On D-dimensions of algebraic varieties*)

By Shigeru IITAKA

(Received June 29, 1970)

§ 1. Introduction.

Let k be an algebraically closed field of characteristic zero. We shall work in the category of schemes over k. Let V be a complete algebraic variety, and let D be a divisor on V. In this paper, we shall introduce the notion of the D-dimension of V which we denote by $\kappa(D, V)$, and prove some theorems (Theorems $1,2,3$ and 4) about $\kappa(D, V)$. Furthermore, when V is non-singular, we define the Kodaira dimension (or the canonical dimension) $\kappa(V)$ of V, to be $\kappa\left(K_{V}, V\right)$, where K_{V} denotes a canonical divisor of V. The Kodaira dimension would seem to be the most fundamental invariant in the theory of birational classification of algebraic varieties. Our theorems concerning $\kappa(D, V)$ and $\kappa(V)$ establish fundamental results in the theory of birational classification. In particular, Theorem 5 shows that it would be enough to consider algebraic varieties of Kodaira co-dimension zero ${ }^{1)}$, of Kodaira dimension zero and of Kodaira dimension $-\infty$, in order to classify algebraic varieties to the extent that Italian algebraic geometers did for algebraic surfaces about sixty years ago.

The main results of this paper have been announced in [9].
The author would like to express the deepest appreciation to Professor K. Kodaira for his thoughtfull and critical guidance given during the completion of this paper.

§ 2. Statement of the results.

Letting V be a complete algebraic variety of dimension n and D a divisor on V, we denote by $l(D)-1$ the dimension of the complete linear system $|D|$ associated with D. We consider the set of all positive integers m satisfying $l(m D)>0$, which we indicate by $\boldsymbol{N}(D)$. Assume that $N(D)$ is not empty. Then $N(D)$ forms a sub-semigroup of the additive group of all integers. Hence,

[^0]letting $m_{0}(D)$ be the g.c.d. of the integers belonging to $N(D)$, we can find a positive integer $N(D)$ such that m belongs to $\boldsymbol{N}(D)$ provided that $m \equiv 0$ $\bmod m_{0}(D)$ and $m \geqq N(D)$.

THEOREM 1. There exist positive numbers α, β and a non-negative integer κ such that the following inequality holds for every sufficiently large integer m :

$$
\alpha m^{\kappa} \leqq l\left(m m_{0}(D) D\right) \leqq \beta m^{\kappa} .
$$

It is easy to check that κ is independent of the choice of α and β. We define the D-dimension of V to be the integer κ, provided that $l(m D)>0$ for at least one positive integer m. We denote the D-dimension of V by $\kappa(D, V)$. In the case in which $l(m D)=0$ for every positive integer m, we define the D-dimension of V to be $-\infty: \kappa(D, V)=-\infty$.

Theorem 2. Assume that $\kappa(D, V)>0$. For any positive integer p, there exists a positive number γ such that the following inequality holds for every sufficiently large integer m :

$$
\begin{aligned}
& l\left(m m_{0}(D) D\right)-l\left(\left\{m m_{0}(D)-p m_{0}(D)\right\} D\right) \leqq \gamma m^{\kappa-1}, \\
& \kappa=\kappa(D, V) .
\end{aligned}
$$

We recall that, in classical algebraic geometry, the index of an algebraic system on an algebraic variety of dimension n is defined to be the number of those distinct members of the system which pass through r independent generic points of V, where $r=$ the dimension of the system+the dimension of its member $-n+1$.

Theorem 3. Suppose that $\kappa=\kappa(D, V)$ is positive. Then there exists a κ dimensional irreducible algebraic system of algebraic sub-varieties of dimension $n-\kappa$ with index 1 , such that $\kappa\left(D_{w}, V_{w}\right)=0$, where V_{w} denotes a general member of the algebraic system and D_{w} the induced divisor on V_{w} of D. Moreover, such an algebraic system is unique up to birational equivalence.

We introduce the notion of the co-D-dimension of V, which we write $c \kappa(D, V)$, by setting $c \kappa(D, V)=n-\kappa(D, V)$.

Theorem 4. Let \tilde{V}, V be complete algebraic varieties and let f be a proper surjective morphism from \tilde{V} to V. For any divisor D on V, we have $\kappa(f * D, \tilde{V})$ $=\kappa(D, V)$. Moreover, if a general fiber $\tilde{V}_{v}=f^{-1}(v)$ is irreducible, then for any divisor \tilde{D} on \tilde{V}, we have $c \kappa(\tilde{D}, \tilde{V}) \geqq c \kappa\left(\tilde{D} v, \tilde{V}_{v}\right)$.

In order to define the Kodaira dimension of an arbitrary algebraic variety V, we take a non-singular projective model V^{*} of V, whose existence is assured by a celebrated theorem of Hironaka (see [5]). Then we define the Kodaira dimension $\kappa(V)$ of V to be $\kappa\left(K^{*}, V^{*}\right)$, where K^{*} denotes a canonical divisor of $V^{*} . \kappa(V)$ is well defined and is a birational invariant.

Theorem 5. If $\kappa=\kappa(V)$ is positive, then there exists a fiber space $f: V^{*} \rightarrow W$ of non-singular projective algebraic varieties such that
i) V^{*} is birationally equivalent to V,
ii) W is of dimension κ,
iii) f is surjective and proper,
iv) any general fiber $V_{w}^{*}=f^{-1}(w)$ is irreducible,
v) V_{w}^{*} has the Kodaira dimension 0.

Moreover, such a fiber space is unique up to birational equivalence.
The former part of this theorem is a direct generalization of a theorem ${ }^{2)}$ which states that a minimal surface S with $K_{s}^{2}=0$ and a plurigenus $\geqq 2$ is elliptic. Moreover, the latter part is a generalization of Proposition 7 in [8, II].

THEOREM 6. Let \tilde{V}, V be non-singular projective algebraic varieties and f a proper surjective morphism from \tilde{V} to V. In the case in which \tilde{V} is étale over V, we have $\kappa(\tilde{V})=\kappa(V)$. On the other hand, in the case in which any general fiber $f^{-1}(v)=\tilde{V}_{v}$ is irreducible, we have $c \kappa(\tilde{V}) \geqq c \kappa\left(\tilde{V}_{v}\right)$.

The former assertion is a generalization of a theorem in the theory of algebraic surfaces to the effect that every unramified covering manifold of an elliptic surface is also elliptic. The latter is a generalization of a theorem ${ }^{3}$ saying that every algebraic surface of general type cannot contain a pencil of elliptic curves.

We note that the above theorems have counterparts in the category of complex spaces ${ }^{4}$.

§ 3. Notation and preliminary propositions.

In this section, we let V denote a normal complete algebraic variety of dimension n, and let D be a Cartier divisor on V. We shall use the notation listed below:
$k(V)=$ the field of rational functions on V, $[D]=$ the line bundle associated with D,
$\boldsymbol{L}(D)=$ the vector space consisting of all regular sections of $[D]$,
$l(D)=$ the dimension of $\boldsymbol{L}(D)$,
$L^{*}(D)=$ the vector space consisting of all rational sections of $[D]$,
$(\omega)=$ the divisor corresponding to a non-zero element $\omega \in L^{*}(D)$
(Note that, if $\eta \in \boldsymbol{L}(D), \neq 0$, then (η) is positive),
$|D|=\{(\omega) ; \omega \in L(D), \neq 0\} ;|D|$ is called the complete linear system associated with D.
" \sim " indicates the linear equivalence of divisors.

[^1]In what follows in this section we fix a divisor D such that $l(D)=N+1>0$. Let $\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}\right\}$ be a basis of $L(D)$. We define a rational map Φ_{D} by

$$
V \ni z \mapsto \Phi_{D}(z)=\varphi_{0}(z): \varphi_{1}(z): \cdots: \varphi_{N}(z) \in \boldsymbol{P}^{N},
$$

where z is a general point of V. We denote by W_{D} the rational transform of V by Φ_{D} which is a closed sub-variety of \boldsymbol{P}^{N}. Moreover, for every integer $m>0$, we abbreviate $\Phi_{m D}, W_{m D}$, and $\boldsymbol{L}(m D)$ to Φ_{m}, W_{m}, and \boldsymbol{L}_{m}, respectively. We let $\left\{\psi_{0}, \psi_{1}, \cdots, \psi_{l}\right\}$ be a basis of \boldsymbol{L}_{m} and we choose a basis of \boldsymbol{L}_{m+1} of the form $\left\{\varphi_{0} \psi_{0}, \varphi_{0} \psi_{1}, \cdots, \varphi_{0} \psi_{l}, \cdots\right\}$. Then, for a general point $z \in V$, we define a generically surjective rational map $\rho_{m}: W_{m+1} \rightarrow W_{m}$ by

$$
\rho_{m}\left(\varphi_{0}(z) \psi_{0}(z): \cdots: \varphi_{0}(z) \psi_{l}(z): \cdots\right)=\psi_{0}(z): \cdots: \psi_{l}(z) .
$$

Obviously, we have $\Phi_{m}=\rho_{m} \cdot \Phi_{m+1}$. Therefore, we have a sequence of fields:

$$
k\left(W_{1}\right) \subset k\left(W_{2}\right) \subset \cdots \subset k\left(W_{m}\right) \subset \cdots \subset k(V) .
$$

Since $k(V)$ is finitely generated over $k\left(W_{1}\right)$, there is an integer m_{1} such that $k\left(W_{m}\right)=k\left(W_{m_{1}}\right)$ for all $m \geqq m_{1}$. Hence ρ_{m} is birational for $m \geqq m_{1}$. From the following proposition we infer that $k\left(W_{m_{1}}\right)$ is algebraically closed in $k(V)$.

