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\S 1. Introduction.

Let $k$ be an algebraically closed field of characteristic zero. We shall
work in the category of schemes over $k$ . Let $V$ be a complete algebraic
variety, and let $D$ be a divisor on $V$ . In this paper, we shall introduce the
notion of the D-dimension of $V$ which we denote by $\kappa(D, V)$ , and prove some
theorems (Theorems 1, 2, 3 and 4) about $\kappa(D, V)$ . Furthermore, when $V$ is
non-singular, we define the Kodaira dimension (or the canonical dimension)
$\kappa(V)$ of $V$ , to be $\kappa(K_{V}, V)$ , where $K_{V}$ denotes a canonical divisor of $V$ . The
Kodaira dimension would seem to be the most fundamental invariant in the
theory of birational classification of algebraic varieties. Our theorems con-
cerning $\kappa(D, V)$ and $\kappa(V)$ establish fundamental results in the theory of
birational classification. In particular, Theorem 5 shows that it would be
enough to consider algebraic varieties of Kodaira co-dimension zero1), of
Kodaira dimension zero and of Kodaira dimension $-\infty$ , in order to classify
algebraic varieties to the extent that Italian algebraic geometers did for
algebraic surfaces about sixty years ago.

The main results of this paper have been announced in [9].

The author would like to express the deepest appreciation to Professor
K. Kodaira for his thoughtfull and critical guidance given during the com-
pletion of this paper.

\S 2. Statement of the results.

Letting $V$ be a complete algebraic variety of dimension $n$ and $D$ a divisor
on $V$, we denote by $1(D)-1$ the dimension of the complete linear system $|D|$

associated with $D$ . We consider the set of all positive integers $m$ satisfying
$l(mD)>0$ , which we indicate by $N(D)$ . Assume that $N(D)$ is not empty. Then
$N(D)$ forms a sub-semigroup of the additive group of all integers. Hence,

$*)$ This was presented as a doctoral thesis to the Faculty of Science, University
of Tokyo.

1) The Kodaira co.dimension of an algebraic variety $V$ of dimension $n$ is defined
to be $n-\kappa(V)$ .
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letting $m_{0}(D)$ be the $g$ . $c$ . $d$ . of the integers belonging to $N(D)$ , we can find a
positive integer $N(D)$ such that $m$ belongs to $N(D)$ provided that $m\equiv 0$

$mod m_{0}(D)$ and $m\geqq N(D)$ .
THEOREM 1. There exist positive numbers $\alpha,$ $\beta$ and a non-negative integer

$\kappa$ such that the following inequality holds for every sufficiently large integer $m$ :
$\alpha m^{\kappa}\leqq l(mm_{0}(D)D)\leqq\beta m^{\kappa}$ .

It is easy to check that $\kappa$ is independent of the choice of $\alpha$ and $\beta$ . We
define the D-dimension of $V$ to be the integer $\kappa$ , provided that $l(mD)>0$ for
at least one positive integer $m$ . We denote the D-dimension of $V$ by $\kappa(D, V)$ .
In the case in which $l(mD)=0$ for every positive integer $m$ , we define the
D-dimension of $V$ to be $-\infty:\kappa(D, V)=-\infty$ .

THEOREM 2. Assume that $\kappa(D, V)>0$ . For any positive integer $p$, there
exists a positive number $\gamma$ such that the following inequality holds for every
sufficiently large integer $m$ :

$l(mm_{0}(D)D)-l(\{mm_{0}(D)-pm_{0}(D)\}D)\leqq\gamma m^{\kappa- 1}$ ,

$\kappa=\kappa(D, V)$ .
We recall that, in classical algebraic geometry, the index of an algebraic

system on an algebraic variety of dimension $n$ is defined to be the number of
those distinct members of the system which pass through $r$ independent generic
poin $fs$ of $V$, where $r=the$ dimension of the $system+the$ dimension of its
$member-n+1$ .

THEOREM 3. Suppose that $\kappa=\kappa(D, V)$ is positive. Then there exists a $\kappa$

dimensional irreducible algebraic system of algebraic sub-varieties of dimension
$ n-\kappa$ with index 1, such that $\kappa(D_{w}, V_{w})=0$ , where $V_{w}$ denotes a general member
of the algebraic system and $D_{w}$ the induced divisor on $V_{w}$ of D. Moreover, such
an algebraic system is unique up to birational equivalence.

We introduce the notion of the co-D-dimension of $V$, which we write
$c\kappa(D, V)$ , by setting $c\kappa(D, V)=n-\kappa(D, V)$ .

THEOREM 4. Let $V,$ $V$ be complete algebraic varieties and let $f$ be a proper
surjective morphism from $\tilde{V}$ to V. For any divisor $D$ on $V$ , we have $\kappa(f^{*}D,\tilde{V})$

$=\kappa(D, V)$ . Moreover, if a general fiber $\nu_{v}=f^{-1}(v)$ is irreducible, then for any
divisor $\tilde{D}$ on $\tilde{V}$, we have $c\kappa(D, i^{7})\geqq c\kappa(\tilde{D}_{v}, V_{v})$ .

In order to define the Kodaira dimension of an arbitrary algebraic variety
$V$, we take a non-singular projective model $V^{*}$ of $V$, whose existence is
assured by a celebrated theorem of Hironaka (see [5]). Then we define the
Kodaira dimension $\kappa(V)$ of $V$ to be $\kappa(K^{*}, V^{*})$ , where $K^{*}$ denotes a canonical
divisor of $V^{*}$ . $\kappa(V)$ is well defined and is a birational invariant.

THEOREM 5. If $\kappa=\kappa(V)$ is positive, then there exists a fiber space $f:V^{*}\rightarrow W$

of non-singular projective algebraic varieties such that
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i) $V^{*}$ is birationally equivalent to $V$,
ii) $W$ is of dimension $\kappa$ ,

iii) $f$ is surjective and proper,
iv) any general fiber $V_{w}^{*}=f^{-1}(w)$ is irreducible,
v) $V_{w}^{*}$ has the Kodaira dimension $0$ .

Moreover, such a fiber space is unique up to birational equivalence.
The former part of this theorem is a direct generalization of a theorem2)

which states that a minimal surface $S$ with $K_{s}^{2}=0$ and a plurigenus $\geqq 2$ is
elliptic. Moreover, the latter part is a generalization of Proposition 7 in [8, II].

THEOREM 6. Let S7, $V$ be non-singular projective algebraic varieties and $f$

a proper surjective morphism from $\tilde{V}$ to V. In the case in which $\tilde{V}$ is \’etale
over $V$, we have $\kappa(\tilde{V})=\kappa(V)$ . On the other hand, in the case in which any
general fiber $f^{-1}(v)=\tilde{V}_{v}$ is irreducible, we have $c\kappa(V)\geqq c\kappa(\tilde{V}_{v})$ .

The former assertion is a generalization of a theorem in the theory of
algebraic surfaces to the effect that every unramified covering manifold of
an elliptic surface is also elliptic. The latter is a generalization of a theorem3)

saying that every algebraic surface of general type cannot contain a pencil
of elliptic curves.

We note that the above theorems have counterparts in the category of com-
plex $spaces^{4)}$ .

\S 3. Notation and preliminary propositions.

In this section, we let $V$ denote a normal complete algebraic variety of
dimension $n$ , and let $D$ be a Cartier divisor on $V$ . We shall use the notation
listed below:

$k(V)=the$ field of rational functions on $V$ ,
$[D]=the$ line bundle associated with $D$ ,

$L(D)=the$ vector space consisting of all regular sections of $[D]$ ,
$1(D)=the$ dimension of $L(D)$ ,

$L^{*}(D)=the$ vector space consisting of all rational sections of $[D]$ ,
$(\omega)=the$ divisor corresponding to a non-zero element $\omega\in L^{*}(D)$

(Note that, if $\eta\in L(D),$ $\neq 0$ , then $(\eta)$ is positive),
$|D|=\{(\omega);\omega\in L(D), \neq 0\}$ ; $|D|$ is called the complete linear system

associated with $D$ .
$‘‘\sim‘‘$ indicates the linear equivalence of divisors.

