On skew product transformations with quasi-discrete spectrum

By Nobuo AOKI

(Received Dec. 1, 1969) (Revised May 4, 1971)

§1. Introduction.

Let X and Y be unit intervals with Borel measurability and Lebesgue measure. Let $\Omega = X \otimes Y$ be the unit square with the usual direct product measurability and measure. We consider the following skew product (measure preserving) transformation defined on Ω ; let T be the measure preserving transformation with the α -function defined by $T: (x, y) \rightarrow (x+\gamma, y+\alpha(x))$ (additions modulo 1) where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function defined on X.

The purpose of this paper is to give a criterion in order that the transformation T has quasi-discrete spectrum.

I am greatly indebted to the referee for many improvements on this paper.

§2. Definitions.

Let (Z, Σ, m) be a finite measure space and T an invertible measure preserving transformation on Z. We recall the following definition of quasiproper functions [1]. Let $G(T)_0$ be the set

$$\{\beta \in K: V_T f = \beta f, \|f\|_2 = 1 \text{ for } f \in L^2(Z)\},\$$

where V_T is the unitary operator induced by the transformation T and K the unit circle in the complex plane. For each positive integer i, let $G(T)_i \subset L^2(Z)$ be the set of all normalized functions f such that $V_T f = gf$ where $g \in G(T)_{i-1}$. The set $G(T)_i$ is the set of quasi-proper functions of order at most i. We put $G(T) = \bigcup_{i \ge 0} G(T)_i$. The transformation T is said to have quasi-discrete spectrum if the set G(T) spans $L^2(Z)$. If the set $G(T)_1$ of order 1 spans $L^2(Z)$, then it is well-known that T has discrete spectrum. If the transformation T is ergodic, then |f(x)| = 1 for arbitrary $f \in G(T)$. This implies that G(T) is a

Throughout this paper, any equality between functions are taken as the equality for almost all values of the variables.

N. Aoki

multiplicative abelian group. The group K is a subgroup of the group G(T), and since K is a complete group, K is a direct factor in G(T). From this, there is a subgroup O(T) such that $G(T) = K \otimes O(T)$. If the transformation T is totally ergodic, then the group O(T) is an orthonormal base of $L^2(Z)$.

From now on, we consider the following skew product transformation

$$T: (x, y) \longrightarrow (x+\gamma, y+\alpha(x))$$
 (additions modulo 1),

where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function on X. Let Γ be the set of all real-valued measurable functions on X. We define by Θ the submodule of Γ , whose elements $\xi(x) \in \Theta$ are of the form

$$\xi(x) = \theta(x) - \theta(x + \gamma)$$

for some $\theta(x) \in \Gamma$. Since Ω is the two-dimensional torus, the set of functions $G = \{ \phi_{p,q}(x, y) \}$:

$$\psi_{p,q}(x, y) = \exp \{2\pi i(px+qy)\}, \text{ where } p, q = 0, \pm 1, \pm 2, \cdots,$$

forms an orthonormal base of $L^2(\Omega)$. Let H_q be the closed linear subspace of $L^2(\Omega)$ which is spanned by $\{\phi_{p,q}(x, y)\}$ for fixed q and $p=0, \pm 1, \pm 2, \cdots$. It is clear that $L^2(\Omega)$ is decomposed into the direct sum of H_q , $q=0, \pm 1, \pm 2, \cdots$, which are mutually orthogonal and that each H_q is invariant under the unitary operator V_T induced by the skew product transformation T as above. The subspace H_q is the set of all functions of the form $f(x) \exp\{2\pi i q y\}$ where $f \in L^2(\Omega)$. Especially the subspace H_0 is the set of functions depending only on the value of x-coordinate. We denote by H_0^{\perp} the orthocomplement of H_0 ; $H_0^{\perp} = \sum_{a \neq b} \oplus H_q$.

§3. Anzai's results.

Let T and S be skew product transformations with α -functions $\alpha(x)$ and $\beta(x)$ respectively. For α -functions $\alpha(x)$ and $\beta(x)$, if

$$\alpha(x) - \beta(x+u)$$
 or $\alpha(x) + \beta(x+u)$

belongs to Θ for some $u \in X$, then $\alpha(x)$ and $\beta(x)$ are called to be *equivalent*. The following three theorems appear in Anzai [3].

THEOREM A. A skew product transformation T with an α -function $\alpha(x)$ is ergodic when $\alpha(x) = mx + c$ for a non-zero integer m and a real number c.

THEOREM B. An ergodic skew product transformation T with an α -function $\alpha(x)$ has discrete spectrum if and only if $\alpha(x)$ is equivalent with a constant function λ , where λ is an irrational number linearly independent of γ .