Proposition 1. Let z be an element of $k(V)$ which is algebraic over $k\left(W_{D}\right)$. Then there exists an integer $\delta \geqq 1$ such that z belongs to $k\left(W_{\delta D}\right)$.

Proof. Let $\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}\right\}$ be a basis of $L(D)$, and let z satisfy the following equation:

$$
\begin{equation*}
z^{r}+a_{1} z^{r-1}+\cdots+a_{r}=0, \tag{1}
\end{equation*}
$$

where $a_{1}, \cdots, a_{r} \in k\left(W_{D}\right)$. Since $k\left(W_{D}\right)=k\left(\varphi_{1} / \varphi_{0}, \cdots, \varphi_{N} / \varphi_{0}\right)$, we have homogeneous polynomials $F_{0}, F_{1}, \cdots, F_{r}$ of the same degree δ such that $a_{i}=$ $F_{i}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}\right) / F_{0}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}\right)$ for $1 \leqq i \leqq r$. The equation (1) leads to the following equation:

$$
\begin{equation*}
\left(z F_{0}(\varphi)\right)^{r}+F_{1}(\varphi)\left(z F_{0}(\varphi)\right)^{r-1}+\cdots+F_{0}(\varphi)^{r-1} F_{r}(\varphi)=0, \tag{2}
\end{equation*}
$$

where we abbreviate $F_{j}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{N}\right)$ to $F_{j}(\varphi)$ for $0 \leqq j \leqq r$. Note that $z F_{0}(\varphi)$, $F_{1}(\varphi), \cdots, F_{0}(\varphi)^{r-1} F_{r}(\varphi)$ are elements of $\boldsymbol{L}^{*}(\delta D), \boldsymbol{L}(\delta D), \cdots, \boldsymbol{L}(r \delta D)$, respectively. Now we take a covering of V by affine open sets $\left\{U_{\lambda}\right\}_{\lambda_{\in A}}$ such that $[D]$ is trivial on U_{λ} for every $\lambda \in \Lambda$. We indicate the restriction of any entity \# to U_{λ} by the symbol \#. It is clear that $F_{1}(\varphi)_{\lambda}, \cdots,\left(F_{0}(\varphi)^{r-1} F_{r}(\varphi)\right)_{\lambda} \in H^{0}\left(U_{\lambda}, \mathcal{O}_{V}\right)$. Since the ring $H^{\circ}\left(U_{\lambda}, \mathcal{O}_{V}\right)$ is integrally closed, we infer from the equation (1) that $z F_{0}(\varphi)_{\lambda} \in H^{0}\left(U_{\lambda}, \mathcal{O}_{V}\right)$. Therefore, we have $z F_{0}(\varphi) \in \boldsymbol{L}(\delta D)$. This implies that $z \in k\left(W_{\delta D}\right)$.

Proposition 2. Let D be a divisor on V. Then there exists a number β such that $l(m D) \leqq \beta m^{n}$ for all $m \gg 0$. Furthermore, when D is ample, there exists a positive number α such that $\alpha m^{n} \leqq l(m D)$ for all $m \gg 0$.

Proof. When D is ample, $l(m D)$ is a polynomial of degree n for all $m \gg 0$.

Hence we have an estimate:

$$
\alpha m^{n} \leqq l(m D) \leqq \beta m^{n} \quad \text { for all } \quad m \gg 0,
$$

where α, β are positive numbers depending only on D. In the case in which D may not be ample, we take a projective model V^{*} of V such that a birational map $T: V^{*} \rightarrow V$ is regular. Note that $l\left(m T^{*} D\right)=l(m D)$. Hence we may assume that V is projective. We take an ample divisor D^{*} such that $D^{*} \sim D+H$, where H is a suitably chosen ample divisor. Then we have

$$
l(m D) \leqq l(m D+m H)=l\left(m D^{*}\right) \leqq \beta^{*} m^{n} \quad \text { for a constant } \beta^{*}
$$

and for all $m \gg 0$.
Proposition 3. Let $f: V \rightarrow W$ be a fiber space of complete normal algebraic varieties such that $f^{*}(k(W))$ is algebraically closed in $k(V)$. Then, for any divisor D on $W, \boldsymbol{L}(D)$ is isomorphic to $\boldsymbol{L}\left(f^{*}(D)\right)$ by the map induced by f.

Proof. Let ψ be a rational function on V such that $(\psi) \geqq-f^{*}(D)$. Since $\psi \mid V_{w}$ has no pole on V_{w}, V_{w} being the generic fiber over the generic point w of $W, \psi \mid V_{w}=\psi$ belongs to $k(w)=k(W)$. From this observation, Proposition 3 follows at once.

§4. Proofs of Theorems 1 and 3.

First, we note that it is sufficient to prove these theorems for a normal algebraic variety V and for an effective divisor D. In fact, taking the normalization V^{*} of V, we define $l\left(R^{*} D, V^{*}\right)=l(D, V)$ where $R: V^{*} \rightarrow V$ is a birational morphism. We fix an integer \bar{m}_{0} satisfying $\bar{m}_{0} m_{0}(D) \in N(D)$ and an effective divisor D^{\prime} which is linearly equivalent to $\bar{m}_{0} m_{0}(D) D$. We wish to prove the inequalities in Theorem 1 under the assumption that the following inequality holds for all $\mu \gg 0$:

$$
\alpha \mu^{\kappa} \leqq l\left(\mu D^{\prime}\right) \leqq \beta \mu^{\kappa} .
$$

For this purpose, let m be any given large integer. We divide m by \bar{m}_{0} with a sufficiently large residue, i.e., we let $m=\mu \cdot \bar{m}_{0}+q$, where $q \cdot m_{0}(D) \in N(D)$ and q is bounded when m grows to infinity. Then we have

$$
l\left(m m_{0}(D) D\right)=l\left(\left\{\bar{m}_{0} \mu m_{0}(D)+q m_{0}(D)\right\} D\right) \geqq l\left(\mu \bar{m}_{0} m_{0}(D) D\right)=l\left(\mu D^{\prime}\right) \geqq \alpha \mu^{\kappa} .
$$

Moreover, we divide m by \bar{m}_{0} with a sufficiently small residue, i.e., we let $m=\mu \bar{m}_{0}-q^{\prime}$, where $q^{\prime} \cdot m_{0}(D) \in \boldsymbol{N}(D)$ and q^{\prime} is bounded. Then we have

$$
l\left(m m_{0}(D) D\right)=l\left(\mu \bar{m}_{0} m_{0}(D) D-q^{\prime} m_{0}(D) D\right) \leqq l\left(\mu \bar{m}_{0} m_{0}(D) D\right)=l\left(\mu D^{\prime}\right) \leqq \beta \mu^{\kappa} .
$$

Thus, we may assume that V is normal and D effective. By the consideration in $\S 3$, we have a fiber space of algebraic varieties $\Phi_{m_{1}}: V \rightarrow W_{m_{1}} \subset \boldsymbol{P}^{N}$ which has the following properties:

1) $\Phi_{m_{1}}$ is a generically surjective map,
2) $k\left(W_{m}\right)=k\left(W_{m_{1}}\right)$ for all integer $m \geqq m_{1}$,
3) $k\left(W_{m_{1}}\right)$ is algebraically closed in $k(V)$,
where $\Phi_{m_{1}}$ denotes $\Phi_{m_{1} D}$, etc. By taking the normal graph, we have a birational morphism $T: V^{*} \rightarrow V$ such that the rational map $\Phi_{m_{1}} \circ T$ is regular. In view of the isomorphism:

$$
T^{*}: \boldsymbol{L}\left(m_{1} D\right) \simeq \boldsymbol{L}\left(m_{1} T * D\right),
$$

we can replace V, D by $V^{*}, T^{*} D$, respectively. Hence we may assume that $\Phi_{m_{1}}$ is a morphism. For simplicity, we abbreviate $m_{1} D, \Phi_{m_{1}}, W_{m_{1}}$ and $l\left(m_{1} D\right)-1$ to E, f, W and N, respectively. Note: we can assume that W is normal.