2) Lemma 7 in [11].
3) Lemma 5 in Chapter 6 in [10].
4) The existence of a $non\cdot singular$ model of any compact complex variety was

recently proved by Hironaka (see [7]).
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In what follows in this section we fix a divisor $D$ such that $1(D)=N+1>0$ .
Let $\{\varphi_{0}, \varphi_{1}, \cdots \varphi_{N}\}$ be a basis of $L(D)$ . We define a rational map $\Phi_{D}$ by

$V\ni z\mapsto\Phi_{D}(z)=\varphi_{0}(z)$ : $\varphi_{1}(z)$ :... : $\varphi_{N}(z)\in P^{N}$ ,

where 2 is a general point of $V$ . We denote by $W_{D}$ the rational transform
of $V$ by $\Phi_{D}$ which is a closed sub-variety of $P^{N}$ . Moreover, for every integer
$m>0$ , we abbreviate $\Phi_{mD},$ $W_{mD}$ , and $L(mD)$ to $\Phi_{m},$ $W_{m}$ , and $L_{m}$ , respectively.
We let $\{\psi_{0}, \psi_{1}, \cdot.. , \psi_{l}\}$ be a basis of $L_{m}$ and we choose a basis of $L_{m+1}$ of the
form $\{\varphi_{0}\psi_{0}, \varphi_{0}\psi_{1}, \cdot.. , \varphi_{0}\psi_{l}, \}$ . Then, for a general point $z\in V$, we define
a generically surjective rational map $\rho_{m}$ : $W_{m+1}\rightarrow W_{m}$ by

$\rho_{m}(\varphi_{0}(z)\psi_{0}(z) :. .. :\varphi_{0}(z)\psi_{\iota}(z) : \cdots)=\psi_{0}(z)$ :... : $\psi_{l}(z)$ .
Obviously, we have $\Phi_{m}=\rho_{m}\cdot\Phi_{m+1}$ . Therefore, we have a sequence of fields:

$ k(W_{1})\subset k(W_{2})\subset$ $\subset k(W_{m})\subset$ $\subset k(V)$ .
Since $k(V)$ is finitely generated over $k(W_{1})$ , there is an integer $m_{1}$ such that
$k(W_{m})=k(W_{m},)$ for all $m\geqq m_{1}$ . Hence $\rho_{m}$ is birational for $m\geqq m_{1}$ . From the
following proposition we infer that $k(W_{m1})$ is algebraically closed in $k(V)$ .

PROPOSITION 1. Let $z$ be an element of $k(V)$ which is algebraic over $k(W_{D})$ .
Then there exists an integer $\delta\geqq 1$ such that $z$ belongs to $k(W_{\delta D})$ .

PROOF. Let $\{\varphi_{0}, \varphi_{1}, \cdot.. , \varphi_{N}\}$ be a basis of $L(D)$ , and let $z$ satisfy the
following equation:

$z^{r}+a_{1}z^{r- 1}+\cdots+a_{r}=0$ , (1)

where $a_{1},$ $\cdots$ , $a_{r}\in k(W_{D})$ . Since $k(W_{D})=k(\varphi_{1}/\varphi_{0}, \cdots \varphi_{N}/\varphi_{0})$ , we have homo-
geneous polynomials $F_{0},$ $F_{1},$ $\cdots$ $F_{r}$ of the same degree $\delta$ such that $a_{i}=$

$F_{i}(\varphi_{0}, \varphi_{1}, \cdot.. , \varphi_{N})/F_{0}(\varphi_{0}, \varphi_{1}, \cdot.. , \varphi_{N})$ for $1\leqq i\leqq r$ . The equation (1) leads to the
following equation:

$(zF_{0}(\varphi))^{r}+F_{1}(\varphi)(zF_{0}(\varphi))^{r-1}+\cdots+F_{0}(\varphi)^{r- 1}F_{r}(\varphi)=0$ , (2)

where we abbreviate $F_{j}(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N})$ to $F_{j}(\varphi)$ for $0\leqq j\leqq r$ . Note that $zF_{0}(\varphi)$ ,
$F_{1}(\varphi),$ $\cdots,$ $F_{0}(\varphi)^{r-1}F_{r}(\varphi)$ are elements of $L^{*}(\delta D),$ $L(\delta D),$ $\cdots$ , $L(r\delta D)$ , respectively.
Now we take a covering of $V$ by affine open sets $\{U_{\lambda}\}_{\lambda\in\Lambda}$ such that $[D]$ is
trivial on $U_{\lambda}$ for every $\lambda\in\Lambda$ . We indicate the restriction of any entity $\#$ to
$U_{\lambda}$ by the symbol $\#_{\lambda}$ . It is clear that $F_{1}(\varphi)_{\lambda}$ , $\cdot$ .. $(F_{0}(\varphi)^{r-1}F_{r}(\varphi))_{\lambda}\in H^{0}(U_{\lambda}, \mathcal{O}_{V})$ .
Since the ring $H^{0}(U_{\lambda}, \mathcal{O}_{V})$ is integrally closed, we infer from the equation (1)
that $zF_{0}(\varphi)_{\lambda}\in H^{0}(U_{\lambda}, \mathcal{O}_{V})$ . Therefore, we have $zF_{0}(\varphi)\in L(\delta D)$ . This implies
that $z\in k(W_{\delta D})$ .

PROPOSITION 2. Let $D$ be a divisor on V. Then there exists a number $\beta$

such that $l(mD)\leqq\beta m^{n}$ for all $m\gg O$ . Furthermore, when $D$ is ample, there
exists a positive number $\alpha$ such that $\alpha m^{n}\leqq l(mD)$ for all $m\gg O$ .

PROOF. When $D$ is ample, $l(mD)$ is a polynomial of degree $n$ for all $m\gg O$ .
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Hence we have an estimate:
$\alpha m^{n}\leqq l(mD)\leqq\beta m^{n}$ for all $m\gg O$ ,

where $\alpha,$ $\beta$ are positive numbers depending only on $D$ . In the case in which
$D$ may not be ample, we take a projective model $V^{*}$ of $V$ such that a bi-
rational map $T:V^{*}\rightarrow V$ is regular. Note that $l(mT^{*}D)=l(mD)$ . Hence we
may assume that $V$ is projective. We take an ample divisor $D^{*}$ such that
$D^{*}\sim D+H$, where $H$ is a suitably chosen ample divisor. Then we have

$l(mD)\leqq l(mD+mH)=l(mD^{*})\leqq\beta^{*}m^{n}$ for a constant $\beta^{*}$

and for all $m\gg O$ .
PROPOSITION 3. Let $f:V\rightarrow W$ be a fiber space of complete normal algebraic

varieties such that $f^{*}(k(W))$ is algebraically closed in $k(V)$ . Then, for any divisor
$D$ on $W,$ $L(D)$ is isomorphic to $L(f^{*}(D))$ by the map induced by $f$

PROOF. Let $\psi$ be a rational function on $V$ such that $(\psi)\geqq-f^{*}(D)$ . Since
$\psi|V_{w}$ has no pole on $V_{w},$ $V_{w}$ being the generic fiber over the generic point
$w$ of $W,$ $\psi|V_{w}=\psi$ belongs to $k(w)=k(W)$ . From this observation, Proposition
3 follows at once.

\S 4. Proofs of Theorems 1 and 3.

First, we note that it is sufficient to prove these theorems for a normal
algebraic variety $V$ and for an effective divisor $D$ . In fact, taking the
normalization $V^{*}$ of $V$ , we define $l(R^{*}D, V^{*})=l(D, V)$ where $R:V^{*}\rightarrow V$ is a
birational morphism. We fix an integer $\overline{m}_{0}$ satisfying $\overline{m}_{0}m_{0}(D)\in N(D)$ and an
effective divisor $D^{\prime}$ which is linearly equivalent to $\overline{m}_{0}m_{0}(D)D$ . We wish to
prove the inequalities in Theorem 1 under the assumption that the following

inequality holds for all $f^{t}\gg O$ :
$\alpha\mu^{\kappa}\leqq l(\mu D^{\prime})\leqq\beta\mu^{\kappa}$ .

For this purpose, let $m$ be any given large integer. We divide $m$ by $\overline{m}_{0}$ with
a sufficiently large residue, $i$ . $e.$ , we let $m=\mu\cdot\overline{m}_{0}+q$ , where $q\cdot m_{0}(D)\in N(D)$

and $q$ is bounded when $m$ grows to infinity. Then we have

$l(mm_{0}(D)D)=l(\{\overline{m}_{0}\mu m_{0}(D)+qm_{0}(D)\}D)\geqq l(\mu\overline{m}_{0}m_{0}(D)D)=l(\mu D^{\prime})\geqq\alpha\mu^{\kappa}$ .
Moreover, we divide $m$ by $\overline{m}_{0}$ with a sufficiently small residue, $i$ . $e.$ , we let
$m=\mu\overline{m}_{0}-q^{\prime}$ , where $q^{\prime}$ . $m_{0}(D)\in N(D)$ and $q^{\prime}$ is bounded. Then we have

1 $(mm_{0}(D)D)=l(\mu\overline{m}_{0}m_{0}(D)D-q^{\prime}m_{0}(D)D)\leqq l(\mu\overline{m}_{0}m_{0}(D)D)=l(\mu D^{\prime})\leqq\beta\mu^{\kappa}$ .

