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Introduction

In the algebraic topology, in particular in the homotopy theory, abelian
groups are often treated by being devided into their $p$-primary component”
for various primes $p$ .

In the homotopy category of l-connected CW-complexes, an isomorphism
means a homotopy equivalence, which is of course an equivalence relation.
As is well known, a homotopy equivalence is such a map that it induces an
isomorphism on the integral homology group.

There might be three ways to generalize it in the $mod p$ sense.
First one is to define a $p$-equivalence so that it induces an isomorphism

on the homology group with $Z_{p}$-coefficient. A $p$-equivalence, however, is not
in general an equivalence relation even in the category of l-connected finite
CW-complexes. In fact, in [11] is shown an example, for which symmetricity
does not hold. To make it an equivalence relation, we have to work in the
category of $p$-universal spaces [12].

Next one is to define that $X$ and $Y$ are of same P-type, if there exist a
space $Z$ and $p$-equivalences $f:X\rightarrow Z$ and $g:Y\rightarrow Z$. Then it is easy to see
that a relation being of same $p$-type is an equivalence relation.

The last one is to consider a homotopy equivalence for “localized spaces
$X_{(p)}$

’ of $X$ at $p$ . It is a functor of l-connected CW-complexes into itself such
that if $f:X\rightarrow Y$ is a $p$-equivalence then the localization at $pf_{(p)}$ : $X_{(p)}\rightarrow Y_{(p\rangle}$

is a homotopy equivalence. The localization is studied by Adams [2],
Anderson [3], Bousfield-Kan and others. Our construction is a generalization
of Adams’ telescope [2], and has the following advantage:

THEOREM 2.5. If $X$ is a l-connected CW-complex of finite type, then
$H_{*}(X_{(p)})\cong H_{*}(X)\otimes Q_{p}$ and $\pi_{*}(X_{(p)})\cong\pi_{*}(X)\otimes Q_{p}$ , where $Q_{p}$ denotes the ring of
those fractions, whose denominators, in the lowest form, are prime to $p$ .

Also we show
COROLLARY 4.3. $X$ is homotopy equivalent to

$\prod_{x_{(0)}}X_{(p)}$
the pull back of $X_{(p)}$

over $X_{(0)}$ .
So we can study the topological properties of $X$ for each prime $p$
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separately.
In this paper, $\mathfrak{C}_{1}$ denotes the category of l-connected CW-complexes of

finite type, $i$ . $e.$ , the i-dim integral homology group is of finite type for each
$i$ . Also we denote by $\mathfrak{F}\mathfrak{C}_{1}$ the category of l-connected finite CW-complexes.

Let $P$ be a subset of the set of all primes. The notation (0) will be
used as the vacant set $\phi$ . We denote by $Q_{P}$ the ring of those fractions, the
denominators of which are, in the lowest form, prime to $p$ for all $p\in P$ . If
$P$ is the set of all primes, then $Q_{P}=Z$, and if $P=(O)$ , then $Q_{P}=Q$ the set
of rational numbers. $Z_{p}$ stands for $Z/pz$ and $Z_{0}$ for Q. $\mathfrak{C}_{P}$ is a class of finite
abelian groups without P-torsion. $H_{*}(X)$ means $H_{*}(X;Z)$ . $X=Y$ reads that
$X$ is homotopy equivalent to Y.

DEFINITION 0.1. A space $X$ is P-equivalent to $Y$ , if there exists a map
$f:X\rightarrow Y$ such that $f$ induces isomorphisms $H_{*}(X;Z_{p})\cong H_{*}(Y;Z_{p})$ for all
$p\in P$. Then the map $f$ is called a P-equivalence.

DEFINITION 0.2. A space $K\in \mathfrak{F}\mathfrak{C}_{1}$ is called P-universal if, for any given
P-equivalence $k:X\rightarrow Y$ in the category $\mathfrak{C}_{1}$ , and for an arbitrary map $g:K$

$\rightarrow Y$, there is a map $h:K\rightarrow X$ and there is a P-equivalence $f:K\rightarrow K$ such
that the following diagram is homotopy commutative:

$h^{\bigwedge_{\prime}}|X||\underline{k}\uparrow Y_{g}$

$KK\overline{f}$

or equivalently, for any given P-equivalence $k:X\rightarrow Y$ in $\mathfrak{F}\mathfrak{C}_{1}$ and for an
arbitrary map $g:X\rightarrow K$, there is a map $h:Y\rightarrow K$ and there is a P-equivalence
$f:K\rightarrow K$ such that the following diagram is homotopy commutative:

$g_{KK^{\prime}}^{XY_{h}}\downarrow\underline{f}\backslash \not\in^{1}\underline{k},$

’

Thus, for a given P-equivalence $X\rightarrow Y$, if one of $X$ and $Y$ is P-universal,
there exists a converse P-equivalence $Y\rightarrow X$, and hence a P-equivalence is
an equivalence relation in the category of P-universal spaces as was stated
earlier.

The present paper is organized as follows.
\S 1. A P-sequence of a CW-complex.

\S 2. Localization of CW-complexes.
\S 3. Further properties of localization.
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\S 4. The pull-back of localized spaces.
\S 5. Localizing P-universal spaces.
\S 6. Mod $p$ H-spaces and $mod p$ co-H-spaces.

\S 7. Localization of finite H-complexes.

\S 8. New finite H-complexes.
\S 9. Mod $p$ decomposition of suspended spaces.
In the first three sections we define a localization at $P$ and show the

uniqueness as well as the existence of it. We study its properties thoroughly.

In \S 4, we reconstruct the original space $X$ from its localized spaces $X_{(p)}$ .
\S 5 is used to see how P-universal spaces behaves nicely under localization.
For example, in the category of P-universal spaces, $X$ and $Y$ are P-equivalent

if and only if $X_{P}$ and $Y_{P}$ are homotopy equivalent. In \S 6 various equivalent

definitions of a $mod p$ H-space (also of a $mod p$ co-H-space) are given. Ex-
amples for them are given, too. \S 7 is used to discuss the localization of
finite H-complexes, $e$ . $g.$ , it is shown that under a certain condition, a finite
CW-complex $X$ is an H-space if and only if $X_{(p)}$ is an H-space for all primes
$p$ . In \S 8, many new finite H-complexes are constructed by mixing homotopy

types. The last section, \S 9, is devoted to give a $mod p$ decomposition of a
suspension of the symmetric product of the Moore space of type $(G, n),$ $G=Z$

or $Z_{p^{r}}$ , and of a suspension of an H-space with certain conditions. They can
give also a $mod p$ decomposition of $SK(Z, n)$ and of $SK(Z_{p^{r}}, n)$ .

\S 1. A $P$-sequence of a $CW$-complex.

Let $X$ be a CW-complex of finite type and let $P$ be a subset of the set

of all primes.
DEFINITION 1.1. $\{X_{i}, f_{i}\}$ is a homology P-sequence of $X$, if
1) $f_{i}$ : $X_{i-1}\rightarrow X_{i}$ is a P-equivalence with $X_{0}=X$,
2) for any $n$ , any $i$ , and any prime $q$ with $(q, p)=1$ for all $p\in P$ , there

exists $N(>i)$ such that $(f_{N}\circ\cdots\circ f_{i})_{*}=0:H_{n}(X_{i- 1} ; Z_{q})\rightarrow H_{n}(X_{N} ; Z_{q})$ .
DEFINITION 1.1’. $\{X_{i}, f_{i}\}$ is a homotopy P-sequence of $X$, if
1)’ $f_{i}$ : $X_{i-1}\rightarrow X_{i}$ is a P-equivalence with $X_{0}=X$,
$2)^{\prime}$ for any $n$ , any $i$ , and any prime $q$ with $(q, p)=1$ for all $p\in P$ , there

exists $N(>i)$ such that $(f_{N}\circ\cdots\circ f_{i})_{*}\otimes 1=0:\pi_{n}(X_{i- 1})\otimes Z_{q}\rightarrow\pi_{n}(X_{N})\otimes Z_{q}$ .
THEOREM 1.2. Let $X,$ $X_{i}\in \mathfrak{C}_{1}$ . Then $\{X_{i}, f_{i}\}$ is a homology P-sequence of

$X$ if and only if it is a homotopy P-sequence of $X$.
To prove the theorem, we need to prepare the following. For a given

space $X$ , the $(n-1)$ -connective space (X, n) is a fibering over $X$ with a fibre
map $p:(X, n)\rightarrow X$ inducing isomorphisms $p_{*}:$ $\pi_{i}((X, n))\cong\pi_{i}(X)$ for all $i\geqq n$ and
$\pi_{i}((X, n))=0$ for all $i<n$ . There exists a fibering
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(1.1) $K(\pi_{n}(X), n-1)\rightarrow(X, n+1)\rightarrow(X, n)$ .
Similarly, the space $(n, X)$ is such a space that there is a fibering $q:X\rightarrow(n, X)$

inducing isomorphisms $q_{*}:$ $\pi_{i}(X)\cong\pi_{i}((n, X))$ for all $i\leqq n$ and $\pi_{i}((n, X))=0$

for all $i>n$ . Then there exists a fibering

(1.2) $K(\pi_{n}(X), n+1)\rightarrow(n+1, X)\rightarrow(n, X)$ .
Clearly a P-equivalence $f:X\rightarrow Y$ induces P-equivalences:

$f_{n,i}$ : $K(\pi_{n}(X), i)\rightarrow K(\pi_{n}(Y), i)$ ,

$f_{n}$ : $(X, n)\rightarrow(Y, n)$ ,

$nf$ : $(n, X)\rightarrow(n, Y)$ .
By the abuse of the notation, we denote them by the same notation $f$.

We state easy lemmas without proof.
LEMMA 1.3. The condition 2) of Definition 1.1 implies
3) For any $A$ , any $i$ , and any prime $q$ with $(q, p)=1$ for all $p\in P$, there

exists $N(>i)$ such that $(f_{N}\circ\cdots\circ f_{i})_{*}=0:H_{j}(X_{i- 1} ; Z_{q})\rightarrow H_{j}(X_{N} ; Z_{q})$ for
all $0<j<A$ .

LEMMA 1.3’. The condition 2)’ of Definition $1.1^{\prime}$ implies
3)’ $Foy$ any $A$ , any $i$ , any prime $q$ with $(q, p)=1$ for all $p\in P$, there exists

$N(>i)$ such that $(f_{N}\circ\cdots\circ f_{i})_{*}\otimes 1=0:\pi_{j}(X_{i- 1})\otimes Z_{q}\rightarrow\pi_{j}(X_{N})\otimes Z_{q}$ for
all $0<j<A$ .

Then we show
LEMMA 1.4. The conditions 1) and 2) of Definition 1.1 imply the following

$(T_{n})$ for all $n\geqq 2$ .
$(T_{n})$ : For any $A$ and any $k$ , there exists $N=N(n, k, A)$ such that $f_{N,k}=$

$f_{N}\circ\cdots\circ f_{k}$ : $X_{k- 1}\rightarrow X_{N}$ induces $(f_{N,k})_{*}=0:H_{j}((X_{k- 1}, n);Z_{q})\rightarrow H_{j}((X_{N}, n);Z_{q})$ for
all $j$ with $0<j<A$ .

PROOF. We prove the lemma by induction on $n$ . For $n=2$ , there is
nothing to prove, since $(X_{k}, 2)=X_{k}$ . Suppose $(T_{n})$ is true and let us prove
$(T_{n+1}),$ $n\geqq 2$ . Consider the homology spectral sequence $\{E_{pq}^{r}\}$ with $Z_{q}$ -coeffi-
cient associated with a fibering

(1.1) $K(\pi_{n}(X_{\iota}), n-1)\rightarrow(X_{\iota}, n+1)\rightarrow(X_{l}, n)$ .
Then $E_{p.q}^{2}=H_{p}((X_{\iota}, n);H_{q}(\pi_{n}(X_{l}), n-1 ; Z_{q}))$ . We may assume that $A\geqq n+2$ .
Let $N=N(n, 1, A)$ and take $f_{N,l\{\cdot 1}$ : $X_{\iota}\rightarrow X_{N}$ given in $(T_{n})$ . Then $(f_{N,l- 1})_{*}=0$ on
$H_{n}((X_{l}, n);Z_{q})$ by the assumption, and hence $(f_{N,l\prec\cdot 1})_{*}=0$ on $H_{n-1}(\pi_{n}(X_{l}), n-1;Z_{q})$

by the suspension isomorphism. So $(f_{N.l\prec\cdot 1})^{*}=0$ on $H^{n-1}(\pi_{n}(X_{N}), n-1 ; Z_{q})$ ,

whence $(f_{N.l+1})^{*}=0$ on $H^{i}(\pi_{n}(X_{N}), n-1 ; Z_{q})$ for all $i>0$ , since any element of
$H^{i}(\pi_{n}(X_{\iota}), n-1;Z_{q})$ is written as a sum of the cup-products of elements of
the form $\mathfrak{p}^{I}x$ , where $x\in H^{n- 1}(\pi_{n}(X_{N}), n-1;Z_{q})$ and $\mathfrak{p}^{f}$ is a cohomology operation.
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Therefore $(f_{N,l+1})_{*}=0$ on $H_{i}(\pi_{n}(X_{\iota}), n-1 ; Z_{q})$ for all $i>0$ . On the other hand,
$(f_{N,l\prec 1})_{*}=0$ on $H_{j}((X_{l}, n)$ ; $Z_{q}$) for all $j$ with $0<j<A$ by the assumption. Thus
$(f_{N,l-\cdot 1})_{*}=0$ on $E_{ij}^{2}$ and hence it is trivial on $E_{ij}^{\infty}=D_{i,j}/D_{i- 1,j+1}$ for any $(i, j)$

with $j>0$ and for any $(i, 0)$ with $0<i<N$, where $H_{i+j}((X_{l}, n+1);Z_{q})=D_{i+j,0}$

$\supset D_{i+j- 1,1}\supset\ldots\supset D_{-1,i+f*\cdot 1}=0$ . So the triviality of $(f_{N,l- 1}\ovalbox{\tt\small REJECT}\cdot.)_{*}$ on $E_{i,j}^{\infty}$ implies
$(f_{N,l- 1})_{*}(D_{i,j})\subset D_{i- 1,j+1}$ . We put $N_{i+1}=N(n, N_{i}, A)$ and $f_{N_{i+1},N_{i}}=f_{N_{i+1}}\circ\cdots\circ f_{N_{i}}$ :
$X_{N_{i}- 1}\rightarrow X_{N_{i+1}}$ inductively starting with $N_{0}=k$ . Then $f_{N_{i},k}=f_{N_{i}}\circ\cdots\circ f_{k}$ :
$X_{k- 1}\rightarrow X_{N_{i}}$ induces the trivial homomorphism on $H_{i}((X_{k- 1}, n+1);Z_{q})$ . Take
$N(n+1, k, A)=N_{A}$ and $f_{N_{A},k}=f_{N_{A}}\circ\cdots\circ f_{k}$ . Then $(f_{N_{A},k})_{*}=0$ on $H_{i}((X_{k-1}$ ,
$n+1);Z_{q})$ for all $0<i<A$ , so $(T_{n- 1\cdot 1})$ holds. Q. E. D.