We fix a basis $\left\{\varphi_{0}, \cdots, \varphi_{N}\right\}$ of $\boldsymbol{L}(E)$ such that f is defined by means of this basis. Let F be the maximal fixed component of $|E|$, and let H denote a hyperplane section of W in \boldsymbol{P}^{N}. Then we have a member of $|E|$ of the form: $F+f^{*}(H)$, where $f^{*}(H)$ indicates the divisor induced from H by f. Hence, by Proposition 3, we have

$$
l\left(m m_{1} D\right)=l(m E)=l(m F+f *(m H)) \geqq l\left(m f^{*}(H)\right)=l(m H) .
$$

From Proposition 2, we infer the existence of a positive number α such that $l(m H) \geqq \alpha m^{\kappa}$ for all $m \gg 0$, where κ denotes the dimension of W. Thus we have

$$
\begin{equation*}
l\left(\mu m_{1} D\right) \geqq \alpha \mu^{\kappa} \quad \text { for all } \quad \mu \gg 0 \tag{3}
\end{equation*}
$$

We represent the divisor F as a sum : $F=\sum n_{\nu} A_{\nu}$, where the A_{ν} denote the irreducible components of F, and define

$$
L=\sum_{f\left(A_{\nu}\right)=W} n_{\nu} A_{\nu}, \quad F *=\sum_{f\left(\lambda_{\nu}, \neq W\right.} n_{\nu} A_{\nu} .
$$

Then, for any integer $m>0$, we have

$$
|m E| \ni m L+m F^{*}+f^{*}(m H)
$$

Furthermore, we take a general member $\sum n_{\nu} B_{\nu}$ of $|m E|$, where the B_{ν} denote its irreducible components, and let

$$
L_{m}=\sum_{f\left(B_{\nu}\right)=W} n_{\nu} B_{\nu}, \quad F_{m}^{*}=\sum_{f^{\prime}\left(B_{\nu}\right) \neq W} n_{\nu} B_{\nu} .
$$

Hence we have

$$
\begin{equation*}
L_{m}+F_{m}^{*} \sim m L+m F^{*}+f^{*}(m H) . \tag{4}
\end{equation*}
$$

Restricting both divisors to a general fiber V_{w} of f, we have

$$
L_{m}\left|V_{w}=\left(L_{m}+F_{m}^{*}\right)\right| V_{w} \sim\left(m L+m F^{*}+f^{*}(m H)\right)\left|V_{w}=m L\right| V_{w} .
$$

Moreover, we shall prove

$$
\begin{equation*}
L_{m}\left|V_{w}=m L\right| V_{w} . \tag{5}
\end{equation*}
$$

Assuming the equality (5), we proceed with the proof of Theorem 1. From the equality (5), we infer that $L_{m}=m L$. This implies that L_{m} is one of the fixed components of $|m E|$. Hence, we have

$$
\begin{equation*}
l\left(m m_{1} D\right)=l\left(L_{m}+F_{m}^{*}\right)=l\left(F_{m}^{*}\right)=l\left(m F^{*}+f^{*}(m H)\right) . \tag{6}
\end{equation*}
$$

On the other hand, we can take a positive divisor H^{*} on W such that $F^{*} \leqq f^{*}\left(H^{*}\right)$. Therefore, by Proposition 3, we have

$$
\begin{equation*}
l\left(m F^{*}+f^{*}(m H)\right) \leqq l\left(m f^{*}\left(H^{*}\right)+f^{*}(m H)\right)=l\left(m\left(H^{*}+H\right)\right) \tag{7}
\end{equation*}
$$

By Proposition 2 we can choose a number β which satisfies

$$
l\left(m\left(H^{*}+H\right)\right) \leqq \beta m^{\kappa} \quad \text { for all } \quad m \gg 0 .
$$

Combining this with (6) and (7), we have

$$
\begin{equation*}
l\left(\mu m_{1} D\right) \leqq \beta \mu^{\kappa} \quad \text { for all } \quad \mu \gg 0 \tag{8}
\end{equation*}
$$

By a similar inference as before, we derive from (4) and (8) the inequality in Theorem 1.

Proof of the equality $L_{m}\left|V_{w}=m L\right| V_{w}$. We denote by \mathcal{L} the sheaf of germs of regular sections of the bundle $\left[m m_{1} D\right]$. Then we have the homomorphism: $\sigma=\sigma_{\mathcal{L}}: f^{*} f_{*}(\mathcal{L}) \rightarrow \mathcal{L}$ (see [2, 0_{I}. 4.4.3.3]). Let C, Σ, V_{1} and f_{1} be, respectively, the cokernel of σ, the support of $C, V-\Sigma$ and $f \mid V_{1}$. Then the restriction of σ to $V_{1}: f_{1}^{*} f_{*}(\mathcal{L}) \rightarrow \mathcal{L} \mid V_{1}$ is surjective. Hence by a theory of Grothendieck (see [2, II. 4.2.3]) we have a fiber space $g: \boldsymbol{P}\left(f_{*}(\mathcal{L})\right) \rightarrow W$ and a morphism $h_{1}: V_{1} \rightarrow \boldsymbol{P}\left(f_{*}(\mathcal{L})\right)$ over W such that $\mathcal{L}_{1}=\mathcal{L} \mid V_{1}$ is isomorphic to $h_{1}^{*} \mathcal{O}_{\boldsymbol{P}}(1)$. In the above we abbreviate $\boldsymbol{P}\left(f_{*}(\mathcal{L})\right)$ to \boldsymbol{P}. Let Z be an algebraic variety of which the underlying space is the closure of $h_{1}\left(V_{1}\right)$ in \boldsymbol{P}. A hyperplane defined by $\lambda_{0} X_{0}+\cdots+\lambda_{N} X_{N}=0$ in \boldsymbol{P}^{N} cuts off on W a positive divisor H_{λ}. Let W_{λ} denote an affine open set $W-H_{\lambda}$. Then $h \mid f^{-1}\left(W_{\lambda}\right)$ is described as follows. Recalling that the sheaf $f_{*}(\mathcal{L})$ is coherent, we can take ψ_{0}, ψ_{1}, $\cdots, \psi_{N} \in H^{0}\left(W_{\lambda}, f_{*}(\mathcal{L})\right)$ such that $H^{0}\left(W_{\lambda}, f_{*}(\mathcal{L})\right)$ is generated by $\psi_{0}, \psi_{1}, \cdots, \psi_{N}$ as an $H^{0}\left(W_{\lambda}, \mathcal{O}_{W}\right)$-module (see [2, I. 1.5.5]). Regarded as a rational map, h_{1} coincides with the rational map defined by

$$
V \supset f^{-1}\left(W_{\lambda}\right) \ni z \mapsto \psi_{0}(z): \cdots: \psi_{N}(z) \in \boldsymbol{P}_{H_{0}\left(W_{\lambda}, 0_{W}\right)}^{N}
$$

for a general point z of V. On the other hand, we have

$$
f^{-1}\left(W_{\lambda}\right)=V-E_{\lambda}^{*} \supset V-E_{\lambda}
$$

where E_{λ} and E_{λ}^{*} denote $\left(\lambda_{0} \psi_{0}+\cdots+\lambda_{N} \psi_{N}\right) \in|E|$ and $E_{\lambda}-F$, respectively. Moreover, we have

$$
\begin{aligned}
H^{0}\left(W_{\lambda}, f_{*}(\mathcal{L})\right) & =H^{0}\left(f^{-1}\left(W_{\lambda}\right), \mathcal{L}\right) \subset H^{0}\left(V-E_{\lambda}, \mathcal{L}^{\prime}\right) \\
& =\bigcup_{e=1}^{\infty} H^{0}\left(V, \mathcal{L}\left(e m E_{\lambda}\right)\right)
\end{aligned}
$$

where we denote by $H^{0}\left(V, \mathcal{L}\left(e m E_{\lambda}\right)\right)$ the space of rational sections ω of \mathcal{L} on V such that the corresponding divisor (ω) $\geqq-e m E_{\lambda}$.

Fix an element $\eta \in \boldsymbol{L}\left(e m E_{\lambda}\right)$ such that $(\eta)=e m E_{\lambda}$. Then $H^{0}\left(V, \mathcal{L}\left(e m E_{\lambda}\right)\right)$ is isomorphic to $H^{0}\left(V, \mathcal{L}^{\otimes(e+1)}\right)$ by the $\operatorname{map} \psi \mapsto \psi \eta$. Now we can find an integer ε such that $\psi_{0}, \psi_{1}, \cdots, \psi_{N} \in H^{0}\left(V, \mathcal{L}\left(\varepsilon m E_{\lambda}\right)\right)$. Therefore, considering the function fields of $h_{1}\left(V_{1}\right), W$ and $W_{(\varepsilon+1) m}$, we have the relations of inclusions:

$$
k(V)=k\left(V_{1}\right)=k\left(W_{(\varepsilon+1) m}\right) \supset k\left(h_{1}\left(V_{1}\right)\right) \supset k(W) .
$$