Thus, we may assume that $V$ is normal and $D$ effective. By the consideration
in \S 3, we have a fiber space of algebraic varieties $\Phi_{m_{1}}$ : $V\rightarrow W_{m_{1}}\subset P^{N}$ which
has the following properties:
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1) $\Phi_{m_{1}}$ is a generically surjective map,
2) $k(W_{m})=k(W_{m_{1}})$ for all integer $m\geqq m_{1}$ ,

3) $k(W_{m_{1}})$ is algebraically closed in $k(V)$ ,
where $\Phi_{m_{1}}$ denotes $\Phi_{m_{1}D}$ , etc. By taking the normal graph, we have a bi-
rational morphism $T:V^{*}\rightarrow V$ such that the rational map $\Phi_{m_{1}}\circ T$ is regular.
In view of the isomorphism:

$\tau*$ : $L(m_{1}D)\simeq L(m_{1}T^{*}D)$ ,

we can replace $V,$ $D$ by $V^{*},$ $T^{*}D$ , respectively. Hence we may assume that
$\Phi_{m_{1}}$ isamorphism. $Forsimplicity,$ $weabbreviatem_{1}D,$ $\Phi_{m_{1}},$ $W_{m_{1}}andl(m_{1}D)-1$

to $E,$ $f,$ $W$ and $N$, respectively. Note: we can assume that $W$ is normal.
$w_{e}$ fix a basis $\{\varphi_{0}, , \varphi_{N}\}$ of $L(E)$ such that $f$ is defined by means of

this basis. Let $F$ be the maximal fixed component of $|E|$ , and let $H$ denote
a hyperplane section of $W$ in $P^{N}$ . Then we have a member of $|E|$ of the
form : $F+f^{*}(H)$ , where $f^{*}(H)$ indicates the divisor induced from $H$ by $f$

Hence, by Proposition 3, we have

$l(mm_{1}D)=l(mE)=l(mF+f^{*}(mH))\geqq l(mf^{*}(H))=l(mH)$ .
From Proposition 2, we infer the existence of a positive number $\alpha$ such that
$1(mH)\geqq\alpha m^{\kappa}$ for all $m\gg O$ , where $\kappa$ denotes the dimension of $W$ . Thus we
have

1 $(\mu m_{1}D)\geqq\alpha\mu^{\kappa}$ for all $\mu\gg 0$ . (3)

We represent the divisor $F$ as a sum: $F=\sum n_{\nu}A_{\nu}$ , where the $A_{\nu}$ denote
the irreducible components of $F$, and define

$L=\sum_{f(A_{\nu^{J}}=W}n_{\nu}A_{\nu}$ , $F^{*}=\sum_{f(A_{\nu\prime}\neq W}n_{\nu}A_{\nu}$ .

Then, for any integer $m>0$ , we have

$|mE|\ni mL+mF^{*}+f^{*}(mH)$ .
Furthermore, we take a general member $\sum n_{\nu}B_{\nu}$ of $|mE|$ , where the B. denote
its irreducible components, and let

$L_{m}=\sum_{f(B_{\nu J}=W}n_{\nu}B_{\nu}$
, $F_{m}^{*}=\sum_{B_{\nu)}J(\neq W}n_{\nu}B_{\nu}$ .

Hence we have
$L_{m}+F_{m}^{*}\sim mL+mF^{*}+f^{*}(mH)$ . (4)

Restricting both divisors to a general fiber $V_{w}$ of $f$, we have

$L_{m}|V_{w}=(L_{m}+F_{m}^{*})|V_{w}\sim(mL+mF^{*}+f^{*}(mH))|V_{w}=mL|V_{w}$ .
Moreover, we shall prove

$L_{m}|V_{w}=mL|V_{w}$ . (5)
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Assuming the equality (5), we proceed with the proof of Theorem 1. From
the equality (5), we infer that $L_{m}=mL$ . This implies that $L_{m}$ is one of the
fixed components of $|mE|$ . Hence, we have

1 $(mm_{1}D)=l(L_{m}+F_{m}^{*})=l(F_{m}^{*})=l(mF^{*}+f^{*}(mH))$ . (6)

On the other hand, we can take a positive divisor $H^{*}$ on $W$ such that
$F^{*}\leqq f^{*}(H^{*})$ . Therefore, by Proposition 3, we have

$l(mF^{*}+f^{*}(mH))\leqq l(mf^{*}(H^{*})+f^{*}(mH))=l(m(H^{*}+H))$ . (7)

By Proposition 2 we can choose a number $\beta$ which satisfies

$l(m(H^{*}+H))\leqq\beta m^{\kappa}$ for all $m\gg O$ .
Combining this with (6) and (7), we have

$l(\mu m_{1}D)\leqq\beta\mu^{\kappa}$ for all $\mu\gg 0$ . (8)

By a similar inference as before, we derive from (4) and (8) the inequality
in Theorem 1.

PROOF OF THE EQUALITY $L_{m}|V_{w}=mL|V_{w}$ . We denote by $\mathcal{L}$ the sheaf of
germs of regular sections of the bundle $[mm_{1}D]$ . Then we have the homo-
morphism: $\sigma=\sigma_{1}$ : $f^{*}f_{*}(\mathcal{L})\rightarrow \mathcal{L}$ (see [2, $0_{I}$ . $4.4.3.3]$). Let $C,$ $\Sigma,$ $V_{1}$ and $f_{1}$ be,
respectively, the cokernel of $\sigma$, the support of $C,$ $ V-\Sigma$ and $f|V_{1}$ . Then the
restriction of $\sigma$ to $V_{1}$ : $f_{1}^{*}f_{*}(\mathcal{L})\rightarrow \mathcal{L}|V_{1}$ is surjective. Hence by a theory of
Grothendieck (see [2, II. 4. 2. 3]) we have a fiber space $g:P(f_{*}(\mathcal{L}))\rightarrow W$ and a
morphism $h_{1}$ : $V_{1}\rightarrow P(f_{*}(\mathcal{L}))$ over $W$ such that $\mathcal{L}_{1}=\mathcal{L}|V_{1}$ is isomorphic to
$h_{1}^{*}\mathcal{O}_{P}(1)$ . In the above we abbreviate $P(f_{*}(\mathcal{L}))$ to $P$. Let $Z$ be an algebraic
variety of which the underlying space is the closure of $h_{1}(V_{1})$ in $P$. A hyper-
plane defined by $\lambda_{0}X_{0}+\cdots+\lambda_{N}X_{N}=0$ in $P^{N}$ cuts off on $W$ a positive divisor
$H_{\lambda}$ . Let $W_{\lambda}$ denote an affine open set $W-H_{\lambda}$ . Then $h|f^{-1}(W_{\lambda})$ is described
as follows. Recalling that the sheaf $f_{*}(\mathcal{L})$ is coherent, we can take $\psi_{0},$ $\psi_{1}$ ,

, $\psi_{N}\in H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))$ such that $H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))$ is generated by $\psi_{0},$ $\psi_{1},$ $\cdots$ $\psi_{N}$

as an $H^{0}(W_{\lambda}, \mathcal{O}_{W})$-module (see [2, I. 1. 5. 5]). Regarded as a rational map, $h_{1}$

coincides with the rational map defined by

$ V\supset f^{-1}(W_{\lambda})\ni z-\succ\psi_{0}(z):\cdots$ : $\psi_{N}(z)\in P_{H(W_{\lambda},O_{W})}^{N_{0}}$

for a general point $z$ of $V$ . On the other hand, we have
$f^{-1}(W_{\lambda})=V-E_{\lambda}^{*}\supset V-E_{\lambda}$

where $E_{\lambda}$ and $E_{\lambda}^{*}$ denote $(\lambda_{0}\psi_{0}+\cdots+\lambda_{N}\psi_{N})\in|E|$ and $E_{\lambda}-F$, respectively.
Moreover, we have

$H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))=H^{0}(f^{-1}(W_{\lambda}), \mathcal{L})\subset H^{0}(V-E_{\lambda}, \angle)$

$=\bigcup_{e=1}^{\infty}H^{0}(V, \mathcal{L}(emE_{\lambda}))$ ,
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where we denote by $H^{0}(V, \mathcal{L}(emE_{\lambda}))$ the space of rational sections $\omega$ of $\mathcal{L}$ on
$V$ such that the corresponding divisor $(\omega)\geqq-emE_{\lambda}$ .

