On *D*-dimensions of algebraic varieties^{*)}

By Shigeru IITAKA

(Received June 29, 1970)

§1. Introduction.

Let k be an algebraically closed field of characteristic zero. We shall work in the category of schemes over k. Let V be a complete algebraic variety, and let D be a divisor on V. In this paper, we shall introduce the notion of the D-dimension of V which we denote by $\kappa(D, V)$, and prove some theorems (Theorems 1, 2, 3 and 4) about $\kappa(D, V)$. Furthermore, when V is non-singular, we define the Kodaira dimension (or the canonical dimension) $\kappa(V)$ of V, to be $\kappa(K_V, V)$, where K_V denotes a canonical divisor of V. The Kodaira dimension would seem to be the most fundamental invariant in the theory of birational classification of algebraic varieties. Our theorems concerning $\kappa(D, V)$ and $\kappa(V)$ establish fundamental results in the theory of birational classification. In particular, Theorem 5 shows that it would be enough to consider algebraic varieties of Kodaira co-dimension zero¹⁰, of Kodaira dimension zero and of Kodaira dimension $-\infty$, in order to classify algebraic varieties to the extent that Italian algebraic geometers did for algebraic surfaces about sixty years ago.

The main results of this paper have been announced in [9].

The author would like to express the deepest appreciation to Professor K. Kodaira for his thoughtfull and critical guidance given during the completion of this paper.

§2. Statement of the results.

Letting V be a complete algebraic variety of dimension n and D a divisor on V, we denote by l(D)-1 the dimension of the complete linear system |D|associated with D. We consider the set of all positive integers m satisfying l(mD) > 0, which we indicate by N(D). Assume that N(D) is not empty. Then N(D) forms a sub-semigroup of the additive group of all integers. Hence,

^{*)} This was presented as a doctoral thesis to the Faculty of Science, University of Tokyo.

¹⁾ The Kodaira co-dimension of an algebraic variety V of dimension n is defined to be $n-\kappa(V)$.

letting $m_0(D)$ be the g.c.d. of the integers belonging to N(D), we can find a positive integer N(D) such that m belongs to N(D) provided that $m \equiv 0 \mod m_0(D)$ and $m \ge N(D)$.

THEOREM 1. There exist positive numbers α , β and a non-negative integer κ such that the following inequality holds for every sufficiently large integer m:

 $\alpha m^{\kappa} \leq l(mm_0(D)D) \leq \beta m^{\kappa}.$

It is easy to check that κ is independent of the choice of α and β . We define the D-dimension of V to be the integer κ , provided that l(mD) > 0 for at least one positive integer m. We denote the D-dimension of V by $\kappa(D, V)$. In the case in which l(mD)=0 for every positive integer m, we define the D-dimension of V to be $-\infty$: $\kappa(D, V) = -\infty$.

THEOREM 2. Assume that $\kappa(D, V) > 0$. For any positive integer p, there exists a positive number γ such that the following inequality holds for every sufficiently large integer m:

$$l(mm_0(D)D) - l(\{mm_0(D) - pm_0(D)\}D) \leq \gamma m^{\kappa-1},$$

$$\kappa = \kappa(D, V).$$

We recall that, in classical algebraic geometry, the index of an algebraic system on an algebraic variety of dimension n is defined to be the number of those distinct members of the system which pass through r independent generic points of V, where r = the dimension of the system+the dimension of its member-n+1.

THEOREM 3. Suppose that $\kappa = \kappa(D, V)$ is positive. Then there exists a κ dimensional irreducible algebraic system of algebraic sub-varieties of dimension $n-\kappa$ with index 1, such that $\kappa(D_w, V_w) = 0$, where V_w denotes a general member of the algebraic system and D_w the induced divisor on V_w of D. Moreover, such an algebraic system is unique up to birational equivalence.

We introduce the notion of the co-D-dimension of V, which we write $c\kappa(D, V)$, by setting $c\kappa(D, V) = n - \kappa(D, V)$.

THEOREM 4. Let \tilde{V} , V be complete algebraic varieties and let f be a proper surjective morphism from \tilde{V} to V. For any divisor D on V, we have $\kappa(f^*D, \tilde{V})$ $= \kappa(D, V)$. Moreover, if a general fiber $\tilde{V}_v = f^{-1}(v)$ is irreducible, then for any divisor \tilde{D} on \tilde{V} , we have $c\kappa(\tilde{D}, \tilde{V}) \ge c\kappa(\tilde{D}_v, \tilde{V}_v)$.

In order to define the Kodaira dimension of an arbitrary algebraic variety V, we take a non-singular projective model V^* of V, whose existence is assured by a celebrated theorem of Hironaka (see [5]). Then we define the Kodaira dimension $\kappa(V)$ of V to be $\kappa(K^*, V^*)$, where K^* denotes a canonical divisor of V^* . $\kappa(V)$ is well defined and is a birational invariant.

THEOREM 5. If $\kappa = \kappa(V)$ is positive, then there exists a fiber space $f: V^* \rightarrow W$ of non-singular projective algebraic varieties such that

- i) V^* is birationally equivalent to V,
- ii) W is of dimension κ ,
- iii) f is surjective and proper,
- iv) any general fiber $V_w^* = f^{-1}(w)$ is irreducible,
- v) V_w^* has the Kodaira dimension 0.

Moreover, such a fiber space is unique up to birational equivalence.

The former part of this theorem is a direct generalization of a theorem²² which states that a minimal surface S with $K_s^2 = 0$ and a plurigenus ≥ 2 is elliptic. Moreover, the latter part is a generalization of Proposition 7 in [8, II].

THEOREM 6. Let \tilde{V} , V be non-singular projective algebraic varieties and f a proper surjective morphism from \tilde{V} to V. In the case in which \tilde{V} is étale over V, we have $\kappa(\tilde{V}) = \kappa(V)$. On the other hand, in the case in which any general fiber $f^{-1}(v) = \tilde{V}_v$ is irreducible, we have $c\kappa(\tilde{V}) \ge c\kappa(\tilde{V}_v)$.

The former assertion is a generalization of a theorem in the theory of algebraic surfaces to the effect that every unramified covering manifold of an elliptic surface is also elliptic. The latter is a generalization of a theorem³⁾ saying that every algebraic surface of general type cannot contain a pencil of elliptic curves.

We note that the above theorems have counterparts in the category of complex spaces⁴⁾.

§ 3. Notation and preliminary propositions.

In this section, we let V denote a normal complete algebraic variety of dimension n, and let D be a Cartier divisor on V. We shall use the notation listed below:

k(V) = the field of rational functions on V,

[D] = the line bundle associated with D,

L(D) = the vector space consisting of all regular sections of [D],

l(D) = the dimension of L(D),

 $L^*(D)$ = the vector space consisting of all rational sections of [D],

(ω) = the divisor corresponding to a non-zero element $\omega \in L^*(D)$ (Note that, if $\eta \in L(D)$, $\neq 0$, then (η) is positive),

 $|D| = \{(\omega); \omega \in L(D), \neq 0\}; |D|$ is called the complete linear system associated with D.

" \sim " indicates the linear equivalence of divisors.

358

²⁾ Lemma 7 in [11].

³⁾ Lemma 5 in Chapter 6 in [10].

⁴⁾ The existence of a non-singular model of any compact complex variety was recently proved by Hironaka (see [7]).

