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\S 1. Introduction.

Let $X$ and $Y$ be unit intervals with Borel measurability and Lebesgue
measure. Let $\Omega=X\otimes Y$ be the unit square with the usual direct product
measurability and measure. We consider the following skew product (measure

preserving) transformation defined on $\Omega$ ; let $T$ be the measure preserving
transformation with the $\alpha$ -function defined by $T:(x, y)\rightarrow(x+\gamma, y+\alpha(x))$ (addi-

tions modulo 1) where $\gamma$ is an irrational number and $\alpha(\cdot)$ a real-valued measur-
able function defined on $X$.

The purpose of this paper is to give a criterion in order that the trans-
formation $T$ has quasi-discrete spectrum.

I am greatly indebted to the referee for many improvements on this paper.

\S 2. Definitions.

Let $(Z, \Sigma, m)$ be a finite measure space and $T$ an invertible measure
preserving transformation on $Z$. We recall the following definition of quasi-
proper functions [1]. Let $G(T)_{0}$ be the set

{ $\beta\in K:V_{\tau}f=\beta f,$ $\Vert f\Vert_{2}=1$ for $f\in L^{2}(Z)$ },

where $V_{\tau}$ is the unitary operator induced by the transformation $T$ and $K$ the
unit circle in the complex plane. For each positive integer $i$ , let $G(T)_{i}\subset L^{2}(Z)$

be the set of all normalized functions $f$ such that $V_{T}f=gf$ where $g\in G(T)_{i-1}$ .
The set $G(T)_{i}$ is the set of quasi-proper functions of order at most $i$ . We put

$G(T)=\bigcup_{i\geqq 0}G(T)_{i}$ . The transformation $T$ is said to have quasi-discrete spectrum

if the set $G(T)$ spans $L^{2}(Z)$ . If the set $G(T)_{1}$ of order 1 spans $L^{2}(Z)$ , then
it is well-known that $T$ has discrete spectrum. If the transformation $T$ is
ergodic, then $|f(x)|=1$ for arbitrary $f\in G(T)$ . This implies that $G(T)$ is a

Throughout this paper, any equality between functions are taken as the equality
for almost all values of the variables.
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multiplicative abelian group. The group $K$ is a subgroup of the group $G(T)$ ,
and since $K$ is a complete group, $K$ is a direct factor in $G(T)$ . From this,
there is a subgroup $0(T)$ such that $G(T)=K\otimes O(T)$ . If the transformation
$T$ is totally ergodic, then the group $0(T)$ is an orthonormal base of $L^{2}(Z)$ .

From now on, we consider the following skew product transformation

$T:(x, y)\rightarrow(x+\gamma, y+\alpha(x))$ (additions modulo 1),

where $\gamma$ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function
on $X$. Let $\Gamma$ be the set of all real-valued measurable functions on $X$. We
define by $\Theta$ the submodule of $\Gamma$ , whose elements $\xi(x)\in\Theta$ are of the form

$\xi(x)=\theta(x)-\theta(x+\gamma)$

for some $\theta(x)\in\Gamma$ . Since $\Omega$ is the two-dimensional torus, the set of functions
$G=\{\psi_{p,q}(x, y)\}$ :

$\psi_{p,q}(x, y)=\exp\{2\pi i(px+qy)\}$ , where $p,$ $q=0,$ $\pm 1,$ $\pm 2,$ $\cdots$

forms an orthonormal base of $L^{2}(\Omega)$ . Let $H_{q}$ be the closed linear subspace
of $L^{2}(\Omega)$ which is spanned by $\{\psi_{p,q}(x, y)\}$ for fixed $q$ and $p=0,$ $\pm 1,$ $\pm 2,$ $\cdots$

It is clear that $L^{2}(\Omega)$ is decomposed into the direct sum of $H_{q},$ $q=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ ,
which are mutually orthogonal and that each $H_{q}$ is invariant under the unitary
operator $V_{T}$ induced by the skew product transformation $T$ as above. The
subspace $H_{q}$ is the set of all functions of the form $f(x)\exp\{2\pi iqy\}$ where
$f\in L^{2}(\Omega)$ . Especially the subspace $H_{0}$ is the set of functions depending
only on the value of x-coordinate. We denote by $H_{0}^{\perp}$ the orthocomplement
of $H_{0}$ ; $H_{0}^{\perp}=\sum_{q\neq 0}\oplus H_{q}$ .

\S 3. Anzai’s results.

Let $T$ and $S$ be skew product transformations with $\alpha$ -functions $\alpha(x)$ and
$\beta(x)$ respectively. For $\alpha$ -functions $\alpha(x)$ and $\beta(x)$ , if

$\alpha(x)-\beta(x+u)$ or $\alpha(x)+\beta(x+u)$

belongs to $\Theta$ for some $u\in X$, then $\alpha(x)$ and $\beta(x)$ are called to be equivalent.
The following three theorems appear in Anzai [3].

THEOREM A. A skew product transformation $T$ with an $\alpha$ -function $\alpha(x)$ is
ergodic when $\alpha(x)=mx+c$ for a non-zero integer $m$ and a real number $c$ .