In view of the equalities $k\left(W_{(\varepsilon+1) m}\right)=k(W)$ and $k\left(h_{1}\left(V_{1}\right)\right)=k(Z)$, we conclude that the morphism $g: Z \rightarrow W$ is birational. Applying the theorem of upper semi-continuity to the function $l\left(m m_{1} D_{w}\right)$ of $w \in W$, we infer that $l\left(m m_{1} D_{w}\right)$ $=\operatorname{dim} H^{0}\left(V_{w}, \mathcal{L}_{w}\right)$ is constant on a certain dense open subset W^{*} of W. Hence, we have

$$
f_{*}(\mathcal{L}) \otimes_{O_{W}} k(w) \simeq H^{0}\left(V_{w}, \mathcal{L}_{w}\right) \quad \text { for } \quad w \in W^{*},
$$

where $k(w)$ denotes $\mathcal{O}_{W, w} / \mathfrak{m} \mathcal{O}_{W, w} \simeq k$.
Finally we wish to show that Φ_{θ} is the morphism $\underset{W}{ } \times \operatorname{Spec} k(w)$ from V_{w} to $Z_{w} \subset \boldsymbol{P}\left(f_{*}(\mathcal{L})\right) \times \underset{w}{ } \operatorname{Spec} k(w)$, where θ denotes $m E \mid V_{w}$. For this it is sufficient to note that

$$
\boldsymbol{P}\left(f_{*}(\mathcal{L})\right) \underset{W}{\times \operatorname{Spec} k(w)=\boldsymbol{P}\left(f_{*}(\mathcal{L}) \underset{\mathcal{O}_{W}}{\bigotimes} k(w)\right) \simeq \boldsymbol{P}\left(H^{0}\left(V_{w}, \mathcal{L}_{w}\right)\right) \quad \text { for } \quad w \in W^{*}, ~}
$$

and that $h_{w}^{*}\left(\mathcal{O}_{\boldsymbol{P}}(1)\right)$ is isomorphic to \mathcal{L}_{w}, where we write h_{w} instead of $h \times \underset{W}{\operatorname{Spec} k(w)}$. Recalling that Z is birationally equivalent to W, we conclude that h_{w} is a constant morphism. Therefore we have

$$
\operatorname{dim} H^{0}\left(V_{w}, \mathcal{L}_{w}\right)=l\left(m m_{1} D_{w}\right)=1
$$

and also $\operatorname{dim}|m L| V_{w} \mid=0$. This establishes the equality (5).
Furthermore, we see that, for any integer $i>0$,

$$
l\left(i D_{w}\right) \leqq l\left(i m_{1} D_{w}\right)=1
$$

From this we infer the existence of the algebraic system in Theorem 3.
Now we shall prove the uniqueness of the algebraic system in Theorem 3 . in the following form: Let $f^{1}: V^{1} \rightarrow W^{1}$ be a fiber space of complete algebraic varieties which has the following properties:

1) $V^{\text {: }}$ is birationally equivalent to V,
2) $W^{\text {l }}$ has dimension $\kappa=\kappa(D, V)$,
3) $f^{!}$is proper and surjective,
4) any general fiber $f^{!-1}(w)=V_{w}^{!}$is irreducible,
5) the D_{w}^{\prime}-dimension of V_{w}^{\prime} is zero,
where $D^{\text {! }}$ is a divisor corresponding to D by the birational map from V^{\prime} to V.

Then this fiber space is birationally equivalent to the fiber space $f: V \rightarrow W$ constructed in §3, i. e., there exist two birational maps $\tau: V^{\prime} \rightarrow V$ and $\rho: W^{\prime} \rightarrow W$ such that $f \cdot \tau=\rho \cdot f^{\prime}$.

By the consideration in $\S 3$, we have a generically surjective rational map $\Phi_{m_{1} D^{\prime}}$ from V^{\prime} to $W_{m_{1} D}$ such that

$$
k\left(W_{m_{1} D^{I}}\right)=k\left(W_{\left(m_{1}+1\right) D^{I}}\right)=\cdots \subset k\left(V^{\prime}\right)=k(V) \text { for an integer } m>0
$$

Note that $W_{m_{1} D^{1}}$ is birationally equivalent to W. We take a monoidal transformation $T: V^{\#} \rightarrow V^{1}$ such that $\Phi_{m_{1} D^{\prime}} \cdot T$ is everywhere defined. Moreover, we have the isomorphism $\boldsymbol{L}\left(m D^{!}\right) \simeq \boldsymbol{L}\left(m D^{\#}\right)$ and so $\Phi_{m_{1} D^{1}} \cdot T=\Phi_{m_{1} D^{\#}}$, where by $D^{\#}$ we denote $T * D^{\prime}$. By the property 5), say $l\left(m_{1} D^{\prime} \mid V_{w}^{1}\right)=l\left(m_{1} D_{w}^{1}\right)=l\left(m_{1} D_{w}^{\#}\right)$ $=1$, we have a generically surjective rational map ρ from W^{\prime} to W such that $\rho \cdot f^{1} \cdot T=\Phi_{m_{1} D^{\#}}$. Hence, we have

$$
k(V)=k\left(V^{\prime}\right)=k\left(V^{\#}\right) \supset k\left(W^{\prime}\right) \supset k(W) .
$$

The equality $\operatorname{dim} W^{\prime}=\kappa=\operatorname{dim} W$ implies that $k\left(W^{\prime}\right)$ is algebraic over $k(W)$. Therefore, the equality $k\left(W^{\prime}\right)=k(W)$ follows from the property 4), i. e., ρ is birational. Recalling that f is defined to be $\Phi_{m D}$, we have a birational map τ^{\prime} such that $\Phi_{m D^{\#}}=f \cdot \tau^{\prime}$. Let τ be $\tau^{\prime} \cdot T^{-1}$. Then $f \cdot \tau=\rho \cdot f^{\prime}$ (see the diagram (9)). This completes the proof of the uniqueness.

§ 5. Proof of Theorem 2.

We use the same notation as in the proof of Theorem 1. A similar argument as at the beginning of the proof of Theorem 1 shows that we can replace D by an effective divisor D. Now we make the following observation: For $m \geqq 1$, the maximal fixed component of the complete linear system $|m D|$ can be described as a sum of divisors $L_{m}, \Xi_{m}, \Theta_{m}$ and $f *\left(\Gamma_{m}\right)$. These are defined as follows: Letting $\Sigma n_{\nu} C_{\nu}$ be a general member of $|m D|$, where $n_{\nu}>0$, the C_{ν} are irreducible curves and $C_{\mu} \neq C_{\nu}$ for $\mu \neq \nu$, we set
$L_{m}=\sum_{f\left(C_{\nu}\right)=W} n_{\nu} C_{\nu}$,
$H_{m}=$ the largest of all positive divisors H on W such that $\sum n_{\nu} C_{\nu} \geqq f^{*}(H)$, $\Xi_{m}=$ the largest of all positive divisors of the form $\sum a_{\nu} \bar{f}\left(A_{\nu}\right)$ satisfying
$\Sigma n_{\nu} C_{\nu}-f^{*}\left(H_{m}\right) \geqq \sum a_{\nu} \bar{f}\left(A_{\nu}\right)$, where the A_{ν} denote prime divisors on $W, e\left(A_{\nu}\right)$ is the g.c.d. of all the multiplicities of the irreducible components of $f^{*}\left(A_{\nu}\right)$ and $\bar{f}\left(A_{\nu}\right)=f^{*}\left(A_{\nu}\right) / e\left(A_{\nu}\right)$,
$\Theta_{m}=\Sigma n_{\nu} C_{\nu}-L_{m}-f^{*}\left(H_{m}\right)-\Xi_{m}$,
$\Gamma_{m}=$ the maximal fixed component of $\left|H_{m}\right|$.
In fact, by the results in the proof of Theorem 1 , we have $m_{1} L_{m}=m L_{m 1}$. Hence it follows that L_{m} is one of the fixed components of $|m D|$. From this we infer that any element of $H^{\circ}\left(V, \mathcal{O}_{V}(m D)\right)$ is derived from the rational function on W.

With this observation in mind, we proceed with the proof. First, we note that we can replace p by $p m_{2}$ for any integer $m_{2}>0$ because

$$
l(m D)-l(m D-p D) \leqq l(m D)-l\left(m D-p m_{2} D\right) .
$$

Moreover, we can replace m by $m m_{2}$. To see this, we let $m=\mu m_{2}-q$, where $0 \leqq q<m_{2}$. Then we have

$$
l(m D)-l(m D-p D)=l\left(\mu m_{2} D\right)-l\left(\mu m_{2} D-(q+p) D\right) .
$$

From this inequality our assertion follows.
We fix m_{2} to be 1.c.m. of all $e\left(f\left(C_{\nu}\right)\right)$ such that $\Xi_{1} \geqq \bar{f}\left(f\left(C_{\nu}\right)\right)>0$. Then we infer immediately that $\Xi_{\bar{m}}$ and $\Xi_{\bar{p}}$ vanish, where we abbreviate $m m_{2}$ and $p m_{2}$ to \bar{m} and \bar{p}, respectively. Now, for $m>p$, we have

$$
\begin{equation*}
l(\bar{m} D-\bar{p} D)=l((\bar{m}-\bar{p}) D)=l\left(f *\left(H_{\bar{m}-\bar{p}}\right)\right)=l\left(H_{\bar{m}}-H_{\bar{p}}\right), \tag{10}
\end{equation*}
$$

and also

$$
\begin{equation*}
l(m D)=l\left(f^{*}\left(H_{\bar{m}}\right)\right)=l\left(H_{\bar{m}}\right) . \tag{11}
\end{equation*}
$$

Adding a suitable positive divisor J to $H_{\bar{p}}$ such that $J+H_{\bar{p}}$ is ample, we fix . a prime divisor \bar{H} which is linearly equivalent to $J+H_{\bar{p}}$. Then we have

$$
\begin{equation*}
l\left(H_{\bar{m}}-H_{\bar{p}}\right) \leqq l\left(H_{\bar{m}}-\bar{H}\right) . \tag{12}
\end{equation*}
$$

Using a sequence of cohomology groups, we have

$$
\begin{equation*}
l\left(H_{\bar{m}}\right)-l\left(H_{m}-\bar{H}\right) \leqq l\left(H_{\bar{m}} \mid \bar{H}\right), \tag{13}
\end{equation*}
$$

where we denote by $H_{\bar{m}} \mid \bar{H}$ the induced divisor on the variety \bar{H}. Since $L_{\bar{m}}=\bar{m} L_{1}$ and $\Theta_{\bar{m}}=\bar{m} \Theta_{1}$, we have $H_{\bar{m}} \sim m H_{\overline{1}}$. Hence, we have

$$
\begin{equation*}
l\left(H_{\bar{m}} \mid \bar{H}\right)=l\left(m H_{\overline{1}} \mid \bar{H}\right) . \tag{14}
\end{equation*}
$$

By Proposition 2, the right hand side is smaller than $\gamma m^{\kappa-1}$ for a constant γ. Combining this with (10), (11), (12), (13) and (14) we obtain the inequality in Theorem 2.

