S p(1))$. Then E_{k} is an H-space if $k \not \equiv 2$ (4).

Example 8.3 (Curtis-Mislin [7]). Let $(G, H)=(S U(4), S U(3))$.
(1) Any E_{k} is an H-space.
(2) There are exactly four homotopy types of such spaces.

Proof. Recall $\pi_{6}(S U(3)) \cong Z_{6}$. (1) is clear. To prove (2) we need
Lemma 8.4. $\quad E_{k}=E_{-k}$.
So, $E_{1}=E_{5}$ and $E_{2}=E_{4}$. Of course $E_{0}=S^{7} \times S U(3)$ and $E_{1}=S U(4)$ are different. Then $E_{2} \neq E_{0}, E_{2} \neq E_{1}$. For $\left(E_{2}\right)_{(2)} \neq\left(E_{1}\right)_{(2)}$ and $\left(E_{2}\right)_{(3)} \neq\left(E_{0}\right)_{(3)}$. Similarly $E_{3} \neq E_{i}$ for $i=0,1,2$, since $\left(E_{3}\right)_{(2)} \neq\left(E_{0}\right)_{(2)}$, and since $\left(E_{3}\right)_{(3)} \neq\left(E_{i}\right)_{(3)}$ for $i=1,2$.
Q. E. D.

Let p be a prime. Recall [17] that X is called p-regular, if there exists
a p-equivalence $\prod_{i=1}^{i} S^{n_{i}} \rightarrow X$, and that X is called quasi p-regular, if there exists a p-equivalence $\Pi S^{n_{i}} \times \Pi B_{n_{j}}(p) \rightarrow X$, where $B_{n_{j}}(p)$ is such a space that $H^{*}\left(B_{n_{j}}(p) ; Z_{p}\right) \cong \Lambda\left(x_{j}, \mathfrak{p}^{1} x_{j}\right)$ with $\operatorname{deg} x_{j}=2 n_{j}+1$.

Let G be a compact, connected, simply connected, simple Lie group. Then by the Hopf theorem

$$
H^{*}(G ; Q) \cong \Lambda\left(x_{1}, \cdots, x_{l}\right) \quad \text { with } \operatorname{deg} x_{i}=2 n_{i}+1,
$$

where l is the rank of G, and $\Sigma\left(2 n_{i}+1\right)=\operatorname{dim} G$. Then
Theorem 8.5 (Kumpel, Serre, Mimura-Toda). (1) G is p-regular if and only if $p>n_{l}$.
(2) G is quasi p-regular if and only if $p>N(G)$, where

$N(G)$	G
n	
n	$S p(n)$
2	$S U(n)$
$n-1$	
2	$\operatorname{Spin}(n)$
3	G_{2}, F_{4}, E_{6}
7	E_{7}, E_{8}

For a proof see [10].
Remark 8.5^{\prime}. It follows from Theorem 6.4 and Theorem 8.5 that $B_{n_{i}}(p)$ is a $\bmod p H$-space, if $n_{i} \leqq p-1$.

Theorem 8.6. Let p be an odd prime.
(1) There exist infinitely many finite H-complexes which are p-regular for a given p.
(2) There exist infinitely many finite H-complexes, which are quasi p-regular for a given p.
Proof. (1) Put $S(G)=\prod_{i=1}^{i} S^{2 n_{i+1}}$. Apparently $S(G)$ is a $\bmod p H$-space. Let \boldsymbol{Q} be the complement of $\{p\}$ in the set of all primes. Denote by $S_{p}(G)$ the pull back of the maps $(S(G))_{(p)} \rightarrow G_{(0)}$ and $G_{Q} \rightarrow G_{(0)}$ over $G_{(0)}$. Then by Corollary 7.5 and Remark 7.6, $S_{p}(G)$ is a finite H-complex. Clearly $S_{p}(G)$ is always p-regular.
(2) We put, for $1 \leqq k \leqq a-1$,

$$
B(G)=\prod_{i=1}^{k} B_{n_{i}}(p) \times \prod_{i=k+1}^{a-1} S^{2 n_{i+1}} \times \prod_{i=b+1}^{l} S^{2 n_{i+1}}
$$

where a and b are such numbers that $n_{a}=p$ and $n_{b}=n_{k}+p$ respectively. Similarly as above we mix the homotopy type of $B(G)$ and G. We denote
by $B_{p}(G)$ the pull back of the maps $B(G)_{(p)} \rightarrow G_{(0)}$ and $G_{Q} \rightarrow G_{(0)}$ over $G_{(0)}$. Then $B_{p}(G)$ is a finite H-complex, which is always quasi p-regular. Q. E. D.