Fix an element $\eta\in L(emE_{\lambda})$ such that $(\eta)=emE_{\lambda}$ . Then $H^{0}(V, \mathcal{L}(emE_{\lambda}))$

is isomorphic to $H^{0}(V, \mathcal{L}^{\otimes(e+1)})$ by the map $\psi-\psi\eta$ . Now we can find an
integer $\epsilon$ such that $\psi_{0},$ $\psi_{1},$ $\cdots,$ $\psi_{N}\in H^{0}(V, \mathcal{L}(\epsilon mE_{\lambda}))$ . Therefore, considering the
function fields of $h_{1}(V_{1}),$ $W$ and $W_{(\epsilon+1)m}$ , we have the relations of inclusions:

$k(V)=k(V_{1})=k(W_{(\epsilon+1)m})\supset k(h_{1}(V_{1}))\supset k(W)$ .
In view of the equalities $k(W_{(\epsilon+1)m})=k(W)$ and $k(h_{1}(V_{1}))=k(Z)$ , we conclude
that the morphism $g:Z\rightarrow W$ is birational. Applying the theorem of upper
semi-continuity to the function $l(mm_{1}D_{w})$ of $w\in W$ , we infer that $l(mm_{1}D_{w})$

$=\dim H^{0}(V_{w}, \mathcal{L}_{w})$ is constant on a certain dense open subset $W^{*}$ of $W$ . Hence,
we have

$f_{*}(\mathcal{L})\bigotimes_{o_{W}}k(w)\simeq H^{0}(V_{w}, \mathcal{L}_{w})$ for $w\in W^{*}$ ,

where $k(w)$ denotes $\mathcal{O}_{W,w}/\mathfrak{m}0_{W,w\rightarrow}\sim k$ .
Finally we wish to show that $\Phi_{\theta}$ is the morphism $h\times Speck(w)W$ from $V_{w}$

to $Z_{w}\subset P(f_{*}(\mathcal{L}))\times Speck(w)W$ where $\theta$ denotes $mE|V_{w}$ . For this it is sufficient
to note that

$P(f_{*}(\mathcal{L}))\times Speck(w)W=P(f_{*}(\mathcal{L})\bigotimes_{\mathcal{O}_{W}}k(w))\simeq P(H^{0}(V_{w}, \mathcal{L}_{w}))$ for $w\in W^{*}$ ,

and that $h_{w}^{*}(\mathcal{O}_{P}(1))$ is isomorphic to $\mathcal{L}_{w}$ , where we write $h_{w}$ instead of
$h\times Speck(w)W$ Recalling that $Z$ is birationally equivalent to $W$ , we conclude
that $h_{w}$ is a constant morphism. Therefore we have

$\dim H^{0}(V_{w}, \mathcal{L}_{w})=l(mm_{1}D_{w})=1$

and also $\dim|mL|V_{w}|=0$ . This establishes the equality (5).
Furthermore, we see that, for any integer $i>0$ ,

$l(iD_{w})\leqq l(im_{1}D_{w})=1$ .
From this we infer the existence of the algebraic system in Theorem 3.

Now we shall prove the uniqueness of the algebraic system in Theorem 3
in the following form: Let $f^{!}$ : $V$ $‘\rightarrow W^{1}$ be a fiber space of complete algebraic
varieties which has the following properties;

1) $V^{1}$ is birationally equivalent to $V$,

2) $W^{!}$ has dimension $\kappa=\kappa(D, V)$ ,
3) $f^{f}$ is proper and surjective,
4) any general fiber $f^{!- 1}(w)=V_{w}^{\mathfrak{l}}$ is irreducible,
5) the $D_{v}^{!}$-dimension of $V_{w}^{\dagger}$ is zero,

where $D$ ‘ is a divisor corresponding to $D$ by the birational map from $V^{1}$ to $V$.
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Then this fiber space is birationally equivalent to the fiber space $f:V\rightarrow W$ con-
structed in \S 3, $i$ . $e.$ , there exist two birational maps $\tau;V^{1}\rightarrow V$ and $\rho:W^{I}\rightarrow W$

such that $f\cdot\tau=\rho\cdot f$ ’.
By the consideration in \S 3, we have a generically surjective rational map

$\Phi_{m_{1}D^{1}}$ from $V^{1}$ to $W_{m_{1}D}$ such that

$k(W_{m_{1}D^{1}})=k(W_{(m_{1}+1)D^{1}})=\ldots\subset k(V^{1})=k(V)$ for an integer $m>0$ .
Note that $W_{m1^{D^{I}}}$ is birationally equivalent to $W$ . We take a monoidal trans-
formation $ T:V^{*}\rightarrow V\downarrow$ such that $\Phi_{m_{1}D^{\mathfrak{j}}}\cdot T$ is everywhere defined. Moreover,
we have the isomorphism $L(mD^{1})\simeq L(mD^{*})$ and so $\Phi_{m1^{D^{\mathfrak{l}}}}\cdot T=\Phi_{m1^{D}}\#$ , where by
$D^{*}$ we denote $T^{*}D^{1}$ . By the property 5), say $l(m_{1}D^{I}|V_{w}^{1})=l(m_{1}D_{w}^{1})=l(m_{1}D_{w}^{*})$

$=1$ , we have a generically surjective rational map $\rho$ from $W^{1}$ to $W$ such that
$\rho\cdot f^{1}\cdot T=\Phi_{m_{1}D}*$ . Hence, we have

$k(V)=k(V^{I})=k(V^{\#})\supset k(W^{1})\supset k(W)$ .
The equality $\dim W$ $‘=\kappa=\dim W$ implies that $k(W$ ’

$)$ is algebraic over $k(W)$ .
Therefore, the equality $k(W^{1})=k(W)$ follows from the property 4), $i$ . $e.,$ $\rho$ is
birational. Recalling that $f$ is defined to be $\Phi_{mD}$ , we have a birational map
$\tau^{\prime}$ such that $\Phi_{mD*}=f\cdot\tau^{\prime}$ . Let $\tau$ be $\tau^{\prime}\cdot T^{-1}$ . Then $f\cdot\tau=\rho\cdot f^{1}$ (see the diagram
\langle 9)). This completes the proof of the uniqueness.

(9)

\S 5. Proof of Theorem 2.

We use the same notation as in the proof of Theorem 1. A similar
argument as at the beginning of the proof of Theorem 1 shows that we can
replace $D$ by an effective divisor $D$ . Now we make the following observation:
For $m\geqq 1$ , the maximal fixed component of the complete linear system $|mD|$

can be described as a sum of divisors $L_{m},$ $\Xi_{m},$ $\Theta_{m}$ and $f^{*}(\Gamma_{m})$ . These are
defined as follows: Letting $\sum n{}_{\nu}C_{\nu}$ be a general member of $|mD|$ , where
$n_{\nu}>0$ , the $C_{\nu}$ are irreducible curves and $C_{\mu}\neq C_{\nu}$ for $\mu\neq\nu$ , we set

$L_{m}=\sum_{f(C_{\nu})=W}n_{\nu}C_{\nu}$ ,

$H_{m}=the$ largest of all positive divisors $H$ on $W$ such that $\sum n{}_{\nu}C_{\nu}\geqq f^{*}(H)$ ,
$\Xi_{m}=the$ largest of all positive divisors of the form $\sum a_{\nu}\overline{f}(A_{\nu})$ satisfying
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$\sum n_{\nu}C_{\nu}-f^{*}(H_{m})\geqq\sum a_{\nu}\overline{f}(A_{\nu})$ , where the $A_{\nu}$ denote prime divisors on
$W,$ $e(A_{\nu})$ is the $g$ . $c$ . $d$ . of all the multiplicities of the irreducible
components of $f^{*}(A_{\nu})$ and $\overline{f}(A_{\nu})=f^{*}(A_{\nu})/e(A_{\nu})$ ,

$\Theta_{m}=\sum n_{\nu}C_{\nu}-L_{m}-f^{*}(H_{m})-\Xi_{m}$ ,
$\Gamma_{m}=the$ maximal fixed component of $|H_{m}|$ .

In fact, by the results in the proof of Theorem 1, we have $m_{1}L_{m}=mL_{m1}$ .
Hence it follows that $L_{m}$ is one of the fixed components of $|mD|$ . From this
we infer that any element of $H^{0}(V, \mathcal{O}_{V}(mD))$ is derived from the rational
function on $W$ .

With this observation in mind, we proceed with the proof. First, we note
that we can replace $p$ by $pm_{2}$ for any integer $m_{2}>0$ because

$l(mD)-l(mD-pD)\leqq l(mD)-l(mD-pm_{2}D)$ .
Moreover, we can replace $m$ by $mm_{2}$ . To see this, we let $m=\mu m_{2}-q$ , where
$0\leqq q<m_{2}$ . Then we have

$l(mD)-l(mD-pD)=l(\mu m_{2}D)-l(\mu m_{2}D-(q+p)D)$ .
From this inequality our assertion follows.