§ 6. Proof of Theorem 4.

First, we shall give a proof of the first assertion of Theorem 4. By Proposition 3, we can assume that $k(\tilde{V}) / k(V)$ is finite. Taking the Galois closure of $k(\tilde{V}) / k(V)$ and constructing a projective model of it, we see that it is sufficient to prove the assertion in the case in which $k(\tilde{V}) / k(V)$ is a Galois extension. Let G denote its Galois group. Replacing $\bar{m}_{0} m_{0}(D)$ by D in case $\kappa(D, V) \geqq 0$, we assume that D is effective. By the natural injection: $\boldsymbol{L}(m D) \rightarrow \boldsymbol{L}\left(m f^{*}(D)\right)$, we have the generically surjective map $f_{m}: W_{m f^{*}(D)} \rightarrow W_{m \boldsymbol{D}}$ such that $\Phi_{m f \cdot(D)} \cdot f=f_{m} \cdot \Phi_{m D}$. We wish to prove $k\left(W_{m f \cdot(D)}\right) / k\left(W_{m D}\right)$ is finite algebraic for $m \gg 0$. For this it is sufficient to prove that any element a of $H^{0}\left(\tilde{V}, \mathcal{O}_{V}\left(m f^{*}(D)\right)\right.$) is algebraic over $k\left(W_{m D}\right)$ for $m \gg 0$, because $k\left(W_{m f}{ }^{*}(D)\right)$ is the fractional field of the ring generated by $H^{0}\left(\tilde{V}, \mathcal{O}_{V}\left(m f^{*}(D)\right)\right)$ in $k(\tilde{V})$. We have r fundamental symmetric functions $S_{1}(a), \cdots, S_{r}(a)$ of $\sigma_{1}(a), \cdots, \sigma_{r}(a)$, where r is the order of G and $\sigma_{1}, \cdots, \sigma_{r}$ are the elements of G. Clearly $S_{j}(a)$ belongs to $H^{0}\left(\tilde{V}, \mathcal{O}_{V}\left(r m f^{*}(D)\right)\right.$) for every $1 \leqq j \leqq r$. Hence, $S_{j}(a)$ can be described as $f^{*}\left(b_{j}\right)$, where $b_{j} \in H^{\circ}\left(V, \mathcal{O}_{V}(r m D)\right)$. From this we can derive an algebraic equation:

$$
a^{r}+b_{1} a^{r-1}+\cdots+b_{r}=0 .
$$

This proves that a is algebraic over $k\left(W_{r m D}\right)$. Moreover, it is easy to check that $\kappa(D, V)=-\infty$ if and only if

$$
\kappa(f * D, \tilde{V})=-\infty .
$$

To prove the latter assertion of Theorem 4 , we let \mathcal{L} be the invertible sheaf associated with the divisor $m_{0}(\tilde{D}) \tilde{D}$ under the assumption $N(\tilde{D}) \neq \phi$. We consider the rational map $h=\sigma_{\delta^{\otimes} m_{2}}: V \rightarrow \boldsymbol{P}\left(f_{*}\left(\mathcal{L}^{\otimes m 2}\right)\right)$ for an integer $m_{2} \gg 0$ over V and denote by Z the image of V by h which is the closed subvariety of $\boldsymbol{P}\left(f_{*}\left(\mathcal{L}^{\otimes m 2}\right)\right)$. Then we have $\operatorname{dim} Z_{v}=\kappa\left(\tilde{D}_{v}, \tilde{V}_{v}\right)$ for a general point v of V, because $h_{v}=h \mid \tilde{V}_{v}=\Phi_{m_{2} m_{0}(\tilde{D}) \tilde{D}_{v}}$. Moreover, by Theorem 3 we conclude that $\tilde{V}_{z}=h^{-1}(z)$ is irreducible for a general point z of Z and that $\kappa\left(\tilde{D}_{z}, \tilde{V}_{z}\right)=0$, where \tilde{D}_{z} denotes the restriction of \tilde{D} to \tilde{V}_{z}. On the other hand, we let $g: V \rightarrow W$ denote the fiber space $\Phi_{m_{1 m_{0}(\tilde{D} \tilde{D}}: V \rightarrow W_{m_{1} m_{0}(\tilde{D} \tilde{D} \tilde{D}} \text { constructed in } \S 3 ~}^{\text {. }}$ Owing to the vanishing of $\kappa\left(\widetilde{D}_{z}, \widetilde{V}_{z}\right)$, we obtain a generically surjective rational map $t: Z \rightarrow W$ such that $t \cdot h=g$. Hence, we see that $\operatorname{dim} Z \geqq \operatorname{dim} W=\kappa(\tilde{D}, \tilde{V})$. Recalling that $\operatorname{dim} Z=\operatorname{dim} Z_{v}+\operatorname{dim} V=\kappa\left(\widetilde{D}_{v}, \widetilde{V}_{v}\right)+\operatorname{dim} V$, we conclude that $\kappa(\widetilde{D}, \tilde{V}) \leqq \kappa\left(\widetilde{D}_{v}, \tilde{V}_{v}\right)+\operatorname{dim} V$. This implies $c \kappa(\widetilde{D}, \tilde{V}) \geqq c \kappa\left(\widetilde{D}_{v}, \tilde{V}_{v}\right)$. In case $N(\widetilde{D})$ $=\phi$, we have by definition, $\kappa(\widetilde{D}, \tilde{V})=-\infty$ and so $c \kappa(\tilde{D}, \tilde{V})=+\infty \geqq c \kappa\left(\widetilde{D}_{v}, \widetilde{V}_{v}\right)$.

Remark 1. The proof above suggests a generalization of Theorem 3 in the following form: Let $f: \tilde{V} \rightarrow V$ be a fiber space of algebraic varieties such that f is a proper and surjective morphism and let \tilde{D} be a divisor on \tilde{V}. Suppose
that $\kappa\left(\widetilde{D}_{v}, \tilde{V}_{v}\right) \geqq 0$ for a general point v of V. Then there exists a fiber space $h: \tilde{V}^{*} \rightarrow W$ over V satisfying

1) \tilde{V}^{*} is birationally equivalent to \tilde{V},
2) the structure map from W to V is surjective, proper and $\kappa\left(\widetilde{D}_{v}, \tilde{V}_{v}\right)$ $=\operatorname{dim} W / V$ (where $\operatorname{dim} W / V$ denotes $\operatorname{dim} W-\operatorname{dim} V)$,
3) h is surjective and proper,
4) any general fiber $V_{2}^{*}=h^{-1}(z)$ is irreducible,
5) $\kappa\left(\widetilde{D}_{2}^{*}, \widetilde{V}_{2}^{*}\right)=0$ (where \widetilde{D}^{*} is the complete inverse image of the divisor \widetilde{D} by the birational map from \tilde{V}^{*} to $\left.\tilde{V}\right)$.
Furthermore, such a fiber space is unique up to birational equivalence over V.
Remark 2. By using Theorem 3 we can prove the following result concerning $m_{0}(D): D$ can be uniquely described as a sum of divisors D_{0} and D^{*} such that
6) $m_{0}(D)=m_{0}\left(D_{0}\right), m_{0}\left(D^{*}\right)=1$,
7) $\kappa(D, V)=\kappa\left(D^{*}, V\right), \kappa\left(D_{0}, V\right)=\kappa\left(D_{0} \mid V_{w}, V_{w}\right)=0$, where V_{w} is a general member of the algebraic system introduced in the statement of Theorem 3,
8) the number of the irreducible components of D_{0} is the least of those of the divisors D_{0} satisfying the conditions 1) and 2).
Moreover, we note that $\boldsymbol{N}\left(D_{0}\right)=m_{0}(D) \boldsymbol{N}$ and $\boldsymbol{N}\left(D^{*}\right)=\{n \in \boldsymbol{N}$ such that $n>N(D)\}$. In particular, $c \kappa(D, V)=0$ implies $m_{0}(D)=1$.

§ 7. Proofs of Theorems 5 and 6.