In what follows in this section we fix a divisor D such that l(D) = N+1 > 0. Let $\{\varphi_0, \varphi_1, \dots, \varphi_N\}$ be a basis of L(D). We define a rational map Φ_D by

$$V\!\ni\! z\mapsto {\pmb{\varPhi}}_D(z)\!=\!arphi_0(z)\!:arphi_1(z)\!:\cdots\!:arphi_N(z)\!\in\!{\pmb{P}}^N$$
 ,

where z is a general point of V. We denote by W_D the rational transform of V by Φ_D which is a closed sub-variety of P^N . Moreover, for every integer m > 0, we abbreviate Φ_{mD}, W_{mD} , and L(mD) to Φ_m, W_m , and L_m , respectively. We let $\{\phi_0, \phi_1, \dots, \phi_l\}$ be a basis of L_m and we choose a basis of L_{m+1} of the form $\{\varphi_0\phi_0, \varphi_0\phi_1, \dots, \varphi_0\phi_l, \dots\}$. Then, for a general point $z \in V$, we define a generically surjective rational map $\rho_m: W_{m+1} \to W_m$ by

$$\rho_m(\varphi_0(z)\psi_0(z):\cdots:\varphi_0(z)\psi_l(z):\cdots)=\psi_0(z):\cdots:\psi_l(z).$$

Obviously, we have $\Phi_m = \rho_m \cdot \Phi_{m+1}$. Therefore, we have a sequence of fields:

$$k(W_1) \subset k(W_2) \subset \cdots \subset k(W_m) \subset \cdots \subset k(V).$$

Since k(V) is finitely generated over $k(W_1)$, there is an integer m_1 such that $k(W_m) = k(W_{m_1})$ for all $m \ge m_1$. Hence ρ_m is birational for $m \ge m_1$. From the following proposition we infer that $k(W_{m_1})$ is algebraically closed in k(V).

PROPOSITION 1. Let z be an element of k(V) which is algebraic over $k(W_D)$. Then there exists an integer $\delta \ge 1$ such that z belongs to $k(W_{\delta D})$.

PROOF. Let $\{\varphi_0, \varphi_1, \dots, \varphi_N\}$ be a basis of L(D), and let z satisfy the following equation:

$$z^r + a_1 z^{r-1} + \dots + a_r = 0$$
, (1)

where $a_1, \dots, a_r \in k(W_D)$. Since $k(W_D) = k(\varphi_1/\varphi_0, \dots, \varphi_N/\varphi_0)$, we have homogeneous polynomials F_0, F_1, \dots, F_r of the same degree δ such that $a_i = F_i(\varphi_0, \varphi_1, \dots, \varphi_N)/F_0(\varphi_0, \varphi_1, \dots, \varphi_N)$ for $1 \leq i \leq r$. The equation (1) leads to the following equation:

$$(zF_0(\varphi))^r + F_1(\varphi)(zF_0(\varphi))^{r-1} + \dots + F_0(\varphi)^{r-1}F_r(\varphi) = 0, \qquad (2)$$

where we abbreviate $F_j(\varphi_0, \varphi_1, \dots, \varphi_N)$ to $F_j(\varphi)$ for $0 \leq j \leq r$. Note that $zF_0(\varphi)$, $F_1(\varphi), \dots, F_0(\varphi)^{r-1}F_r(\varphi)$ are elements of $L^*(\delta D)$, $L(\delta D)$, $\dots, L(r\delta D)$, respectively. Now we take a covering of V by affine open sets $\{U_\lambda\}_{\lambda \in A}$ such that [D] is trivial on U_λ for every $\lambda \in \Lambda$. We indicate the restriction of any entity \sharp to U_λ by the symbol \sharp_λ . It is clear that $F_1(\varphi)_\lambda, \dots, (F_0(\varphi)^{r-1}F_r(\varphi))_\lambda \in H^0(U_\lambda, \mathcal{O}_V)$. Since the ring $H^0(U_\lambda, \mathcal{O}_V)$ is integrally closed, we infer from the equation (1) that $zF_0(\varphi)_\lambda \in H^0(U_\lambda, \mathcal{O}_V)$. Therefore, we have $zF_0(\varphi) \in L(\delta D)$. This implies that $z \in k(W_{\delta D})$.

PROPOSITION 2. Let D be a divisor on V. Then there exists a number β such that $l(mD) \leq \beta m^n$ for all $m \gg 0$. Furthermore, when D is ample, there exists a positive number α such that $\alpha m^n \leq l(mD)$ for all $m \gg 0$.

PROOF. When D is ample, l(mD) is a polynomial of degree n for all $m \gg 0$.

Hence we have an estimate:

 $\alpha m^n \leq l(mD) \leq \beta m^n$ for all $m \gg 0$,

where α , β are positive numbers depending only on D. In the case in which D may not be ample, we take a projective model V^* of V such that a birational map $T: V^* \rightarrow V$ is regular. Note that $l(mT^*D) = l(mD)$. Hence we may assume that V is projective. We take an ample divisor D^* such that $D^* \sim D + H$, where H is a suitably chosen ample divisor. Then we have

$$l(mD) \leq l(mD+mH) = l(mD^*) \leq \beta^* m^n$$
 for a constant β^*

and for all $m \gg 0$.

PROPOSITION 3. Let $f: V \rightarrow W$ be a fiber space of complete normal algebraic varieties such that $f^*(k(W))$ is algebraically closed in k(V). Then, for any divisor D on W, L(D) is isomorphic to $L(f^*(D))$ by the map induced by f.

PROOF. Let ψ be a rational function on V such that $(\psi) \ge -f^*(D)$. Since $\psi | V_w$ has no pole on V_w , V_w being the generic fiber over the generic point w of W, $\psi | V_w = \psi$ belongs to k(w) = k(W). From this observation, Proposition 3 follows at once.

§4. Proofs of Theorems 1 and 3.

First, we note that it is sufficient to prove these theorems for a normal algebraic variety V and for an effective divisor D. In fact, taking the normalization V^* of V, we define $l(R^*D, V^*) = l(D, V)$ where $R: V^* \to V$ is a birational morphism. We fix an integer \overline{m}_0 satisfying $\overline{m}_0 m_0(D) \in N(D)$ and an effective divisor D' which is linearly equivalent to $\overline{m}_0 m_0(D)D$. We wish to prove the inequalities in Theorem 1 under the assumption that the following inequality holds for all $\mu \gg 0$:

$$\alpha \mu^{\kappa} \leq l(\mu D') \leq \beta \mu^{\kappa}$$

For this purpose, let *m* be any given large integer. We divide *m* by \overline{m}_0 with a sufficiently large residue, i.e., we let $m = \mu \cdot \overline{m}_0 + q$, where $q \cdot m_0(D) \in N(D)$ and *q* is bounded when *m* grows to infinity. Then we have

$$l(mm_0(D)D) = l(\{\bar{m}_0 \mu m_0(D) + qm_0(D)\}D) \ge l(\mu \bar{m}_0 m_0(D)D) = l(\mu D') \ge \alpha \mu^{\kappa}.$$

Moreover, we divide m by \overline{m}_0 with a sufficiently small residue, i.e., we let $m = \mu \overline{m}_0 - q'$, where $q' \cdot m_0(D) \in N(D)$ and q' is bounded. Then we have

$$l(mm_0(D)D) = l(\mu \bar{m}_0 m_0(D)D - q'm_0(D)D) \leq l(\mu \bar{m}_0 m_0(D)D) = l(\mu D') \leq \beta \mu^{\kappa}.$$

Thus, we may assume that V is normal and D effective. By the consideration in §3, we have a fiber space of algebraic varieties $\Phi_{m_1}: V \to W_{m_1} \subset \mathbf{P}^N$ which has the following properties:

360

- 1) Φ_{m_1} is a generically surjective map,
- 2) $k(W_m) = k(W_{m_1})$ for all integer $m \ge m_1$,
- 3) $k(W_{m_1})$ is algebraically closed in k(V),

where Φ_{m_1} denotes Φ_{m_1D} , etc. By taking the normal graph, we have a birational morphism $T: V^* \to V$ such that the rational map $\Phi_{m_1} \circ T$ is regular. In view of the isomorphism:

$$T^*$$
: $\boldsymbol{L}(m_1D) \cong \boldsymbol{L}(m_1T^*D)$,

we can replace V, D by V^*, T^*D , respectively. Hence we may assume that Φ_{m_1} is a morphism. For simplicity, we abbreviate $m_1D, \Phi_{m_1}, W_{m_1}$ and $l(m_1D)-1$ to E, f, W and N, respectively. Note: we can assume that W is normal.

