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§1. Introduction.
Let S} be the class of functions
1D F@&)=z+4+a,2%+ -,
which are regular, univalent and starlike of order f (0=8<1) in the unit
qircle E (|z]<1). Let H} be the class of functions
a2 f@=2tbytbizt e,

which are regular, univalent and starlike of order 8 (0=8<1) in 0<|2z|< 1.
Let Vg be the class of functions

.3) 2@ =5 [F@+2F ()],

where F(2) € S}. Let T be the class of functions
F@)=z+az+ -,
which are regular, univalent and starlike in |z| <1 and satisfy the condition

1.9 -zjl:éhj;)——al<a, <a>%) for |z|<1.

If Pgis the class of regular, analytic functions in E ([z| <1) whose real
part is not less than B and which take the value 1 at the origin, then it is
easily seen that for every u(z) € Py there exists a unique p(z) € P, such that

1.5 u(z) = p+1—pp(2) .

Hence, according as h(z) € S} or H} we have

W) ~ a—pep'@)
1.6 1+ 26 = £[B+(1—pB)p(2)]+ B+A—p)p()

negative sign pertaining to the case where h(z) € Hf. Thus, in order to find
the radius of convexity for the class S%¥ or H} one needs to find the extreme
values of
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N =

for p(2) = P, and |z|=r.
The following theorem due to Robertson has been found extremely
useful in obtaining explicit results for the extreme values of expressions of

the form [(1.7).
THEOREM. If F(u,v) is analytic in the v-plane and the halfplane Reu >0
and if p(2) e P, then on |z|=r

min Re [F(p(2), zp'(2))]

p(z)<E Py

is attained only for a function p(2)=p,2) of the form

11/ -i6

8) play=1Fe . ¥z o e
where —1Za<l, 0560 < 2.

The proof of the above theorem depends upon a variation formula ob-
tained by Robertson for the functions of the class P,.

V. A. Zomorovic obtained the radii of convexity for the classes S} and
H¥ by applying the above theorem. A. Schild [4] and K.S. Padmanabhan [5]
tried to find the radii of convexity for the classes S§ and H} by a different
method but were able to obtain only partial solutions.

Using the fact that every function p(2) € P, can be expressed in the form

1—w(z

19) p=-T23
where w(z) is a regular analytic function in E, and w(0)=0, |w(2)|<1, we de-
velop an alternative technique for finding the extreme values of expressions of
the form which is independent of the variational techniques of Robertson
[2] and Sakaguchi [6] This technique seems to be more powerful than the
variational techniques, for it can as well be used to find the extreme values
of functionals of the form [(1.7) where p(2) belongs to a sub-class of P, or
where p(2) has a fixed second coefficient because in the latter case the
representation of the functions giving the extreme values will not be as

simple as [(1.8).

§ 2.

We give below some elementary results which are useful in what follows.

Let B denote the class of regular, analytic functions w(z) in |z| <1 which"
satisfy the conditions (i) w(0)=0 and (ii) |w(2)| <1 for |z|< 1.

LEMMA 1. If u(z) € P, then for 0= B <1,



Convexity and stariikeness 325

1+2E—Dw(z)

2.1) u(z) =

where w(z) € B.

1+w(2)

b

The proof follows from the equations [1.5) and [(1.9).

LEMMA 2. If w(z) € B, then for |z|<]1,

(2.2) |zw' (@) —w(2)| =

Ed s

lw(z)|?

PrROOF. Let ¢(2)=

|z| < 1.
¢(2) in terms of w(z), we obtain (2.2).

1—|z|*

w(2)/z, w(z)e B. Then |p(2)| <1 and ¢(2) is regular in
2
It is well known [8, p. 18] that |¢/(2)| < 1'1‘_‘ @1

EE Substituting for

It is easily seen that the equality in (2.2) holds for any function w(z) for
which w(z)/z is a mapping of the unit circle on to itself.

LEMMA 3. For w(z) € B, we have

jlﬁz’ Re [P(Z)—{”-E’é—)-—l—n]

1 p(2)—n|*—|1—p(2)|*

(1—r9[p(2)] ’

:ln—)‘f Re [p(z)—!—-ﬁé—)— —1 -—n]

r|p@)—nl’—|1—p(2)|®

zw’(2)
@ Re[~mmana ey JZ2
1
=D
/( )
@4 Re[ (1+w(zz)1)v(1i nw(2) I1=- x¢
1
+ (1_n)2 ¢

(A—r5[p(@)] ’

where p(2)=A4+nw@)/A+w(2), r=|z| and —1=n<1.