Applying Theorem 3 to the case in which V is non-singular and D a canonical divisor K of V, we obtain a fiber space of non-singular projective algebraic varieties $f: V^{*} \rightarrow W$ which satisfies the conditions 1), 2), 3) and 4) in the statement of Theorem 5 and the condition $\left.5^{*}\right) K \mid V_{w}^{*}$-dimension of V is zero. Hence, in order to prove Theorem 5 it is sufficient to show that $K \mid V_{w}^{*}$ is a canonical divisor of V_{w}^{*}. For this, let W_{1} be an open dense subscheme of V such that $f \mid f^{-1}\left(W_{1}\right)$ is smooth. We abbreviate $f^{-1}\left(W_{1}\right)$ and $f \mid V_{1}$ by V_{1} and f_{1}, respectively. Referring to [3, II. 4.3] we have an exact sequence:

$$
\begin{equation*}
0 \longrightarrow f_{1}^{*}\left(\Omega_{W_{1}}^{1}\right) \longrightarrow \Omega_{V_{1}}^{1} \longrightarrow \Omega_{V_{1 / W}}^{1} \longrightarrow 0 . \tag{15}
\end{equation*}
$$

From this an isomorphism : $\Omega_{V_{1}}^{n} \simeq \Omega_{V_{1} / W_{1}}^{n-\kappa} \otimes f_{1}^{*} \Omega_{W_{1}}^{n}$ follows (see [12]). Restricting these sheaves to a general fiber V_{w}^{*} we obtain

$$
\begin{equation*}
\Omega_{V_{1}}^{n}\left|V_{w}^{*} \simeq \Omega_{V_{1} / W_{1}}^{n-\kappa}\right| V_{w}^{*} \otimes f_{1}^{*}\left(\Omega_{W_{1}}^{\kappa}\right) \mid V_{w}^{*} . \tag{16}
\end{equation*}
$$

Since $f_{1}^{*}\left(\Omega_{W_{1}}^{\kappa}\right)\left|V_{w}^{*} \simeq \mathcal{O}_{V_{w}} \otimes \Omega_{W_{1}}^{\kappa}\right|_{w} \simeq \mathcal{O}_{V_{w}^{*}}$ and $\Omega_{V_{1} / W_{1}}^{1} \mid V_{w}^{*} \simeq \Omega_{V_{w}^{*}}^{1}$, the isomorphism (16) leads to $\Omega_{V_{1}}^{n} \mid V_{w}^{*} \simeq \Omega_{V_{\dot{w}}^{n}}^{n-\kappa}$. This implies that $K \mid V_{w}^{*}$ is a canonical divisor of V_{w}^{*}, as required.

Now, let $f: \tilde{V} \rightarrow V$ be a fiber space of complete non-singular algebraic varieties. Suppose that f is an étale morphism. Then $\Omega_{\tilde{v} / V}^{1}=0$ (see [3, I. 3.1]). Hence, by the exact sequence (15) we have $f^{*} \Omega_{V}^{1} \simeq \Omega_{\tilde{\tau}}^{1}$. This leads to $f^{*} K_{V}$ $\sim K_{\tilde{V}}$. Therefore, applying the former assertion of Theorem 4 with $D=K_{V}$, we can prove the former part of Theorem 6. As for the latter part of Theorem 6, using the linear equivalence $K_{\tilde{V}} \mid \tilde{V}_{w} \sim K_{\tilde{\gamma}}$, we can prove it by a similar argument.

§ 8. Counterparts of Theorems $1, \ldots, 6$ in the category of complex spaces.

Now let us consider in the category of complex spaces, which we denote by ($A n$). Replacing a complete algebraic variety V, a morphism, a rational map, a non-singular algebraic variety, \cdots, in the statements of theorems in $\S 2$, respectively, by a compact irreducible reduced complex space (such a space is called a complex variety), a holomorphic map, a meromorphic map, a complex manifold, \cdots, we obtain the statements of the corresponding theorems in $(A n)$. Let us refer to the theorem in ($A n$) corresponding to Theorem x in $\S 2$ as Theorem x^{*}. We note that Theorem 3^{*} asserts the existence of an algebraic system of compact complex sub-spaces of M and that W in Theorem 5* admits a structure of an algebraic variety, since $W_{m D}$ is a closed complex sub-space of \boldsymbol{P}^{N}.

Using the fact that $\kappa(D, M)$ is the largest of the dimensions of the varieties $W_{m D}, m \geqq 1$, we obtain the following Corollary to Theorem 1*.

Corollary. If there exists a divisor D on M with $\kappa=\kappa(D, M)$, then the transcendental degree $a(M)^{5)}$ of the field of meromorphic functions on M is not smaller than κ. In particular, the vanishing of $a(M)$ implies that $\kappa(M) \leqq 0$.

This is a generalization of a theorem which says that if there exists on a compact complex surface S a divisor D with $D^{2}>0$, then S is algebraic.

Proofs of Theorems 1* and 2*. Let M denote a compact complex variety. By the resolution theorem which was recently proved by Hironaka (see [7]) we can assume that M is a compact complex manifold and furthermore we have a fiber space $h: M^{*} \rightarrow V^{*}$ which has the following properties (we call $h: M^{*} \rightarrow V^{*}$ an algebraic reduction of M):
i) M^{*} is a compact complex manifold which is bimeromorphically equivalent to M,
ii) V^{*} is a compact complex manifold of dimension $a(M)$, which admits a structure of a projective algebraic variety,
iii) h is a proper surjective holomorphic map which induces an isomorphism between the fields of meromorphic functions on M^{*} and

[^2]the field of meromorphic functions on V^{*}. Then we find a number m_{3} and a divisor C on V^{*} corresponding to the pair of the fiber space $h: M^{*} \rightarrow V^{*}$ and the divisor D such that there exists an isomorphism :
$$
\boldsymbol{L}\left(m m_{3} D\right) \simeq \boldsymbol{L}\left(m f^{*}(C)\right) \simeq \boldsymbol{L}(m C) \quad \text { for all } \quad m>0
$$

Hence, applying Theorems 1 and 2, we can prove Theorems 1^{*} and 2^{*}.
Proof of Theorem 3^{*}. In order to prove Theorem 3^{*} in the same way as in the proof of Theorem 3, it is sufficient to prove that $H^{0}\left(W_{\lambda}, f_{*}(\mathcal{L})\right)$ is generated as an $H^{\circ}\left(W_{\lambda}, \mathcal{O}_{W}\right)$-module by elements of $H^{0}\left(M, \mathcal{L}\left(\varepsilon m E_{\lambda}\right)\right)$ for an integer $\varepsilon>0$. Applying GAGA technique to W we shall prove this assertion. In this proof, Gothic letters $\boldsymbol{W}, \boldsymbol{A}, \cdots$ denote an algebraic variety, a coherent algebraic sheaf, \cdots, respectively. Since $f_{*}(\mathcal{L})$ is a coherent analytic sheaf on W, there exists a coherent algebraic sheaf \boldsymbol{A} such that $f_{*}(\mathcal{L})=\boldsymbol{A}^{a n}$ (The symbol $\boldsymbol{A}^{a n}$ denotes an analytic sheaf canonically associated with \boldsymbol{A}). Then we have

$$
H^{0}\left(W_{\lambda}, f_{*}(\mathcal{L})\right)=H^{0}\left(\boldsymbol{W}_{\lambda}, \boldsymbol{A}\right)^{a n}=H^{0}\left(\boldsymbol{W}_{\lambda}, \boldsymbol{A}\right) H^{0}\left(W_{\lambda}, \mathcal{O}_{W}\right)
$$

where \boldsymbol{W} is an algebraic variety canonically associated with W, i. e., $\boldsymbol{W}^{a n}=W$. Since \boldsymbol{A} is algebraic we have

$$
H^{0}\left(\boldsymbol{W}_{\lambda}, \boldsymbol{A}\right)=\bigcup_{e=1}^{\infty} H^{0}\left(\boldsymbol{W}, \boldsymbol{A}\left(e m \boldsymbol{H}_{\lambda}\right)\right) .
$$

Moreover, we have

$$
H^{0}\left(\boldsymbol{W}, \boldsymbol{A}\left(e m \boldsymbol{H}_{\lambda}\right)\right)^{a n}=H^{0}\left(W, \boldsymbol{A}^{a n}\left(e m H_{\lambda}\right)\right)=H^{0}\left(W, f_{*}(\mathcal{L})\left(e m H_{\lambda}\right)\right)
$$

By the projection formula, we obtain

$$
\begin{aligned}
H^{0}\left(W, f_{*}(\mathcal{L})\left(e m H_{\lambda}\right)\right) & =H^{0}\left(W, f_{*}\left(\mathcal{L}\left[f^{-1}\left(e m H_{\lambda}\right)\right]\right)\right) \\
& =H^{0}\left(M, \mathcal{L}\left(e m E_{\lambda}^{*}\right)\right) \subset H^{0}\left(M, \mathcal{L}\left(e m E_{\lambda}\right)\right)
\end{aligned}
$$

Recalling that $H^{0}\left(\boldsymbol{W}_{\lambda}, \boldsymbol{A}\right)$ is a finite $H^{0}\left(\boldsymbol{W}_{\lambda}, \mathcal{O}_{\boldsymbol{W}}\right)$-module, we thus prove the assertion. This proof was suggested by M. Kashiwara.