Remark 8.7. $S_{p}(G)$ is not p-equivalent to any product of Lie groups, if $n_{l} \geqq p$. Similarly $B_{p}(G)$ is not p-equivalent to any product of Lie groups and spheres, if $N(G) \geqq p$.

Next we give some examples of a finite H-complex which is of (rational) type $(3,11)$.

Theorem 8.8. There exist at least four different finite H-complexes of type $(3,11)$.

Proof. We choose a map $f: S^{11} \rightarrow V_{7,2}$ such that $f^{*}: H^{*}\left(V_{7,2} ; Z_{3}\right) \cong$ $H^{*}\left(S^{11} ; Z_{3}\right)$. We consider the bundle $B_{1}^{\prime}(3)$ induced by f from the bundle $G_{2} / S^{3}=V_{7,2}$. Then as is easily seen, $B_{1}^{\prime}(3)$ is a S^{3}-bundle over S^{11} with the characteristic class $\alpha_{2}(3)$, which is a generator of $\pi_{10}\left(S^{3}: 3\right) \cong Z_{3}$. It is also clear that $B_{1}^{\prime}(3)$ is a $\bmod 3 H$-space. Let \boldsymbol{Q} be the complement of $\{3,5\}$ in the set of all primes. Now we mix the homotopy types using the ingredients given in the following table.

	3	5	\boldsymbol{Q}
X_{1}	$S^{3} \times S^{11}$	$S^{3} \times S^{11}$	G_{2}
X_{2}	$B_{1}^{\prime}(3)$	$S^{3} \times S^{11}$	G_{2}
X_{3}	$S^{3} \times S^{11}$	$B_{1}(5)$	G_{2}
X_{4}	$B_{1}^{\prime}(3)$	$B_{1}(5)$	G_{2}

The pull backs X_{i} are all finite H-complexes and all have different homotopy types. Note that $X_{4}=G_{2}$.
Q. E. D.

Remark 8.9. According to Hubbuck, if a finite H-complex X of rank 2 has 2 -torsion, then

$$
H^{*}\left(X ; Z_{2}\right) \cong H^{*}\left(G_{2} ; Z_{2}\right) .
$$

So X_{i} 's are such H-complexes.
Theorem 8.10. (1) There exist several finite H-complexes which have only 3-torsion.
(2) There exists a homotopy associative finite H-complex which has only 5-torsion.
Proof. Denote by \bar{p} the complement of p in the set of all primes.
(1) The pull back given by the following diagram gives an example for (1), since F_{4} has just 2 and 3 torsions.

Similar examples can be obtained by using E_{6}, E_{7} and E_{8}.
(2) An example for (2) is obtained by

Q. E. D.
§ 9. $\operatorname{Mod} p$ decomposition of suspended spaces.
Throughout this section let p denote an odd prime.
Definition 9.1. A co- H-space X is mod p decomposable into r spaces, if there exist r spaces X_{i} with $\widetilde{H}^{*}\left(X_{i} ; Z_{p}\right) \neq 0,1 \leqq i \leqq r$, and there exists a p equivalence $f: X \rightarrow \bigvee_{i=1}^{r} X_{i}$, where \vee is the wedge sum.

For simplicity we denote $X \cong_{p} \bigvee_{i=1}^{\gamma} X_{i}$. If $X \in \mathfrak{F} \mathscr{F}_{1}$, then the direction of a p-equivalence between X and $\vee X_{i}$ is not important, since there is always a converse p-equivalence.

