On skew product transformations with quasi-discrete spectrum

By Nobuo AOKI
(Received Dec. 1, 1969)
(Revised May 4, 1971)

§ 1. Introduction.

Let X and Y be unit intervals with Borel measurability and Lebesgue measure. Let $\Omega=X \otimes Y$ be the unit square with the usual direct product measurability and measure. We consider the following skew product (measure preserving) transformation defined on Ω; let T be the measure preserving transformation with the α-function defined by $T:(x, y) \rightarrow(x+\gamma, y+\alpha(x))$ (additions modulo 1) where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function defined on X.

The purpose of this paper is to give a criterion in order that the transformation T has quasi-discrete spectrum.

I am greatly indebted to the referee for many improvements on this paper.

§ 2. Definitions.

Let (Z, Σ, m) be a finite measure space and T an invertible measure preserving transformation on Z. We recall the following definition of quasiproper functions [1]. Let $G(T)_{0}$ be the set

$$
\left\{\beta \in K: V_{T} f=\beta f,\|f\|_{2}=1 \text { for } f \in L^{2}(Z)\right\},
$$

where V_{T} is the unitary operator induced by the transformation T and K the unit circle in the complex plane. For each positive integer i, let $G(T)_{i} \subset L^{2}(Z)$ be the set of all normalized functions f such that $V_{T} f=g f$ where $g \in G(T)_{i-1}$. The set $G(T)_{i}$ is the set of quasi-proper functions of order at most i. We put $G(T)=\bigcup_{i \geqq 0} G(T)_{i}$. The transformation T is said to have quasi-discrete spectrum if the set $G(T)$ spans $L^{2}(Z)$. If the set $G(T)_{1}$ of order 1 spans $L^{2}(Z)$, then it is well-known that T has discrete spectrum. If the transformation T is ergodic, then $|f(x)|=1$ for arbitrary $f \in G(T)$. This implies that $G(T)$ is a

[^0]multiplicative abelian group. The group K is a subgroup of the group $G(T)$, and since K is a complete group, K is a direct factor in $G(T)$. From this, there is a subgroup $O(T)$ such that $G(T)=K \otimes O(T)$. If the transformation T is totally ergodic, then the group $O(T)$ is an orthonormal base of $L^{2}(Z)$.

From now on, we consider the following skew product transformation

$$
T:(x, y) \longrightarrow(x+\gamma, y+\alpha(x)) \quad \text { (additions modulo } 1 \text {), }
$$

where γ is an irrational number and $\alpha(\cdot)$ a real-valued measurable function on X. Let Γ be the set of all real-valued measurable functions on X. We define by Θ the submodule of Γ, whose elements $\xi(x) \in \Theta$ are of the form

$$
\xi(x)=\theta(x)-\theta(x+\gamma)
$$

for some $\theta(x) \in \Gamma$. Since Ω is the two-dimensional torus, the set of functions $G=\left\{\psi_{p, q}(x, y)\right\}$:

$$
\psi_{p, q}(x, y)=\exp \{2 \pi i(p x+q y)\}, \quad \text { where } \quad p, q=0, \pm 1, \pm 2, \cdots,
$$

forms an orthonormal base of $L^{2}(\Omega)$. Let H_{q} be the closed linear subspace of $L^{2}(\Omega)$ which is spanned by $\left\{\psi_{p, q}(x, y)\right\}$ for fixed q and $p=0, \pm 1, \pm 2, \cdots$. It is clear that $L^{2}(\Omega)$ is decomposed into the direct sum of $H_{q}, q=0, \pm 1, \pm 2, \cdots$, which are mutually orthogonal and that each H_{q} is invariant under the unitary operator V_{T} induced by the skew product transformation T as above. The subspace H_{q} is the set of all functions of the form $f(x) \exp \{2 \pi i q y\}$ where $f \in L^{2}(\Omega)$. Especially the subspace H_{0} is the set of functions depending only on the value of x-coordinate. We denote by H_{0}^{\perp} the orthocomplement of $H_{0} ; H_{0}^{\perp}=\sum_{q \neq 0} \oplus H_{q}$.