PrOOF. (2.3) and (2.4) follow immediately from (2.2).
REMARK 1. The transformation p(z)—(1+nw(z))/(1+w(z)) maps the circle
lw(z)|<r on to the circle lp(z)—- Lo |< 4=y,
_ 14-nw(2 1—nr? Ll_ﬁ)i _
LEMMA 4. Let p(z)— Tt a=-7— d= - then for |z|=7,

0=r<1, we have

n ., rip@—n|*~1-p@)|*
Re[kp@-+ 30y 1+ (150

k+n—2n(1+Eyr+n(l4+nk)r?
A—nNA—nr)

for k=1, 1>n=0, or for k=2—n and —1=n=0;

r*p@—nl’—|1—p()|*
1—r91p(2)]

—2(14+n)vVa-+2a

(2.5

IA

(2.6) —Re[np(+ p?z) 1+

for —1=5n<1;
and
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n 1 rp@—nl*— 1=
@n  Re[kr@+50y - s 0]

2V (A +k)(A+n)a—2a  for Ry=R,

>
= k4+n42n(1+Rr+n(l+nk)r?
A+ 7 IFnr) Jor Ros R,
where Ri=-UtMe R —g g k21, —1=n<L
PROOF. Put p(z) =Re*® and denote the left hand side of (2.5) by S,(R, 6).
Then

2__ g2
2.8 S(R, 6)= (kR+-T+2a ) cos 6 —R— 22 @ .
2.9 -%%- — —sin 6 - T(R)
where T(R):kR+%+2a.

For n=0, T(R) is evidently positive and therefore the maximum of S,(R, §)
inside the circle [p(z2)—a|<d is attained on the diameter §=0. But for
k=2—-n, —1=n<0, T(R) may change sign. That it remains positive for
a—d=R=<a+d can, in view of the fact that T(R) is monotone increasing
function of R, be determined from its sign at R=a—d. We have

2—n)(14-nr n(l+r 2(1—nr?
@1 Ta—d)=E=PE  HIED L KD

40—, +A4+n)r[10A =7+ (1 4+-n)(6—n)r(1—r)—2n-4-27]
- A+nnN1—r?

>0 for —1<5n<0.

Hence the maximum of S,(R, 8) for all values of n (—1<n<1) inside the
circle [p(z)—a|=d is attained at § =0. By putting § =0 in (2.8) we obtain

2__ g2
el . S(R, 0)=2a+(k—1)R——“—% ,
where a—d < R < a+d.
Since =1 and
2.12) gty = A=A tnrd o,

1—r2

it is evident that S,(R, 0) is a monotone increasing function of R for —1<n
< 1. Hence its maximum is attained at R =a-+d and equals

(2.13) k+n—2zz1(1_4;)lz)lrjnnr()1+nk)rz .

In order to prove (2.6) and (2.7) let us put p(2)=a+u-+tiv, R*=(a+u)*+v*
and denote their respective left hand sides by S,(¥, v) and Sy(u, v). Then we
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have
(2.14) S,(u, vV) = —n(a+u)—nla+u)R*+4+(d*—u*—v®)R™?,
(2.15) Sy(u, v) = k(a+u)+n(a+u)R*—(d*—u?>—v?)R?,
and

BSOS RT ),

T,(u, v)= —2n(a+u)+(d*—u*—v*)R+2R?®
= —2n(a+u)+2R* = 2(a+u){ —n+(a—d)*}
= 2(a+u)1—n)1—nr?)/QA+7)
>0.

Hence the maximum of S,(u, v) and the minimum of S,(, v) inside the
circle |p(z)—a|=d are attained on the diameter v=0. On putting v=0 in
(2.14) we obtain

(2.16) Ly(R) = S,(u, 0)= —(n+1)R—(n+1)aR-*+2a

where R=a+u and a—d<R=<a-}d.
The absolute maximum of L,(R) in (0, c0) is attained at R=+/a and
equals
—2(1+n)v'a +2a
which proves (2.6).
Again on putting v=0 in (2.15) we obtain
2.17) Ly(R)= Sy(u, 0)=(k+1)R+(n+1)aR*—2a,

where R=a+u and a—d=<R=<a-td.
The absolute minimum of L,(R) in (0, o) is attained at

_ A+n)a
2.18) R,= T
and equals
.19 Ly(Ry) =21 +R)(1+n)a —2a.