Condition 9.2. For a connected finite $C W$-complex X, D_{p} : (1) There exist homogeneous elements $x_{i} \in \tilde{H} *\left(X ; Z_{p}\right), 1 \leqq i \leqq s$, such that $\widetilde{H}^{*}\left(X ; Z_{p}\right)$ has a basis consisting of monomials in x_{i} 's.
(2) There exists a map $\psi^{k}: X \rightarrow X$ such that $\left(\psi^{k}\right)^{*} x_{i}=k x_{i}$ for $1 \leqq i \leqq s$, where k is a primitive root modulo p.
Now suppose that X satisfies the condition D_{p}. Then each element of a basis of $\tilde{H}^{*}\left(X ; Z_{p}\right)$ has not only the cohomological degree but also the rank, which is defined to be the degree of monomial. Then according to the rank, we obtain a direct sum decomposition :
$\widetilde{H}^{*}\left(X ; Z_{p}\right) \cong \sum_{n} A_{n}^{*}$, where A_{n}^{*} consists of elements of rank n.
Then we also have
$\widetilde{H}^{*}\left(S X ; Z_{p}\right) \cong \sum_{n} S A_{n}^{*}$, where $S A_{n}^{*}$ denotes the module spanned by the
suspension of the elements of A_{n}^{*}.
Put $B_{m}=\sum_{n=m+k(p-1)} S A_{n}^{*}$; i. e., $\widetilde{H}^{*}\left(S X ; Z_{p}\right) \cong \sum_{m=1}^{p-1} B_{m}$. Let r be the number such that $B_{m} \neq 0$; i. e., $B_{m_{1}} \neq 0, \cdots, B_{m_{r}} \neq 0$.

Theorem 9.3. Let X be a connected finite $C W$-complex satisfying the condition D_{p}. Then $S X$ is $\bmod p$ decomposable into r spaces. Namely there exist r spaces $X_{m_{i}}, i=1, \cdots, r$, and a p-equivalence $f: S X \rightarrow \bigvee_{i=1}^{r} X_{m_{i}}$ such that $H^{*}\left(X_{m_{i}}: Z_{p}\right) \cong B_{m_{i}}$.

Proof. Let k be a primitive root modulo p. Let $\psi^{k}: X \rightarrow X$ be the map given by (2) of D_{p}. Let $-k^{j}: S^{1} \rightarrow S^{1}$ be a map of degree $-k^{j}$. The map $\left(-k^{j}\right) \wedge 1_{X}: S X \rightarrow S X$ will also be denoted by $-k^{j}$. We consider the map

$$
g_{j}=\left(S \phi^{k}-k^{j}\right): S X \xrightarrow{\varphi} S X \vee S X \xrightarrow{S \phi^{k} \vee\left(-k^{j}\right)} S X \vee S X \xrightarrow{\pi} S X
$$

where φ is the canonical map shrinking the equator of $S X$ and π is the obvious projection. Then for any x of $S A_{n}^{*}, g_{j}^{*}(x)=\left(k^{n}-k^{j}\right) x$. Recall that $k^{n}-k^{j} \equiv 0(p)$ if and only if $n-j \equiv 0(p-1)$, since k is a primitive root modulo p. Note that ψ^{k}, and hence $S \psi^{k}$, is a p-equivalence, and hence it is a 0 -equivalence. Then there exists a sufficiently large number N such that for every $j \geqq N, g_{j}$ is a 0 -equivalence, since $S X$ is a finite $C W$-complex. $S X$ is p-universal for any p by Theorem 4.2 of [12], since it is a co- H-space. So, by Theorem 5.3, there is a p-sequence $\left\{A_{i}, f_{i}\right\}$ of $S X$ such that $A_{i}=S X$ for all $i \geqq 0$. We put $\tilde{g}_{j}=g_{p N+j}: S X \rightarrow S X$ for $1 \leqq j \leqq p-1$. Let m be an integer with $1 \leqq m \leqq p-1$. Let $S_{m}=\left\{A_{i}, \tilde{f}_{i}\right\}$ be a sequence obtained by inserting 0 -equivalence $\tilde{g}_{j}, j \neq m$, infinitely many times in the p-sequence $\left\{A_{i}, f_{i}\right\}$. Although S_{m} is not a p-sequence any longer, it is a "subsequence" of a 0 -sequence of $S X$. By constructing a telescope, we obtain a space, which is denoted by $(S X)_{(p, m)}$, and also inclusions

$$
(S X)_{(p)} \xrightarrow{j_{1}}(S X)_{(p, m)} \xrightarrow{j_{2}}(S X)_{(0)}
$$