We fix $m_{2}$ to be 1. $c$ . $m$ . of all $e(f(C_{\nu}))$ such that $\Xi_{1}\geqq f(f(C_{\nu}))>0$ . Then
we infer immediately that $\Xi_{\overline{m}}$ and $\Xi_{\overline{p}}$ vanish, where we abbreviate $mm_{2}$ and
$pm_{2}$ to $\overline{m}$ and $\overline{p}$, respectively. Now, for $m>p$ , we have

$l(\overline{m}D-\overline{p}D)=l((\overline{m}-\overline{p})D)=l(f^{*}(H_{\overline{m}-\overline{p}}))=l(H_{\overline{m}}-H_{\overline{p}})$ , (10)
and also

$l(mD)=l(f^{*}(H_{\overline{m}}))=l(H_{\overline{m}})$ . (11)

Adding a suitable positive divisor $J$ to $H_{\overline{p}}$ such that $J+H_{\overline{p}}$ is ample, we fix
a prime divisor $\overline{H}$ which is linearly equivalent to $J+H_{\overline{p}}$ . Then we have

$l(H_{\overline{m}}-H_{\overline{p}})\leqq l(H_{\overline{m}}-\overline{H})$ . (12)

Using a sequence of cohomology groups, we have

$l(H_{\overline{m}})-l(H_{m}-\overline{H})\leqq l(H_{\overline{m}}|\overline{H})$ , (13)

where we denote by $H_{\overline{m}}|\overline{H}$ the induced divisor on the variety $\overline{H}$. Since
$L_{\overline{m}}=\overline{m}L_{1}$ and $\Theta_{\overline{m}}=\overline{m}\Theta_{1}$ , we have $H_{\overline{m}}\sim mH_{\overline{1}}$ . Hence, we have

$l(H_{\overline{m}}|\overline{H})=l(mH_{\overline{1}}|\overline{H})$ . (14)

By Proposition 2, the right hand side is smaller than $\gamma m^{\kappa-1}$ for a constant $\gamma$

Combining this with (10), (11), (12), (13) and (14) we obtain the inequality in
Theorem 2.
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\S 6. Proof of Theorem 4.

First, we shall give a proof of the first assertion of Theorem 4. By
Proposition 3, we can assume that $k(\tilde{V})/k(V)$ is finite. Taking the Galois
closure of $k(\tilde{V})/k(V)$ and constructing a projective model of it, we see that
it is sufficient to prove the assertion in the case in which $k(\tilde{V})/k(V)$ is a
Galois extension. Let $G$ denote its Galois group. Replacing $\overline{m}_{0}m_{0}(D)$ by $D$ in
case $\kappa(D, V)\geqq 0$ , we assume that $D$ is effective. By the natural injection:
$L(mD)\rightarrow L(mf^{*}(D))$ , we have the generically surjective map $f_{m}$ : $W_{mf’(D)}\rightarrow W_{mD}$

such that $\Phi_{mf\cdot(D)}\cdot f=f_{m}\cdot\Phi_{mD}$ . We wish to prove $k(W_{mf\cdot(D)})/k(W_{mD})$ is finite
algebraic for $m\gg O$ . For this it is sufficient to prove that any element $a$ of
$H^{0}(\tilde{V}, \mathcal{O}_{V}(mf^{*}(D)))$ is algebraic over $k(W_{mD})$ for $m\gg O$ , because $k(W_{mf(D)})$ is
the fractional field of the ring generated by $H^{0}(\tilde{V}, \mathcal{O}_{V}(mf^{*}(D)))$ in $k(\tilde{V})$ . We
have $r$ fundamental symmetric functions $S_{1}(a),$ $\cdots$ $S_{r}(a)$ of $\sigma_{1}(a),$ $\cdots$ $\sigma_{r}(a)$,
where $r$ is the order of $G$ and $\sigma_{1}$ , $\cdot$ ..

$\sigma_{r}$ are the elements of $G$ . Clearly $S_{j}(a)$

belongs to $H^{0}(\tilde{V}, \mathcal{O}_{V}(rmf^{*}(D)))$ for every $1\leqq j\leqq r$ . Hence, $S_{j}(a)$ can be de-
scribed as $f^{*}(b_{j})$ , where $b_{j}\in H^{0}(V, \mathcal{O}_{V}(rmD))$ . From this we can derive an
algebraic equation:

$a^{r}+b_{1}a^{r- 1}+\cdots+b_{r}=0$ .
This proves that $a$ is algebraic over $k(W_{rmD})$ . Moreover, it is easy to check
that $\kappa(D, V)=-\infty$ if and only if

$\kappa(f^{*}D,\tilde{V})=-\infty$ . Q. E. D.

To prove the latter assertion of Theorem 4, we let $\mathcal{L}$ be the invertible sheaf
associated with the divisor $m_{0}(\tilde{D})\tilde{D}$ under the assumption $ N(\tilde{D})\neq\phi$ . We
consider the rational map $h=\sigma_{J^{\otimes m_{2}}}$ : $V\rightarrow P(f_{*}(\mathcal{L}^{\otimes m_{2}}))$ for an integer $\iota_{2}\gg 0$

over $V$ and denote by $Z$ the image of $V$ by $h$ which is the closed subvariety
of $P(f_{*}(\mathcal{L}^{\otimes m2}))$ . Then we have $\dim Z_{v}=\kappa(\tilde{D}_{v},\tilde{V}_{v})$ for a general point $v$ of $V$,

because $h_{v}=h|\tilde{V}_{v}=\Phi_{m_{2}m_{0}(\overline{D})\overline{D}_{v}}$ . Moreover, by Theorem 3 we conclude that
$V.=h^{-1}(z)$ is irreducible for a general point $z$ of $Z$ and that $\kappa(\tilde{D}_{z},\tilde{V}_{z})=0$ ,

where $\tilde{D}_{z}$ denotes the restriction of $\tilde{D}$ to V.. On the other hand, we let
$g:V\rightarrow W$ denote the fiber space $\Phi_{m_{1}m_{0}(\tilde{D})\tilde{D}}$ : $V\rightarrow W_{m_{1}m_{0(\tilde{D})\tilde{D}}}$ constructed in \S 3.
Owing to the vanishing of $\kappa(\tilde{D}_{z},\tilde{V}_{z})$ , we obtain a generically surjective rational
map $t:Z\rightarrow W$ such that $t\cdot h=g$ . Hence, we see that $\dim Z\geqq\dim W=\kappa(\tilde{D},\tilde{V})$ .
Recalling that $\dim Z=\dim Z_{v}+\dim V=\kappa(\tilde{D}_{v},\tilde{V}_{v})+\dim V$ , we conclude that
$\kappa(\tilde{D},\tilde{V})\leqq\kappa(\tilde{D}_{v},\tilde{V}_{v})+\dim V$ . This implies $c\kappa(\tilde{D},\tilde{V})\geqq c\kappa(\tilde{D}_{v},\tilde{V}_{v})$ . In case $N(\tilde{D})$

$=\phi$ , we have by definition, $\kappa(\tilde{D},\tilde{V})=-\infty$ and so $c\kappa(\tilde{D},\tilde{V})=+\infty\geqq c\kappa(\tilde{D}_{v},\tilde{V}_{v})$ .
REMARK 1. The proof above suggests a generalization of Theorem 3 in

the following form: Let $f:\tilde{V}\rightarrow V$ be a fiber space of algebraic varieties such
that $f$ is a proper and surjective morphism and let $\tilde{D}$ be a divisor on V. Suppose



D.dimensions of varieties 367

that $\kappa(\tilde{D}_{v},\tilde{V}_{v})\geqq 0$ for a general point $v$ of V. Then there exists a fiber space
$h:\tilde{V}^{*}\rightarrow W$ over $V$ satisfying

1) $\tilde{V}^{*}$ is birationally equivalent to $\tilde{V}$,
2) the structure map from $W$ to $V$ is surjective, proper and $\kappa(\tilde{D}_{v},\tilde{V}_{v})$

$=\dim W/V$ (where $\dim W/V$ denotes $\dim W-\dim V$ ),

3) $h$ is surjective and proper,
4) any general fiber $V_{z}^{*}=h^{-1}(z)$ is irreducible,
5) $\kappa(\tilde{D}_{l}^{*},\tilde{V}_{z}^{*})=0$ (where $\tilde{D}^{*}$ is the complete inverse image of the divisor $\tilde{D}$

by the birational map from $\tilde{V}^{*}$ to $\tilde{V}$ ).

Furthermore, such a fiber space is unique up to birational equivalence over $V$ .
REMARK 2. By using Theorem 3 we can prove the following result con-

cerning $m_{0}(D):D$ can be uniquely described as a sum of divisors $D_{0}$ and $D^{*}$

such that
1) $m_{0}(D)=m_{0}(D_{0}),$ $m_{0}(D^{*})=1$ ,

2) $\kappa(D, V)=\kappa(D^{*}, V),$ $\kappa(D_{0}, V)=\kappa(D_{0}|V_{w}, V_{w})=0$ , where $V_{w}$ is a general
member of the algebraic system introduced in the statement of Theorem 3,

3) the number of the irreducible components of $D_{0}$ is the least of those of
the divisors $D_{0}$ satisfying the conditions 1) and 2).