Proofs of Proposition 3* and Theorem 4*. Using a theorem of Picard concerning the essential singularities of an analytic function, we may give a short proof of Proposition 3*. Before proving Theorem 4* we will construct an algebraic reduction of a fiber space of compact complex varieties $f: \tilde{M} \rightarrow M$. Let $\tilde{h}: \tilde{M}^{*} \rightarrow \tilde{V}$ and $h: M^{*} \rightarrow V$ be algebraic reductions of \tilde{M} and M, respectively. Then the inclusion $k(M)=k(V) \subset k(\tilde{M})=k(\tilde{V})$ yields a rational map g from \tilde{V} to V such that $h \cdot f=g \cdot \tilde{h}$. By means of monoidal transformations, we can assume that g is regular. We call the triple of the fiber space $g: \tilde{V} \rightarrow V, \tilde{h}$ and h, an algebraic reduction of the fiber space $f: \tilde{M} \rightarrow M$. Now we shall prove the former assertion of Theorem 4*. In doing this we can assume that
the triple of $g: \tilde{V} \rightarrow V, \tilde{h}: \tilde{M} \rightarrow \tilde{V}$ and $h: M \rightarrow V$ is an algebraic reduction of $f: \tilde{M} \rightarrow M$. In the case in which $a(M)=\operatorname{dim} M, h$ is bimeromorphic. Hence, $\boldsymbol{L}_{\boldsymbol{M}}(D)^{6)} \rightrightarrows \boldsymbol{L}_{V}\left(h^{-1 *} D\right)$. By Theorem 4 we have $\kappa\left(h^{-1} * D, V\right)=\kappa\left(g^{*} h^{-1 *} D, \tilde{V}\right)$. Combined with the natural isomorphism: $\boldsymbol{L}_{\tilde{v}}\left(g^{*} h^{-1 *}(D)\right) \simeq \boldsymbol{L}_{\tilde{u}}\left(\tilde{h}^{*} g^{*} h^{-1 *}(D)\right)=$ $\boldsymbol{L}_{\tilde{M}}\left(f^{*} D\right)$, these give $\kappa(D, M)=\kappa\left(f^{*} D, \tilde{M}\right)$. In the case in which $a(M)=0, V$ reduces to a point, and $\kappa(D, M)=0$. We shall derive a contradiction under the assumption $l\left(f^{*} D\right) \geqq 2$. We choose two linearly independent sections from $\boldsymbol{L}_{\tilde{M}}\left(f^{*} D\right)$. Using them we construct a non-constant meromorphic map $s: \tilde{M} \rightarrow C$ $=\boldsymbol{P}^{1}$. Clearly we can assume that s is holomorphic. By definition, we have $\tilde{M} \supsetneq f S^{-1}(q)$ for a general point q of C. Hence, for a general point p of \tilde{M}, $s f^{-1}(p)$ is a finite set. Let Γ_{s} denote the graph of s. We define Γ to be an image of Γ_{s} by a proper holomorphic map:

$$
f \times 1_{W}: \quad \tilde{M} \times C \longrightarrow M \times C .
$$

By a theorem of Remmert, Γ is a complex subvariety of $M \times C$. Composing the injection $\Gamma \hookrightarrow M \times C$ with canonical projections: $M \times C \rightarrow M$ and $M \times C \rightarrow C$, we have two holomorphic surjective maps $\xi: \Gamma \rightarrow M$ and $\eta: \Gamma \rightarrow C$. Since $\xi^{-1}(p)=s f^{-1}(p)$ is finite for a general point p of M, we see that $\operatorname{dim} \Gamma=\operatorname{dim} M$.

LEMMA 1. Let $f: \tilde{M} \rightarrow M$ be a fiber space of compact complex varieties with the same dimension. Then $a(\tilde{M})=a(M)$.

PROOF. Let $g: \tilde{V} \rightarrow V, \tilde{h}: \tilde{M} \rightarrow \tilde{V}$ and $h: M \rightarrow V$ form an algebraic reduction of $f: \tilde{M} \rightarrow M$. For any function $x \in k(\tilde{M})$, there exists a function $y \in k(\tilde{V})$ such that $x=h^{*}(y)$. We wish to prove that the polar divisor ($\left.y\right)_{\infty}$ of y cannot be mapped onto V by g. For this, we describe $(y)_{\infty}$ as a sum of positive divisors $L^{\#}$ and $D^{\#}$ where $D^{\#}$ is the largest of all positive divisors such that $h\left(D^{\#}\right) \varsubsetneqq V$. Then if $L^{\#}$ is not empty, we have $f h^{-1}\left(L^{\#}\right)=M$. This implies $\operatorname{dim} M \leqq \operatorname{dim} h^{-1}\left(L^{\#}\right)$. It is clear that $\operatorname{dim} h^{-1}\left(L^{\#}\right)=\operatorname{dim} \tilde{M}-1<\operatorname{dim} \tilde{M}$. This contradicts the condition $\operatorname{dim} \tilde{M}=\operatorname{dim} M$.

From this lemma, $a(\Gamma)=a(M)=0$ follows. On the other hand, using η, we obtain $a(\Gamma) \geqq a(C)=1$. Thus we have encountered the contradiction. Finally, in the case in which $a(M)>0$, we are going to prove by induction with respect to the dimension of M. Let v be a general point of V. As usual we use the following notation: $M_{v}=h^{-1}(v), \tilde{M}_{v}=(h \circ f)^{-1}(v), f_{v}=f \mid M_{v}$ and $D_{v}=D \mid M_{v}$. Note that $\operatorname{dim} M_{v}<\operatorname{dim} M$ in this case. By applying the induction hypothesis to the fiber space $f_{v}: \tilde{M}_{v} \rightarrow M_{v}$ and the divisor D_{v}, we have $\kappa\left(D_{v}, M_{v}\right)$ $=\kappa\left(f_{v}^{*}\left(D_{v}\right), \tilde{M}_{v}\right)$. It is no loss of generality to assume that D is positive. We describe $f^{*}(D)$ as a sum of positive divisors L^{\prime} and D^{\prime}, where D^{\prime} is the largest of all positive divisors D^{\prime} such that $h \cdot f\left(D^{\prime}\right) \neq V$. Then we have

[^3]$f^{*}(D)\left|\tilde{M}_{v}=L^{\prime}\right| \tilde{M}_{v}$.
Lemma 2 (Hironaka). Let M be a compact complex variety and D a divisor on M. Let $f: M^{*} \rightarrow V$ be an algebraic reduction of M and D^{*} a complete inverse image of D by the bimeromorphic map from M^{*} to V. Then $\kappa\left(D_{v}^{*}, M_{v}^{*}\right) \leqq 0$, where M_{v}^{*} is a general fiber $f^{-1}(v)$ of f.

Proof. This can be proved by the same argument as in the proof of Theorem 3* (see [6]).

By this lemma we have $0=\kappa\left(D_{v}, M_{v}\right)=\kappa\left(f_{v}^{*} D_{v}, \tilde{M}_{v}\right)$. This implies that L^{\prime} is one of the fixed components of $\left|m f^{*}(D)\right|$ for any $m>0$. Thus we have

$$
\begin{equation*}
\kappa(f * D, \tilde{M})=\kappa\left(D^{\prime}, \tilde{M}\right) \tag{17}
\end{equation*}
$$

As in the proof of Theorem 2, we can find a positive divisor E such that $D^{\prime} \geqq(h \cdot f)^{*} E$ and $\kappa\left(D^{\prime}, M\right)=\kappa\left((h \cdot f)^{*} E, \tilde{M}\right)$. Since V is algebraic, we can apply Theorem 4^{*} to the fiber space $h \cdot f: \tilde{M} \rightarrow V$ and the divisor E on V. Then we have

$$
\begin{equation*}
\kappa((h \cdot f) * E, \tilde{M})=\kappa(E, V) \tag{18}
\end{equation*}
$$

From $f^{*} D \geqq D^{\prime} \geqq(h \cdot f)^{*} E$, it follows that $D \geqq h^{*} E$. Hence, we have $\kappa(D, M)$ $\geqq \kappa\left(h^{*} E, M\right)=\kappa(E, V)$. Combining this with (17) and (18), we obtain $\kappa(D, M)$ $=\kappa(f * D, \tilde{M})$, as required.

Note that the same argument can be used to prove Proposition 3*. The latter part of Theorem 4^{*} can be proved by the same argument as in the proof of Theorem 4, because Theorem 3* has already been proved.