LEMMA 1.4’. The conditions $1)^{\prime}$ and $2)^{\prime}$ of Definition $1.1^{\prime}$ imply the follow-
ing $(I_{n})$ for all $n\geqq 2$ .

$(I_{n})$ ; For any $B$ , and any $k$ , there exists $M=M(n, k, B)$ such that $(f_{M,k})_{*}=0$ :
$H_{j}((n, X_{k- 1});Z_{q})\rightarrow H_{j}((n, X_{M});Z_{q})$ for all $j$ with $0<j<B$ .

PROOF. Clearly $n=2$ is true. For $(2, X_{k})=K(\pi_{2}(X_{k}), 2)$ , since $X_{k}$ is 1-
connected. Then $(f_{M,k+1})^{*}=0$ on $H^{*}(\pi_{2}(X_{M}), 2;Z_{q})$ for some $M$ and hence
$(f_{M,k\prec\cdot 1})_{*}=0$ on $H_{j}(\pi_{2}(X_{k}), 2;Z_{q})$ for all $j>0$ as before. The statement $(I_{n})$ for
$n>2$ is then established similarly by induction using the homology spectral
sequence with $Z_{q}$ -coefficient associated with a fibering

(1.2) $K(\pi_{n}(X_{l}), n+1)\rightarrow(n+1, X_{\iota})\rightarrow(n, X_{\iota})$ . Q. E. D.

(PROOF OF THEOREM 1.2.)

Let $(X_{i}, f_{i})$ satisfy 1) and 2) of Definition 1.1. Then by Lemma 1.4, for
any $n$ , any $i$ , and any prime $q$ with $(p, q)=1$ for all $p\in P$, there exists $N$

such that $f_{N,k*}=0:H_{n}((X_{k- 1}, n);Z_{q})\rightarrow H_{n}((X_{N}, n);Z_{q})$ , where $H_{n}((X_{j}, n);Z_{q})$

$\cong\pi_{n}(X_{j})\otimes Z_{q}$ for any $j$ . So it follows that $f_{N,k*}\otimes 1:\pi_{n}(X_{k-1})\otimes Z_{q}\rightarrow\pi_{n}(X_{N})\otimes Z_{q}$

is trivial.
Conversely, for any $n$ , take sufficiently large $m$ , then $H_{n}((m, X_{i});Z_{q})$

$\cong H_{n}(X_{i} ; Z_{q})$ . So the condition 2) in Definition 1.1 follows from $1)^{\prime}$ and 2);

of Definition 1.1’ by Lemma 1.4’. Q. E. D.
REMARK 1.1“. In the Definitions 1.1 and 1.1’, the condition that $q$ is a

prime with $(q, p)=1$ for all $p\in P$ can be replaced by that $q$ is an integer
with $(q, p)=1$ for all $p\in P$ .

From now on we call the homology P-sequence (equivalently the homo-
topy P-sequence) merely the P-sequence by virtue of Theorem 1.2.

DEFINITION 1.5. Let $\{X_{i}, q_{i}\}$ and $\{Y_{i}, h_{i}\}$ be P-sequences of $X$ and $Y$

respectively, and let $f:X\rightarrow Y$ be a map. A morphism $\{f_{i}\}$ between two
sequences: $\{X_{i}, g_{i}\}\rightarrow\{Y_{i}, h_{i}\}$ covering $f$ is defined as follows: For any $i$ ,

there exist $\rho(i)(\geqq\rho(i-1))$ and $mapsf_{i}$ : $X_{i}\rightarrow Y_{\rho(i)}$ such that $f_{0}=f:X\rightarrow Y$ and
the following diagram is homotopy commutative.
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$g_{i}$

$X_{i- 1}-*X_{i}$

$\downarrow f_{i- 1}$ $\downarrow f_{i}$

$Y_{\ovalbox{\tt\small REJECT}^{0(i- 1)}\overline{h_{\rho(i,i- 1)}}}Y_{o(i)}$

where $ h_{o(i,i- 1)\ovalbox{\tt\small REJECT}}=h_{\rho(i)}\circ$ $\circ h_{\rho(i- 1)\dashv\cdot 1}$ .
DEFINITION 1.6. Let $\{f_{i}\}$ and $\{f_{i}^{\prime}\}$ be two morphisms between P-sequences:

$\{X_{i}, g_{i}\}\rightarrow\{Y_{i}, h_{i}\}$ . Then $\{f_{i}\}$ and $\{f_{i}^{\prime}\}$ are homotopic, if there exists a mor-
phism $\{H_{i}\}$ : $\{X_{i}\times I, g_{i}\times 1\}\rightarrow\{Y_{\varphi^{(t)}}, h_{\varphi(t)}\}$ covering the homotopy $f\sim f^{\prime}$ with
$\varphi(i)\geqq{\rm Max}(\varphi(i-1), \rho^{\prime}(i),$ $\rho(i))$ such that

1) $H_{i}( 0)=f_{i}$ and $H_{i}(, 1)=f_{i}^{\prime}$ in $Y_{\varphi(i)}$ ,

2) $H_{i+1}\circ(g_{i}\times 1)\cong h_{\varphi(i)}\circ H_{i}$ rel. $X_{i}\times\partial I$.
PROPOSITION 1.7. Let $\{X_{i}, g_{i}\}$ and $\{Y_{i}, h_{i}\}$ be P-sequences of $X$ and $Y$

respectively. Let $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ . Let $f:X\rightarrow Y$ be arbitrary. Then there exists a
morphism $\{f_{i}\}$ : $\{X_{i}\}\rightarrow\{Y_{\rho(i)}\}$ covering $f$. Further, it is unique up to homotopy.

PROOF. We prove it by induction starting with $f_{0}=f$. Assume that
$f_{k}$ : $X_{k}\rightarrow Y_{o(k)}$ is constructed;

$g_{k+1}$

$X_{k}-X_{k+1}$
$\downarrow f_{k}$ $\downarrow$

$Y_{\rho(k)\overline{h_{\rho(k\dashv\cdot 1,k)}}}Y_{\rho(k\dashv 1)}\sim$

We may consider that $g_{k\prec\cdot 1}$ is an inclusion of a subcomplex by taking a map-
ping cylinder, if necessary. The obstruction to extending $f_{k}$ over $X_{k+1}$ lies
in $H^{i1}\llcorner(X_{k+1}, X_{k} ; \pi_{i}(Y_{\rho(k)}))$ . Remark that $H^{*}(X_{k+1}, X_{k})\in \mathfrak{C}_{P}$ , since $g_{k-\dagger\cdot 1}$ is a P-
equivalence. We assume that $f_{k}$ is already extended over $(X_{k+1}, X_{k})^{(r)}$ in $Y_{N_{r}}$

for some $N_{r}\geqq\rho(k)$ . Then the obstruction to extending over $(X_{k+1}, X_{k})^{(r+1)}$

lies in $H^{r^{\llcorner}1}(X_{k+1}, X_{k} ; \pi_{r}(Y_{N_{\gamma}}))$ . Then by the condition 2)’ in Definition 1.1’,
the obstruction is zero in $Y_{N_{r+1}}$ for some $N_{r-\rightarrow 1}\geqq N_{r}$ . Since $X_{k+1}$ is finite
dimensional, we obtain a map $f_{k+1}$ : $X_{k+1}\rightarrow X_{\rho(k\dashv\cdot 1)}$ extending $f_{k}$ . The unique-
ness up to homotopy can be proved quite similarly. Q. E. D.

DEFINITION 1.8. $\{X_{i}, g_{i}\}$ is homotopy equivalent to $\{Y_{i}, h_{i}\}$ , if there exist
morphisms $f_{i}$ : $\{X_{i}, g_{i}\}\rightarrow\{Y_{i}, h_{i}\}$ and $f_{i}^{\prime}$ : $\{Y_{i}, h_{i}\}\rightarrow\{X_{i}, g_{i}\}$ such that morphisms
$\{f_{\beta()}^{\prime}\hat{v}\circ f_{i}\}$ and $\{f_{\varphi(i)}\circ f_{\ell}^{\prime}\}$ cover $1_{X}$ and $1_{Y}$ respectively.

THEOREM 1.9. (1) For any subset $P$ of the set of all primes and for any
$X$, there exists a P-sequence $\{X_{i}\}$ of $X$, where $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ , if $X\in \mathfrak{F}\mathfrak{C}_{1}$ .

(2) It is unique up to homotopy type, if $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ .
Before proving, let us recall the notion of the fibred sum (or the push-

out) of CW-complexes. Given a diagram of CW-complexes
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$XY\underline{f}$

$g|$

$Z$

construct a CW-complex $Y\ovalbox{\tt\small REJECT} XZ=Y\bigcup_{f}(X\times I)\bigcup_{g}Z$ by identifying $(x, O)\sim f(x)$

and $(x, 1)\sim g(x)$ . Let $j_{1}$ : $Y\rightarrow Y\vee XZ$ and $j_{2}$ : $Z\rightarrow Y\vee XZ$ be the natural inclusions.

Clearly $j_{1}\circ f\cong j_{2}\circ g$. Let $W$ be another CW-complex, and let $a:Y\rightarrow W$

and $b:Z\rightarrow W$ be maps such that $a\circ f\cong b\circ g$. Then there exists a map
$w:Y\vee XZ\rightarrow W$ such that the following is homotopy commutative:

LEMMA 1.10. $f$ is a P-equivalence if and only if $j_{2}$ is a P-equivalence.
Similarly for $g$ and $j_{1}$ .

PROOF. Clearly the cofibre of $g$ and $j_{1}$ are naturally homotopy equivalent.
So it follows from the five lemma. Q. E. D.

(PROOF OF THEOREM 1.9.)
1) It suffices to construct a homotopy P-sequence. Let $i\geqq 2$ and $q$ be a

given prime with $(q, p)=1$ for all $p\in P$ . Consider a P-equivalence $f:X\rightarrow X^{\prime}$ ,

which induces $f_{*}\otimes 1:\pi_{i}(X)\otimes Z_{q}\rightarrow\pi_{i}(X^{\prime})\otimes Z_{q}$ . Let $g_{j}$ : $S^{i}\rightarrow X^{\prime},$ $j\in J$, be repre-
sentatives of a basis for the image of $f_{*}\otimes 1$ . Let V $S^{i}$ be a bouquet of spheres

and put $g=\ovalbox{\tt\small REJECT} g_{j}$ :
$J$

$\vee JS^{i}\rightarrow X^{\prime}$ . Let $q:\vee JS^{i}\rightarrow\vee JS^{i}$ be a map such that it is of

degree $q$ on each $S^{i}$ . Take $X_{q,i}=\vee s_{\vee}^{i}\ovalbox{\tt\small REJECT}_{s^{i}}X^{\prime}$ the fibred sum of $g$ and $q$ . Then

the map $\overline{f}=j_{X^{\prime}}$ of: $X\rightarrow X_{q,i}$ is a P-equivalence by Lemma 1.10 and it induces
$\overline{f}_{*}\otimes 1=0:\pi_{i}(X)\otimes Z_{q}\rightarrow\pi_{i}(X_{q,i})\otimes Z_{q}$ . Now consider the set $I$ of triples $(i, q, r)$

for all $i\geqq 2$ , all $r\geqq 1$ and all primes $q$ with $(q, p)=1$ for any $p\in P$. We then
give $I$ a linear order. Starting with the identity map $1_{X}$ : $X\rightarrow X$, we iterate
the above construction for every pair $(i, q)$ of $I$ in that order. Then we can
obtain a P-sequence of $X$. Remark that $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ , if $X\in \mathfrak{F}\mathfrak{C}_{1}$ .

2) Let $\{X_{i}\}$ be a P-sequence of $X$ with $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ . By the construction
of the ”telescope” of Adams [2], we may assume that $X_{i}$ is a subcomplex of
$X_{i+1}$ . Then let $|d_{i}$

) $X_{i}$ be the union of $X_{i}$ and let $j_{X}$ : $X=X_{0}\rightarrow\cup X_{i}$ be the
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natural inclusion. Let $Y$ be another space and $\{Y_{i}\}$ a P-sequence of Y. Let
$f:X\rightarrow Y$ be a given map. Then by Proposition 1.7, there exists a morphism
$\{f_{i}\}$ : $\{X_{i}\}\rightarrow\{Y_{\rho(i)}\}$ . So it induces a map $\overline{f}:\cup X_{i}\rightarrow\cup Y_{i}$ compatible with $f$.
Furthermore such $\overline{f}$ is unique up to homotopy. In particular, taking $X=Y$
and $f=1_{X}$ , (so $Y_{i}\in \mathfrak{F}\mathfrak{C}_{1}$), we obtain a homotopy equivalence $1_{X}$ : $\cup X_{i}\cong\cup Y_{i}$ .
Namely the complex $\cup X_{i}$ is unique up to homotopy type. Q. E. D.

\S 2. Localization of $CW$-complexes.

Let $P$ be a given subset of the set of all primes. Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ and let
$\{X_{i}\}$ be a P-sequence of $X$. We may assume that $X_{i}$ is a subcomplex of
$X_{i+1}$ and $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ .

DEFINITION 2.1. The localization of $X$ at $P$ , denoted by $X_{P}$ , is defined to
be $X_{P}=\cup X_{i}$ . For a map $f:X\rightarrow Y$ , where $X\in \mathfrak{F}\mathfrak{C}_{1}$ , the induced map is de-
noted by $l_{P}(f):X_{P}\rightarrow Y_{P}$ , or sometimes by $f_{P}$ , if there is no misunderstanding.