Moreover, we note that $N(D_{0})=m_{0}(D)N$ and $N(D^{*})=$ { $n\in N$ such that $n>N(D)$ }.
In particular, $c\kappa(D, V)=0$ implies $m_{0}(D)=1$ .

\S 7. Proofs of Theorems 5 and 6.

Applying Theorem 3 to the case in which $V$ is non-singular and $D$ a
canonical divisor $K$ of $V$ , we obtain a fiber space of non-singular projective
algebraic varieties $f:V^{*}\rightarrow W$ which satisfies the conditions 1), 2), 3) and 4)

in the statement of Theorem 5 and the condition 5*) $K|V_{w}^{*}$-dimension of $V$

is zero. Hence, in order to prove Theorem 5 it is sufficient to show that
$K|V_{w}^{*}$ is a canonical divisor of $V_{w}^{*}$ . For this, let $W_{1}$ be an open dense
subscheme of $V$ such that $f|f^{-1}(W_{1})$ is smooth. We abbreviate $f^{-1}(W_{1})$ and
$f|V_{1}$ by $V_{1}$ and $f_{1}$ , respectively. Referring to [3, II. 4.3] we have an exact
sequence:

$0\rightarrow f_{1}^{*}(\Omega_{W1}^{1})\rightarrow\Omega_{V_{1}}^{1}\rightarrow\Omega_{V_{1}/W1}^{1}\rightarrow 0$ . (15)

From this an isomorphism: $\Omega_{v_{1}}^{n}\rightarrow\sim\Omega_{v_{1/W_{1}}}^{n-\kappa}\otimes f_{1}^{*}\Omega_{W_{1}}^{\kappa}$ follows (see [12]). Restrict-
ing these sheaves to a general fiber $V_{w}^{*}$ we obtain

$\Omega_{v_{1}}^{n}|V_{w}^{*}\simeq\Omega_{v_{1/W_{1}}}^{n-\kappa}|V_{w}^{*}\otimes f_{1}^{*}(\Omega_{W1}^{\kappa})|V_{w}^{*}$ . (16)

Since $f_{1}^{*}(\Omega_{W_{1}}^{\kappa})|V_{w}^{*}\simeq \mathcal{O}_{V_{\uparrow v}}\cdot\otimes\Omega_{W_{1}}^{\kappa}|_{w}\simeq \mathcal{O}_{V_{\tilde{w}}}$ and $\Omega_{V_{1}/W_{1}}^{1}|V_{w}^{*}\simeq\Omega_{\gamma_{w}}^{1}\cdot$ , the isomorphism
(16) leads to $\Omega_{\gamma_{1}}^{n}|V_{w}^{*}\simeq\Omega_{V_{lv}^{\wedge}}^{n-\kappa}$ . This implies that $K|V_{w}^{*}$ is a canonical divisor
of $V_{w}^{*}$ , as required.
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Now, let $f:\tilde{V}\rightarrow V$ be a fiber space of complete non-singular algebraic
varieties. Suppose that $f$ is an \’etale morphism. Then $\Omega_{\tilde{r}/V}^{1}=0$ (see [3, I. 3.1]).
Hence, by the exact sequence (15) we have $ f^{*}\Omega_{V}^{1}\sim$ . This leads to $f^{*}K_{V}$

$\sim K_{\tilde{V}}$ . Therefore, applying the former assertion of Theorem 4 with $D=K_{V}$ ,
we can prove the former part of Theorem 6. As for the latter part of
Theorem 6, using the linear equivalence $K_{\tilde{V}}|V_{w}\sim K_{\tilde{V}_{w}}$ , we can prove it by a
similar argument.

\S 8. Counterparts of Theorems 1, \cdots , 6 in the category of complex spaces.

Now let us consider in the category of complex spaces, which we denote
by (An). Replacing a complete algebraic variety $V$ , a morphism, a rational
map, a non-singular algebraic variety, $\cdots$ , in the statements of theorems in
\S 2, respectively, by a compact irreducible reduced complex space (such a space
is called a complex variety), a holomorphic map, a meromorphic map, a com-
plex manifold, $\cdots$ , we obtain the statements of the corresponding theorems
in (An). Let us refer to the theorem in (An) corresponding to Theorem $x$ in
\S 2 as Theorem $x^{*}$ . We note that Theorem 3* asserts the existence of an
algebraic system of compact complex sub-spaces of $M$ and that $W$ in Theorem
$5^{*}$ admits a structure of an algebraic variety, since $W_{mD}$ is a closed complex
sub-space of $P^{N}$ .

Using the fact that $\kappa(D, M)$ is the largest of the dimensions of the
varieties $W_{mD},$ $m\geqq 1$ , we obtain the following Corollary to Theorem 1*.

COROLLARY. If there exists a divisor $D$ on $M$ with $\kappa=\kappa(D, M)$ , then the
transcendental degree $a(M)^{6)}$ of the field of meromorphic functions on $M$ is not
smaller than $\kappa$ . $1n$ particular, the vanishing of $a(M)$ implies that $\kappa(M)\leqq 0$ .

This is a generalization of a theorem which says that if there exists on
a compact complex surface $S$ a divisor $D$ with $D^{2}>0$ , then $S$ is algebraic.

$PROOFSOFTHEOREMS1^{*}AND2^{*}$ . LetMdenotea compact complex variety.
By the resolution theorem which was recently proved by Hironaka (see [7])

we can assume that $M$ is a compact complex manifold and furthermore we
have a fiber space $h:M^{*}\rightarrow V^{*}$ which has the following properties (we call
$h:M^{*}\rightarrow V^{*}$ an algebraic reduction of $M$):

i) $M^{*}$ is a compact complex manifold which is bimeromorphically equi-
valent to $M$,

ii) $V^{*}$ is a compact complex manifold of dimension $a(M)$ , which admits
a structure of a projective algebraic variety,

iii) $h$ is a proper surjective holomorphic map which induces an iso-
morphism between the fields of meromorphic functions on $M^{*}$ and

5) We call $a(M)$ the algebraic dimension of $M$ .
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the field of meromorphic functions on $V^{*}$ .
Then we find a number $m_{3}$ and a divisor $C$ on $V^{*}$ corresponding to the pair
of the fiber space $h:M^{*}\rightarrow V^{*}$ and the divisor $D$ such that there exists an
isomorphism:

$L(mm_{3}D)_{\leftarrow}\sim L(mf^{*}(C))_{\leftarrow}\sim L(mC)$ for all $m>0$ .
Hence, applying Theorems 1 and 2, we can prove Theorems 1*and2*.

PROOF OF THEOREM 3*. In order to prove Theorem $3^{*}$ in the same way
as in the proof of Theorem 3, it is sufficient to prove that $H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))$ is
generated as an $H^{0}(W_{\lambda}, \mathcal{O}_{W})$ -module by elements of $H^{0}(M, \mathcal{L}(\epsilon mE_{\lambda}))$ for an
integer $\epsilon>0$ . Applying GAGA technique to $W$ we shall prove this assertion.
In this proof, Gothic letters $W,$ $A,$ $\cdots$ denote an algebraic variety, a coherent
algebraic sheaf, $\cdots$ , respectively. Since $f_{*}(\mathcal{L})$ is a coherent analytic sheaf on
$W$, there exists a coherent algebraic sheaf $A$ such that $f_{*}(\mathcal{L})=A^{an}$ (The

symbol $A^{an}$ denotes an analytic sheaf canonically associated with $A$). Then
we have

$H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))=H^{0}(W_{\lambda}, A)^{an}=H^{0}(W_{\lambda}, A)H^{0}(W_{\lambda}, \mathcal{O}_{W})$ ,

where $W$ is an algebraic variety canonically associated with $W,$ $i.e.,$ $W^{an}=W$.
Since $A$ is algebraic we have

$H^{0}(W_{\lambda}, A)=\bigcup_{e=1}^{\infty}H^{0}(W, A(emH_{\lambda}))$ .
Moreover, we have

$H^{0}(W, A(emH_{\lambda}))^{an}=H^{0}(W, A^{an}(emH_{\lambda}))=H^{0}(W, f_{*}(\mathcal{L})(emH_{\lambda}))$ .
By the projection formula, we obtain

$H^{0}(W, f_{*}(\mathcal{L})(emH_{\lambda}))=H^{0}(W, f_{*}(\mathcal{L}[f^{-1}(emH_{\lambda})]))$

$=H^{0}(M, \mathcal{L}(emE_{\lambda}^{*}))\subset H^{0}(M, \mathcal{L}(emE_{\lambda}))$ .

Recalling that $H^{0}(W_{\lambda}, A)$ is a finite $H^{0}(W_{\lambda}, \mathcal{O}_{W})$ -module, we thus prove the
assertion. This proof was suggested by M. Kashiwara.