THEOREM C. Let T and S be ergodic skew product transformations with α -functions $\alpha(x)$ and $\beta(x)$ respectively. If T and S are isomorphic, that is, if

there exists a measure preserving transformation V of Ω onto itself such that $VTV^{-1} = S$, then between $\alpha(x)$ and $\beta(x)$ there exists the following relation,

$$\alpha(x)-\beta(x+u)\in\Theta$$
 or $\alpha(x)+\beta(x+u)\in\Theta$,

where u is an element of X. And accordingly V is of the following form:

 $V(x, y) = (x+u, \theta(x)+y)$ or $V(x, y) = (x+u, \theta(x)-y)$.

Conversely, if

$$\alpha(x) - \beta(x+u) = \theta(x) - \theta(x+\gamma)$$

holds for some $u \in X$ and $\theta(x) \in \Gamma$, then $VTV^{-1} = S$ holds, where $V(x, y) = (x+u, \theta(x)+y)$;

and if

$$\alpha(x) + \beta(x+u) = \theta(x+\gamma) - \theta(x)$$

holds for [some $u \in X$ and $\theta(x) \in \Gamma$, then $VTV^{-1} = S$ holds, where $V(x, y) = (x+u, \theta(x)-y)$.

§4. The theorem.

As before, Ω is the two-dimensional torus $X \otimes Y$ and T is a totally ergodic skew product transformation defined by $T: (x, y) \rightarrow (x+\gamma, y+\alpha(x))$ (additions modulo 1), where γ is an irrational number and $\alpha(\cdot)$ is a real valued measurable function on X.

THEOREM. With the notations as above, the following statements are equivalent:

(i) The transformation T has quasi-discrete spectrum.

(ii) The α -function $\alpha(x)$ is equivalent with either a function mx+c where m is a non-zero integer and c a real number, or a constant function λ where λ is an irrational number linearly independent of γ .

PROOF. Proof of (ii) \Rightarrow (i). If the α -function $\alpha(x)$ is equivalent with a function mx+c where m is some non-zero integer and c some real number, then, by Theorem C, T is isomorphic to the transformation S defined by

$$S(x, y) = (x+\gamma, y+mx+c)$$
.

Therefore, it is enough to show that the transformation S has quasi-discrete spectrum. From the facts that for an arbitrary integer p

$$V_s \exp \{2\pi i px\} = \exp \{2\pi i p\gamma\} \exp \{2\pi i px\}$$

and for arbitrary integers p and q

 $V_s \exp \{2\pi i(px+qy)\}$

 $= \exp \{2\pi i(p+qc)\} \exp \{2\pi i qx\} \exp \{2\pi i (px+qy)\}$

N. Aoki

hold, each exp $\{2\pi i px\}$ is a proper function of order 1, each exp $\{2\pi i (px+qy)\}$ is a proper function of order 2 and since G spans $L^2(\Omega)$, the transformation S has quasi-discrete spectrum. If the α -function $\alpha(x)$ is equivalent with a constant function λ where λ is an irrational number linearly independent of the irrational number γ , then by Theorem B the transformation T has quasi-discrete spectrum and $G(T) = G(T)_1$.

Proof of (i) \Rightarrow (ii). If the transformation $T: (x, y) \rightarrow (x+\gamma, y+\alpha(x))$ has quasi-discrete spectrum, then the group G(T) spans $L^2(\Omega)$. It is clear that $\{\phi_p(x): p=0, \pm 1, \pm 2, \cdots\} \subset G(T)_1$ where $\phi_p(x) = \exp\{2\pi i px\}$. We consider the following cases: either

$$G(T)_1 = G(T)$$
 or $G(T)_1 \neq G(T)$.

Step I. The case of $G(T)_1 = G(T)$. It is clear that the transformation T with an α -function $\alpha(x)$ has discrete spectrum. By Theorem B, the α -function $\alpha(x)$ is equivalent with a constant function λ where λ is an irrational number linearly independent of γ .

Step II. In the case of $G(T)_1 \neq G(T)$, it follows that there exist a function $f(x, y) \in G(T)_2 - G(T)_1$ and a function $g(x, y) \in G(T)_1 - K$ such that

(1)
$$f(T(x, y)) = g(x, y) f(x, y)$$
.

For the above function g(x, y), we have

(2)
$$g(T(x, y)) = e^{2\pi i \lambda} g(x, y) .$$

From (2), we have

(3)
$$\int g(x+\gamma, y+\alpha(x)) \exp\{-2\pi i q y\} dy = e^{2\pi i \lambda} \int g(x, y) \exp\{-2\pi i q y\} dy$$
.