We fix a basis $\{\varphi_0, \dots, \varphi_N\}$ of L(E) such that f is defined by means of this basis. Let F be the maximal fixed component of |E|, and let H denote a hyperplane section of W in P^N . Then we have a member of |E| of the form: $F+f^*(H)$, where $f^*(H)$ indicates the divisor induced from H by f. Hence, by Proposition 3, we have

$$l(mm_1D) = l(mE) = l(mF + f^*(mH)) \ge l(mf^*(H)) = l(mH)$$

From Proposition 2, we infer the existence of a positive number α such that $l(mH) \ge \alpha m^{\kappa}$ for all $m \gg 0$, where κ denotes the dimension of W. Thus we have

$$l(\mu m_1 D) \ge \alpha \mu^{\kappa} \quad \text{for all} \quad \mu \gg 0.$$
(3)

We represent the divisor F as a sum: $F = \sum n_{\nu}A_{\nu}$, where the A_{ν} denote the irreducible components of F, and define

$$L = \sum_{f(A_{\nu}) = W} n_{\nu} A_{\nu} , \qquad F^* = \sum_{f(A_{\nu}) \neq W} n_{\nu} A_{\nu} .$$

Then, for any integer m > 0, we have

$$|mE| \ni mL + mF^* + f^*(mH)$$
.

Furthermore, we take a general member $\sum n_{\nu}B_{\nu}$ of |mE|, where the B_{ν} denote its irreducible components, and let

$$L_m = \sum_{f(B_{\nu})=W} n_{\nu} B_{\nu} , \qquad F_m^* = \sum_{f(B_{\nu})\neq W} n_{\nu} B_{\nu} .$$

Hence we have

$$L_m + F_m^* \sim mL + mF^* + f^*(mH)$$
. (4)

Restricting both divisors to a general fiber V_w of f, we have

$$L_m | V_w = (L_m + F_m^*) | V_w \sim (mL + mF^* + f^*(mH)) | V_w = mL | V_w$$

Moreover, we shall prove

$$L_m | V_w = mL | V_w . ag{5}$$

S. IITAKA

Assuming the equality (5), we proceed with the proof of Theorem 1. From the equality (5), we infer that $L_m = mL$. This implies that L_m is one of the fixed components of |mE|. Hence, we have

$$l(mm_1D) = l(L_m + F_m^*) = l(F_m^*) = l(mF^* + f^*(mH)).$$
(6)

On the other hand, we can take a positive divisor H^* on W such that $F^* \leq f^*(H^*)$. Therefore, by Proposition 3, we have

$$l(mF^* + f^*(mH)) \leq l(mf^*(H^*) + f^*(mH)) = l(m(H^* + H)).$$
(7)

By Proposition 2 we can choose a number β which satisfies

$$l(m(H^*+H)) \leq \beta m^{\kappa}$$
 for all $m \gg 0$.

Combining this with (6) and (7), we have

$$l(\mu m_1 D) \leq \beta \mu^{\kappa} \quad \text{for all} \quad \mu \gg 0.$$
(8)

By a similar inference as before, we derive from (4) and (8) the inequality in Theorem 1.

PROOF OF THE EQUALITY $L_m | V_w = mL | V_w$. We denote by \mathcal{L} the sheaf of germs of regular sections of the bundle $[mm_1D]$. Then we have the homomorphism: $\sigma = \sigma_{\mathcal{L}}$: $f^*f_*(\mathcal{L}) \to \mathcal{L}$ (see [2, 0₁. 4. 4. 3. 3]). Let C, Σ, V_1 and f_1 be, respectively, the cokernel of σ , the support of $C, V - \Sigma$ and $f | V_1$. Then the restriction of σ to V_1 : $f_1^*f_*(\mathcal{L}) \to \mathcal{L} | V_1$ is surjective. Hence by a theory of Grothendieck (see [2, II. 4. 2. 3]) we have a fiber space $g: P(f_*(\mathcal{L})) \to W$ and a morphism $h_1: V_1 \to P(f_*(\mathcal{L}))$ over W such that $\mathcal{L}_1 = \mathcal{L} | V_1$ is isomorphic to $h_1^* \mathcal{O}_P(1)$. In the above we abbreviate $P(f_*(\mathcal{L}))$ to P. Let Z be an algebraic variety of which the underlying space is the closure of $h_1(V_1)$ in P. A hyperplane defined by $\lambda_0 X_0 + \cdots + \lambda_N X_N = 0$ in P^N cuts off on W a positive divisor H_{λ} . Let W_{λ} denote an affine open set $W - H_{\lambda}$. Then $h | f^{-1}(W_{\lambda})$ is described as follows. Recalling that the sheaf $f_*(\mathcal{L})$ is coherent, we can take $\phi_0, \phi_1, \cdots, \phi_N$ as an $H^0(W_{\lambda}, \mathcal{O}_W)$ -module (see [2, I. 1.5.5]). Regarded as a rational map, h_1 coincides with the rational map defined by

$$V \supset f^{-1}(W_{\lambda}) \ni z \mapsto \psi_0(z) : \cdots : \psi_N(z) \in \mathbb{P}^N_{H^0(W_{\lambda}, \mathcal{O}_W)}$$

for a general point z of V. On the other hand, we have

$$f^{-1}(W_{\lambda}) = V - E_{\lambda}^* \supset V - E_{\lambda}$$

where E_{λ} and E_{λ}^* denote $(\lambda_0 \psi_0 + \cdots + \lambda_N \psi_N) \in |E|$ and $E_{\lambda} - F$, respectively. Moreover, we have

$$H^{0}(W_{\lambda}, f_{*}(\mathcal{L})) = H^{0}(f^{-1}(W_{\lambda}), \mathcal{L}) \subset H^{0}(V - E_{\lambda}, \mathcal{L})$$
$$= \bigcup_{e=1}^{\infty} H^{0}(V, \mathcal{L}(emE_{\lambda})),$$

362

where we denote by $H^{0}(V, \mathcal{L}(emE_{\lambda}))$ the space of rational sections ω of \mathcal{L} on V such that the corresponding divisor $(\omega) \geq -emE_{\lambda}$.

Fix an element $\eta \in L(emE_{\lambda})$ such that $(\eta) = emE_{\lambda}$. Then $H^{0}(V, \mathcal{L}(emE_{\lambda}))$ is isomorphic to $H^{0}(V, \mathcal{L}^{\otimes (e+1)})$ by the map $\psi \mapsto \psi \eta$. Now we can find an integer ε such that $\psi_{0}, \psi_{1}, \cdots, \psi_{N} \in H^{0}(V, \mathcal{L}(\varepsilon mE_{\lambda}))$. Therefore, considering the function fields of $h_{1}(V_{1})$, W and $W_{(\varepsilon+1)m}$, we have the relations of inclusions:

$$k(V) = k(V_1) = k(W_{(\varepsilon+1)m}) \supset k(h_1(V_1)) \supset k(W).$$

In view of the equalities $k(W_{(s+1)m}) = k(W)$ and $k(h_1(V_1)) = k(Z)$, we conclude that the morphism $g: Z \to W$ is birational. Applying the theorem of upper semi-continuity to the function $l(mm_1D_w)$ of $w \in W$, we infer that $l(mm_1D_w)$ $= \dim H^0(V_w, \mathcal{L}_w)$ is constant on a certain dense open subset W^* of W. Hence, we have

$$f_*(\mathcal{L}) \displaystyle{\bigotimes_{\mathcal{O}_W}} k(w) \,{\simeq}\, H^0({V}_w,\, {\mathcal{L}}_w) \qquad ext{for} \quad w \in W^*$$
 ,

where k(w) denotes $\mathcal{O}_{W,w}/\mathfrak{m}\mathcal{O}_{W,w} \simeq k$.