Remark 3. We give a stronger result than the latter part of Theorem 4* in the restricted case: Let $f: \tilde{M} \rightarrow M$ be a fiber space of compact complex varieties and \tilde{D} a divisor on M. Suppose that $a(M)=0$. Then $\kappa(\tilde{D}, \tilde{M}) \leqq \kappa\left(\widetilde{D}_{q}, \tilde{M}_{q}\right)$ for a general point q of M. We shall prove this in the case $D>0$, because in the other cases the proof is easy. We denote by $g: \tilde{M} \rightarrow W$ the fiber space $\Phi_{m_{1} D}: \tilde{M} \rightarrow W_{m_{1} D}$ for $m_{1} \gg 0$. It is no loss of generality to assume that g is holomorphic. We wish to prove $f g^{-1}(p)=M$ for any general point p of W by induction with respect to the dimension of W. For this we let W_{1} be a general hyperplane section of W which passes through the point p. We write \tilde{M}_{1}, f_{1} instead of $g^{-1}\left(W_{1}\right), f \mid \tilde{M}_{1}$, respectively. If $f_{1}\left(\tilde{M}_{1}\right)=M$, then $f_{1} g^{-1}(p)$ $=f g^{-1}(p)=M$ by our induction hypothesis. We shall derive a contradiction in the case in which $f\left(\tilde{M}_{1}\right) \neq M$. In this case, we can find a positive divisor G such that $f\left(\tilde{M}_{1}\right) \subset \operatorname{supp} G$ (the symbol $\operatorname{supp} G$ denotes the support of G). Then we have $M_{1} \subset \operatorname{supp} f^{*} G$. By the former part of Theorem 4*, we obtain

$$
\begin{equation*}
0<\kappa\left(W_{1}, W\right)=\kappa\left(g^{-1}\left(W_{1}\right), \tilde{M}\right)=\kappa\left(\tilde{M}_{1}, \tilde{M}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa\left(g^{-1}\left(W_{1}\right), M\right) \leqq \kappa\left(f^{-1}(G), \tilde{M}\right)=\kappa(G, M)=0 \tag{20}
\end{equation*}
$$

This contradicts the inequality (19). By $f g^{-1}(p)=M$ we have $g f^{-1}(q)=W$ for
any general point q of M. Using the notation in the proof of Theorem 2, we recall that $m_{2} D$ is described as $m_{2} L_{1}+m_{2} \Theta_{1}+g^{*} H_{m_{2}}$. Then by Proposition 3* we have

$$
\kappa\left(H_{m_{2}}, W\right)=\kappa\left(g_{q}^{*}\left(H_{m_{2}}\right), \tilde{M}_{q}\right),
$$

where $\tilde{M}_{q}=f^{-1}(q)$ is irreducible and reduced, $g_{q}=g \mid \tilde{M}_{q}$. Furthermore, we have

$$
\kappa\left(g_{q}^{*}\left(H_{m_{2}}\right), \tilde{M}_{q}\right) \leqq \kappa\left(\left(m_{2} L_{1}+m_{2} \Theta_{1}+g *\left(H_{m_{2}}\right)\right) \mid \tilde{M}_{q}, \tilde{M}_{q}\right)=\kappa\left(\tilde{D}_{q}, \tilde{M}_{q}\right),
$$

because $\operatorname{supp} L_{1} \perp M_{q}$ and $\operatorname{supp} \Theta_{1} \perp M_{q}$ for a general point q of M. Hence, we obtain the inequality $\kappa(\tilde{D}, \tilde{M}) \leqq \kappa\left(\tilde{D}_{q}, \tilde{M}_{q}\right)$.

REMARK 4. The following assertion is a generalization of Lemma 2 due to K. Ueno: Let $f: \tilde{M} \rightarrow M$ be a fiber space of compact complex varieties. Then $a(M) \leqq a(\tilde{M}) \leqq a(M)+\operatorname{dim} f$, where $\operatorname{dim} f$ denotes $\operatorname{dim} \tilde{M}-\operatorname{dim} M$.

The left hand side inequality is easily proved and so we shall prove the right hand side. Consider first the case $a(M)=0$. In this case, we use the induction with respect to $\operatorname{dim} M$. Let x be a non-constant meromorphic function on \tilde{M} and D the polar divisor $(x)_{\infty}$ of x. We define a meromorphic map g to be $g(p)=1: x(p) \in \boldsymbol{P}^{1}$ for a general point p of M (g can be assumed to be holomorphic). Apply Theorem 4^{*} to the pair of the fiber space $g: \tilde{M} \rightarrow \boldsymbol{P}^{1}$ and the divisor \tilde{H} on \tilde{M} such that $\kappa(\widetilde{H}, \tilde{M})=a(\tilde{M})$. Then we obtain

$$
\begin{equation*}
a(\tilde{M})=\kappa(\tilde{H}, \tilde{M}) \leqq \kappa\left(\widetilde{H}_{1}, \tilde{M}_{1}\right)+\operatorname{dim} \boldsymbol{P}^{1} \leqq a\left(\tilde{M}_{1}\right)+1 \tag{21}
\end{equation*}
$$

where \tilde{M}_{1} is a general fiber of g and so is a general irreducible component of $|D|$, and $\widetilde{H}_{1}=\widetilde{H} \mid \tilde{M}_{1}$. Suppose that $f(D)=M$. Then there exists an irreducible component \tilde{M}_{1} of $|D|$ such that $f\left(\tilde{M}_{1}\right)=M$. By using our induction hypothesis in the case of the fiber space $f \mid M_{1}: \tilde{M}_{1} \rightarrow M$, we have

$$
a\left(\tilde{M}_{1}\right) \leqq \operatorname{dim} \tilde{M}_{1}-\operatorname{dim} M=\operatorname{dim} \tilde{M}-\operatorname{dim} M-1
$$

Combining this with (21) we obtain the inequality $a(\tilde{M}) \leqq \operatorname{dim} f$.
Now suppose that $f(D) \neq M$. Then from $a(M)=0$, we derive that x reduces to a constant, a contradiction. In the case in which $a(M)>0$, we use the induction with respect to $\operatorname{dim} \tilde{M}$. We let the triple consisting of a fiber space of algebraic varieties $g: \tilde{V} \rightarrow V, \tilde{h}: \tilde{M} \rightarrow \tilde{V}$ (an algebraic reduction of \tilde{M}) and $h: M \rightarrow V$ (an algebraic reduction of M) be an algebraic reduction of $f: \tilde{M} \rightarrow M$. For a general point v of V, we have a fiber space $f_{v}=f \mid M_{v}: \tilde{M}_{v}$ $=f^{-1}\left(M_{v}\right) \rightarrow M_{v}=h^{-1}(v)$. By our induction hypothesis we have

$$
\begin{equation*}
a\left(\tilde{M}_{v}\right) \leqq a\left(M_{v}\right)+\operatorname{dim} f_{v}, \tag{22}
\end{equation*}
$$

because $\operatorname{dim} \tilde{M}_{v}<\operatorname{dim} \tilde{M}$. Clearly it follows that $\operatorname{dim} f_{v}=\operatorname{dim} f, a\left(M_{v}\right) \geqq 0$ and

$$
a\left(\tilde{M}_{v}\right) \geqq \operatorname{dim} \tilde{V}_{v}=\operatorname{dim} \tilde{V}-\operatorname{dim} V=a(\tilde{M})-a(M) .
$$

Combining these with (22), we obtain $a(\tilde{M})-a(M) \leqq \operatorname{dim} f$.

University of Tokyo

References

[1] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. de I. H. E. S., No. 5, (1960).
[2] A. Grothendieck, Eléments de géométrie algébrique, Publ. Math. de I. H. E.S., Nos. 4, 8, 11, 17, \ldots.
[3] A. Grothendieck, Séminaire de géométrie algébrique, 1960-61, I. H. E.S.
[4] A. Grothendieck, Téchnique de construction en géometrie analytique complexe, Séminaire H. Cartan 13^{e} année : 1960-61, Familles d'espaces complexes et fondements de géométrie analytique.
[5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero; I, II, Ann. of Math., 79 (1964), 109-326.
[6] H. Hironaka, Review of S. Kawai's paper, Math. Reviews, 466, vol. 32, No. 11 (1966), 87-88.
[7] H. Hironaka, Resolution of singularities of a complex analytic variety, (French), to appear in one of the series of Lecture Notes in Mathematics, Springer-Verlag.
[8] S. Iitaka, Deformations of compact complex surfaces : II, III, J. Math. Soc. Japan, 22 (1970), 247-261, to appear in J. Math. Soc. Japan.
[9] S. Iitaka, On D-dimensions of algebraic varieties, Proc. Japan Acad., 46 (1970), 487-489.
[10] S. Kawai, On compact complex analytic manifolds of complex dimension 3: I, II, J. Math. Soc. Japan, 17 (1965), 438-442, ibid. 21 (1969), 604-626.
[11] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86 (1964), 751-798.
[12] D. B. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin, 1965.
[13] L. Roth, Algebraic Threefolds, with special regard to problems of rationality, Springer-Verlag, Berlin, 1955.
[14] I. Šafarevič and others, Algebraic Surfaces, (Russian), Proc. Steklov Inst. Math., Moscow, 1965.
[15] O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math., 76 (1962), 560-615.

[^0]: *) This was presented as a doctoral thesis to the Faculty of Science, University of Tokyo.

 1) The Kodaira co-dimension of an algebraic variety V of dimension n is defined to be $n-\kappa(V)$.
[^1]: 2) Lemma 7 in [11].
 3) Lemma 5 in Chapter 6 in [10].
 4) The existence of a non-singular model of any compact complex variety was recently proved by Hironaka (see [7]).
[^2]: 5) We call $a(M)$ the algebraic dimension of M.
[^3]: 6) In order to avoid the confusion, we denote by $L_{M}(D)$ the space of regular sections $L(D)$ of a divisor D on M.