Put

(4)
$$g_q(x) = \int g(x, y) \exp\{-2\pi i q y\} dy$$

From (3) and (4), we have

(5)
$$g_q(x+\gamma) = \exp \left\{ 2\pi i (\lambda - q\alpha(x)) \right\} g_q(x) \, .$$

Taking the absolute value of both sides of (5),

$$|g_q(x+\gamma)| = |g_q(x)|.$$

Since the number γ is irrational, the function $|g_q(x)|$ is a non-negative constant C_q . If $C_q \neq 0$, then there exists a function $\theta_q(x) \in \Gamma$ such that

(6)
$$g_q(x) = C_q \exp \left\{ 2\pi i \theta_q(x) \right\} .$$

Since the function g(x, y) is not identically zero, there exists an integer q such that $C_q \neq 0$. Let q be such an integer. Replacing $g_q(x)$ in (5) by (6), we

558

have

(7)
$$q\alpha(x) - \lambda = \theta_q(x) - \theta_q(x+\gamma).$$

If $q \neq 0$, then the equation (7) shows that $\alpha(x)$ is equivalent with the constant function λ/q . But, on account of Theorem B together with the result 8° in [1], this is impossible since $G(T)_2 \neq G(T)_1$. Thus we obtain

 $g(x, y) = C_0 \exp \left\{ 2\pi i \theta_0(x) \right\}.$

The latter equation implies that the function g(x, y) must be some non-constant function $C_0 \phi_m(x)$ in $G(T)_1$. From this fact, we have

$$f(T(x, y)) = C_0 e^{2\pi i m x} f(x, y)$$

where C_0 is some constant with $|C_0| = 1$. We define

$$f_q(x) = \int f(x, y) \exp\{-2\pi i q y\} dy$$

as the equation (4). We have

$$f_q(x+\gamma) = \exp \left\{ 2\pi i (mx - q\alpha(x) + \lambda') \right\} f_q(x),$$

where $C_0 = \exp \{2\pi i \lambda'\}$, and

$$|f_q(x+\gamma)| = |f_q(x)|$$
.

The latter equality implies that there exist a non-zero constant k_p and $\theta_q(x) \in \Theta$ such that

$$f_q(x) = k_q \exp \left\{ 2\pi i \theta_q(x) \right\}.$$

The function $f_q(x)\phi_q(y)$ is the proper function belonging to the generalized proper value $e^{2\pi i (mx+\lambda')}$. Since the group O(T) is an orthonormal base of $L^2(\Omega)$, we see that

$$f(x, y) = k_q f_q(x) \psi_q(y)$$

holds for some integer q. Since the function f(x, y) is an arbitrary member in $G(T)_2 - G(T)_1$, each member of $G(T)_2 - G(T)_1$ is of the form $k_m f_m(x) \exp \{2\pi i m y\}$, where $f_m(x) \in L^2(X)$. It is easy to verify that each member of $G(T)_1$ is also of the form $f_n(x) \exp \{2\pi i n y\}$ where $f_n(x) \in L^2(X)$.

From the same arguments as above, it follows that $G(T)_2 = G(T)_3$. Since

$$L^2(\Omega) = \sum_{-\infty}^{\infty} \oplus H_q = \overline{\operatorname{span} G(T)}$$
 ,

we obtain

(8)
$$H_1 \cap (G(T)_2 - G(T)_1) \neq \phi$$
.

The relation (8) guarantees that there exists a function $f_1(x)\psi_1(y)$ in $H_1 \cap (G(T)_2 - G(T)_1)$ belonging to some generalized proper value $e^{2\pi i (mx+c)}$ such that

N. Aoki

$$f_1(x+\gamma) = \exp \{2\pi i(mx-\alpha(x)+c)\}f_1(x)$$
.

Taking the absolute value of both sides of the above equation, we obtain $|f_1(x+\gamma)| = |f_1(x)|$. This implies that there exist a non-zero constant k_1 and $\theta(x) \in \Theta$ such that $f_1(x) = k_1 \exp \{2\pi i \theta(x)\}$. Thus we obtain

$$\alpha(x) - (mx + c) = \theta(x) - \theta(x + \gamma).$$

From the fact mentioned above, we see that the α -function $\alpha(x)$ is equivalent with a function mx+c where m is some integer and c some real number.

Josai University Sakado, Saitama

References

- L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Amer. Math. Soc. Transl., (2) 39 (1964), 47-56.
- [2] R.L. Adler, Generalized commuting properties of measure preserving transformations, Trans. Amer. Math. Soc., 115 (1965), 1-13.
- [3] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J., 3 (1951), 83-99.
- [4] N. Aoki, On generalized commuting properties of automorphisms with quasidiscrete spectrum, Trans. Amer. Math. Soc., 152 (1970), 79-97.
- [5] F. Hahn, On affine transformations of compact abelian groups, Amer. J. Math., 85 (1963), 428-446.
- [6] P.R. Halmos, Lectures on ergodic theory, The Math. Soc. of Japan, Tokyo, 1956.
- [7] V. A. Rohlin, On fundamental ideas of measure theory, Amer. Math. Soc. Transl.,
 (1) 10 (1962), 1-54.

560