such that the composite of them is the canonical map $j_{0, p}:(S X)_{(p)} \rightarrow(S X)_{(0)}$. Let \boldsymbol{Q} denote the complement of $\{p\}$ in the set of all primes. Put X_{m} $=(S X)_{(p, m)} \underset{\left.(S X)_{(0)}\right)}{ }(S X)_{Q}$ the pull back of j_{2} and the map $j_{0, Q}:(S X)_{Q} \rightarrow(S X)_{(0)}$ over $(S X)_{(0)}$. Then X_{m} has the homotopy type of a finite $C W$-complex, since j_{2} is a 0 -equivalence. Also we have that $\left(X_{m}\right)_{(p)}=(S X)_{(p, m)}$ (cf. the following diagram).

Furthermore, by the property of the pull back, we obtain a map $f_{m}: S X \rightarrow X_{m}$ such that the following diagram is homotopy commutative:

where j_{p} is the canonical inclusion. So the induced homomorphism $\left(j_{1}\right)_{*}$: $H_{*}\left((S X)_{(p)} ; Z_{p}\right) \rightarrow H_{*}\left((S X)_{(p, m)} ; Z_{p}\right)$ is an epimorphism, the kernel of which is isomorphic to $\Sigma S A_{i}^{*}$, where Σ is over all i with $i \neq m(p-1)$. The required p-equivalence $f: S X \rightarrow \bigvee_{m=1}^{p-1} X_{m}$ is obtained as the composite of the maps

$$
S X \xrightarrow{\bar{\varphi}} V^{p-1} S X \xrightarrow{\vee f_{m}}{\underset{m=1}{p-1} X_{m}, ~}_{\text {, }}
$$

where $\bar{\varphi}$ is the $(p-2)$-iterations of φ.
Q. E. D.

Proposition 9.4. Each of the following satisfies the condition D_{p}.
(1) A connected finite H-complex. X such that $H^{*}\left(X ; Z_{p}\right)$ is primitively. generated.
(2) The m-th symmetric product $\operatorname{SP}^{m}(M(G, n))$ of the Moore space $M(G, n)$ of type (G, n), where $G=Z$ or $Z_{p r}$.
Proof. (1) The map $\psi^{k}: X \rightarrow X$ is obtained as the composite of the maps: $X \xrightarrow{\Delta} \underbrace{X \times \cdots \times X}_{k} \xrightarrow{\mu} X$, where Δ is the diagonal map and μ is the ($k-1$)
iterations of the product. If $H^{*}\left(X ; Z_{p}\right)$ is primitively generated, by the Borel's theorem [6], we obtain an additive basis of $H^{*}\left(X ; Z_{p}\right)$ consisting of monomials of primitive elements. (2) is also easily checked. (For the structure of $H^{*}\left(S P^{m}(M(G, n)) ; Z_{p}\right)$ see [13], [14].). \quad Q. E. D.

COROLLARY 9.5. (1) If X is a connected finite H-complex such that $H^{*}\left(X ; Z_{p}\right)$ is primitively generated, then $S X$ is $\bmod p$ decomposable into ($p-1$) spaces.
(2) $S\left(S P^{m}(M(G, n))\right)$ is mod p decomposable into $(p-1)$ spaces for $G=Z$ or $Z_{p^{r}}$. In particular $S\left(C P^{n}\right) \cong \cong_{p} V_{i=1}^{-1} X_{i}$.
For there is a homeomorphism $S P^{m}(M(Z, 2))=C P^{m}$.
We denote by $L_{p}^{2 n+1}$ the lens space. Then
Proposition 9.6: $S\left(L_{p}^{2 n+1}\right)$ is $\bmod p$ decomposable.
Proof. It suffices to show that $L_{p}^{2 n+1}$ satisfies the condition D_{p}. We consider $S^{2 n+1}$ as the unit sphere in C^{n+1}. We define a map $\bar{\psi}^{k}: S^{2 n+1} \rightarrow S^{2 n+1}$ as $\bar{\psi}^{k}\left(z_{1}, \cdots, z_{n+1}\right)=\left(z_{1}^{k} / \rho, \cdots, z_{n+1}^{k} / \rho\right)$ with $\rho=\sqrt{\sum_{i=1}^{n+1}\left|z_{i}^{k}\right|^{2}}$. Then $\bar{\psi}^{k}$ induces a map $\phi^{k}: L_{p}^{2 n+1} \rightarrow L_{p}^{2 n+1}$, since $L_{p}^{2 n+1}$ is the orbit space of Z_{p}-action on $S^{2 n+1}$. Then it is not difficult to see that $L_{p}^{2 n+1}$ with ϕ^{k} satisfies D_{p}. Q.E.D.