§ 3. Anzai's results.

Let T and S be skew product transformations with α-functions $\alpha(x)$ and $\beta(x)$ respectively. For α-functions $\alpha(x)$ and $\beta(x)$, if

$$
\alpha(x)-\beta(x+u) \text { or } \alpha(x)+\beta(x+u)
$$

belongs to Θ for some $u \in X$, then $\alpha(x)$ and $\beta(x)$ are called to be equivalent.
The following three theorems appear in Anzai [3].
Theorem A. A skew product transformation T with an α-function $\alpha(x)$ is ergodic when $\alpha(x)=m x+c$ for a non-zero integer m and a real number c.

Theorem B. An ergodic skew product transformation T with an α-function $\alpha(x)$ has discrete spectrum if and only if $\alpha(x)$ is equivalent with a constant function λ, where λ is an irrational number linearly independent of γ.

Theorem C. Let T and S be ergodic skew product transformations with α-functions $\alpha(x)$ and $\beta(x)$ respectively. If T and S are isomorphic, that is, if
there exists a measure preserving transformation V of Ω onto itself such that $V T V^{-1}=S$, then between $\alpha(x)$ and $\beta(x)$ there exists the following relation,

$$
\alpha(x)-\beta(x+u) \in \Theta \quad \text { or } \quad \alpha(x)+\beta(x+u) \in \Theta,
$$

where u is an element of X. And accordingly V is of the following form:

$$
V(x, y)=(x+u, \theta(x)+y) \quad \text { or } \quad V(x, y)=(x+u, \theta(x)-y) .
$$

Conversely, if

$$
\alpha(x)-\beta(x+u)=\theta(x)-\theta(x+\gamma)
$$

holds for some $u \in X$ and $\theta(x) \in \Gamma$, then $V T V^{-1}=S$ holds, where $V(x, y)=$ $(x+u, \theta(x)+y)$;
and if

$$
\alpha(x)+\beta(x+u)=\theta(x+\gamma)-\theta(x)
$$

holds for some $u \in X$ and $\theta(x) \in \Gamma$, then $V T V^{-1}=S$ holds, where $V(x, y)=$ ($x+u, \theta(x)-y)$.

§4. The theorem.

As before, Ω is the two-dimensional torus $X \otimes Y$ and T is a totally ergodic skew product transformation defined by $T:(x, y) \rightarrow(x+\gamma, y+\alpha(x))$ (additions modulo 1), where γ is an irrational number and $\alpha(\cdot)$ is a real valued measurable function on X.

THEOREM. With the notations as above, the following statements are equivalent:
(i) The transformation T has quasi-discrete spectrum.
(ii) The α-function $\alpha(x)$ is equivalent with either a function $m x+c$ where m is a non-zero integer and c a real number, or a constant function λ where λ is an irrational number linearly independent of γ.

Proof. Proof of (ii) \Rightarrow (i). If the α-function $\alpha(x)$ is equivalent with a function $m x+c$ where m is some non-zero integer and c some real number, then, by Theorem C, T is isomorphic to the transformation S defined by

$$
S(x, y)=(x+\gamma, y+m x+c) .
$$

Therefore, it is enough to show that the transformation S has quasi-discrete spectrum. From the facts that for an arbitrary integer p

$$
V_{S} \exp \{2 \pi i \not p x\}=\exp \{2 \pi i \not p \gamma\} \exp \{2 \pi i p x\}
$$

and for arbitrary integers p and q

$$
\begin{aligned}
& V_{S} \exp \{2 \pi i(p x+q y)\} \\
& \quad=\exp \{2 \pi i(p+q c)\} \exp \{2 \pi i q x\} \exp \{2 \pi i(p x+q y)\}
\end{aligned}
$$

hold, each $\exp \{2 \pi i p x\}$ is a proper function of order 1 , each $\exp \{2 \pi i(p x+q y)\}$ is a proper function of order 2 and since G spans $L^{2}(\Omega)$, the transformation S has quasi-discrete spectrum. If the α-function $\alpha(x)$ is equivalent with a constant function λ where λ is an irrational number linearly independent of the irrational number γ, then by Theorem B the transformation T has quasidiscrete spectrum and $G(T)=G(T)_{1}$.