THEOREM B. An ergodic skew product transformation $T$ with an $\alpha$ -function
$\alpha(x)$ has discrete spectrum if and only if $\alpha(x)$ is equivalent with a constant

function $\lambda$ , where $\lambda$ is an irrational number linearly independent of $\gamma$ .
THEOREM C. Let $T$ and $S$ be ergodic skew product transformations with

$\alpha$-functions $\alpha(x)$ and $\beta(x)$ respectively. If $T$ and $S$ are isomorphic, that is, if
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there exists a measure preserving transformation $V$ of $\Omega$ onto itself such that
VTV $=S$, then between $\alpha(x)$ and $\beta(x)$ there exists the following relation,

$\alpha(x)-\beta(x+u)\in\Theta$ or $\alpha(x)+\beta(x+u)\in\Theta$ ,

where $u$ is an element of X. And accordingly $V$ is of the following form:
$V(x, y)=(x+u, \theta(x)+y)$ or $V(x, y)=(x+u, \theta(x)-y)$ .

Conversely, if
$\alpha(x)-\beta(x+u)=\theta(x)-\theta(x+\gamma)$

holds for some $u\in X$ and $\theta(x)\in\Gamma$ , then VTV $=S$ holds, where $V(x, y)=$

\langle$x+u,$ $\theta(x)+y)$ ;
and if

$\alpha(x)+\beta(x+u)=\theta(x+\gamma)-\theta(x)$

holds for ’some $u\in X$ and $\theta(x)\in\Gamma$ , then VTV $=S$ holds, where $V(x, y)=$

$\langle x+u,$ $\theta(x)-y)$ .

\S 4. The theorem.

As before, $\Omega$ is the two-dimensional torus $X\otimes Y$ and $T$ is a totally ergodic
skew product transformation defined by $T:(x, y)\rightarrow(x+\gamma, y+\alpha(x))$ (additions

modulo 1), where $\gamma$ is an irrational number and $\alpha(\cdot)$ is a real valued measur-
able function on $X$.

THEOREM. With the notations as above, the following statements are equi-
valent:

(i) The transformation $T$ has quasi-discrete spectrum.
(ii) The $\alpha$-function $\alpha(x)$ is equivalent with either a function $mx+c$ where

$m$ is a non-zero integer and $c$ a real number, or a constant function $\lambda$ where
$i$ is an irrational number linearly independent of $\gamma$ .

PROOF. Proof of (ii) $=>(i)$ . If the $\alpha$-function $\alpha(x)$ is equivalent with a
function $mx+c$ where $m$ is some non-zero integer and $c$ some real number,
then, by Theorem $C,$ $T$ is isomorphic to the transformation $S$ defined by

$S(x, y)=(x+\gamma, y+mx+c)$ .
Therefore, it is enough to show that the transformation $S$ has quasi-discrete
spectrum. From the facts that for an arbitrary integer $p$

$V_{s}\exp\{2\pi ipx\}=\exp\{2\pi ip\gamma\}\exp\{2\pi ipx\}$

and for arbitrary integers $p$ and $q$

$V_{s}\exp\{2\pi i(px+qy)\}$

$=\exp\{2\pi i(p+qc)\}\exp\{2\pi iqx\}\exp\{2\pi i(px+qy)\}$
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hold, each $\exp\{2\pi ipx\}$ is a proper function of order 1, each $\exp\{2\pi i(px+qy)\}$

is a proper function of order 2 and since $G$ spans $L^{2}(\Omega)$ , the transformation
$S$ has quasi-discrete spectrum. If the $\alpha$ -function $\alpha(x)$ is equivalent with a
constant function $\lambda$ where $\lambda$ is an irrational number linearly independent of
the irrational number $\gamma$ , then by Theorem $B$ the transformation $T$ has quasi-
discrete spectrum and $G(T)=G(T)_{1}$ .

Proof of $(i)\subset\succ(ii)$ . If the transformation $T:(x, y)\rightarrow(x+\gamma, y+\alpha(x))$ has
quasi-discrete spectrum, then the group $G(T)$ spans $L^{2}(\Omega)$ . It is clear that
$\{\psi_{p}(x);p=0, \pm 1, \pm 2, \}\subset G(T)_{1}$ where $\psi_{p}(x)=\exp\{2\pi ipx\}$ . We consider the
following cases: either

$G(T)_{1}=G(T)$ or $G(T)_{1}\neq G(T)$ .
Step I. The case of $G(T)_{1}=G(T)$ . It is clear that the transformation $T$

with an $\alpha$ -function $\alpha(x)$ has discrete spectrum. By Theorem $B$ , the \mbox{\boldmath $\alpha$}-function

$\alpha(x)$ is equivalent with a constant function $\lambda$ where $\lambda$ is an irrational number
linearly independent of $\gamma$ .