PROOFS OF PROPOSITION $3^{*}$ AND THEOREM 4*. Using a theorem of Picard
concerning the essential singularities of an analytic function, we may give a
short proof of Proposition 3*. Before proving Theorem $4^{*}$ we will construct
an algebraic reduction of a fiber space of compact complex varieties $f:\tilde{M}\rightarrow M$.
Let $\tilde{h}:\tilde{M}^{*}\rightarrow\tilde{V}$ and $h:M^{*}\rightarrow V$ be algebraic reductions of $\tilde{M}$ and $M$, respectively.
Then the inclusion $k(M)=k(V)Ck(\tilde{M})=k(\tilde{V})$ yields a rational map $g$ from

$\tilde{V}$ to $V$ such that $h\cdot f=g\cdot\tilde{h}$ . By means of monoidal transformations, we can
assume that $g$ is regular. We call the triple of the fiber space $g:\tilde{V}\rightarrow V,\tilde{h}$

and $h$ , an algebraic reduction of the fiber space $f:\tilde{M}\rightarrow M$. Now we shall
prove the former assertion of Theorem 4*. In doing this we can assume that
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the triple of $g:\tilde{V}\rightarrow V,\tilde{h}:\tilde{M}\rightarrow\tilde{V}$ and $h$ : $M\rightarrow V$ is an algebraic reduction of
$f:\tilde{M}\rightarrow M$. In the case in which $a(M)=\dim M,$ $h$ is bimeromorphic. Hence,
$L_{M}(D)^{6)}\simeq L_{V}(h^{-1*}D)$ . By Theorem 4 we have $\kappa(h^{-1*}D, V)=\kappa(g^{*}h^{-1*}D, V)$ .
Combined with the natural isomorphism: $L_{\tilde{V}}(g^{*}h^{-1*}(D))\simeq L_{\tilde{M}}(\tilde{h}^{*}g^{*}h^{-1*}(D))=$

$L_{\overline{M}}(f^{*}D)$ , these give $\kappa(D, M)=\kappa(f^{*}D,\tilde{M})$ . In the case in which $a(M)=0,$ $V$

reduces to a point, and $\kappa(D, M)=0$ . We shall derive a contradiction under
the assumption $1(f^{*}D)\geqq 2$ . We choose two linearly independent sections from
$L_{\overline{M}}(f^{*}D)$ . Using them we construct a non-constant meromorphic map $s:\tilde{M}\rightarrow C$

$=P^{1}$ . Clearly we can assume that $s$ is holomorphic. By definition, we have
$\tilde{M}\supset fs^{-1}(q)$ for a general point $q$ of $C$ . Hence, for a general point $p$ of $\tilde{M}$ ,
$sf^{-1}(p)$ is a finite set. Let $\Gamma_{s}$ denote the graph of $s$ . We define $\Gamma$ to be an
image of $\Gamma_{s}$ by a proper holomorphic map:

$f\times 1_{W}$ : $\tilde{M}\times C\rightarrow M\times C$ .
By a theorem of Remmert, $\Gamma$ is a complex subvariety of $M\times C$. Composing
the injection $\Gamma\subset M\times C$ with canonical projections: $M\times C\rightarrow M$ and $M\times C\rightarrow C$,
we have two holomorphic surjective maps $\xi:\Gamma\rightarrow M$ and $\eta:\Gamma\rightarrow C$ . Since
$\xi^{-1}(p)=sf^{-1}(p)$ is finite for a general point $p$ of $M$, we see that $\dim\Gamma=\dim M$.

LEMMA 1. Let $f:\tilde{M}\rightarrow M$ be a fiber space of compact complex varieties with
the same dimension. Then $a(\tilde{M})=a(M)$ .

PROOF. Let $g:\tilde{V}\rightarrow V,\tilde{h}:\tilde{M}\rightarrow\tilde{V}$ and $h:M\rightarrow V$ form an algebraic reduction
of $f:\tilde{M}\rightarrow M$. For any function $x\in k(\tilde{M})$ , there exists a function $y\in k(\tilde{V})$

such that $x=h^{*}(y)$ . We wish to prove that the polar divisor $(y)_{\infty}$ of $y$ cannot
be mapped onto $V$ by $g$. For this, we describe $(y)_{\infty}$ as a sum of positive
divisors $L^{*}$ and $D^{\#}$ where $D^{\#}$ is the largest of all positive divisors such that
$h(D\#)\subsetneqq V$ . Then if $L^{*}$ is not empty, we have $fh^{-1}(L^{\#})=M$. This implies
$\dim M\leqq\dim h^{-1}(L^{*})$ . It is clear that $\dim h^{-1}(L^{\#})=\dim\tilde{M}-1<\dim\tilde{M}$ . This
contradicts the condition $\dim\tilde{M}=\dim M$.

From this lemma, $a(\Gamma)=a(M)=0$ follows. On the other hand, using $\eta$ , we
obtain $a(\Gamma)\geqq a(C)=1$ . Thus we have encountered the contradiction. Finally,
in the case in which $a(M)>0$ , we are going to prove by induction with respect
to the dimension of $M$. Let $v$ be a general point of $V$ . As usual we use the
following notation: $M_{v}=h^{-1}(v),\tilde{M}_{v}=(h\circ f)^{-1}(v),$ $f_{v}=f|M_{v}$ and $D_{v}=D|M_{v}$ .
Note that $\dim M_{v}<\dim M$ in this case. By applying the induction hypothesis
to the fiber space $f_{v}:\tilde{M}_{v}\rightarrow M_{v}$ and the divisor $D_{v}$ , we have $\kappa(D_{v}, M_{v})$

$=\kappa(f_{v}^{*}(D_{v}),\tilde{M}_{v})$ . It is no loss of generality to assume that $D$ is positive.
We describe $f^{*}(D)$ as a sum of positive divisors $L^{\prime}$ and $D^{\prime}$ , where $D^{\prime}$ is the
largest of all positive divisors $D^{\prime}$ such that $h\cdot f(D^{\prime})\neq V$. Then we have

6) In order to avoid the Confusion, we denote by $L_{M}(D)$ the space of regular
sections $L(D)$ of a divisor $D$ on $M$ .
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$f^{*}(D)|\tilde{M}_{v}=L^{\prime}|\tilde{M}_{v}$ .
LEMMA 2 (Hironaka). Let $M$ be a compact complex variety and $D$ a divisor

on M. Let $f:M^{*}\rightarrow V$ be an algebraic reduction of $M$ and $D^{*}$ a complete inverse
image of $D$ by the bimeromorphic map from $M^{*}$ to V. Then $\kappa(D_{v}^{*}, M_{v}^{*})\leqq 0$,
where $M_{v}^{*}$ is a general fiber $f^{-1}(v)$ of f.

PROOF. This can be proved by the same argument as in the proof of
Theorem 3*(see [6]).

By this lemma we have $0=\kappa(D_{v}, M_{v})=\kappa(f_{v}^{*}D_{v},\tilde{M}_{v})$ . This implies that $L^{\prime}$

is one of the fixed components of $|mf^{*}(D)|$ for any $m>0$ . Thus we have
$\kappa(f^{*}D,\tilde{M})=\kappa(D^{\gamma},\tilde{M})$ . (17)

As in the proof of Theorem 2, we can find a positive divisor $E$ such that
$D^{\prime}\geqq(h\cdot f)^{*}E$ and $\kappa(D^{\prime}, M)=\kappa((h\cdot f)^{*}E,\tilde{M})$ . Since $V$ is algebraic, we can
apply Theorem 4* to the fiber space $h\cdot f:\tilde{M}\rightarrow V$ and the divisor $E$ on $V$.
Then we have

$\kappa((h\cdot f)^{*}E,\tilde{M})=\kappa(E, V)$ . (18)

From $f^{*}D\geqq D^{\prime}\geqq(h\cdot f)^{*}E$, it follows that $D\geqq h^{*}E$ . Hence, we have $\kappa(D, M)$

$\geqq\kappa(h^{*}E, M)=\kappa(E, V)$ . Combining this with (17) and (18), we obtain $\kappa(D, M)$

$=\kappa(f^{*}D,\tilde{M})$ , as required.
Note that the same argument can be used to prove Proposition 3*. The

latter part of Theorem $4^{*}$ can be proved by the same argument as in the
proof of Theorem 4, because Theorem $3^{*}$ has already been proved.