By Theorem 1.9, $X_{P}$ is determined up to homotopy type. Also by Pro-
position 1.7 $l_{P}(f)$ : $X_{P}\rightarrow Y_{P}$ is unique up to homotopy.

Let $X\in \mathfrak{C}_{1}$ . Denote the n-skeleton of $X$ by $X^{(n)}$ , which is a finite complex
for all $n$ . Then $X_{P}^{(7|)}$ is uniquely determined up to homotopy type. There is
a natural map $X_{P}^{(n)}\rightarrow X_{P}^{(n+1)}$ induced from the inclusion $X^{(n)}\rightarrow X^{(n+1)}$ .

DEFINITION 2.2.

$X_{P}=\rightarrow\lim_{n}X_{P}^{(n)}$
.

Let $f:X\rightarrow Y$ be a given map. Then we may assume that $f$ is cellular, $i$ . $e$ .
$f^{(n)}$ : $X^{(n)}\rightarrow Y^{(n)}$ . Hence it induces $l_{P}(f^{(n)}):X_{P}^{(n)}\rightarrow Y_{P}^{(n)}$ , which is unique up to
homotopy by Proposition 1.7. Thus we obtain a map $l_{P}(f):X_{P}\rightarrow Y_{P}$ .

NOTATION. When $P$ consists of one prime $p$ , we denote $X_{P}=X_{(p)}$ .
When $ P=\phi$ , the vacant set, we denote $X_{P}=X_{(0)}$ .
PROPOSITION 2.3. Let $X,$ $Y\in \mathfrak{C}_{1}$ .
(1) $X_{P}$ is determined uniquely up to homotopy type.
(2) $f:X\rightarrow Y$ induces a map $l_{P}(f):X_{P}\rightarrow Y_{P}$ , which is unique up to homo-

$top_{\mathcal{Y}}$ .
The proof is obvious.
THEOREM 2.4. The localization at $P$ has the following properties:
(1) The correspondence $X\rightarrow X_{P}$ is a functor from the homotopy category

of l-connected CW-complexes of finite type to the homotopy category of
l-connected countable CW-complexes.

(2) There exists a natural inclusion $j_{X}$ : $X\rightarrow X_{P}$ .
(3) If $f:X\rightarrow Y$ is a P-equivalence, then $f_{P}$ : $X_{P}\rightarrow Y_{P}$ is a homotopy equi-

valence.
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PROOF. (1) is Proposition 2.3. (2) is clear from the construction. (3) It
suffices to prove it for $X$ and $Y$ of $\mathfrak{F}\mathfrak{C}_{1}$ . Let $f:X\rightarrow Y$ be a P-equivalence
and $\{Y_{i}\}$ a P-sequence of Y. Then $ X\rightarrow Y=Y_{0}\rightarrow Y_{1}\rightarrow Y_{2}\rightarrow\ldots$ is also a P-
sequence of $X$. Then by the uniqueness of localization of $X$, we have that
$X_{P}=Y_{P},$ $i$ . $e.,$ $l_{P}(f):X_{P}\rightarrow Y_{P}$ is a homotopy equivalence. Q. E. D.

THEOREM 2.5. $X\in \mathfrak{C}_{1}$ . Let $j_{X}$ : $X\rightarrow X_{P}$ be the inclusion.
(1) $H_{*}(X_{P})\cong H_{*}(X)\otimes Q_{P}$ . Moreover $j_{x*}:$ $H_{*}(X)\rightarrow H_{*}(X_{P})$ is equivalent to

$1\otimes j:H_{*}(X)\otimes Z\rightarrow H_{*}(X)\otimes Q_{P}$ , where $j:Z\rightarrow Q_{P}$ is the canonical inclu-
sion.

(2) $\pi_{*}(X_{P})\cong\pi_{*}(X)\otimes Q_{P}$ . Moreover $j_{X^{r}}$ : $\pi_{*}(X)\rightarrow\pi_{*}(X_{P})$ is equivalent to
$1\otimes j:\pi_{*}(X)\otimes Z\rightarrow\pi_{*}(X)\otimes Q_{P}$ .

PROOF. It suffices to prove (1), since the argument is quite same for the
homotopy functor.

Consider the homomorphism

$j_{X^{l}}\otimes 1:H_{*}(X)\otimes Q_{P}\rightarrow H_{*}(X_{P})\otimes Q_{P}$ .
We note that

$H_{*}(X_{P})\cong\rightarrow\lim_{l}H_{*}(X_{i})$
and that $j_{x*}:$ $H_{*}(X)\rightarrow H_{*}(X_{P})$ is equivalent

to the canonical inclusion:
$H_{*}(X_{0})\rightarrow\rightarrow\lim_{i}H_{*}(X_{i})$

.
$Since\rightarrow^{\lim_{i}}$

and $Q_{P}$ commute,

we have that
$H_{*}(X_{P})\otimes Q_{P}=\rightarrow(\lim_{i}H_{*}(X_{i}))\otimes Q_{P}$

$=\rightarrow\lim_{t}(H_{*}(X_{i})\otimes Q_{P})$
.

Obviously $f_{i*}:H_{*}(X_{i- 1})\rightarrow H_{*}(X_{i})$ is $\mathfrak{C}_{P}$ -isomorphic, since $ f_{i*}:H_{*}(X_{i-1};Z_{p})\rightarrow$

$H_{*}(X_{i} ; Z_{p})$ is isomorphic, and since $H_{*}(X_{j})$ is of finite type for all $j$ .
Therefore $f_{i*}\otimes 1:H_{*}(X_{i- 1})\otimes Q_{P}\rightarrow H_{*}(X_{i})\otimes Q_{p}$ is isomorphic, and hence

$\rightarrow\lim_{i}(H_{*}(X_{i})\otimes Q_{P})\cong H_{*}(X)\otimes Q_{P}$
. Now we will prove that $1\otimes i:H_{*}(X_{p})\otimes Z$

$\rightarrow H_{*}(X_{P})\otimes Q_{P}$ is isomorphic. Take an arbitrary element $\alpha$ from $H_{*}(X_{P})\otimes Q_{P}$

$\cong\rightarrow\lim_{i}(H_{*}(X_{i})\otimes Q_{P})$
and let $x\otimes\frac{n}{m}\in H_{*}(X_{i})\otimes Q_{P}$ be a representative of $\alpha$ ,

where $m$ is an integer with $(m, p)=1$ for all $p\in P$. By the condition 2) of
Definition 1.1, there exists an integer $N$ such that $(f_{N,i+1})_{*}x=my$ for some
$y\in H_{*}(X_{N})$ , where $(f_{N,i+1})_{*}:$ $H_{*}(X_{i})\rightarrow H_{*}(X_{N})$ . Then $(1\otimes j)(y\otimes n)=x\otimes--mn$ .
Thus $1\otimes j$ is epimorphic. Suppose that $(1\otimes j)(x\otimes 1)=0$ in $H_{*}(X_{P})\otimes Q_{P}$ .
Clearly $x$ is of order $d$ , where $(d, p)=1$ for any prime $p$ of $P$. Let $x_{m}\in H_{i}(X_{m})$

be a representative of $x$. Then there exists an element $x_{m}^{\prime}\in H_{i\prec\cdot 1}(X_{m} ; Z_{a})$

such that $\partial x_{m}^{\prime}=x_{m}$ where $\partial:H_{i+1}(X_{m} ; Z_{l})\rightarrow H_{i}(X_{m})$ , since $x_{m}$ is of order $d$ . By

the definition of the P-sequence, there exist $N$ and a P-equivalence $f_{m+N,m+1}$ :
$X_{m}\rightarrow X_{m+N}$ such that $(f_{m+N,m+1})_{*}=0:H_{i+1}(X_{m} ; Z_{a})\rightarrow H_{i+1}(X_{m+N} ; Z_{a})$ . By natu-
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rality we obtain that $(f_{m+N,m+1})_{*}(x_{m})=0$ , and hence $x=\{x_{m}\}=\{(f_{m+N,m\dashv\cdot 1})_{*}(x_{m})\}$

$=0$ . Thus $1\otimes j$ is monomorphic. Then we have the following commutative
diagram:

$H_{*}(X)\cong H_{*}(X)\otimes ZH_{*}(X)\underline{1\otimes j}\otimes Q_{P}$

$H_{*}(X_{P})\cong H_{*}(X_{P})\otimes ZH_{*}(X_{P})\otimes Q_{P}\downarrow j_{X}.\otimes 1\underline{1\bigotimes_{\cong}j}\cong\downarrow j_{x.\otimes 1}$

Thus $j_{x}$ . : $H_{*}(X)\rightarrow H_{*}(X_{P})$ is equivalent to $1\otimes j:H_{*}(X)\otimes Z\rightarrow H_{*}(X)\otimes Q_{P}$ .
Q. E. D.

REMARK 2.6. For $X\in \mathfrak{C}_{1}$ , we can construct a P-sequence $\{X_{i}, f_{i}\}$ of $X$ in
such a way that $X_{i}\in \mathfrak{C}_{1}$ for all $i$ (cf. Theorem 1.9). This fact is used in the
above proof.

THEOREM 2.7. Let $P\subset Q$ be given subsets of the set of all primes. Then
there exists a map $j_{P,Q}$ : $X_{Q}\rightarrow X_{P}$ satisfying the following properties:

(1) $j_{P.Q}$ is a P-equivalence.
(2) If $Q$ is the set of all primes (and hence $X_{Q}=X$ ), then $j_{P.Q}$ : $X_{Q}\rightarrow X_{P}$

coincides with the canonical inclusion.
(3) For $P\subset Q\subset R,$ $j_{P,Q}\circ j_{Q.R}\cong j_{P.R}$ .
(4) Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ . Then an arbitrary map $f:X_{Q}\rightarrow Y_{Q}$ induces $f_{P}$ : $X_{P}\rightarrow Y_{P}$

such that the following diagram commutes up to homotopy:

$j_{P.Q}\downarrow\downarrow j_{PQ}X_{Q}Y_{Q}\underline{f}$

.
$f_{P}$

$X_{P}-Y_{P}$

The proof is quite easy and left to the reader.
DEFINITION 2.8. Let $X,$ $Y\in \mathfrak{C}_{1}$ . We define that $X$ and $Y$ have the same

P-type, if there exist $Z\in \mathfrak{C}_{1}$ and two P-equivalences $f:X\rightarrow Z$ and $g:^{-}Y\rightarrow Z$.
PROPOSITION 2.9. If $X$ and $Y$ have the same P-type, then $X_{P}$ is homotopy

equivalent to $Y_{P}$ .
Further if either $X$ or $Y\in \mathfrak{F}\mathfrak{C}_{1}$ , then the converse is true.
If we denote by $g_{P}^{-1}$ the homotopy inverse of the homotopy equivalence $g_{P}$ ,

then a homotopy equivalence from $X_{P}$ to $Y_{P}$ is given by $g_{P}^{-1}\circ f_{P}$ .

\S 3. Further properties of localization.

Let $X,$ $Y$ and $Z\in \mathfrak{C}_{1}$ .
THEOREM 3.1. (1) If $X\rightarrow Y\rightarrow Zisfg$ a cofibering, then $x_{P^{\rightarrow Y_{P}\rightarrow Z_{P}}}^{f_{P^{g_{P}}}}$ is homo-

topy equivalent to a cofibering.
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(2) If $X\rightarrow Y\rightarrow Zfg$ is a fibering, then $x_{P^{\rightarrow Y_{P}\rightarrow Z_{P}}}^{f_{P^{g_{P}}}}$ is homotopy equivalent
to a fibering.

PROOF. (1) Let $C(f_{P})$ be the cofiber of $f_{P}$ and let $i:Y_{P}\rightarrow C(f_{P})$ be the
projection. Then there exists a map $h:C(f_{P})\rightarrow Z_{P}$ such that $g_{P}$ is homotopic

to $h\circ j:Y_{P}\rightarrow C(f_{P})\rightarrow Z_{P}$ . Let $Z^{\pi}\rightarrow SX$ be the canonical boundary map. Then
$\pi$ induces $\pi_{P}$ ; $Z_{P}\rightarrow S(X_{P})$ , since clearly $(SX)_{P}=S(X_{P})$ holds. (More general
formula will be proved below.) Consider the homology exact sequence:

$\partial$

$...\rightarrow H_{i}(X)\rightarrow H_{i}(Y)\rightarrow H_{i}(Z)\rightarrow H_{i-1}(X)\rightarrow\ldots$

and hence we have an exact sequence by Theorem 2.5

$...\rightarrow H_{i}(X_{P})\rightarrow H_{i}(Y_{P})\rightarrow H_{i}(Z_{P})\rightarrow H_{i-1}(X_{P})\rightarrow\ldots$

since tensoring $Q_{P}$ is an exact functor. So by the five lemma we obtain that
$h_{*}:$ $H_{i}(C(f_{P}))\rightarrow H_{i}(Z_{P})$ is an isomorphism for all $i$ . Thus $C(f_{P})$ is homotopy
equivalent to $Z_{P}$ . (2) can be proved quite similarly. Q. E. D.

COROLLARY 3.2.
(1) $(X\times Y)_{P}=X_{P}\times Y_{P}$ .
(2) $(X\wedge Y)_{P}=X_{P}\wedge Y_{P}$ .
(3) $(X\vee Y)_{P}=X_{P}\vee Y_{P}$ .
PROPOSITION 3.3.
(1) $X_{P}\wedge Y=(X\wedge Y)_{P}$ .
(2) $(\Omega X)_{P}=\Omega(X_{P})$ , if $X$ is 2-connected.
PROOF. (1) will be obtained by making use of the K\"unneth formula.

(2) Let $\{X_{i}, f_{i}\}$ be a P-sequence of $X$. Then $\{\Omega X_{i}, \Omega f_{i}\}$ can be a P-sequence
of $\Omega X$. Q. E. D.

Let $K,$ $X\in \mathfrak{C}_{1}$ . We denote by $[K, X]$ the set of homotopy classes of
maps: $K\rightarrow X$. Recall that $[K, X]$ is an abelian group, if $K$ is a double
suspended space. The canonical map $j_{p}$ : $X\rightarrow X_{(p)}$ induces then a homomor $\cdot$

phism $i_{p}*:[K, X]\rightarrow[K, X_{(p)}]$ . Then we have
THEOREM 3.4. Let $K,$ $X\in \mathfrak{F}\mathfrak{C}_{1}$ . Assume that $K$ is a double suspended

space. Then an element $\alpha$ of $[K, X]$ is trivial if and only if $j_{p^{r}}(\alpha)=0$ in
$[K, X_{(p)}]$ for every prime $p$ .