Proof of (i) \Rightarrow (ii). If the transformation $T:(x, y) \rightarrow(x+\gamma, y+\alpha(x))$ has quasi-discrete spectrum, then the group $G(T)$ spans $L^{2}(\Omega)$. It is clear that $\left\{\psi_{p}(x): p=0, \pm 1, \pm 2, \cdots\right\} \subset G(T)_{1}$ where $\psi_{p}(x)=\exp \{2 \pi i p x\}$. We consider the following cases: either

$$
G(T)_{1}=G(T) \quad \text { or } \quad G(T)_{1} \neq G(T) .
$$

Step I. The case of $G(T)_{1}=G(T)$. It is clear that the transformation T with an α-function $\alpha(x)$ has discrete spectrum. By Theorem B , the α-function $\alpha(x)$ is equivalent with a constant function λ where λ is an irrational number linearly independent of γ.

Step II. In the case of $G(T)_{1} \neq G(T)$, it follows that there exist a function $f(x, y) \in G(T)_{2}-G(T)_{1}$ and a function $g(x, y) \in G(T)_{1}-K$ such that

$$
\begin{equation*}
f(T(x, y))=g(x, y) f(x, y) . \tag{1}
\end{equation*}
$$

For the above function $g(x, y)$, we have

$$
\begin{equation*}
g(T(x, y))=e^{2 \pi i \lambda} g(x, y) . \tag{2}
\end{equation*}
$$

From (2), we have

$$
\begin{equation*}
\int g(x+\gamma, y+\alpha(x)) \exp \{-2 \pi i q y\} d y=e^{2 \pi i \lambda} \int g(x, y) \exp \{-2 \pi i q y\} d y . \tag{3}
\end{equation*}
$$

Put

$$
\begin{equation*}
g_{q}(x)=\int g(x, y) \exp \{-2 \pi i q y\} d y \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
\begin{equation*}
g_{q}(x+\gamma)=\exp \{2 \pi i(\lambda-q \alpha(x))\} g_{q}(x) . \tag{5}
\end{equation*}
$$

Taking the absolute value of both sides of (5),

$$
\left|g_{q}(x+\gamma)\right|=\left|g_{q}(x)\right|
$$

Since the number γ is irrational, the function $\left|g_{q}(x)\right|$ is a non-negative constant C_{q}. If $C_{q} \neq 0$, then there exists a function $\theta_{q}(x) \in \Gamma$ such that

$$
\begin{equation*}
g_{q}(x)=C_{q} \exp \left\{2 \pi i \theta_{q}(x)\right\} \tag{6}
\end{equation*}
$$

Since the function $g(x, y)$ is not identically zero, there exists an integer q such that $C_{q} \neq 0$. Let q be such an integer. Replacing $g_{q}(x)$ in (5) by (6), we
have

$$
\begin{equation*}
q \alpha(x)-\lambda=\theta_{q}(x)-\theta_{q}(x+\gamma) . \tag{7}
\end{equation*}
$$

If $q \neq 0$, then the equation (7) shows that $\alpha(x)$ is equivalent with the constant function λ / q. But, on account of Theorem B together with the result 8° in [1], this is impossible since $G(T)_{2} \neq G(T)_{1}$. Thus we obtain

$$
g(x, y)=C_{0} \exp \left\{2 \pi i \theta_{0}(x)\right\}
$$

The latter equation implies that the function $g(x, y)$ must be some non-constant function $C_{0} \psi_{m}(x)$ in $G(T)_{1}$. From this fact, we have

$$
f(T(x, y))=C_{0} e^{2 \pi i m x} f(x, y)
$$

where C_{0} is some constant with $\left|C_{0}\right|=1$. We define

$$
f_{q}(x)=\int f(x, y) \exp \{-2 \pi i q y\} d y
$$

as the equation (4). We have

$$
f_{q}(x+\gamma)=\exp \left\{2 \pi i\left(m x-q \alpha(x)+\lambda^{\prime}\right)\right\} f_{q}(x),
$$