Finally we wish to show that Φ_{θ} is the morphism $h \underset{w}{\times} \operatorname{Spec} k(w)$ from V_w to $Z_w \subset P(f_*(\mathcal{L})) \underset{w}{\times} \operatorname{Spec} k(w)$, where θ denotes $mE | V_w$. For this it is sufficient to note that

$$P(f_*(\mathcal{L})) \underset{w}{\times} \operatorname{Spec} k(w) = P(f_*(\mathcal{L}) \underset{v \in W}{\otimes} k(w)) \cong P(H^0(V_w, \mathcal{L}_w)) \quad \text{for} \quad w \in W^*,$$

and that $h_w^*(\mathcal{O}_P(1))$ is isomorphic to \mathcal{L}_w , where we write h_w instead of $h \underset{w}{\times} \operatorname{Spec} k(w)$. Recalling that Z is birationally equivalent to W, we conclude that h_w is a constant morphism. Therefore we have

 $\dim H^0(V_w, \mathcal{L}_w) = l(mm_1D_w) = 1$

and also dim $|mL|V_w| = 0$. This establishes the equality (5).

Furthermore, we see that, for any integer i > 0,

$$l(iD_w) \leq l(im_1D_w) = 1.$$

From this we infer the existence of the algebraic system in Theorem 3.

Now we shall prove the uniqueness of the algebraic system in Theorem 3 in the following form: Let $f^1: V^1 \rightarrow W^1$ be a fiber space of complete algebraic varieties which has the following properties:

- 1) $V^{!}$ is birationally equivalent to V,
- 2) $W^{!}$ has dimension $\kappa = \kappa(D, V)$,
- 3) f' is proper and surjective,
- 4) any general fiber $f^{!-1}(w) = V_w^!$ is irreducible,
- 5) the $D_w^!$ -dimension of $V_w^!$ is zero,

where D^{1} is a divisor corresponding to D by the birational map from V^{1} to V.

Then this fiber space is birationally equivalent to the fiber space $f: V \rightarrow W$ constructed in §3, i.e., there exist two birational maps $\tau: V^{1} \rightarrow V$ and $\rho: W^{1} \rightarrow W$ such that $f \cdot \tau = \rho \cdot f^{1}$.

By the consideration in §3, we have a generically surjective rational map $\Phi_{m_1D^1}$ from V^1 to W_{m_1D} such that

$$k(W_{m_1D^{!}}) = k(W_{(m_1+1)D^{!}}) = \cdots \subset k(V^{!}) = k(V) \quad \text{for an integer } m > 0.$$

Note that $W_{m_1D^1}$ is birationally equivalent to W. We take a monoidal transformation $T: V^* \to V^1$ such that $\Phi_{m_1D^1} \cdot T$ is everywhere defined. Moreover, we have the isomorphism $L(mD^1) \simeq L(mD^*)$ and so $\Phi_{m_1D^1} \cdot T = \Phi_{m_1D^*}$, where by D^* we denote T^*D^1 . By the property 5), say $l(m_1D^1|V_w^1) = l(m_1D_w^1) = l(m_1D_w^*)$ = 1, we have a generically surjective rational map ρ from W^1 to W such that $\rho \cdot f^1 \cdot T = \Phi_{m_1D^*}$. Hence, we have

$$k(V) = k(V') = k(V^*) \supset k(W') \supset k(W).$$

The equality dim $W' = \kappa = \dim W$ implies that k(W') is algebraic over k(W). Therefore, the equality k(W') = k(W) follows from the property 4), i.e., ρ is birational. Recalling that f is defined to be Φ_{mD} , we have a birational map τ' such that $\Phi_{mD} = f \cdot \tau'$. Let τ be $\tau' \cdot T^{-1}$. Then $f \cdot \tau = \rho \cdot f'$ (see the diagram (9)). This completes the proof of the uniqueness.

§ 5. Proof of Theorem 2.

We use the same notation as in the proof of Theorem 1. A similar argument as at the beginning of the proof of Theorem 1 shows that we can replace D by an effective divisor D. Now we make the following observation: For $m \ge 1$, the maximal fixed component of the complete linear system |mD|can be described as a sum of divisors L_m , Ξ_m , Θ_m and $f^*(\Gamma_m)$. These are defined as follows: Letting $\sum n_{\nu}C_{\nu}$ be a general member of |mD|, where $n_{\nu} > 0$, the C_{ν} are irreducible curves and $C_{\mu} \neq C_{\nu}$ for $\mu \neq \nu$, we set

$$L_{m} = \sum_{f(C_{\nu})=W} n_{\nu}C_{\nu},$$

$$H_{m} = \text{the largest of all positive divisors } H \text{ on } W \text{ such that } \sum n_{\nu}C_{\nu} \ge f^{*}(H),$$

$$\Xi_{m} = \text{the largest of all positive divisors of the form } \sum a_{\nu}\overline{f}(A_{\nu}) \text{ satisfying}$$

 $\sum n_{\nu}C_{\nu} - f^{*}(H_{m}) \geq \sum a_{\nu}\bar{f}(A_{\nu}), \text{ where the } A_{\nu} \text{ denote prime divisors on } W, e(A_{\nu}) \text{ is the g. c. d. of all the multiplicities of the irreducible components of } f^{*}(A_{\nu}) \text{ and } \bar{f}(A_{\nu}) = f^{*}(A_{\nu})/e(A_{\nu}), \\ \Theta_{m} = \sum n_{\nu}C_{\nu} - L_{m} - f^{*}(H_{m}) - \Xi_{m}, \\ \Gamma_{m} = \text{the maximal fixed component of } |H_{m}|.$

In fact, by the results in the proof of Theorem 1, we have $m_1L_m = mL_{m_1}$. Hence it follows that L_m is one of the fixed components of |mD|. From this we infer that any element of $H^0(V, \mathcal{O}_V(mD))$ is derived from the rational

function on W. With this observation in mind, we proceed with the proof. First, we note that we can replace p by pm_2 for any integer $m_2 > 0$ because

$$l(mD)-l(mD-pD) \leq l(mD)-l(mD-pm_2D).$$

Moreover, we can replace m by mm_2 . To see this, we let $m = \mu m_2 - q$, where $0 \le q < m_2$. Then we have

$$l(mD) - l(mD - pD) = l(\mu m_2 D) - l(\mu m_2 D - (q + p)D).$$

From this inequality our assertion follows.