The proof is an application of the theory of finitely generated abelian
groups. (cf. Theorem 4.7.)

\S 4. The pull-back of localized spaces

The purpose of this section is to reconstruct the original space $X$ from
its localized spaces $X_{P}$ .
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$LetP_{i},$ $i\in I,$ $besubsetsofthesetofallprimes$ . $PutP=\bigcap_{I}P_{i}and\overline{P}=\bigcup_{I}P_{i}$ .
Then by Theorem 2.6 there are canonical maps $\overline{\varphi}_{i}$ : $X_{\overline{P}}\rightarrow X_{P_{i}},$

$\varphi_{i}$ : $X_{P_{i}}\rightarrow X_{P}$

and $\varphi:X_{\overline{P}}\rightarrow X_{P}$ according to the inclusions $P\rightarrow P_{i}\rightarrow\overline{P}$. In particular, for any
set $Q$ , there is a canonical map $\varphi_{Q}$ : $X_{Q}\rightarrow X_{(0)}$ , where $X_{(0)}$ is the localization
at $\phi$ , the vacant set $(Q\supset\phi)$ . Let us denote by $\prod_{X_{P}}X_{P_{i}}$ the pull-back (or the

fibred product) of $\varphi_{i}$ over $X_{P}$ . In the below, let $X\in \mathfrak{C}_{1}$ .
THEOREM 4.1. $\prod_{x_{P}}X_{P_{i}}$ is homotopy equivalent to $X_{\overline{P}}$ .
PROOF. It suffices to prove the theorem for $I=\{1,2\}$ . We use the above

notations. By the property of the fibred product, there exists a map
$f:X_{\overline{P}}\rightarrow\prod_{x_{P}}X_{P_{i}}$ such that the following diagram is homotopy commutative:

where $q_{i}$ : $\prod_{X_{P}}X_{P_{i}}\rightarrow X_{Pi}$ is the projection to the ingredient. We will show that

the map $f$ induces an isomorphism $f_{*};$
$\pi_{j}(X_{\overline{P}})\rightarrow\pi_{j}(\prod_{X_{P}}X_{P_{i}})$ for all $j$ . Let $\alpha\in$

$\pi_{j}(X_{\overline{P}})\cong\pi_{j}(X)\otimes Q_{\overline{P}}$ be an element such that $f_{*}(\alpha)=0$ . Then $\overline{\varphi}_{1}.(\alpha)=q_{1}.f_{*}(\alpha)=0$ ,

so $\alpha$ is a torsion element of order prime to $P_{1}$ . Similarly it is shown that $\alpha$

is of order prime to $P_{2}$ . Hence $\alpha$ is of order prime to $\overline{P}$. Namely, $\alpha=0$ in
$\pi_{j}(X)\otimes Q_{\overline{P}}\cong\pi_{j}(X_{\overline{P}})$ . Next we show that $f_{*}$ is epimorphic. To that end, we
decompose $\pi_{j}(X)$ in the following way:

$\pi_{j}(X)\cong F+T_{P}+T_{P_{1}- P}+T_{P_{2}- P}+T^{\prime}$ ,

where $F$ is a free subgroup, $T_{P},$ $T_{P_{1}-P},$ $T_{P_{2}-P}$ are P-torsion, $(P_{1}-P)$ -torsion,
$(P_{2}-P)$ -torsion subgroups respectively, and $T$‘ is the other torsion subgroup.
Let $\alpha$ be an arbitrary element of $\pi_{j}(\prod_{x_{P}}X_{P_{i}})$ . Then $\varphi_{1}.q_{1}.(\alpha)=\varphi_{2}.q_{2}.(\alpha),$ $since\varphi_{1}\circ q_{1}$

$=\varphi_{2}\circ q_{2}$ . So we can write down as

$q_{1}.(\alpha)=\frac{n}{m}\alpha_{1}+\alpha_{2}+x$ , $x\in T_{P_{1}- P}$ ,
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$q_{2*}(\alpha)=\frac{n}{m}\alpha_{1}+\alpha_{2}+y$ , $y\in T_{P_{2}- P}$ ,

where $\frac{n}{m}\in Q_{\overline{P}},$ $\alpha_{1}\in F,$ $\alpha_{2}\in T_{P}$ .

Put $\beta=-\frac{n}{m}\alpha_{1}+\alpha_{2}+x+y\in\pi_{j}(X)\otimes Q_{\overline{P}}=\pi_{j}(X_{\overline{p}})$ . Then it is obvious that

$ f_{*}(\beta)=\alpha$ . In fact,
$\pi_{i}(\prod_{x_{P}}X_{P_{j}})$ has only P-torsion. Q. E. D.

COROLLARY 4.2. Let $P$ be a subset of the set of all primes. Let $\overline{P}$ be the
complement of $P$ in the set. Then

$X_{P}\times_{(0)}X_{\overline{P}}X$
is homotopy equivalent to $X$.

More generally,
COROLLARY 4.3. Let $\bigcup_{t}$

) $P_{i}$ be a disjoint decomposition of the set of all

primes. Then $\prod_{x_{(0)}}^{t}X_{P_{i}}$ is homotopy equivalent to X. In particular, $X$ is homotopy

equivalent to $\prod_{x_{(0)}}^{p}X_{(p)}$ , the pull-back of $\varphi_{p}$ : $X_{(p)}\rightarrow X_{(0)}$ over $X_{(0)}$ for all primes.

COROLLARY 4.4. $X$ is homotopy equivalent to $Y$ if and only if there exists
a map $f:X\rightarrow Y$ inducing a homotopy equivalence $l_{(p)}(f):X_{(p)}\rightarrow Y_{(p)}$ for all
primes $p$ .

THEOREM 4.5. Let $X,$ $Y\in \mathfrak{F}\mathfrak{C}_{1}$ , and let $P$ and $Q$ be two subsets of the set of
all primes. Assume that we are given a $P\cap Q$-equivalence $f:X\rightarrow Y$. Then
there exist a space $Z$ and a Q-equivalence $g:X_{P\cup Q}\rightarrow Z$ and a P-equivalence $h:Z$

$\rightarrow Y_{P\cup Q}$ such that $f_{P\cup Q}=h\circ g$. Further, $Z\in \mathfrak{F}\mathfrak{C}_{1}$ , if $P\cup Q$ is the set of all primes.
PROOF. It follows from Theorem 2.4 that $f_{P\cap Q}$ : $X_{P\cap Q}\rightarrow Y_{P\cap Q}$ is a homo-

topy equivalence. Let $w_{P}$ : $X_{P}\rightarrow X_{P\cap Q}$ and $w_{Q}$ : $Y_{Q}\rightarrow Y_{P\cap Q}$ be the canonical
maps obtained by Theorem 2.7. Denote by $Z=X_{P_{Y_{P}}}\times_{\cap Q}Y_{Q}$ the pull-back of
$f_{P\cap Q}\circ w_{P}$ and $w_{Q}$ over $Y_{P\cap Q}$ . Then the rest of the proof is clear from the
construction of Z. Q. E. D.

Similarly one can prove
THEOREM 4.6. (Mixing homotopy type.) (cf. [23].) Let $\bigcup_{t}P_{i},$

$i\in I$, be a disjoint

decomposition of the set of all primes. Let $X_{i}\in \mathfrak{C}_{1},$ $i\in I$, satisfy that $(X_{i})_{(0)}$ is
of same homotopy type for all $i\in I$. Then there exists $X\in \mathfrak{C}_{1}$ with a $P_{i}$-equi-
valence $X\rightarrow X_{i}$ for all $i\in I$. Furthermore $X\in \mathfrak{F}\mathfrak{C}_{1}$ , if $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ for all $i\in I$.

In the above theorem, the finiteness of $X$, when $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ for all $i\in I$,

can be proved as follows. $H_{*}(X;Q)$ is finite dimensional, since $H_{*}(X_{i} ; Q)$ is
finite dimensional for all $i\in I$. Since $H_{*}(X_{i} ; Z_{p})$ is finite dimensional, so is
$H_{*}(X;Z_{p})$ . Besides, the finite dimension has a common maximum number for
$Q$ and all primes $p$ simultaneously. Hence $X\in \mathfrak{F}\mathfrak{C}_{1}$ .

THEOREM 4.7. Let $X,$ $Y\in \mathfrak{F}\mathfrak{C}_{1}$ . Then an element $\alpha$ of $[SX, Y]$ is trivial
if and only $ifj_{p*}(\alpha)=0$ in $[SX, Y_{(p)}]$ for every prime $p$ , where $j_{p}$ : $Y\rightarrow Y_{(p)}$ is
the canonical map of localization at $p$ .
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PROOF. The necessity is clear. We prove the sufficiency. Let $p$ and $q$

be primes with $(p, q)=1$ . Consider the following diagram:

where the two vertical sequences are fiberings associated with the fibred
product in the bottom square and $j_{p},$ $j_{q},$ $j_{p,q}$ are canonical inclusions. Similarly
for $w_{p},$ $w_{p}^{\prime},$ $w_{q},$

$w_{q}^{\prime}$ . ( $Y_{(p,q)}$ denotes the localization at $\{p,$ $q\}$ ). First we assume
$j_{p*}(\alpha)=j_{q^{*}}(\alpha)=0$ . Then there exists a map $f:SX\rightarrow F_{p}$ such that $ a^{\prime}\circ f\cong j_{p,q}\circ\alpha$ ,
since $w_{p}^{\prime}\circ j_{p,q}\circ\alpha\cong j_{q}\circ\alpha\cong 0$ . Also there exists a map $g:SX\rightarrow\Omega Y_{(0)}$ such that
$b\circ g\cong f$, since $a\circ f\cong w_{q}^{\prime}\circ a^{\prime}\circ f\cong w_{q}^{\prime}\circ j_{p,q}\circ\alpha\cong j_{p}\circ\alpha\cong 0$ . It satisfies that $ j_{p,q}\circ\alpha$

$\cong a^{\prime}\circ f\cong a^{\prime}\circ b\circ g$. Next consider the commutative diagram of abelian groups:

$[SX,\Omega Y_{(p_{p}q)}][SX,\Omega Y[SX,\Omega Y_{(}][SX,\Omega Y_{(0)^{)}}\downarrow(\Omega w_{q)}^{\prime})_{*}\underline{(\Omega w_{q}^{\prime})^{*}}\downarrow(\Omega w_{p}^{(p})_{]^{*}}^{]}\underline{(\Omega w_{q})_{*}}$

As is well known, it is equivalent to the following commutative one:

$[S^{2}X,Y_{(q)^{J}}][SX, Y_{(0)}^{*}]^{]}[S^{2}X,Y_{(pq)}][S_{2}^{2}X_{w_{p}}Y_{(p)}\downarrow w_{p*}^{\prime}w_{q^{\prime}*}\downarrow\underline{w_{q*}}$

.
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Then a simple computation shows that the cokernel of $w_{p*}^{\prime}$ is isomorphic to
that of $w_{p*}$ . So the relation $j_{p,q}\circ\alpha\cong a^{\prime}\circ b\circ g$ implies that $j_{p,q}\circ\alpha\cong 0$ . These
arguments show that, if $j_{p}\circ\alpha\cong 0$ for every prime $p$ of $P$, then $j_{P}\circ\alpha=0$ in
$[SX, Y_{P}]$ . However, when $P$ is the set of all primes, $Y\cong Y_{P}$ and $\alpha\cong j_{P}\circ\alpha$

$\cong 0$ . Q. E. D.
We end this section with the following
CONJECTURE 4.8. Let $X,$ $Y\in \mathfrak{F}\mathfrak{C}_{1}$ . Then an element $\alpha$ of [X, $Y$ ] is trivial

if and only if $j_{p*}(\alpha)=0$ in [X, $Y_{(p)}$] for all primes $p$ .

\S 5. Localizing $P$-universal spaces.

Throughout this section we work in $\mathfrak{F}\mathfrak{C}_{1}$ .
Let $P$ be a subset of the set of all primes. Let us recall the following

theorem which is essentially proved in [12].

THEOREM 5.1. $K\in \mathfrak{F}\mathfrak{C}_{1}$ is P-universal if and only if one of the following
conditions is satisfied:

(1) For any prime $q,$ $q\not\in P$ , and for any $i>0$ , there exists a P-equivalence
$f:K\rightarrow K$ such that the induced homomorphism $f_{*}:$ $H_{i}(K;Z_{q})\rightarrow H_{i}(K;Z_{q})$

is trivial.
(2) For any prime $q,$ $q\not\in P$ , and for any $i>0$ , there exists a P-equivalence

$f:K\rightarrow K$ such that the induced homomorphism $f_{*}\otimes 1:\pi_{i}(K)\otimes Z_{q}$

$\rightarrow\pi_{i}(K)\otimes Z_{q}$ is trivial.
DEFINITION 5.2. $K\in \mathfrak{F}\mathfrak{C}_{1}$ is called P-convertible, if for any $L\in \mathfrak{F}\mathfrak{C}_{1}$ and

for any P-equivalence $h:K\rightarrow L$ , there exists a converse P-equivalence $k:L\rightarrow K$.
THEOREM 5.3. Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ .

(A) Then the following four conditions are equivalent:
(1) $X$ is P-universal.
(2) There exists a P-sequence $\{X_{i}\}$ of $X$ such that $X_{i}=X$.
(3) $l_{P}$ : $[Y, X]\rightarrow[Y_{P}, X_{P}]$ is quasi-epic for any $Y\in \mathfrak{F}\mathfrak{C}_{1}$ , that is, for any

element $\alpha\in[Y_{P}, X_{P}]$ , there exist a homotopy equivalence $h:X_{P}\rightarrow X_{P}$

and a map $g:Y\rightarrow X$ such that $ l_{P}(g)=h\circ\alpha$ .
(4) $X$ is P-convertible.