{t is easy to see that R, < a-+d, but R, is not always greater than a—d. In
such a case when R, [a—d, a+d] the minimum of Ly (R) on the segment
{a—d, a+-d] is attained at R,=a—d and equals
k+n+2n(1+k)r+n(l+kn)r?

(14+»r(1+nr) :
Ly(R,)=Ly«(R,) for such values of %k, n for which R,=R,. The inequality
follows from (2.19) and (2.20).

(2.20) La(Rl) = Ls(a—d) =
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§ 3. Inequalities for the class V.
THEOREM 3.1. If g(z) € Vg, then for |z|=7r, 0=7r <1,

zg'(2) 1+(@2—4p)r+B2—1)r*
G Re[Far = athasn

‘[-3 AVAFPE—2B)a—1—a)  for R,z R,,
(3.2) Re [:e'gf,(z),]

() 1—(2—4B)r+BEA—1)r®
(TFA(I+ ) Jor Ry= Ry,
where %zv(}l-*_‘g‘)ea R,= 114_—}_‘87,7’, a:flli_ﬂ{2 . The above bounds are sharp.
Proor. Differentiating (1.3) and using Lemma 1, we obtain
(3.3) 2g'(z) _ — 1+@p—-Dw(z) = (A—pzw'(z) .
) g(z) 1+w(2) (A4w(2))(1+ Bw(z))

If we put n=4 in (2.3) and (2.4), then (3.1) and (3.2) follow from (3.3) using
respectively, (2.5) and (2.7) and taking k=3—28 and n=§.
The equality sign in (3.1) is attained for the function F(2)= z(1—z)%-2,
The signs of equality in (3.2) are attained respectively for the second and
first inequality for the functions given by the following equations

34 F(z)=2(1—2)""*,
(3.5) 2F'(z) __ 1—2Bcos @ -z4-(26—1)z*
) F(iz) — 1—2cos 0 z+22 ’
where cos @ is determined from
1-Q+p)cosb-r+pr* _
(3.6) 1—2cos@-rtrt =R,.

THEOREM 3.2. Let g(2) Vs Let B, denote the smallest positive root of the
equation 4x*—4x*—10x+1=0. Then
(i) for 0= B =B, g(2) is starlike in
|z <[VA-PA~-28)+1—-28]7",
(i) for Bo=p<1, g(2) is starlike in
28

1< [~ 2)+,B(1+ﬁ)]

These bounds are sharp.

PROOF. By (3.2) the radii of starlikeness for the class Vg are determined
from the following equations

@7 BRA—1)r*—(2—4p)r+1=0
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{3.8) vV (1+p)Y4—2B8)a —1—a=0.
Equation (3.8) reduces to
39) A—2B)(1+B)r*+28(1+Pr*—28=0.

Also the two minima given by (3.2) become equal to each other for such a
B (0= <1 for which

{3.10) R,=R,.

As we are interested in those real roots of and (3.9) for which 0<7r <1,
it is easily seen that the radii of starlikeness for the class Vg are given by

(3.11) r=[V{I-pU—-2p+1-258]",
| 26
3.12) =l Vie=pamisars

For some value of B, the two values of » given by [3.II) and [3.12) may
become equal. Such values of B will be obtained by eliminating 7 from [(3.7)
and (3.10) and are roots of the equation
(3.13) 45°—4p5°—108+1=0
“The roots of (3.13) are situated in the intervals (—2, —1), (1/12, 1/10), (1, 3).
It is evident that 8, in the theorem is the smallest positive root of (3.13).
Functions given by equations and show that the bounds are
sharp.
REMARK 2. For f=0, (3.11) gives r=1/2, which is a result obtained
earlier by Livingston [7].

§4. Inequalities for the class S}.
THEOREM 4.1. If F(2) e S%, then for |z|=r, 0<7r<]1,

2F7(2) 1+(4—6pr4+Q1—2p8)"r"
“D Re[1+ m)] A—nd+a=2pn

fl—:ﬁ«(z\/;e('z’fﬁ)z’—ﬁ—a) for Ry = R,,

42 Re[1+Z@7:
[+ 1= 1—(4—68r+@B—1r* o o _p

A+nA+@B—-1r
where R}= ,Ba , R,=t@8=Dr _ 1— 1—-(@2—Dr?