We fix m_2 to be l.c.m. of all $e(f(C_{\nu}))$ such that $\Xi_1 \ge \overline{f}(f(C_{\nu})) > 0$. Then we infer immediately that $\Xi_{\overline{m}}$ and $\overline{\Xi_p}$ vanish, where we abbreviate mm_2 and pm_2 to \overline{m} and \overline{p} , respectively. Now, for m > p, we have

$$l(\bar{m}D - \bar{p}D) = l((\bar{m} - \bar{p})D) = l(f^*(H_{\bar{m} - \bar{p}})) = l(H_{\bar{m}} - H_{\bar{p}}), \qquad (10)$$

and also

$$l(mD) = l(f^*(H_{\overline{m}})) = l(H_{\overline{m}}).$$

$$(11)$$

Adding a suitable positive divisor J to $H_{\overline{p}}$ such that $J+H_{\overline{p}}$ is ample, we fix . a prime divisor \overline{H} which is linearly equivalent to $J+H_{\overline{p}}$. Then we have

$$l(H_{\overline{m}} - H_{\overline{p}}) \leq l(H_{\overline{m}} - \overline{H}).$$
(12)

Using a sequence of cohomology groups, we have

$$l(H_{\overline{m}}) - l(H_m - \overline{H}) \leq l(H_{\overline{m}} | \overline{H}), \qquad (13)$$

where we denote by $H_{\overline{m}}|\overline{H}$ the induced divisor on the variety \overline{H} . Since $L_{\overline{m}} = \overline{m}L_1$ and $\Theta_{\overline{m}} = \overline{m}\Theta_1$, we have $H_{\overline{m}} \sim mH_1$. Hence, we have

$$l(H_{\overline{m}}|\overline{H}) = l(mH_{\overline{1}}|\overline{H}).$$
(14)

By Proposition 2, the right hand side is smaller than $\gamma m^{\kappa-1}$ for a constant γ . Combining this with (10), (11), (12), (13) and (14) we obtain the inequality in Theorem 2.

§6. Proof of Theorem 4.

First, we shall give a proof of the first assertion of Theorem 4. By Proposition 3, we can assume that $k(\tilde{V})/k(V)$ is finite. Taking the Galois closure of $k(\tilde{V})/k(V)$ and constructing a projective model of it, we see that it is sufficient to prove the assertion in the case in which $k(\tilde{V})/k(V)$ is a Galois extension. Let G denote its Galois group. Replacing $\overline{m}_0 m_0(D)$ by D in case $\kappa(D, V) \ge 0$, we assume that D is effective. By the natural injection: $L(mD) \rightarrow L(mf^{*}(D))$, we have the generically surjective map $f_m: W_{mf^{*}(D)} \rightarrow W_{mD}$ such that $\Phi_{mf^{\bullet}(D)} \cdot f = f_m \cdot \Phi_{mD}$. We wish to prove $k(W_{mf^{\bullet}(D)})/k(W_{mD})$ is finite algebraic for $m \gg 0$. For this it is sufficient to prove that any element a of $H^{0}(\tilde{V}, \mathcal{O}_{V}(mf^{*}(D)))$ is algebraic over $k(W_{mD})$ for $m \gg 0$, because $k(W_{mf^{*}(D)})$ is the fractional field of the ring generated by $H^{0}(\widetilde{V}, \mathcal{O}_{V}(mf^{*}(D)))$ in $k(\widetilde{V})$. We have r fundamental symmetric functions $S_1(a), \dots, S_r(a)$ of $\sigma_1(a), \dots, \sigma_r(a)$, where r is the order of G and $\sigma_1, \dots, \sigma_r$ are the elements of G. Clearly $S_i(a)$ belongs to $H^{0}(\tilde{V}, \mathcal{O}_{V}(rmf^{*}(D)))$ for every $1 \leq j \leq r$. Hence, $S_{j}(a)$ can be described as $f^*(b_j)$, where $b_j \in H^0(V, \mathcal{O}_V(rmD))$. From this we can derive an algebraic equation:

$$a^r + b_1 a^{r-1} + \cdots + b_r = 0$$
.

This proves that a is algebraic over $k(W_{rmD})$. Moreover, it is easy to check that $\kappa(D, V) = -\infty$ if and only if

$$\kappa(f^*D, \tilde{V}) = -\infty$$
. Q. E. D.

To prove the latter assertion of Theorem 4, we let \mathcal{L} be the invertible sheaf associated with the divisor $m_0(\tilde{D})\tilde{D}$ under the assumption $N(\tilde{D}) \neq \phi$. We consider the rational map $h = \sigma_{\mathcal{L}^{\otimes m_2}} : V \to \mathbf{P}(f_*(\mathcal{L}^{\otimes m_2}))$ for an integer $m_2 \gg 0$ over V and denote by Z the image of V by h which is the closed subvariety of $\mathbf{P}(f_*(\mathcal{L}^{\otimes m_2}))$. Then we have dim $Z_v = \kappa(\tilde{D}_v, \tilde{V}_v)$ for a general point v of V, because $h_v = h | \tilde{V}_v = \Phi_{m_2 m_0(\tilde{D}) \tilde{D}_v}$. Moreover, by Theorem 3 we conclude that $\tilde{V}_z = h^{-1}(z)$ is irreducible for a general point z of Z and that $\kappa(\tilde{D}_z, \tilde{V}_z) = 0$, where \tilde{D}_z denotes the restriction of \tilde{D} to \tilde{V}_z . On the other hand, we let $g: V \to W$ denote the fiber space $\Phi_{m_1 m_0(\tilde{D}) \tilde{D}} : V \to W_{m_1 m_0(\tilde{D}) \tilde{D}}$ constructed in §3. Owing to the vanishing of $\kappa(\tilde{D}_z, \tilde{V}_z)$, we obtain a generically surjective rational map $t: Z \to W$ such that $t \cdot h = g$. Hence, we see that dim $Z \ge \dim W = \kappa(\tilde{D}, \tilde{V})$. Recalling that dim $Z = \dim Z_v + \dim V = \kappa(\tilde{D}_v, \tilde{V}_v) + \dim V$, we conclude that $\kappa(\tilde{D}, \tilde{V}) \le \kappa(\tilde{D}_v, \tilde{V}_v) + \dim V$. This implies $c\kappa(\tilde{D}, \tilde{V}) \ge c\kappa(\tilde{D}_v, \tilde{V}_v)$. In case $N(\tilde{D})$ $= \phi$, we have by definition, $\kappa(\tilde{D}, \tilde{V}) = -\infty$ and so $c\kappa(\tilde{D}, \tilde{V}) = +\infty \ge c\kappa(\tilde{D}_v, \tilde{V}_v)$.

REMARK 1. The proof above suggests a generalization of Theorem 3 in the following form: Let $f: \tilde{V} \rightarrow V$ be a fiber space of algebraic varieties such that f is a proper and surjective morphism and let \tilde{D} be a divisor on \tilde{V} . Suppose that $\kappa(\tilde{D}_v, \tilde{V}_v) \ge 0$ for a general point v of V. Then there exists a fiber space $h: \tilde{V}^* \to W$ over V satisfying

- 1) \tilde{V}^* is birationally equivalent to \tilde{V} ,
- 2) the structure map from W to V is surjective, proper and $\kappa(\tilde{D}_v, \tilde{V}_v)$ = dim W/V (where dim W/V denotes dim W-dim V),
- 3) h is surjective and proper,
- 4) any general fiber $V_z^* = h^{-1}(z)$ is irreducible,
- 5) $\kappa(\tilde{D}_z^*, \tilde{V}_z^*) = 0$ (where \tilde{D}^* is the complete inverse image of the divisor \tilde{D} by the birational map from \tilde{V}^* to \tilde{V}).

Furthermore, such a fiber space is unique up to birational equivalence over V.

REMARK 2. By using Theorem 3 we can prove the following result concerning $m_0(D)$: D can be uniquely described as a sum of divisors D_0 and D^* such that

- 1) $m_0(D) = m_0(D_0), m_0(D^*) = 1,$
- 2) $\kappa(D, V) = \kappa(D^*, V), \ \kappa(D_0, V) = \kappa(D_0 | V_w, V_w) = 0$, where V_w is a general member of the algebraic system introduced in the statement of Theorem 3,
- 3) the number of the irreducible components of D_0 is the least of those of the divisors D_0 satisfying the conditions 1) and 2).

Moreover, we note that $N(D_0) = m_0(D)N$ and $N(D^*) = \{n \in N \text{ such that } n > N(D)\}$. In particular, $c\kappa(D, V) = 0$ implies $m_0(D) = 1$.