(B) One of the above conditions implies the following
(5) $l_{P}$ : $[X, Y]\rightarrow[X_{P}, Y_{P}]$ is quasi-epic in the above sense.
PROOF. (A). [(1) implies (2)]. Let $\{X_{i}, f_{i}\}$ be an arbitrary P-sequence

of $X$. By induction we will show that $X_{i}$ can be replaced by $X$ for all $i\geqq 0$ .
The case $i=0$ is trivial, since $X_{0}=X$. We should note here that $X_{i}\in \mathfrak{F}\mathfrak{C}_{1}$ .
Suppose $X_{i}=X$. Since $X=X_{i}$ is P-universal, there exists a converse P-
equivalence $g_{i+1}$ : $X_{i+1}\rightarrow X=X_{i}$ for a P-equivalence $f_{i+1}$ : $X=X_{i}\rightarrow X_{i+1}$ . Then
we can replace $X_{i+1}$ by $X$ via $g_{i+1}$ .



608 M. MIMURA, G. NISliIDA and H. TODA

[(2) implies (1)]. Suppose we are given a P-sequence $\{X_{i}, f_{i}\}$ of $X$ with
$X_{i}=X$. Then by definition, for any $n>0$ and for any prime $q,$ $q\not\in P$, there
exists $i>0$ such that $(f_{i}\circ\cdots\circ f_{1})_{*}=0$ : $H_{n}(X_{0};Z_{q})\rightarrow H_{n}(X_{i};Z_{q})$ . So the P-
equivalence $ f_{i}\circ$ $\circ f_{1}$ satisfies (1) of Theorem 5.1.

[(2) implies (3)]. Let $\alpha\in[Y_{P}, X_{P}]$ be arbitrary and $f:Y\rightarrow X$ a representa-

tive of $\alpha$ . Let $j_{Y}$ : $Y\rightarrow Y_{P}$ be the canonical inclusion. Then there exists $i\geqq 0$

such that the composite map $f\circ j_{Y}$ : $Y\rightarrow Y_{P}\rightarrow X_{P}$ is factored through $X_{i}$ , since
$Y$ is a finite complex. Namely, there exists a map $g:Y\rightarrow X_{i}$ such that $f\circ j_{Y}$

$\cong j_{i}\circ g$, where $j_{i}$ : $X_{i}\rightarrow X_{P}$ is the obvious inclusion. Therefore $ l_{P}(g)=h\circ\alpha$

with some homotopy equivalence $h:X_{P}\rightarrow X_{P}$ .
[(3) implies (4)]. Let $Y\in \mathfrak{F}\mathfrak{C}_{1}$ be given. Let $f:X\rightarrow Y$ be an arbitrary

P-sequence. Then by Theorem 2.4 $l_{P}(f):X_{P}\rightarrow Y_{P}$ is a homotopy equivalence.
Let $k:Y_{P}\rightarrow X_{P}$ be its homotopy inverse. Then by (3) there exists a map $g$ :
$Y\rightarrow X$ such that $l_{P}(g)$ is a homotopy equivalence. Hence $g$ is a P-equivalence.

[(4) implies (2)]. This is just the same as in [(1) implies (2)].

(B). [(1) implies (5)]. Let $f:X_{P}\rightarrow Y_{P}$ be an arbitrary map. Let $\{Y_{i}, h_{i}\}$

be a P-equivalence of Y. Since $X$ is a finite complex, the composite $f\circ j_{X}$ : $X\rightarrow Y_{P}$

is factored through $Y_{i}$ for some $i$ , that is, there exists a map $g:X\rightarrow Y_{i}$ such
that $f\circ j_{X}\cong j_{i}\circ g$, where $j_{i}$ : $Y_{i}\rightarrow Y_{P}$ is the obvious inclusion. Now $ h_{i}\circ$ $\circ h_{1}$ :
$Y=Y_{0}\rightarrow Y_{i}$ is a P-equivalence. Since $X$ is P-universal, there exist a P-
equivalence $k:X\rightarrow X$ and a map $d:X\rightarrow Y$ such that the following diagram
is homotopy commutative:

$k$ $j_{X}$

$X-$ $X-X_{P}$
$d|$ $ g\downarrow$ $\downarrow f$

$Y-Y_{i=}Y_{P}$
$h_{i}\circ\cdots\circ h_{1}$ $J_{i}$

Thus there exists a homotopy equivalence $a$ : $Y_{P}\rightarrow Y_{P}$ such that $l_{P}(d)=a\circ f$.
Q. E. D.

COROLLARY 5.4. In the category of P-universal spaces, $X$ and $Y$ are P-
equivalent if and only if $X_{P}$ and $Y_{P}$ are homotopy equivalent.

REMARK 5.5. Let $X$ be P-universal. Then $X_{P}$ is a finite dimensional 1-
connected CW-complex. Actually, the dimension of the telescope $\cup X_{i}=$

$\dim X+1$ , since $X=X_{i}$ .
THEOREM 5.6. Let $X$ be P-universal. Then

$[S_{P}^{n}, X_{P}]\cong\pi_{n}(X)\otimes Q_{P}$ for $n\geqq 2$ .

Before proving we state an easy lemma without proof:
LEMMA 5.7. Let $A$ be a $Q_{P}$-module and let $B$ be a linitely generated (as a

Z-module) abelian subgroup of A. Assume that, for each element $x\in A$ , there
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exists $m$ such that $mx\in B$ and $(m, p)=1$ for any $p\in P$. Then $A\cong B\otimes Q_{P}$ .
(PROOF OF THEOREM 5.6)
Consider the morphism $l_{P}$ : $[S^{n}, X]\rightarrow[S_{P}^{n}, X_{P}]$ . Since $[S_{P}^{n}, X_{P}]$ is a $Q_{P}-$

module, the kernel of $l_{P}$ contains a P-torsion subgroup of $[S^{n}, X]$ , where $\overline{P}$

denotes the complement of $P$ in the set of all primes. Let $\{X_{i}, f_{i}\}$ be a P-
sequence of $X$. Take $\alpha\in[S^{n}, X]\cong\pi_{n}(X)$ such that $l_{p}(\alpha)=0$ . Then there
exists $i$ such that the composite $f_{i}\circ\alpha;S^{n}\rightarrow X\rightarrow X_{i}$ is null homotopic. (Note

that $X_{i}=X$, since $X$ is P-universal.) Thus $\alpha$ is a torsion element of order
prime to $P$. Therefore the kernel of $l_{P}$ is isomorphic to a P-torsion subgroup
of $\pi_{n}(X)$ , and hence we obtain a monomorphism $l_{P}^{\prime}$ : $\pi_{n}(X:P)\rightarrow[S_{P}^{n}, X_{P}]$ ,
where $\pi_{n}(X:P)$ denotes a P-primary component of $\pi_{n}(X)$ . The image of $l_{P}^{\prime}$

then satisfies the condition of Lemma 5.7, since $X$ is P-universal. Thus we
get the theorem. Q. E. D.

\S 6. $Mod$ $P$ $H$-spaces and $mod P$ co-$H$-spaces.

In this section we work in $\mathfrak{F}\mathfrak{C}_{1}$ .
DEFINITION 6.1. A pointed complex (X, e) is called an H-space, if there

exists a map $\mu:X\times X\rightarrow X$ preserving a base point such that $\mu\circ i_{1}\cong\mu\circ i_{2}\cong 1_{X}$ ,

where $i_{j}$ : $X\rightarrow X\times X$ is the obvious inclusion. The map $\mu$ is called a multi-
plication or an H-structure on $X$. Let $P$ be a subset of the set of all primes.
$X$ is called a $mod P$ H-space, if $\mu\circ i_{1}\cong\mu\circ i_{2}\cong l$ , which is a P-equivalence.
Similarly as above, $\mu$ is called a $mod P$ multiplication or a $mod P$ H-structure
on $X$.

Dually we define
DEFINITION 6.1’. A pointed complex (X, e) is called a co-H-space, if there

exists a map $\varphi:X\rightarrow X\vee X$ preserving a base point such that $p_{1}\circ\varphi\cong p_{2}\circ\varphi\cong 1_{X}$ ,

where $p_{j}$ ; $X\vee X\rightarrow X$ is the obvious projection. The map $\varphi$ is called a co-H-
structure on X. $X$ is called a $mod P$ co-H-space, if $p_{1}\circ\varphi\cong p_{2}\circ\varphi\cong l$ , which
is a P-equivalence. The map $\varphi$ is called a $mod P$ co-H-structure.

Suppose we are given spaces Xand $Y$ and maps $k:X\rightarrow Y$ and $h:Y\rightarrow X$.
DEFINITION 6.2. $X$ is dominated (or P-dominated) by $Y$ , if the composite

$h\circ k:X\rightarrow Y\rightarrow X$ is a homotopy equivalence (a $mod P$ equivalence).

First we consider the localization at $0$ of H-spaces. The following theo-
rem is essentially due to Arkowitz-Curjel [5].

THEOREM 6.3. The following statements are equivalent.
(1) $X$ is a $mod 0$ H-space.
(2) $X_{(0)}$ is an H-space.
(3) $X_{(0)}=\prod_{i\in I}K(Q, n_{i})$ , where I is a finite set and $n_{i}$ is an odd integer.

(4) All k-invariants are of finite order in the Postnikov decomposition of $X$.
PROOF. The equivalence between (1) and (4) is just Theorem of [5].
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Further according to Theorem of [5], $X$ is a $mod 0$ H-space if and only if
there exists a O-equivalence $\prod_{i}S^{n_{i}}\rightarrow X$ with $n_{i}$ odd, that is equivalent to that

$X_{(0)}=\prod_{i}K(Q, n_{i})$ by Theorem 2.4, since $S_{(0^{i})}^{n}=K(Q, n_{i})$ . Now we show the

equivalence between (1) and (2).

[(1) implies (2)]. By the assumption there exists a map $\mu:X\times X\rightarrow X$

such that $i_{1}\circ\mu\cong i_{2}\circ\mu\cong l$ , which is a O-equivalence. So by localizing we get

that $i_{1(0)}\circ\mu_{(0)}\cong i_{2(0)}\circ\mu_{(0)}\cong l_{(0)}$ , which is a homotopy equivalence of $X_{(0)}$ . Since
$X_{(0)}$ is a CW-complex, $X_{(0)}$ is an H-space by the Dold’s theorem.

[(2) implies (1)]. Note that $X_{(0)}$ is rationally finite dimensional, since
$H_{*}(X;Q)\cong H_{*}(X_{0)})$ by Theorem 2.5. Hence $H^{*}(X;Q)\cong\Lambda(x_{1}$ , $\cdot$ .. , $x_{r})$ with
$\deg x_{i}$ odd. So by Theorem 2.5 of [11], $X$ is O-universal. Now by the assump-
tion we have a multiplication $\mu:X_{(0)}\times X_{(0)}=(X\times X)_{(0)}\rightarrow X_{(0)}$ . Since $l_{0}$ : $[X\times$

$X,$ $X$ ] $\rightarrow[(X\times X)_{(0)}, X_{(0)}]$ is quasi-epic by Theorem 5.3, there exists a map
$\overline{\mu}:X\times X\rightarrow X$ such that $\overline{\mu}\circ i_{1}\cong\overline{\mu}\circ i_{2}$ is a O-equivalence of $X$. Q. E. D.

Dually we have ([4]):

THEOREM 6.3’. The following statements are equivalent.
(1) $X$ is a $mod 0$ co-H-space.
(2) $X_{(0)}$ is a co-H-space.
(3) $X_{(0)}=\ovalbox{\tt\small REJECT} S_{(0)}^{n_{i}}i\in I$ where I is a finite set.

(4)i All $k^{\prime}$ -invariants are of finite order in the homology decomposition.
Next we will discuss a $mod P$ version of the above theorems.
THEOREM 6.4. Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ . Then the following conditions are equivalent.
(1) $X$ is a $mod P$ H-space.
(2) $X_{P}$ is an H-space.
(3) $X$ is P-dominated by a $mod P$ H-space.
PROOF. [(1) implies (2)]. We localize $\mu\circ i_{1}$ and $\mu\circ i_{2}$ at $P$. Then they

give a homotopy equivalence: $X_{P}\rightarrow(X\times X)_{P}=X_{P}\times X_{P}\rightarrow X_{P}$ . So it is easy to
see that $X_{P}$ is an H-space.

[(2) implies (1)]. By the assumption we have a multiplication $\mu^{\prime}$ : $X_{P}\times X_{P}$

$\rightarrow X_{P}$ . Now $X$ is P-universal by Theorem 2.5 of [11], since $H^{*}(X;Q)$

$\cong H^{*}(X_{P} ; Q)\cong\Lambda(x_{1}$ , $\cdot$ .. , $x_{\iota})$ with $\deg x_{i}$ odd. From Theorem 5.3 follows the
existence of such a map $\mu:X\times X\rightarrow X$ that $\mu\circ i_{1}\cong\mu\circ i_{2}\cong h$ , which is a $P$,

equivalence. Hence $X$ is a $mod P$ H-space.
[(1) implies (3)]. The proof is clear.
[(3) implies (1)]. Let $Y$ be a $mod P$ H-space dominating $X$ with maps

$k:X\rightarrow Y$ and $h:Y\rightarrow X$ such that $h\circ k$ is a P-equivalence. Let $\mu:Y\times Y\rightarrow Y$

be a $mod P$ H-structure such that $\mu\circ i_{1}\cong\mu\circ i_{2}\cong l$ is a P-equivalence. By
Lemma 3.3 of [12], there exists a positive integer $r$ such that lr is the identity
of $H_{*}(Y;Z_{p})$ for all $p\in P$, where $l^{r}=l\circ\cdots\circ l$ the r-fold iteration. Then the
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composite of maps

$X\times X\rightarrow k\times kY\times YY\times Y\underline{l^{r- 1}\times l^{r- 1}}\rightarrow^{\mu}Y\rightarrow^{h}X$

gives $X$ a $mod P$ H-structure. Q. E. D.
Dually we have
THEOREM 6.4’. Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ . Then the following conditions are equivalent.
(1) $X$ is a $mod P$ co-H-space.
(2) $X_{P}$ is a co-H-space.
(3) $X$ is P-dominated by a $mod P$ co-H-space.
Let $\mu:X\times X\rightarrow X$ be a $mod P$ H-structure on $X$ such that $\mu\circ i_{1}\cong\mu\circ i_{2}\cong h$ ,

which is a P-equivalence.
DEFINITION 6.5. $X$ is $mod P$ homotopy associative, if $\mu\circ(\mu\times h)\cong\mu\circ(h\times\mu)$ .