where $C_{0}=\exp \left\{2 \pi i \lambda^{\prime}\right\}$, and

$$
\left|f_{q}(x+\gamma)\right|=\left|f_{q}(x)\right| .
$$

The latter equality implies that there exist a non-zero constant k_{p} and $\theta_{q}(x)$ $\in \Theta$ such that

$$
f_{q}(x)=k_{q} \exp \left\{2 \pi i \theta_{q}(x)\right\}
$$

The function $f_{q}(x) \psi_{q}(y)$ is the proper function belonging to the generalized proper value $e^{2 \pi i\left(m x+\lambda^{\prime}\right)}$. Since the group $O(T)$ is an orthonormal base of $L^{2}(\Omega)$, we see that

$$
f(x, y)=k_{q} f_{q}(x) \psi_{q}(y)
$$

holds for some integer q. Since the function $f(x, y)$ is an arbitrary member in $G(T)_{2}-G(T)_{1}$, each member of $G(T)_{2}-G(T)_{1}$ is of the form $k_{m} f_{m}(x) \exp \{2 \pi i m y\}$, where $f_{m}(x) \in L^{2}(X)$. It is easy to verify that each member of $G(T)_{1}$ is also of the form $f_{n}(x) \exp \{2 \pi i n y\}$ where $f_{n}(x) \in L^{2}(X)$.

From the same arguments as above, it follows that $G(T)_{2}=G(T)_{3}$. Since

$$
L^{2}(\Omega)=\sum_{-\infty}^{\infty} \oplus H_{q}=\overline{\operatorname{span} G(T)},
$$

we obtain

$$
\begin{equation*}
H_{1} \cap\left(G(T)_{2}-G(T)_{1}\right) \neq \phi \tag{8}
\end{equation*}
$$

The relation (8) guarantees that there exists a function $f_{1}(x) \psi_{1}(y)$ in $H_{1} \cap$ $\left(G(T)_{2}-G(T)_{1}\right)$ belonging to some generalized proper value $e^{2 \pi i(m x+c)}$ such that

$$
f_{1}(x+\gamma)=\exp \{2 \pi i(m x-\alpha(x)+c)\} f_{1}(x) .
$$

Taking the absolute value of both sides of the above equation, we obtain $\left|f_{1}(x+\gamma)\right|=\left|f_{1}(x)\right|$. This implies that there exist a non-zero constant k_{1} and $\theta(x) \in \Theta$ such that $f_{1}(x)=k_{1} \exp \{2 \pi i \theta(x)\}$. Thus we obtain

$$
\alpha(x)-(m x+c)=\theta(x)-\theta(x+\gamma) .
$$

From the fact mentioned above, we see that the α-function $\alpha(x)$ is equivalent with a function $m x+c$ where m is some integer and c some real number.

Josai University
Sakado, Saitama

References

[1] L.M. Abramov, Metric automorphisms with quasi-discrete spectrum, Amer. Math. Soc. Transl., (2) 39 (1964), 47-56.
[2] R.L. Adler, Generalized commuting properties of measure preserving transformations, Trans. Amer. Math. Soc., 115 (1965), 1-13.
[3] H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J., 3 (1951), 83-99.
[4] N. Aoki, On generalized commuting properties of automorphisms with quasidiscrete spectrum, Trans. Amer. Math. Soc., 152 (1970), 79-97.
[5] F. Hahn, On affine transformations of compact abelian groups, Amer. J. Math., 85 (1963), 428-446.
[6] P. R. Halmos, Lectures on ergodic theory, The Math. Soc. of Japan, Tokyo, 1956.
[7] V.A. Rohlin, On fundamental ideas of measure theory, Amer. Math. Soc. Transl., (1) 10 (1962), 1-54.

[^0]: Throughout this paper, any equality between functions are taken as the equality for almost all values of the variables.