§7. Proofs of Theorems 5 and 6.

Applying Theorem 3 to the case in which V is non-singular and D a canonical divisor K of V, we obtain a fiber space of non-singular projective algebraic varieties $f: V^* \to W$ which satisfies the conditions 1), 2), 3) and 4) in the statement of Theorem 5 and the condition 5*) $K|V_w^*$ -dimension of V is zero. Hence, in order to prove Theorem 5 it is sufficient to show that $K|V_w^*$ is a canonical divisor of V_w^* . For this, let W_1 be an open dense subscheme of V such that $f|f^{-1}(W_1)$ is smooth. We abbreviate $f^{-1}(W_1)$ and $f|V_1$ by V_1 and f_1 , respectively. Referring to [3, II. 4.3] we have an exact sequence:

$$0 \longrightarrow f_1^*(\Omega_{W_1}^1) \longrightarrow \Omega_{V_1}^1 \longrightarrow \Omega_{V_1/W_1}^1 \longrightarrow 0.$$
 (15)

From this an isomorphism: $\Omega_{V_1}^n \simeq \Omega_{V_1/W_1}^{n-\kappa} \otimes f_1^* \Omega_{W_1}^{\kappa}$ follows (see [12]). Restricting these sheaves to a general fiber V_w^* we obtain

$$\Omega_{V_1}^n | V_w^* \simeq \Omega_{V_1/W_1}^{n-\kappa} | V_w^* \otimes f_1^* (\Omega_{W_1}^\kappa) | V_w^*.$$

$$\tag{16}$$

Since $f_1^*(\mathcal{Q}_{W_1}^{\boldsymbol{\kappa}})|V_w^* \simeq \mathcal{O}_{V_w^*} \otimes \mathcal{Q}_{W_1}^{\boldsymbol{\kappa}}|_w \simeq \mathcal{O}_{V_w^*}$ and $\mathcal{Q}_{V_1/W_1}^1|V_w^* \simeq \mathcal{Q}_{V_w^*}^1$, the isomorphism (16) leads to $\mathcal{Q}_{V_1}^n|V_w^* \simeq \mathcal{Q}_{V_w^*}^{n-\kappa}$. This implies that $K|V_w^*$ is a canonical divisor of V_w^* , as required.

Now, let $f: \tilde{V} \to V$ be a fiber space of complete non-singular algebraic varieties. Suppose that f is an étale morphism. Then $\mathcal{Q}_{\tilde{V}/V}^1 = 0$ (see [3, I. 3.1]). Hence, by the exact sequence (15) we have $f^*\mathcal{Q}_V^1 \cong \mathcal{Q}_{\tilde{V}}^1$. This leads to $f^*K_V \sim K_{\tilde{V}}$. Therefore, applying the former assertion of Theorem 4 with $D = K_V$, we can prove the former part of Theorem 6. As for the latter part of Theorem 6, using the linear equivalence $K_{\tilde{V}} | \tilde{V}_w \sim K_{\tilde{V}_w}$, we can prove it by a similar argument.

\S 8. Counterparts of Theorems 1, ..., 6 in the category of complex spaces.

Now let us consider in the category of complex spaces, which we denote by (An). Replacing a complete algebraic variety V, a morphism, a rational map, a non-singular algebraic variety, \cdots , in the statements of theorems in §2, respectively, by a compact irreducible reduced complex space (such a space is called a complex variety), a holomorphic map, a meromorphic map, a complex manifold, \cdots , we obtain the statements of the corresponding theorems in (An). Let us refer to the theorem in (An) corresponding to Theorem x in §2 as Theorem x^* . We note that Theorem 3* asserts the existence of an algebraic system of compact complex sub-spaces of M and that W in Theorem 5^* admits a structure of an algebraic variety, since W_{mD} is a closed complex sub-space of P^N .

Using the fact that $\kappa(D, M)$ is the largest of the dimensions of the varieties W_{mD} , $m \ge 1$, we obtain the following Corollary to Theorem 1^{*}.

COROLLARY. If there exists a divisor D on M with $\kappa = \kappa(D, M)$, then the transcendental degree $a(M)^{5}$ of the field of meromorphic functions on M is not smaller than κ . In particular, the vanishing of a(M) implies that $\kappa(M) \leq 0$.

This is a generalization of a theorem which says that if there exists on a compact complex surface S a divisor D with $D^2 > 0$, then S is algebraic.

PROOFS OF THEOREMS 1* AND 2*. Let M denote a compact complex variety. By the resolution theorem which was recently proved by Hironaka (see [7]) we can assume that M is a compact complex manifold and furthermore we have a fiber space $h: M^* \to V^*$ which has the following properties (we call $h: M^* \to V^*$ an algebraic reduction of M):

- i) M^* is a compact complex manifold which is bimeromorphically equivalent to M,
- ii) V^* is a compact complex manifold of dimension a(M), which admits a structure of a projective algebraic variety,
- iii) h is a proper surjective holomorphic map which induces an isomorphism between the fields of meromorphic functions on M^* and

⁵⁾ We call a(M) the algebraic dimension of M.

the field of meromorphic functions on V^* .

Then we find a number m_3 and a divisor C on V^* corresponding to the pair of the fiber space $h: M^* \to V^*$ and the divisor D such that there exists an isomorphism:

$$L(mm_{3}D) \simeq L(mf^{*}(C)) \simeq L(mC)$$
 for all $m > 0$.

Hence, applying Theorems 1 and 2, we can prove Theorems 1* and 2*.

PROOF OF THEOREM 3*. In order to prove Theorem 3* in the same way as in the proof of Theorem 3, it is sufficient to prove that $H^{0}(W_{\lambda}, f_{*}(\mathcal{L}))$ is generated as an $H^{0}(W_{\lambda}, \mathcal{O}_{W})$ -module by elements of $H^{0}(M, \mathcal{L}(\varepsilon m E_{\lambda}))$ for an integer $\varepsilon > 0$. Applying GAGA technique to W we shall prove this assertion. In this proof, Gothic letters W, A, \cdots denote an algebraic variety, a coherent algebraic sheaf, \cdots , respectively. Since $f_{*}(\mathcal{L})$ is a coherent analytic sheaf on W, there exists a coherent algebraic sheaf A such that $f_{*}(\mathcal{L}) = A^{an}$ (The symbol A^{an} denotes an analytic sheaf canonically associated with A). Then we have

$$H^{0}(W_{\lambda}, f_{*}(\mathcal{L})) = H^{0}(W_{\lambda}, A)^{an} = H^{0}(W_{\lambda}, A)H^{0}(W_{\lambda}, \mathcal{O}_{W})$$

where W is an algebraic variety canonically associated with W, i.e., $W^{an} = W$. Since A is algebraic we have

$$H^{0}(\boldsymbol{W}_{\lambda}, \boldsymbol{A}) = \bigcup_{e=1}^{\infty} H^{0}(\boldsymbol{W}, \boldsymbol{A}(em\boldsymbol{H}_{\lambda})).$$

Moreover, we have

$$H^{0}(\boldsymbol{W}, \boldsymbol{A}(em\boldsymbol{H}_{\lambda}))^{an} = H^{0}(\boldsymbol{W}, \boldsymbol{A}^{an}(emH_{\lambda})) = H^{0}(\boldsymbol{W}, f_{*}(\mathcal{L})(emH_{\lambda})).$$

By the projection formula, we obtain

$$\begin{aligned} H^{0}(W, f_{*}(\mathcal{L})(emH_{\lambda})) &= H^{0}(W, f_{*}(\mathcal{L}[f^{-1}(emH_{\lambda})])) \\ &= H^{0}(M, \mathcal{L}(emE_{\lambda}^{*})) \subset H^{0}(M, \mathcal{L}(emE_{\lambda})) \,. \end{aligned}$$

Recalling that $H^{0}(W_{\lambda}, A)$ is a finite $H^{0}(W_{\lambda}, \mathcal{O}_{W})$ -module, we thus prove the assertion. This proof was suggested by M. Kashiwara.