Dually we define a $mod P$ homotopy coassociativity on a $mod P$ co-H-space.
THEOREM 6.6. Let $X\in \mathfrak{F}\mathfrak{C}_{1}$ .

\langle$A$) The following statements are equivalent.
(1) $X$ is a $mod P$ homotopy associative H-space.
(2) $X_{P}$ is a homotopy associative H-space.

(B) Moreover if $P\ni 2$ and 3, or if $P\ni\ni 2$ nor 3, then one of (1) and (2) is
equivalent to the following:

(3) $X$ is P-dominated by a homotopy associative H-space.
PROOF. (A) The equivalence between (1) and (2) can be proved as before.
(B) The proof for [(3) implies (1)] is quite analogous to that for $[(3)$

implies (1)] of Theorem 6.4. However, the proof for [(2) implies (3)] needs
further results on the localization of H-complexes. So it will be at the end
of the next section.

Elementary but non-trivial examples for a $mod P$ H-space, $P\exists\ni 2$ , are odd
dimensional spheres. Let $p$ be a prime. Then, as is expected, the $mod p$

structure on $S^{n},$ $n$ : odd, is unique for sufficiently large $p$ . More precisely,
THEOREM 6.7. Let $p$ be an odd prime. Then the number of $mod p$ H-

structures, up to homotopy, of $S^{n}$ ( $n$ : odd) is equal to the order of $\pi_{2n}(S^{n} : p)$ .
PROOF. The number of $mod p$ H-structures on $S^{n}$ is equal to that of H-

structures on $S_{(p)}^{n}$ . It is equal to the number of elements of $[S_{(p)}^{n}\times S_{(p)}^{n}$ ,
$S_{(p)}^{n}\vee S_{(p)}^{n}$ ; $S_{(p)}^{n},$ $*$] by [15]. Then the theorem follows from the fact that
$[S_{(p)}^{n}\times S_{(p)}^{n}, S_{(p)}^{n}\vee S_{(}^{n}p);S_{(p)}^{n},$ $*$] $=$ [ $S_{(p)}^{n}$ A $S_{(p)}^{n},$ $S_{(p)}^{n}$] $=[S_{(p)}^{2n}, S_{(p)}^{n}]=\pi_{2n}$( $S^{n}$ ; p) by

Theorem 5.6. Q. E. D.
Now let us recall the notion of $A_{n}$ -form (or $A_{n}$-space) due to Stasheff

[20]. For example, an $A_{2}$ -space, an $A_{3}$ -space, an $A_{\infty}$-space are an H-space, a
homotopy associative H-space and an H-space equivalent to a loop space,
respectively.

As is well known [20], $S_{(p)}^{2n-1}$ admits an $A_{p-1}$ -form.
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PROPOSITION 6.8. If $S_{(p)}^{2n-1}$ admits an $A_{p}$ -form, then $n|p-1$ .
PROOF. If $S_{(p)}^{2n-1}$ admits an $A_{p}$-form, then there exists a “ projective p-

space” $X$ over $S_{(p)}^{2n-1},$ $[20]$ , such that $H^{*}(X;Z_{p})\cong Z_{p}[x_{2n}]/(x_{A}^{p_{\eta}+1})$ . To prove the
proposition it suffices to show that $\mathfrak{p}^{1}$ is non-trivial in $H^{*}(X;Z_{p})$ . For, if
$\mathfrak{p}^{1}x_{2n}^{\gamma}\neq 0$ , by taking the degree, $2p-2+2nr=2nk$ , and hence $n|p-1$ . Let $r$ be
such a number that $\mathfrak{p}^{p^{r}}$ is non-trivial but $\mathfrak{p}^{p^{i}}=0$ for $i<r$ in $H^{*}(X;Z_{p})$ . Clearly

such $r$ exists, since $\mathfrak{p}^{n}x_{2n}=x_{2}^{p_{n}}\neq 0$ . Then from the structure of $H^{*}(X;Z_{p})$

and from the factorization of $\mathfrak{p}^{p^{r}}$ by secondary operations ([18]), we get $r=0$ .
This completes the proof. Q. E. D.

THEOREM 6.9 (Adams). (1) Let $P\exists\ni 2$ . Then $S^{2n-1}$ is a $mod P$ H-space

for all $n$ .
(2) Let $P\ni 2$ . Then $S^{2n-1}$ is a $mod P$ H-space if and only if $n=1,2,4$ .
(3) Let $P\exists\ni 2$ nor 3. Then $S^{2n-1}$ is a $modP$ homotopy associative H-space

for all $n$ .
(4) Let $P\cong 2$ and $P\ni 3$ . Then $S^{2n-1}$ is a $mod P$ homotopy associative H-

space if and only if $n=1,2$ .
PROOF. First recall the classical result that the obstruction to extend

the map $\iota_{2n- 1}\vee\iota_{2n- 1}$ ; $S^{2n-1}\vee S^{2n-1}\rightarrow S^{zn-1}$ over $S^{2n-1}\times S^{2n-1}$ is the Whitehead
product $[\iota_{2n- 1}, \iota_{2n- 1}]$ , which is trivial for $n=1,2,4$ and is of order 2 other-
wise.

(1) In any case there exists a map $S^{2n-1}\times S^{2n-1}\rightarrow S^{2n-1}$ of type $(2, 2)$ for
any $n$ . So, if $P\exists\ni 2,$ $S^{2n-1}$ is a $mod P$ H-space.

(2) Let $P\ni 2$ . If $7l=1,2,4$ , then $S^{2n-1}$ is an H-space, and hence it is a
$mod P$ H-space. If $n\neq 1,2,4$ , then the obstruction $[\iota_{2n- 1}, \iota_{2n- 1}]_{P}\neq 0$ , and hence
$S\frac{9}{P}\eta-1$ is not an H-space.

(3) If $P\exists\ni 2,3$ , then clearly $S_{P}^{2n-1}$ is a homotopy associative H-space, and
hence $S^{2n-1}$ is a $mod P$ homotopy associative H-space.

(4) Let $P\ni\ni 2$ and $P\ni 3$ . If $n=1,2$ , then $S^{2n-1}$ is an associative H-space,
and hence $S^{2n-1}$ is a $mod P$ homotopy associative H-space. Conversely, sup-
pose that $S_{P}^{2n-1}$ is a homotopy associative H-space. Then $S_{(3)}^{2n-1}$ is also a
homotopy associative H-space. Then by Proposition 6.8 we have that $n|2_{r}$

and hence $n=1,2$ . Q. E. D.

\S 7. Localization of finite $H$-complexes.

In this section we work in $\mathfrak{F}\mathfrak{C}_{1}$ again. First we show
THEOREM 7.1. (cf. [23].) Let $ 2\leqq n\leqq\infty$ .
(1) If $X$ is an $A_{n}$ -space, then $X_{(p)}$ is an $A_{n}$-space for every prime $p$ and

for $p=0$ .
(2) If $X_{(p)}$ is an $A_{n}$ -space and if the canonical map $\varphi_{p}$ : $X_{(p)}\rightarrow X_{(0)}$ is an
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$A_{n}$ -map for all primes $p$ , then $X$ is itself an $A_{n}$-space.
PROOF. (1) is clear. (2) follows from Corollary 4.3. Q. E. D.
When applying the above theorem, we have to check that the map $\varphi_{p}$ : $X_{(p\rangle}$

$\rightarrow X_{(0)}$ is an $A_{n}$ -map. For $n=2,3$ and $\infty$ , the following proposition gives a
sufficient condition for that. In the below $\beta_{i}(X)$ and $\gamma_{i}(X)$ denote the i-th
Betti number of $X$ and the rank of $\pi_{i}(X)$ respectively.

PROPOSITION 7.2. Let $n=2,3$ or $\infty$ . Suppose that $\beta_{i}(X\Lambda X)\gamma_{i}(X)=0$ for
all $i$ . Then $X$ is an $A_{n}$ -space if and only if $X_{(p)}$ is an $A_{n}$ -space for all primes
$p$ and for $p=0$ .

PROOF. If $\beta_{i}(X\wedge X)\gamma_{i}(X)=0$ for all $i$ , then it is clear that the multipli-
cation on $X_{(0)}=\prod K(Q, 2n_{i}-1)$ is unique up to homotopy. Then $\varphi_{p}$ : $X_{(p)}\rightarrow X_{(0)}$

is an $A_{n}$ -map. The rest is clear. Q. E. D.
More generally we will prove the following

THEOREM 7.3. Let $\bigcup_{?--1}^{r}P_{i}$ be a disjoint decomposition of the set of all primes.

Let $X_{i}\in \mathfrak{F}\mathfrak{C}_{1},1\leqq i\leqq r$, be a $mod P_{i}$ H-space such that there exists a homotopy
equivalence $h_{i}$ : $(X_{i})_{(0)}\rightarrow(X_{1})_{(0)}$ , which is an H-map, for all $i$ . Then there exists
a finite H-complex $X$ such that $X_{P_{i}}=(X_{i})_{P_{i}}$ . Further, if each $X_{i}$ is a $mod P_{i}$

homotopy associative H-space, $X$ is a homotopy associative H-space.
PROOF. By the assumption, $(X_{i})_{P_{i}}$ is an H-space, and hence it induces an

H-structure on $(X_{i})_{(0)}$ . Denote the canonical map by $\varphi_{i}$ : $(X_{i})_{P}\rightarrow(X_{i})_{(0)}$ . Then
the composite map $h_{i}\circ\varphi_{i}:(X_{i})_{P}\rightarrow(X_{i})_{(0)}\rightarrow(X_{1})_{(0)}$ is an H-map. Put $X=\prod(X_{i})_{Pi}(X_{1})_{(0)}$

the pull back of $h_{i}\circ\varphi_{i}$ over $(X_{1})_{(0)}$ . Then by Theorem 4.6 $X$ is a finite com-
plex. Obviously $X$ is an H-space. The rest of the theorem is clear. Q. E. D.

LEMMA 7.4. Let $X$ be a space such that $H^{*}(X;Q)\cong\Lambda(x_{1}$ , $\cdot$ .. , $x_{r})$ with
$\deg x_{t}=n_{i}$ odd. Further suppose that a given H-structure on $X_{(0)}$ induces an
associative Hopf algebra structure on $H^{*}(X_{(0)} ; Q)$ . Then there exists a homotopy

equivalence $X_{(0)}\rightarrow\prod_{?=1}^{r}K(Q, n_{i})$ , which is an H-map.

PROOF. By the Hopf-Samelson theorem [16], we can choose primitive
generators $y_{i}(1\leqq i\leqq r)$ such that $H^{*}(X;Q)\cong\Lambda(y_{1}, y_{r})$ with $\deg y_{i}=n_{i}$ .
We may consider that $y_{i}$ is represented by a map $f_{i}$ : $X\rightarrow K(Q, n_{i})$ . Then the
required map is obtained by

$X\rightarrow\Pi X->\Pi^{r}K(Q, n_{i})$ ,
$\Delta$

$i$

$f_{1}\times\cdots\times f_{r}i=1$

where $\Delta$ is the diagonal map. Q. E. D.

COROLLARY 7.5. Let $\bigcup_{\tau=1}^{r}P_{i}$ be a disjoint decomposition of the set of all

primes. Let $X_{i}\in \mathfrak{F}\mathfrak{C}_{1},1\leqq i\leqq r$, be a $mod P_{i}$ H-space such that $ H^{*}(X_{i} ; Q)\cong$

$\Lambda(x(i)_{1}, --, x(i)_{l})$ is an associative Hopf algebra for all $1\leqq i\leqq r$, with $\deg x(i)_{j}$
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$=n_{j}$ odd for $1\leqq i\leqq r$. Then there exists a finite H-complex $X$ such that $X_{P_{i}}$

$=(X_{i})_{P_{i}}$ .
PROOF. It suffices to show that $X_{i}$ satisfies the condition of Theorem 7.3.

Actually, we have an H-equivalence: $(X_{i})_{(0)}\rightarrow\prod_{j=1}^{\ell}K(Q, n_{j})$ for all $1\leqq i\leqq r$ .
Q. E. D.

REMARK 7.6. If each of $X_{i}$ is of the same rational type and if each of
$X_{1}$ is one of the following, then the conditions of the theorem are satisfied.

(1) $X_{i}$ is $mod P_{i}$ homotopy associative.
(2) $\beta_{j}(X_{i}\wedge X_{i})\gamma_{j}(X_{i})=0$ .
(3) $X_{i}$ is $P_{i}$ -equivalent to a product of spaces satisfying (1) or (2).

(PROOF OF THEOREM 6.6: continued) [(2) implies (3)].

Let $\mu:X_{P}\times X_{P}\rightarrow X_{P}$ be a homotopy associative multiplication. Then $\mu$

induces a homotopy associative multiplication $\mu_{(0)}$ : $X_{(0)}\times X_{(0)}\rightarrow X_{(0)}$ by Theorem
2.7. Then by the Hopf-Samelson Theorem, we have that $H^{*}(X_{(0)} ; Q)\cong\Lambda(y_{1}$ ,
... , $y_{r}$), where $\deg y_{i}=n_{i}$ is odd and $y_{i}$ is primitive for every $i$ . By Lemma

7.4, there is an H-equivalence $a:X_{(0)}\rightarrow\prod_{i=t}^{f}K(Q, n_{i})$ . Let $Q$ be the complement

of $P$ in the set of all primes.
(Case: $P\ni 2,3$)

Put $Y=\prod_{i=1}^{r}S^{n_{i}}$ . Then by Theorem 6.9, $Y_{Q}$ is a homotopy associative H-

space. Again by Lemma 7.4 there is an H-equivalence $b:Y_{(0)}\rightarrow\acute{\prod_{i=1}}K(Q, n_{i})$ .
Denoting by $j_{P}$ : $X_{P}\rightarrow X_{(0)},$ $(j_{Q} : Y_{Q}\rightarrow Y_{(0)})$ the canonical map, we consider the

pull back $Z=x_{P_{\Pi K(Qn_{i})}^{\times,Y_{Q}}}$ of $a\circ j_{P}$ and $b\circ j_{Q}$ over $\prod_{i=1}^{r}K(Q, n_{i})$ . Then by Theo-

rem 7.3, $Z$ is a homotopy associative finite H-complex. Further, there exists
a P-equivalence $X\rightarrow Z$ (and hence a P-equivalence $Z\rightarrow X$, too). So $X$ is P-
dominated by a homotopy associative H-space.