Step II. In the case of $G(T)_{1}\neq G(T)$ , it follows that there exist a function
$f(x, y)\in G(T)_{2}-G(T)_{1}$ and a function $g(x, y)\in G(T)_{1}-K$ such that

(1) $f(T(x, y))=g(x, y)f(x, y)$ .
For the above function $g(x, y)$ , we have

(2) $g(T(x, y))=e^{2\pi i\lambda}g(x, y)$ .
From (2), we have

(3) $\int g(x+\gamma, y+\alpha(x))\exp\{-2\pi iqy\}dy=e^{2\pi i\lambda}\int g(x, y)\exp\{-2\pi iqy\}dy$ .
Put

(4) $g_{Q}(x)=\int g(x, y)\exp\{-2\pi iqy\}dy$ .
From (3) and (4), we have

(5) $g_{q}(x+\gamma)=\exp\{2\pi i(\lambda-q\alpha(x))\}g_{q}(x)$ .
Taking the absolute value of both sides of (5),

$|g_{q}(x+\gamma)|=|g_{q}(x)|$ .
Since the number $\gamma$ is irrational, the function $|g_{q}(x)|$ is a non-negative constant
$C_{q}$ . If $C_{q}\neq 0$ , then there exists a function $\theta_{q}(x)\in\Gamma$ such that

(6) $g_{q}(x)=C_{q}\exp\{2\pi i\theta_{q}(x)\}$ .
Since the function $g(x, y)$ is not identically zero, there exists an integer $q$

such that $C_{q}\neq 0$ . Let $q$ be such an integer. Replacing $g_{q}(x)$ in (5) by (6), we
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have

\langle 7) $q\alpha(x)-\lambda=\theta_{q}(x)-\theta_{q}(x+\gamma)$ .
If $q\neq 0$ , then the equation (7) shows that $\alpha(x)$ is equivalent with the constant
function $\lambda/q$ . But, on account of Theorem $B$ together with the result $8^{O}$ in
[1], this is impossible since $G(T)_{2}\neq G(T)_{1}$ . Thus we obtain

$g(x, y)=C_{0}\exp\{2\pi i\theta_{0}(x)\}$ .
The latter equation implies that the function $g(x, y)$ must be some non-constant
function $C_{0}\psi_{m}(x)$ in $G(T)_{1}$ . From this fact, we have

$f(T(x, y))=C_{0}e^{2\pi imx}f(x, y)$

where $C_{0}$ is some constant with $|C_{0}|=1$ . We define

$f_{q}(x)=\int f(x, y)\exp\{-2\pi iqy\}dy$

as the equation (4). We have

$f_{q}(x+\gamma)=\exp\{2\pi i(mx-q\alpha(x)+\lambda^{\prime})\}f_{q}(x)$ ,

where $C_{0}=\exp\{2\pi i\lambda‘\}$ , and

$|f_{q}(x+\gamma)|=|f_{q}(x)|$ .

The latter equality implies that there exist a non-zero constant $k_{p}$ and $\theta_{q}(x)$

$\in\Theta$ such that
$f_{q}(x)=k_{q}\exp\{2\pi i\theta_{q}(x)\}$ .

The function $f_{q}(x)\psi_{q}(y)$ is the proper function belonging to the generalized
proper value $e^{2ri(mx+\lambda^{\prime})}$ . Since the group $O(T)$ is an orthonormal base of
$L^{2}(\Omega)$ , we see that

$f(x, y)=k_{q}f_{q}(x)\psi_{q}(y)$

holds for some integer $q$ . Since the function $f(x, y)$ is an arbitrary member in
$G(T)_{2}-G(T)_{1}$ , each member of $G(T)_{2}-G(T)_{1}$ is of the form $k_{m}f_{m}(x)\exp\{2\pi imy\}$ ,
where $f_{m}(x)\in L^{2}(X)$ . It is easy to verify that each member of $G(T)_{1}$ is also
of the form $f_{n}(x)\exp\{2\pi iny\}$ where $f_{n}(x)\in L^{2}(X)$ .

From the same arguments as above, it follows that $G(T)_{2}=G(T)_{3}$ . Since

$L^{2}(\Omega)=\sum_{-\infty}^{\infty}\oplus H_{q}=spanG(T)$ ,

we obtain

\langle 8) $ H_{1}\cap(G(T)_{2}-G(T)_{1})\neq\phi$ .
The relation (8) guarantees that there exists a function $f_{1}(x)\psi_{1}(y)$ in $ H_{1}\cap$

$(G(T)_{2}-G(T)_{1})$ belonging to some generalized proper value $e^{2\pi i(mx+c)}$ such that
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$f_{1}(x+\gamma)=\exp\{2\pi i(mx-\alpha(x)+c)\}f_{1}(x)$ .
Taking the absolute value of both sides of the above equation, we obtain
$|f_{1}(x+\gamma)|=|f_{1}(x)|$ . This implies that there exist a non-zero constant $k_{1}$ and
$\theta(x)\in\Theta$ such that $f_{1}(x)=k_{1}\exp\{2\pi i\theta(x)\}$ . Thus we obtain

$\alpha(x)-(mx+c)=\theta(x)-\theta(x+\gamma)$ .
From the fact mentioned above, we see that the $\alpha$-function $\alpha(x)$ is equivalent
with a function $mx+c$ where $m$ is some integer and $c$ some real number.

Josai University
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