PROOFS OF PROPOSITION 3* AND THEOREM 4*. Using a theorem of Picard concerning the essential singularities of an analytic function, we may give a short proof of Proposition 3*. Before proving Theorem 4* we will construct an algebraic reduction of a fiber space of compact complex varieties $f: \tilde{M} \to M$. Let $\tilde{h}: \tilde{M}^* \to \tilde{V}$ and $h: M^* \to V$ be algebraic reductions of \tilde{M} and M, respectively. Then the inclusion $k(M) = k(V) \subseteq k(\tilde{M}) = k(\tilde{V})$ yields a rational map g from \tilde{V} to V such that $h \cdot f = g \cdot \tilde{h}$. By means of monoidal transformations, we can assume that g is regular. We call the triple of the fiber space $g: \tilde{V} \to V, \tilde{h}$ and h, an algebraic reduction of the fiber space $f: \tilde{M} \to M$. Now we shall prove the former assertion of Theorem 4*. In doing this we can assume that

S. ΙΙΤΑΚΑ

the triple of $g: \tilde{V} \to V$, $\tilde{h}: \tilde{M} \to \tilde{V}$ and $h: M \to V$ is an algebraic reduction of $f: \tilde{M} \to M$. In the case in which $a(M) = \dim M$, h is bimeromorphic. Hence, $L_{\mathcal{M}}(D)^{\epsilon_0} \simeq L_{\mathcal{V}}(h^{-1*}D)$. By Theorem 4 we have $\kappa(h^{-1*}D, V) = \kappa(g*h^{-1*}D, \tilde{V})$. Combined with the natural isomorphism: $L_{\tilde{V}}(g*h^{-1*}(D)) \simeq L_{\tilde{M}}(\tilde{h}^*g*h^{-1*}(D)) = L_{\tilde{M}}(f*D)$, these give $\kappa(D, M) = \kappa(f*D, \tilde{M})$. In the case in which a(M) = 0, V reduces to a point, and $\kappa(D, M) = 0$. We shall derive a contradiction under the assumption $l(f*D) \ge 2$. We choose two linearly independent sections from $L_{\tilde{M}}(f*D)$. Using them we construct a non-constant meromorphic map $s: \tilde{M} \to C = P^{-1}$. Clearly we can assume that s is holomorphic. By definition, we have $\tilde{M} \supseteq fs^{-1}(q)$ for a general point q of C. Hence, for a general point p of \tilde{M} , $sf^{-1}(p)$ is a finite set. Let Γ_s denote the graph of s. We define Γ to be an image of Γ_s by a proper holomorphic map :

$$f \times 1_W : \quad \widetilde{M} \times C \longrightarrow M \times C$$
.

By a theorem of Remmert, Γ is a complex subvariety of $M \times C$. Composing the injection $\Gamma \subseteq M \times C$ with canonical projections: $M \times C \to M$ and $M \times C \to C$, we have two holomorphic surjective maps $\xi : \Gamma \to M$ and $\eta : \Gamma \to C$. Since $\xi^{-1}(p) = sf^{-1}(p)$ is finite for a general point p of M, we see that dim $\Gamma = \dim M$.

LEMMA 1. Let $f: \tilde{M} \to M$ be a fiber space of compact complex varieties with the same dimension. Then $a(\tilde{M}) = a(M)$.

PROOF. Let $g: \tilde{V} \to V$, $\tilde{h}: \tilde{M} \to \tilde{V}$ and $h: M \to V$ form an algebraic reduction of $f: \tilde{M} \to M$. For any function $x \in k(\tilde{M})$, there exists a function $y \in k(\tilde{V})$ such that $x = h^*(y)$. We wish to prove that the polar divisor $(y)_{\infty}$ of y cannot be mapped onto V by g. For this, we describe $(y)_{\infty}$ as a sum of positive divisors L^* and D^* where D^* is the largest of all positive divisors such that $h(D^*) \subsetneq V$. Then if L^* is not empty, we have $fh^{-1}(L^*) = M$. This implies dim $M \leq \dim h^{-1}(L^*)$. It is clear that dim $h^{-1}(L^*) = \dim \tilde{M} - 1 < \dim \tilde{M}$. This contradicts the condition dim $\tilde{M} = \dim M$.

From this lemma, $a(\Gamma) = a(M) = 0$ follows. On the other hand, using η , we obtain $a(\Gamma) \ge a(C) = 1$. Thus we have encountered the contradiction. Finally, in the case in which a(M) > 0, we are going to prove by induction with respect to the dimension of M. Let v be a general point of V. As usual we use the following notation: $M_v = h^{-1}(v)$, $\tilde{M}_v = (h \circ f)^{-1}(v)$, $f_v = f | M_v$ and $D_v = D | M_v$. Note that dim $M_v < \dim M$ in this case. By applying the induction hypothesis to the fiber space $f_v: \tilde{M}_v \to M_v$ and the divisor D_v , we have $\kappa(D_v, M_v) = \kappa(f_v^*(D_v), \tilde{M}_v)$. It is no loss of generality to assume that D is positive. We describe $f^*(D)$ as a sum of positive divisors L' and D', where D' is the largest of all positive divisors D' such that $h \cdot f(D') \neq V$. Then we have

⁶⁾ In order to avoid the confusion, we denote by $L_M(D)$ the space of regular sections L(D) of a divisor D on M.

 $f^*(D) | \widetilde{M}_v = L' | \widetilde{M}_v.$

LEMMA 2 (Hironaka). Let M be a compact complex variety and D a divisor on M. Let $f: M^* \to V$ be an algebraic reduction of M and D^* a complete inverse image of D by the bimeromorphic map from M^* to V. Then $\kappa(D_v^*, M_v^*) \leq 0$, where M_v^* is a general fiber $f^{-1}(v)$ of f.

PROOF. This can be proved by the same argument as in the proof of Theorem 3^* (see [6]).

By this lemma we have $0 = \kappa(D_v, M_v) = \kappa(f_v^* D_v, \tilde{M_v})$. This implies that L' is one of the fixed components of $|mf^*(D)|$ for any m > 0. Thus we have

$$\kappa(f^*D, \tilde{M}) = \kappa(D', \tilde{M}). \tag{17}$$

As in the proof of Theorem 2, we can find a positive divisor E such that $D' \ge (h \cdot f)^* E$ and $\kappa(D', M) = \kappa((h \cdot f)^* E, \tilde{M})$. Since V is algebraic, we can apply Theorem 4* to the fiber space $h \cdot f \colon \tilde{M} \to V$ and the divisor E on V. Then we have

$$\kappa((h \cdot f) * E, \tilde{M}) = \kappa(E, V).$$
(18)

From $f^*D \ge D' \ge (h \cdot f)^*E$, it follows that $D \ge h^*E$. Hence, we have $\kappa(D, M) \ge \kappa(h^*E, M) = \kappa(E, V)$. Combining this with (17) and (18), we obtain $\kappa(D, M) = \kappa(f^*D, \tilde{M})$, as required.

Note that the same argument can be used to prove Proposition 3*. The latter part of Theorem 4* can be proved by the same argument as in the proof of Theorem 4, because Theorem 3* has already been proved.