(Case: $P*2$ nor 3)
Clearly, there exist sets of integers $(m_{1}$ , $\cdot$ .. , $m_{r})$ and $(k_{1}, \cdots , k_{s})$ such that

$X\times\prod_{=1}^{f}S^{m_{i}}$ has the same O-type of $\prod_{=\iota}^{l}SU(k_{i})$ . For simplicity put $Y=\prod_{-1}^{r}S^{m_{i}}$ .
Then $(X\times Y)_{P}=X_{P}\times Y_{P}$ is homotopy associative, since $P\exists\ni 2$ nor 3. Similarly

as above, we denote by $Z$ the pull back over $\Pi K(Q, n_{i})\times\Pi K(Q, m_{i})$ of H-
maps $(X\times Y)_{P}\rightarrow\Pi K(Q, n_{i})\times\Pi K(Q, m_{i})$ and $(\Pi SU(k_{i}))_{Q}\rightarrow\Pi K(Q, n_{i})\times\Pi K(Q, m_{i})$ .
ThenZisa homotopy associative finite H-complex. $HerethemapZ\rightarrow(X\times Y)_{p}$

$Jz$ $h$

is factored as: $Z\rightarrow Z_{P}\rightarrow(X\times Y)_{P}$ , where $j_{Z}$ is a natural inclusion and $h$ is a
homotopy equivalence. Since $X$ and $Z$ are P-universal spaces, there exist
maps $f:X\rightarrow Z$ and $g:Z\rightarrow X$ such that the following is homotopy commutative:
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where $i$ and $\pi$ are the obvious inclusion and projection. Thus $g\circ f$ is a P-
equivalence, and hence $X$ is P-dominated by $Z$. Q. E. D.

\S 8. New finite $H$-complexes.

For a simply connected finite H-complex $X$, the classical Hopf theorem

states that $H^{*}(X;Q)\cong\Lambda(x_{1}$ , $\cdot$ .. , $x_{\iota})$ with $\deg x_{i}=n_{i}$ odd. Then $\sum_{i=1}^{/}n_{i}=\dim X$ .
$l$ is called the rank of $X$ and the sequence $(n_{1}, \cdot , n_{\iota})$ is called the (rational)
type of $X$. Recently, Hilton-Roitberg [8] have discovered a finite H-complex
of type $(3, 7)$ , which is a principal $S^{3}$ -bundle over $S^{7}$ and not of the same
homotopy type of $sp(2)$ . Similar examples are also discovered by Stasheff
[21]. In this section we will construct more finite H-complexes by making
use of the theorems in the previous sections.

Let $G$ be a compact, connected, simply connected topological group and
let $H$ be a closed subgroup such that $G/H=S^{2n\cdot!- 1},$ $(n\geqq 1)$ . We consider a
principal H-bundle: $H\rightarrow G\rightarrow S^{2n+1}$ with a characteristic class $\alpha\in\pi_{2n}(H)$ of
finite order $d$ . Let $k:S^{2n\cdot 1}k\rightarrow S^{2n+1}$ be a map of degree $k$ . We denote by $E_{k}$

the bundle induced by $k$ from the above principal bundle. Then $k$ induces
a bundle map $\tilde{k}:E_{k}\rightarrow G$ . In the below, $\nu_{p}(k)$ denotes the exponent of $p$ in the
factorization of an integer $k$ into prime powers.

THEOREM 8.1. Suppose that $\nu_{p}(k)=0$ or $\nu_{p}(k)\geqq\nu_{p}(d)$ for any prime $p$ .
Then $E_{k}$ is an H-space if and only if $\nu_{2}(k)=0$ or $n=1,3$ . Further, $E_{k}$ is a
homotopy associative H-space if $\nu_{2}(k)=\nu_{3}(k)=0$ .

PROOF. Let $l$ be minimal positive integer such that $d|lk$ . Consider the
following commutative diagram:
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$H\underline{1_{H}}>H\underline{1_{H}}H$

$\downarrow$

$l^{\sim}$

$\downarrow$

$\tilde{k}$

$\downarrow$

$E_{k\iota}-\rangle E_{k}-\rangle G$

$S^{2n+1}S\downarrow\underline{l}\downarrow_{2n^{\llcorner}1}\underline{k}*S|_{2n+1}$

Note that $E_{kl}=H\times S^{2n+1}$ , since $d|kl$ . Clearly we have: $\tilde{k}$ : $E_{k}\rightarrow G$ is a $p$-equi-
valence, if $\nu_{p}(k)=0$ . $l^{\sim}:H\times S^{2n+1}\rightarrow E_{k}$ is a $p$-equivalence, if $\nu_{p}(k)\geqq\nu_{p}(d)$ .
Assume that $\nu_{2}(k)\neq 0$ (and hence $\nu_{2}(k)\geqq\nu_{2}(d)$). Then 7: $H\times S^{2n+1}\rightarrow E_{k}$ is a 2-
equivalence. So, if $E_{k}$ is an H-space, $S^{2n+1}$ is a $mod 2$ H-space, and hence
$n=1$ or 3 by Theorem 6.9.

Now suppose that $\nu_{2}(k)=0$ or $n=1,3$ . Put $P_{1}=$ { $p$ a prime $|\nu_{p}(k)=0$ }.
Denote by $P_{2}$ the complement of $P_{1}$ in the set of all primes. Let $\varphi$ be the
multiplication on $G$ and $\varphi^{\prime}$ the restriction of $\varphi$ on $H$. Denote by $s$ the map
$S^{zn+1}\times S^{2n+1}\rightarrow S^{2n+1}$ of type $(2, 2)$ . Let $a:S_{P_{2}}^{2n+1}\rightarrow S_{P_{2}}^{2n+1}$ be a map dividing
by 2, if $P_{2}\exists\ni 2$ . Let $\mu=a\circ s_{P_{2}}$ , if $P_{2}*2$ , and let $\mu$ be the ordinary multipli-
cation localized at $P_{2}$ , if $P_{2}\ni 2$ . By introducing a multiplication $\varphi_{P_{2}}^{\prime}$ and $\mu$

on $H_{P_{2}}$ and $(S^{2n+1})_{P_{2}}$ separately, we obtain a multiplication $\psi:(H\times S^{2n+1})_{P_{2}}$

$\times(H\times S^{2n+1})_{P_{2}}\rightarrow(H\times S^{2n+1})_{p_{2}}$ . Since $E_{k}$ is $P_{1}-$ and $P_{2}$ -dominated by $G$ and
$H\times S^{2n+1}$ respectively, $E_{k}$ is a $mod P_{i}$ H-spaces. So we define a multiplication
$\mu_{i}$ on $(E_{k})_{P_{i}}$ as follows:

$\mu_{1}=(\tilde{k}_{P_{1}})^{-1}\circ\varphi_{P_{1}}\circ(\tilde{k}_{P_{1}}\times\tilde{k}_{P1}):(E_{k})_{P1}\times(E_{k})_{P_{1}}\rightarrow G_{P_{1}}\times G_{P_{1}}\rightarrow G_{P1}\rightarrow(E_{k})_{P_{1}}$ ,

$\mu_{2^{=l\circ\psi\circ((l)^{-1}\times(l)^{-1}):(E_{k})_{P_{2}}\times(E_{k})_{P_{2}}\rightarrow(H\times S^{2n+1})_{P_{2}}\times(H\times S^{2n+1})_{P_{2}}}}^{\sim_{P_{2}}\sim_{P_{2}}\sim_{P_{2}}}$

$\rightarrow(H\times S^{2n+1})_{P_{2}}\rightarrow(E_{k})_{P_{2}}$ ,

where $(\tilde{k}_{P_{1}})^{-1}$ and $(l)^{-1}\sim_{P_{2}}$ are :homotopy inverses of $\tilde{k}_{P_{2}}$ and $\sim_{P_{2}}l$ respectively.
Then by the fact that $ k\circ l\sim=\tilde{k}\circ l\sim$ and by Theorem 2.7 we obtain a homotopy

commutative diagram
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By (4) of Theorem 2.7 $\mu_{1}$ and $\mu_{2}$ induce two multiplications $(\mu_{1})_{(0)}$ and $(\mu_{2})_{(0)}$

on $(E_{k})_{(0)}$ induced by $\psi_{(0)}$ and $\varphi_{(0)}$ respectively. But by chasing the above
diagram one can see that $(\mu_{1})_{(0)}$ is homotopic to $(\mu_{2})_{(0)}$ . Hence by Theorem
7.1, $E_{k}$ is an H-space. The assertion for homotopy associativity of $E_{k}$ , when
$\nu_{2}(k)=\nu_{3}(k)=0$, is easily checked. Q. E. D.

REMARK. This theorem is proved by Harrison by the following form:
Write $\alpha=\alpha_{2}+\alpha_{8}+\cdots+\alpha_{q}$ , where $\alpha_{p}$ is of p-power order. Write $k\alpha=\sum\epsilon_{p}\alpha_{p}$ .

Let $\epsilon_{p}=0$ or $\pm 1$ for any $p$ . Then $E_{k}$ is an H-space if and only if
1) $\epsilon_{2}\neq 0$ or,
2) $n=1,3$ .

But the above expression of the theorem is easily checked to be equivalent
to ours.

EXAMPLE 8.2 (Hilton-Roitberg-Stasheff [8], [21]). Let $(G, H)=(sp(2)$ ,
$Sp(1))$ . Then $E_{k}$ is an H-space if $k\overline{\mp}2(4)$ .

EXAMPLE 8.3 (Curtis-Mislin [7]). Let $(G, H)=(SU(4), SU(3))$ .
(1) Any $E_{k}$ is an H-space.
(2) There are exactly four homotopy types of such spaces.
PROOF. Recall $\pi_{6}(SU(3))\cong Z_{6}$ . (1) is clear. To prove (2) we need
LEMMA 8.4. $E_{k}=E_{-k}$ .
So, $E_{1}=E_{5}$ and $E_{2}=E_{4}$ . Of course $E_{0}=S^{7}\times SU(3)$ and $E_{1}=SU(4)$ are

different. Then $E_{2}\neq E_{0},$ $E_{2}\neq E_{1}$ . For $(E_{2})_{(2)}\neq(E_{1})_{(2)}$ and $(E_{2})_{(3)}\neq(E_{0})_{(3)}$ . Simi-
larly $E_{3}\neq E_{i}$ for $i=0,1,2$ , since $(E_{3})_{(2)}\neq(E_{0})_{(2)}$ , and since $(E_{3})_{(3)}\neq(E_{i})_{(\S)}$ for
$i=1,2$ . Q. E. D.

Let $p$ be a prime. Recall [17] that $X$ is called p-regular, if there exists
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a p-equiv alence $\prod_{l=\iota}^{l}S^{n_{i}}\rightarrow X$ , and that $X$ is called quasi p-regular, if there exists

a p-equivalence $\prod S^{n_{i}}\times\prod B_{n_{j}}(p)\rightarrow X$, where $B_{n_{j}}(p)$ is such a space that
$H^{*}(B_{n_{j}}(p);Z_{p})\cong\Lambda(x_{j}, \mathfrak{p}^{1}x_{j})$ with $\deg x_{j}=2n_{j}+1$ .

Let $G$ be a compact, connected, simply connected, simple Lie group. Then
by the Hopf theorem

$H^{*}(G;Q)\cong\Lambda(x_{1}, \cdots , x_{\iota})$ with $\deg x_{i}=2n_{i}+1$ ,

where $l$ is the rank of $G$ , and $\sum(2n_{i}+1)=\dim G$ . Then
THEOREM 8.5 (Kumpel, Serre, Mimura-Toda). (1) $G$ is p-regular if and

only if $p>n_{l}$ .
(2) $G$ is quasi p-regular if and only if $p>N(G)$ , where

$N(G)$

$n$

$n$

2

$n-12$

$3$

7

$G$

$sp(n)$

$SU(n)$

Spin $(n)$

$G_{2},$ $F_{4},$ $E_{6}$

$E_{7},$ $E_{8}$

For a proof see [10].

REMARK $8.5^{\prime}$ . It follows from Theorem 6.4 and Theorem 8.5 that $B_{n_{i}}(p)$

is a $mod p$ H-space, if $n_{i}\leqq p-1$ .
THEOREM 8.6. Let $p$ be an odd prime.
(1) There exist infinitely many finite H-complexes which are p-regular for

a given $p$ .
(2) There exist infinitely many finite H-complexes, which are quasi p-regular

for a given $p$ .
PROOF. (1) Put $S(G)=\prod_{i=1}^{\iota}S^{2n_{i+1}}$ . Apparently $S(G)$ is a $mod p$ H-space.

Let $Q$ be the complement of $\{p\}$ in the set of all primes. Denote by $S_{p}(G)$

the pull back of the maps $(S(G))_{(p)}\rightarrow G_{(0)}$ and $G_{Q}\rightarrow G_{(0)}$ over $G_{(0)}$ . Then by
Corollary 7.5 and Remark 7.6, $S_{p}(G)$ is a finite H-complex. Clearly $S_{p}(G)$ is
always $p$-regular.

(2) We put, for $1\leqq k\leqq a-1$ ,

$B(G)=\prod_{i=1}^{k}B_{n_{i}}(p)\times\prod_{i=k+1}^{a-1}S^{2n_{i+1}}\times\Gamma^{\iota}I_{1}S^{2n_{i^{\perp 1}}}i=b+$

where $a$ and $b$ are such numbers that $n_{a}=p$ and $n_{b}=n_{k}+p$ respectively.
Similarly as above we mix the homotopy type of $B(G)$ and $G$ . We denote
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by $B_{p}(G)$ the pull back of the maps $B(G)_{(p)}\rightarrow G_{(0)}$ and $G_{Q}\rightarrow G_{(0)}$ over $G_{(0)}$ .
Then $B_{p}(G)$ is a finite H-complex, which is always quasi p-regular. Q. E. D.

REMARK 8.7. $S_{p}(G)$ is not p-equivalent to any product of Lie groups, if
$n_{\iota}\geqq p$ . Similarly $B_{p}(G)$ is not $p$-equivalent to any product of Lie groups and
spheres, if $N(G)\geqq p$ .

Next we give some examples of a finite H-complex which is of (rational)
type $(3, 11)$ .

THEOREM 8.8. There exist at least four different finite H-complexes of type
$(3, 11)$ .