We denote by $Q P^{n}$ the quaternionic projective space. Then
PRoposition 9.7. $S\left(Q P^{n}\right) \cong \cong_{p} \bigvee_{i=1}^{p-1} X_{2 i}$.
Proof. By Corollary 9.5 there is a p-equivalence $f: S\left(C P^{2 n}\right) \rightarrow \bigvee_{i=1}^{p-1} X_{i}$. Since $S\left(C P^{2 n}\right)$ is p-universal, there is a converse p-equivalence $g: V_{i=1}^{p-1} X_{i} \rightarrow S\left(C P^{2 n}\right)$. Let $j: V_{i=1}^{\frac{p-1}{2}} X_{2 i} \rightarrow V_{i=1}^{p-1} X_{i}$ be the obvious inclusion. Let $h_{n}: C P^{2 n} \rightarrow C P^{2 n+1}{ }_{n} Q P^{n}$ be the composite of the inclusion i and the natural map η. Then $S h_{n} \circ j$ gives the required p-equivalence.
Q. E. D.

Remark 9.8. Since the infinite symmetric product $S P^{\infty}(M(G, n))$ is the Eilenberg-MacLane space $K(G, n)$, Corollary 9.5 gives a $\bmod p$ decomposition of $S(K(G, n))$ for $G=Z$ or $Z_{p r}$.

> Kyoto University

References

[1] J.F. Adams, On the non-existence of elements of Hopf-invariant one, Ann. of Math., 72 (1960), 20-104.
[2] J. F. Adams, The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford (2), 12 (1961), 52-60.
[3] D. W. Anderson, Localizing $C W$-complexes, (mimeographed).
[4] M. Arkowitz and C. R. Curjel, The Hurewitz homomorphism and finite homo-
topy invariants, Trans. Amer. Math. Soc., 110 (1964), 538-551.
[5] M. Arkowitz and C. R. Curjel, Zum Begriff des H-Raumes mod ${ }_{\text {L }}$, Arch. Math., 16 (1965), 186-190.
[6] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[7] M. Curtis and G. Mislin, Two new H-spaces, Bull. Amer. Math. Soc., 76 (1970), 851-852.
[8] P. J. Hilton and J. Roitberg, On principal S^{3}-bundles over spheres, Ann. of Math., 90 (1969), 91-107.
[9] I.M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres, Proc. London Math. Soc. (3), 4 (1954), 196-218.
[10] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups, I, Topology, 9 (1970), 317-336.
[11] M. Mimura and H. Toda, On p-equivalences and p-universal spaces, Comment. Math. Helv., 4 (1971), 87-97.
[12] M. Mimura, R. C. O'Neill and H. Toda, On the p-equivalence in the sense of Serre, Japan. J. Math., 40 (1971), 1-10.
[13] M. Nakaoka, Cohomology mod p of symmetric products of spheres, J. Inst. Poly. Osaka City Univ., 9 (1958), 1-18.
[14] M. Nakaoka, Homology of Γ-products, Sugaku, 10 (1958), 97-104, (Iwanami, in Japanese).
[15] R.C. O'Neill, On H-spaces that are $C W$ complexes, Ill. J. Math., 8 (1964), 280290.
[16] H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math., 42 (1941), 1091-1137.
[17] J-P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math., 58 (1953), 258-294.
[18] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Japan. J. Math., 31 (1961), 1-25.
[19] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[20] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc., 108 (1963), 275-312.
[21] J. D. Stasheff, Manifolds of the homotopy type of (non-Lie) groups, Bull. Amer. Math. Soc., 75 (1969), 998-1000.
[22] J. D. Stasheff, H-spaces from a homotopy point of view, Lecture notes in Math., 161 (1970), (Springer).
[23] A. Zabrodsky, Homotopy associativity and finite $C W$-complexes, Topology, 9 (1970), 121-128.