REMARK 3. We give a stronger result than the latter part of Theorem 4* in the restricted case: Let $f: \tilde{M} \to M$ be a fiber space of compact complex varieties and \tilde{D} a divisor on M. Suppose that a(M) = 0. Then $\kappa(\tilde{D}, \tilde{M}) \leq \kappa(\tilde{D}_q, \tilde{M}_q)$ for a general point q of M. We shall prove this in the case D > 0, because in the other cases the proof is easy. We denote by $g: \tilde{M} \to W$ the fiber space $\Phi_{m_1D}: \tilde{M} \to W_{m_1D}$ for $m_1 \gg 0$. It is no loss of generality to assume that g is holomorphic. We wish to prove $fg^{-1}(p) = M$ for any general point p of W by induction with respect to the dimension of W. For this we let W_1 be a general hyperplane section of W which passes through the point p. We write \tilde{M}_1, f_1 instead of $g^{-1}(W_1), f | \tilde{M}_1$, respectively. If $f_1(\tilde{M}_1) = M$, then $f_1g^{-1}(p) = fg^{-1}(p) = M$ by our induction hypothesis. We shall derive a contradiction in the case in which $f(\tilde{M}_1) \neq M$. In this case, we can find a positive divisor G such that $f(\tilde{M}_1) \subset \text{supp } G$ (the symbol supp G denotes the support of G). Then we have $M_1 \subset \text{supp } f^*G$. By the former part of Theorem 4*, we obtain

$$0 < \kappa(W_1, W) = \kappa(g^{-1}(W_1), \widetilde{M}) = \kappa(\widetilde{M}_1, \widetilde{M})$$
(19)

and

$$\kappa(g^{-1}(W_1), M) \leq \kappa(f^{-1}(G), \tilde{M}) = \kappa(G, M) = 0.$$
(20)

This contradicts the inequality (19). By $fg^{-1}(p) = M$ we have $gf^{-1}(q) = W$ for

any general point q of M. Using the notation in the proof of Theorem 2, we recall that m_2D is described as $m_2L_1+m_2\Theta_1+g^*H_{m_2}$. Then by Proposition 3* we have

$$\kappa(H_{m_2}, W) = \kappa(g_q^*(H_{m_2}), \widetilde{M}_q),$$

where $\tilde{M}_q = f^{-1}(q)$ is irreducible and reduced, $g_q = g | \tilde{M}_q$. Furthermore, we have

$$\kappa(g_q^*(H_{m_2}), \widetilde{M}_q) \leq \kappa((m_2L_1 + m_2\Theta_1 + g^*(H_{m_2})) | \widetilde{M}_q, \widetilde{M}_q) = \kappa(\widetilde{D}_q, \widetilde{M}_q),$$

because supp $L_1 \stackrel{}{\to} M_q$ and supp $\Theta_1 \stackrel{}{\to} M_q$ for a general point q of M. Hence, we obtain the inequality $\kappa(\widetilde{D}, \widetilde{M}) \leq \kappa(\widetilde{D}_q, \widetilde{M}_q)$.

REMARK 4. The following assertion is a generalization of Lemma 2 due to K. Ueno: Let $f: \tilde{M} \to M$ be a fiber space of compact complex varieties. Then $a(M) \leq a(\tilde{M}) \leq a(M) + \dim f$, where dim f denotes dim $\tilde{M} - \dim M$.

The left hand side inequality is easily proved and so we shall prove the right hand side. Consider first the case a(M) = 0. In this case, we use the induction with respect to dim M. Let x be a non-constant meromorphic function on \tilde{M} and D the polar divisor $(x)_{\infty}$ of x. We define a meromorphic map g to be $g(p) = 1: x(p) \in \mathbf{P}^1$ for a general point p of M (g can be assumed to be holomorphic). Apply Theorem 4* to the pair of the fiber space $g: \tilde{M} \to \mathbf{P}^1$ and the divisor \tilde{H} on \tilde{M} such that $\kappa(\tilde{H}, \tilde{M}) = a(\tilde{M})$. Then we obtain

$$a(\widetilde{M}) = \kappa(\widetilde{H}, \widetilde{M}) \leq \kappa(\widetilde{H}_1, \widetilde{M}_1) + \dim \mathbf{P}^1 \leq a(\widetilde{M}_1) + 1, \qquad (21)$$

where \tilde{M}_1 is a general fiber of g and so is a general irreducible component of |D|, and $\tilde{H}_1 = \tilde{H}|\tilde{M}_1$. Suppose that f(D) = M. Then there exists an irreducible component \tilde{M}_1 of |D| such that $f(\tilde{M}_1) = M$. By using our induction hypothesis in the case of the fiber space $f|M_1: \tilde{M}_1 \to M$, we have

$$a(\widetilde{M}_1) \leq \dim \widetilde{M}_1 - \dim M = \dim \widetilde{M} - \dim M - 1$$
.

Combining this with (21) we obtain the inequality $a(\tilde{M}) \leq \dim f$.

Now suppose that $f(D) \neq M$. Then from a(M) = 0, we derive that x reduces to a constant, a contradiction. In the case in which a(M) > 0, we use the induction with respect to dim \tilde{M} . We let the triple consisting of a fiber space of algebraic varieties $g: \tilde{V} \to V$, $\tilde{h}: \tilde{M} \to \tilde{V}$ (an algebraic reduction of \tilde{M}) and $h: M \to V$ (an algebraic reduction of M) be an algebraic reduction of $f: \tilde{M} \to M$. For a general point v of V, we have a fiber space $f_v = f|M_v: \tilde{M}_v$ $= f^{-1}(M_v) \to M_v = h^{-1}(v)$. By our induction hypothesis we have

$$a(\tilde{M}_v) \le a(M_v) + \dim f_v , \qquad (22)$$

because dim $\widetilde{M}_v < \dim \widetilde{M}$. Clearly it follows that dim $f_v = \dim f$, $a(M_v) \ge 0$ and

$$a(\widetilde{M}_v) \ge \dim \widetilde{V}_v = \dim \widetilde{V} - \dim V = a(\widetilde{M}) - a(M)$$
.

Combining these with (22), we obtain $a(\tilde{M}) - a(M) \leq \dim f$.

University of Tokyo

References

- [1] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. de I. H. E. S., No. 5, (1960).
- [2] A. Grothendieck, Eléments de géométrie algébrique, Publ. Math. de I. H. E. S., Nos. 4, 8, 11, 17,
- [3] A. Grothendieck, Séminaire de géométrie algébrique, 1960-61, I. H. E. S.
- [4] A. Grothendieck, Téchnique de construction en géometrie analytique complexe, Séminaire H. Cartan 13^e année: 1960-61, Familles d'espaces complexes et fondements de géométrie analytique.
- [5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero; I, II, Ann. of Math., 79 (1964), 109-326.
- [6] H. Hironaka, Review of S. Kawai's paper, Math. Reviews, 466, vol. 32, No. 11 (1966), 87-88.
- [7] H. Hironaka, Resolution of singularities of a complex analytic variety, (French), to appear in one of the series of Lecture Notes in Mathematics, Springer-Verlag.
- [8] S. Iitaka, Deformations of compact complex surfaces: II, III, J. Math. Soc. Japan, 22 (1970), 247-261, to appear in J. Math. Soc. Japan.
- [9] S. Iitaka, On D-dimensions of algebraic varieties, Proc. Japan Acad., 46 (1970), 487-489.
- [10] S. Kawai, On compact complex analytic manifolds of complex dimension 3: I, II, J. Math. Soc. Japan, 17 (1965), 438-442, ibid. 21 (1969), 604-626.
- K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86 (1964), 751-798.
- [12] D. B. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin, 1965.
- [13] L. Roth, Algebraic Threefolds, with special regard to problems of rationality, Springer-Verlag, Berlin, 1955.
- [14] I. Šafarevič and others, Algebraic Surfaces, (Russian), Proc. Steklov Inst. Math., Moscow, 1965.
- [15] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., 76 (1962), 560-615.