PROOF. We choose a map $f:S^{11}\rightarrow V_{7,2}$ such that $ f^{*}:H^{*}(V_{7,2};Z_{3})\cong$

$H^{*}(S^{11} ; Z_{3})$ . We consider the bundle $B_{1}^{\prime}(3)$ induced by $f$ from the bundle
$G_{2}/S^{3}=V_{7,2}$ . Then as is easily seen, $B_{1}^{\prime}(3)$ is a $S^{3}$ -bundle over $S^{11}$ with the
characteristic class $\alpha_{2}(3)$ , which is a generator of $\pi_{10}(S^{3} : 3)\cong Z_{8}$ . It is also
clear that $B_{1}^{\prime}(3)$ is a $mod 3$ H-space. Let $Q$ be the complement of {3, 5} in the
set of all primes. Now we mix the homotopy types using the ingredients
given in the following table.

$\overline{X_{2}X^{1}XX_{4}^{3}}|_{1}^{\frac{\{3\}\{5\}Q}{S\times S^{11}S\times S^{1}G_{2}B_{1}^{3}(3)B_{1}^{s_{1}}(5)GB_{1}^{\prime}(3)S\times SG_{2}^{2}S^{3}\times S^{1}B^{3}(5)G_{2}}}111$

The pull backs $X_{i}$ are all finite H-complexes and all have different homotopy
types. Note that $X_{4}=G_{2}$ . Q. E. D.

REMARK 8.9. According to Hubbuck, if a finite H-complex $X$ of rank 2
has 2-torsion, then

$H^{*}(X;Z_{2})\cong H^{*}(G_{2} ; Z_{2})$ .
So $X_{i}’ s$ are such H-complexes.

THEOREM 8.10. (1) There exist several finite H-complexes which have only
3-torsion.

(2) There exists a homotopy associative finite H-complex which has only
5-torsion.

PROOF. Denote by $\overline{p}$ the complement of $p$ in the set of all primes.
(1) The pull back given by the following diagram gives an example for

(1), since $F_{4}$ has just 2 and 3 torsions.
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Similar examples can be obtained by using $E_{6},$ $E_{7}$ and $E_{8}$ .
(2) An example for (2) is obtained by

Q. E. D.

\S 9. Mod $p$ decomposition of suspended spaces.

Throughout this section let $p$ denote an odd prime.
DEFINITION 9.1. A co-H-space $X$ is $mod p$ decomposable into $r$ spaces, if

there exist $r$ spaces $X_{i}$ with $\tilde{H}^{*}(X_{i} ; Z_{p})\neq 0,1\leqq i\leqq r$, and there exists a p-
equivalence $f:X^{t}\rightarrow\ovalbox{\tt\small REJECT} X_{i}t=1$ where V is the wedge sum.

For simplicity we denote $X\cong_{p}\ovalbox{\tt\small REJECT}_{1}^{r}X_{i}i=$ If $X\in \mathfrak{F}\mathfrak{C}_{1}$ , then the direction of

a $p$-equivalence between $X$ and V $X_{i}$ is not important, since there is always
a converse $p$-equivalence.

CONDITION 9.2. For a connected finite CW-complex $X$,
$D_{p}$ : (1) There exist homogeneous elements $x_{i}\in\tilde{H}^{*}(X;Z_{p}),$ $1\leqq i\leqq s$ , such

that $\tilde{H}^{*}(X;Z_{p})$ has a basis consisting of monomials in $x_{i}’ s$ .
(2) There exists a map $\psi^{k}$ : $X\rightarrow X$ such that $(\psi^{k})^{*}x_{i}=kx_{i}$ for $1\leqq i\leqq s$ ,

where $k$ is a primitive root modulo $p$ .
Now suppose that $X$ satisfies the condition $D_{p}$ . Then each element of a

basis of $\tilde{H}^{*}(X;Z_{p})$ has not only the cohomological degree but also the rank,
which is defined to be the degree of monomial. Then according to the rank,
we obtain a direct sum decomposition:

$\tilde{H}^{*}(X;Z_{p})\cong\sum_{n}A_{n}^{*}$ , where $A_{n}^{*}$ consists of elements of rank $n$ .
Then we also have
$\tilde{H}^{*}(SX;Z_{p})\cong\sum_{n}SA_{n}^{*}$ , where $SA_{n}^{*}$ denotes the module spanned by the
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suspension of the elements of $A_{n}^{*}$ .
Put $B_{m}=\sum_{n=m+k(p-1)}SA_{n}^{*};$ i. e., $\tilde{H}^{*}(SX;Z_{p})\cong\sum_{m=1}^{p-1}B_{m}$ . Let $r$ be the number

such that $B_{m}\neq 0;i$ . $e.,$ $B_{m_{1}}\neq 0,$ $B_{m_{r}}\neq 0$ .
THEOREM 9.3. Let $X$ be a connected finite CW-complex satisfying the con-

dition $D_{p}$ . Then $SX$ is $mod p$ decomposable into $r$ spaces. Namely there

exist $r$ spaces $X_{m_{i}},$ $i=1$ , $\cdot$
., , $r$, and a p-equivalence $f:SX\rightarrow\ovalbox{\tt\small REJECT}^{r}X_{m_{i}}i=1$ such that

$H^{*}(X_{m_{i}} : Z_{p})\cong B_{m_{i}}$ .
PROOF. Let $k$ be a primitive root modulo $p$ . Let $\psi^{k}$ : $X\rightarrow X$ be the map

given by (2) of $D_{p}$ . Let $-k^{j}$ : $S^{1}\rightarrow S^{1}$ be a map of degree $-k^{j}$ . The map
$(-k^{J})\wedge 1_{X}$ : $SX\rightarrow SX$ will also be denoted by $-k^{j}$ . We consider the map

$g_{j}=(S\psi^{k}-k^{J}):SX\rightarrow^{\varphi}SX\vee sx^{\underline{S\psi^{k}v(-k^{j})}_{\rangle}}SX\vee SX\rightarrow^{\pi}SX$ ,

where $\varphi$ is the canonical map shrinking the equator of $SX$ and $\pi$ is the
obvious projection. Then for any $x$ of $SA_{n}^{*},$ $g_{j}^{*}(x)=(k^{n}-k^{J})x$. Recall that
$P^{n}-k^{j}\equiv 0(p)$ if and only if $n-j\equiv 0(p-1)$ , since $k$ is a primitive root modulo
$p$ . Note that $\psi^{k}$ , and hence $S\psi^{k}$ , is a p-equivalence, and hence it is a O-equi-
valence. Then there exists a sufficiently large number $N$ such that for every
$i\geqq N,$

$g_{j}$ is a O-equivalence, since $SX$ is a finite CW-complex. $SX$ is p-uni-
versal for any $p$ by Theorem 4.2 of [12], since it is a co-H-space. So, by
Theorem 5.3, there is a $p$-sequence $\{A_{i}, f_{i}\}$ of $SX$ such that $A_{i}=SX$ for all
$i\geqq 0$ . We put $\tilde{g}_{j}=g_{pN+j}$ : $SX\rightarrow SX$ for $1\leqq j\leqq p-1$ . Let $m$ be an integer with
$1\leqq m\leqq p-1$ . Let $S_{m}=\{A_{i},\tilde{f}_{i}\}$ be a sequence obtained by inserting O-equi-
valence $\tilde{g}_{j},$ $j\neq m$ , infinitely many times in the $p$-sequence $\{A_{i}, f_{i}\}$ . Although
$S_{m}$ is not a $p$-sequence any longer, it is a ”subsequence” of a O-sequence of
$SX$. By constructing a telescope, we obtain a space, which is denoted by
$|\langle SX)_{(p,m)}$ , and also inclusions

$j_{1}$ $j_{2}$

$(SX)_{(p)}\rightarrow(SX)_{(p,m)}\rightarrow(SX)_{(0)}$

such that the composite of them is the canonical map $j_{0,p}$ : $(SX)_{(p)}\rightarrow(SX)_{(0)}$ .
Let $Q$ denote the complement of $\{p\}$ in the set of all primes. Put $X_{m}$

$=(SX)_{(p,m)}\times(SX)_{Q}(SX)_{(0)}$ the pull back of $j_{2}$ and the map $j_{0,Q}$ : $(SX)_{Q}\rightarrow(SX)_{(0)}$ over
\langle $SX)_{(0)}$ . Then $X_{m}$ has the homotopy type of a finite CW-complex, since $j_{2}$ is
a O-equivalence. Also we have that $(X_{m})_{(p)}=(SX)_{(p,m)}$ (cf. the following dia-
gram).



622 M. MIMURA, G. NISHIDA and H. TODA

Furthermore, by the property of the pull back, we obtain a map $f_{m}$ : $SX\rightarrow X_{m}$

such that the following diagram is homotopy commutative:

$(SX\underline{)_{p^{(p)}f_{m}}(SX)}_{(p,m)}SXX_{m}\uparrow j\uparrow j^{=_{p}(X_{m})_{(p)}}j_{1}$

where $j_{p}$ is the canonical inclusion. So the induced homomorphism $(j_{1})_{*}^{\sim}$

$H_{*}((SX)_{(p)} ; Z_{p})\rightarrow H_{*}((SX)_{(p,m)} ; Z_{p})$ is an epimorphism, the kernel of which is
isomorphic to $\Sigma SA_{i}^{*}$ , where $\sum$ is over all $i$ with $i\not\equiv m(p-1)$ . The required

$p$-equivalence $f:SX\rightarrow\overline{\ovalbox{\tt\small REJECT}}X_{m}m=1p1$ is obtained as the composite of the maps

$SX\overline{\ovalbox{\tt\small REJECT}}^{1}SX\overline{\ovalbox{\tt\small REJECT}}^{1}X_{m}\underline{\overline{\varphi}}p\underline{\ovalbox{\tt\small REJECT} f_{mp}}m=1$

where $\overline{\varphi}$ is the $(p-2)$ -iterations of $\varphi$ . Q. E. D.
PROPOSITION 9.4. Each of the following satisfies the condition $D_{p}$ .
(1) A connected finite H-complex $X$ such that $H^{*}(X;Z_{p})$ is primitively$\cdot$

genera ted.
(2) The m-th symmetric product $SP^{m}(M(G, n))$ of the Moore space $M(G,$ $ n\rangle$

of type $(G, n)$ , where $G=Z$ or $Z_{p^{r}}$ .
PROOF. (1) The map $\psi^{k}:X\rightarrow X$ is obtained as the composite of the

maps:
$X_{\rightarrow}^{\Delta}\frac{X\times\cdots\times}{k}X_{\rightarrow}^{\mu}X$

, where $\Delta$ is the diagonal map and $\mu$ is the ( $ k-1\rangle$
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1

iterations of $lhe$ product. If $H^{*}(X;Z_{p})$ is primitively generated, by the
Borel’s theorem [6], we obtain an additive basis of $H^{*}(X;Z_{p})$ consisting of
monomials of ‘primitive elements. (2) is also easily checked. (For the struc-
ture of $H^{*}(SP^{m}(M(G, n));Z_{p})$ see [13], [14].) Q. E. D.

$c_{(}^{J})ROLLARY9.5$ . (1) If $X$ is a connected finite H-complex such that
$H^{*}(X;Z_{p})$ is primitively generated, then $SX$ is $mod p$ decomposable
into $(p-1)$ spaces.

(2) $S(SP^{m}(M(G, n)))is_{\mathfrak{t}}ino^{1}dp$ decomposable into $(l-1)$ spaces for $G=Z$ or
$Z_{p^{\gamma}}$ . In’ particular $S(CP^{n})\cong_{p}^{p}\overline{V}_{=}^{1}X_{i}l1$

For there is a homeomorphism $SP^{m}(M(Z, 2))=CP^{m}($

We denote by $L_{p}^{2n+1}$ the lens space. Then
PROPOSITION 9.6. $S(L_{p}^{2n+1})$ is $mod p$ decomposable.
PROOF. It suffices to show that $L_{p}^{2n+1}$ satisfies the condition $D_{p}$ . We con-

sider $S^{zn+1}$ as the unit sphere in $C^{\hslash+1}$ . We define a map $\overline{\psi}^{k}$ : $S^{2n+1}\rightarrow S^{2n+1}$ as
$\overline{\psi}^{k}(z_{1}, , z_{n+1})=(z_{1}^{k}/\rho, , z_{n+1}^{k}/\rho)$ with $\rho\subset\sqrt{\sum_{i--1}^{n+1}|z_{i}^{k}|^{?}}$ Then $\overline{\psi}^{k}$ induces a map
$\psi^{k}$ : $L_{p}^{2n+1}\rightarrow L_{p}^{2n+1}\backslash $

’ since $L_{p}^{2n+1}$ is the orbit space of $Z_{p}$ -action on $S^{2n+1}$ . Then it
is not difficult to see that $L_{p}^{2n+1}$ with $\psi^{k}$ satisfies $D_{p}$ . Q. E. D.

We denote by $QP^{n}$ the quaternionic projective space. Then

PROPOSITION 9.7. $S(QP^{n})\cong_{p}\ovalbox{\tt\small REJECT}^{-}X_{2i}p_{2}\underline{1}i^{\frac}=1$

PROOF. By Corollary 9.5 there is a $p$-equiValence $f:S(CP^{2n})\rightarrow v_{=\iota^{1}}i^{\overline{\vee}X_{i}}$ Since

$S(CP^{2n})$ is $p$-universal, there is a converse $p$-equivalence $g:p1i=1\overline{\ovalbox{\tt\small REJECT}}X_{i}\rightarrow S(CP^{ln})$ .

Let $j:X_{2i}p_{\frac{-1}{i=1\vee 2}}\rightarrow\overline{\ovalbox{\tt\small REJECT}}^{1}X_{i}i=1P$ be the obvious inclusion. Let $h_{n}$ : $ CP^{2n}\rightarrow CP^{2n+1}i\rightarrow QP^{n}\eta$

be the composite of the inclusion $i$ and the natural map $\eta$ . Then $Sh_{n}\circ j$ gives
the required $p$-equivalence. Q. E. D.

REMARK 9.8. Since the infinite symmetric product $SP^{\infty}(M(G, n))$ is the
Eilenberg-MacLane space $K(G, n)$ , Corollary 9.5 gives a $mod p$ decomposition
of $S(K(G, n))$ for $G=Z$ or $Z_{p^{r}}$ .

Kyoto University
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