REMARK 3. We give a stronger result than the latter part of Theorem
$4^{*}$ in the restricted case: Let $f:\tilde{M}\rightarrow M$ be a fiber space of compact complex
varieties and $\tilde{D}$ a divisor on M. Suppose that $a(M)=0$ . Then $\kappa(\tilde{D},\tilde{M})\leqq\kappa(\tilde{D}_{q},\tilde{M}_{q})$

for a general point $q$ of $M$. We shall prove this in the case $D>0$, because
in the other cases the proof is easy. We denote by $g:\tilde{M}\rightarrow W$ the fiber space
$\Phi_{m1D}$ : $\tilde{M}\rightarrow W_{m1D}$ for $m_{1}\gg 0$ . It is no loss of generality to assume that $g$ is
holomorphic. We wish to prove $fg^{-1}(p)=M$ for any general point $p$ of $W$ by
induction with respect to the dimension of $W$ . For this we let $W_{1}$ be a
general hyperplane section of $W$ which passes through the point $p$ . We write
$\tilde{M}_{1},$

$f_{1}$ instead of $g^{-1}(W_{1}),$ $f|\tilde{M}_{1}$ , respectively. If $f_{1}(\tilde{M}_{1})=M$, then $f_{1}g^{-1}(p)$

$=fg^{-1}(p)=M$ by our induction hypothesis. We shall derive a contradiction
in the case in which $f(\tilde{M}_{1})\neq M$. In this case, we can find a positive divisor
$G$ such that $f(\tilde{M}_{1})\subset suppG$ (the symbol $suppG$ denotes the support of $G$).
Then we have $M_{1}\subset suppf^{*}G$ . By the former part of Theorem 4*, we obtain

$0<\kappa(W_{1}, W)=\kappa(g^{-1}(W_{1}),\tilde{M})=\kappa(\tilde{M}_{1},\tilde{M})$ (19)
and

$\kappa(g^{-1}(W_{1}), M)\leqq\kappa(f^{-1}(G),\tilde{M})=\kappa(G, M)=0$ . (20)

$T$ his contradicts the inequality (19). By $fg^{-1}(p)=M$ we have $gf^{-1}(q)=W$ for
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any general point $q$ of $M$. Using the notation in the proof of Theorem 2, we
recall that $m_{2}D$ is described as $m_{2}L_{1}+m_{2}\Theta_{1}+g^{*}H_{m_{2}}$ . Then by Proposition 3*
we have

$\kappa(H_{m2}, W)=\kappa(g_{q}^{*}(H_{m_{2}}),\tilde{M}_{q})$ ,

where $\tilde{M}_{q}=f^{-1}(q)$ is irreducible and reduced, $g_{q}=g|\tilde{M}_{q}$ . Furthermore, we
have

$\kappa(g_{q}^{*}(H_{m_{2}}),\tilde{M}_{q})\leqq\kappa((m_{2}L_{1}+m_{2}\Theta_{1}+g^{*}(H_{m2}))|\tilde{M}_{q},\tilde{M}_{q})=\kappa(D_{q},\tilde{M}_{q})$ ,

because $suppL_{1}$ ]$\supset M_{q}$ and $supp\Theta_{1}DM_{q}$ for a general point $q$ of $M$. Hence,

we obtain the inequality $\kappa(\tilde{D},\tilde{M})\leqq\kappa(\tilde{D}_{q},\tilde{M}_{q})$ .
REMARK 4. The following assertion is a generalization of Lemma 2 due

to K. Ueno: Let $f:\tilde{M}\rightarrow M$ be a fiber space of compact complex varieties. Then
$a(M)\leqq a(\tilde{M})\leqq a(M)+\dim f$, where $\dim f$ denotes $\dim\tilde{M}-\dim M$.

The left hand side inequality is easily proved and so we shall prove the
right hand side. Consider first the case $a(M)=0$ . In this case, we use the
induction with respect to $\dim M$. Let $x$ be a non-constant meromorphic func-
tion on $\tilde{M}$ and $D$ the polar divisor $(x)_{\infty}$ of $x$ . We define a meromorphic map
$g$ to be $g(p)=1:x(p)\in P^{1}$ for a general point $p$ of $M(g$ can be assumed to
be holomorphic). Apply Theorem $4^{*}$ to the pair of the fiber space $g:\tilde{M}\rightarrow P$ ‘

and the divisor $\tilde{H}$ on $\tilde{M}$ such that $\kappa(\tilde{H},\tilde{M})=a(\tilde{M})$ . Then we obtain

$a(\tilde{M})=\kappa(\tilde{H},\tilde{M})\leqq\kappa(\tilde{H}_{1},\tilde{M}_{1})+\dim P^{1}\leqq a(\tilde{M}_{1})+1$ , (21)

where $\tilde{M}_{1}$ is a general fiber of $g$ and so is a general irreducible component
of $|D|$ , and $\tilde{H}_{1}=\tilde{H}|\tilde{M}_{1}$ . Suppose that $f(D)=M$. Then there exists an
irreducible component $\tilde{M}_{1}$ of $|D|$ such that $f(\tilde{M}_{1})=M$. By using our induction
hypothesis in the case of the fiber space $f|M_{1}$ : $\tilde{M}_{1}\rightarrow M$, we have

$a(\tilde{M}_{1})\leqq\dim\tilde{M}_{1}-\dim M=\dim\tilde{M}-\dim M-1$ .
Combining this with (21) we obtain the inequality $a(\tilde{M})\leqq\dim f$.

Now suppose that $f(D)\neq M$. Then from $a(M)=0$ , we derive that $x$

reduces to a constant, a contradiction. In the case in which $a(M)>0$ , we use
the induction with respect to $\dim\tilde{M}$ . We let the triple consisting of a fiber
space of algebraic varieties $g:\nu\rightarrow V,\tilde{h}:\tilde{M}\rightarrow\tilde{V}$ (an algebraic reduction of $\tilde{M}$)

and $h:M\rightarrow V$ (an algebraic reduction of $M$) be an algebraic reduction of
$f:\tilde{M}\rightarrow M$. For a general point $v$ of $V$ , we have a fiber space $f_{v}=f|M_{v}$ : $\tilde{M}_{v}$

$=f^{-1}(M_{v})\rightarrow M_{v}=h^{-1}(v)$ . By our induction hypothesis we have

$a(\tilde{M}_{v})\leqq a(M_{v})+\dim f_{v}$ , (22)

because $\dim\tilde{M}_{v}<\dim\tilde{M}$. Clearly it follows that $\dim f_{v}=\dim f,$ $a(M_{v})\geqq 0$ and

$a(\tilde{M}_{v})\geqq\dim V_{v}=\dim V-\dim V=a(\tilde{M})-a(M)$ .
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Combining these with (22), we obtain $a(\tilde{M})-a(M)\leqq\dim f$.

University of Tokyo

References

[1] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulraume
komplexer Strukturen, Publ. Math. de I. H. E. S., No. 5, (1960).

[2] A. Grothendieck, El\’ements de g\’eom\’etrie alg\’ebrique, Publ. Math. de I. H. E. S.,

Nos. 4, 8, 11, 17, \cdots

[3] A. Grothendieck, S\’eminaire de g\’eom\’etrie alg\’ebrique, 1960-61, I. H. E. S.
[4] A. Grothendieck, T\’echnique de construction en g\’eometrie analytique complexe,

S\’eminaire H. Cartan 13e ann\’ee: 1960-61, Familles d‘espaces complexes et fonde.
ments de g\’eom\’etrie analytique.

[5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero; I, II, Ann. of Math., 79 (1964), 109-326.

[6] H. Hironaka, Review of S. Kawai’s paper, Math. Reviews, 466, vol. 32, No. 11
(1966), 87-88.

[7] H. Hironaka, Resolution of singularities of a complex analytic variety, (French),
to appear in one of the series of Lecture Notes in Mathematics, Springer.Verlag.

[8] S. Iitaka, Deformations of compact complex surfaces: II, III, J. Math. Soc. Japan,
22 (1970), 247-261, to appear in J. Math. Soc. Japan.

[9] S. Iitaka, On D-dimensions of algebraic varieties, Proc. Japan Acad., 46 (1970),
487-489.

[10] S. Kawai, On compact complex analytic manifolds of complex dimension 3: I,
II, J. Math. Soc. Japan, 1T (1965), 438-442, ibid. 21 (1969), 604-626.

[11] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer.
J. Math., 86 (1964), 751-798.

[12] D. B. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin, 1965.
[13] L. Roth, Algebraic Threefolds, with special regard to problems of rationality,

Springer-Verlag, Berlin, 1955.
[14] I. afarevi and others, Algebraic Surfaces, (Russian), Proc. Steklov Inst. Math.,

Moscow, 1965.
[15] O. Zariski, The theorem of Riemann.Roch for high multiples of an effective

divisor on an algebraic surface, Ann. of Math., 76 (1962), 560-615.


	On $D$ -dimensions of ...
	\S 1. Introduction.
	\S 2. Statement of the ...
	\S 3. Notation and preliminary ...
	\S 4. Proofs of Theorems ...
	\S 5. Proof of Theorem ...
	\S 6. Proof of Theorem ...
	\S 7. Proofs of Theorems ...
	\S 8. Counterparts of ...
	References