1+ 1—r
PROOF. Smce F(z)e S}, Lemma 1 gives

2F'(z) _ 1+@2B—Nw(z)
(4.3) Fe) T ltw@ wi)eB.
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Taking logarithmic derivative of (4.3) we have
(4.9) 1+ EFL(E)_: 1+@2B—Dw(z) 20—Pzw'(z)
‘ F/(2) 1+w(2) (A4+w(2)A+2—Nw(z)) *

If we put n=28—1 in (2.3) and (2.4), then (4.1) and (4.2) follow from [(4.4),
respectively, using [2.5) and by taking K=3—28 and n=28—1. Equality
in (4.1) is attained for the function F(2)=2z(1—2z)*-%, Sharp results in (4.2)
are obtained respectively for the second and first inequality for the functions
given by the following equations.

(4.5) F(2)=z(1—2)%"%,
(4.6) F()=2(1—2cos 0 - z-+2%)"148 |

where cos @ is determined from

1—-2rB cos 0+(28—1)r® _
N 1—2rcos 8412 =R,.

THEOREM 4.2. Let F(2) € S} and let B, denote the smallest positive root op
the equation 20x*—52x%+15x%*+12x—4=0. Then
(i) for 0= B= B, F(2) is convex in
|z| < [2—3B8+v(A—BB—580]1",
(ii) for B, =B <1, F(2) is convex in
56—1 5
<l g prirapvespre 1
All these tounds are sharp.

PROOF. By (4.2) the radii of convexity for the class S} are determined
from the following equations

4.7 2—1)’r*—(4—68)r+1=0,
4.8) 24/ p2—p)a —p—a=0.
(4.8) reduces to
4.9 Bp*—3p—1)r*—(8p*—28+2)r*+5—1=0.

By an argument similar to that given in the proof of Theorem (3.2) we
find that the radii of convexity for the class S} are given by

(4.10) r=[2—38+vA—PHB—5p) 1" for 0 B<f,,
_ 56—1 14
=lipprivapve—spie ]

where §, is the smallest positive root of the equation 208'—528°415824128
—4=0.

(4.11) for Bo=pB<1,
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Functions given by and show that the results obtained are sharp.

REMARK 3. Since the extremal functions given by (4.5 and (4.6) are
typically real starlike functions of order (§, they also solve a corresponding
problem for typically real starlike functions of order S.

§5. Inequalities for the class H}.
THEOREM 5.1. If f(2) € H}, then for |z|=7, 0=r<],

N zf"(2) a—2p~a+p
(1) Re[ 14575 =292 55,
1—28+Pa |, B—a |
2f"(2) 2’\/7 1-5 Jor Rz ke,
(5.2) —Re[1+2-7-]=
f (Z) 1—2,37"{"(23—1)27 f07" ROZRZ;

1—rA—-2B—1)r)

— (28— 26—1
where 2-——1——25—_‘5@1, R,= 1 (lfr l)r, a= 1- (lﬁrz)r .

PROOF. Since f(z) € H}, Lemma 1 gives
_z2f(2) _ 1+@2a—Nuw(2) wz) e B.

©3 e =T ldwm
Taking logarithmlc derivative of (5.3) we get

2f"(2) 7_ 1+@B—Dw(z) 21— B)zw'(2)
G4 Rl I B e o s E Ty (R T R AT N

If we put n=28—1 in (2.4), then (5.1) follows from (5.4) in conjunction
with (2.6) by taking n=28—1. To see that the result is sharp, consider the
function f(2) defined by

(5.5) _zf"(z) _ 1—2Bcos B -z+(2—1)z*
' S 1—2cos @ -z+2° ,

where cos § is determined from

1—2rB cos O-+(2F—Dr* [ 1— —@2p-Dr*
(.6) 1—2rcos @+7r?2 [ ]

We shall now prove inequality (5.2).
(5.4) yields in conjunction with (2.3) for n:Zﬁ—l

zf"(z) 1

©D —Re[1+ 2 N2 1 Doy Re[#@+ 5]
rzm(z>—<2ﬁ—1>|2—|1—p<z>12

—pa—rp@

Putting in (5.7), p(z) = Re'?, we get
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68  —Re[1+Z70]

= 1913 + 21(1 Zg) (R+ )cost? dz——az—z—(llez_—l;;ga cosf
where azljlg_.ﬁ_-?-zl)f d= 2(11 7[:92)7' Let
G MR O=Lr+o 20 (Rf) cos o T TAZRacosd
Then
(5.10) M _ 7'(—1%_795- . N(R)sin 6,

where N(R)=@2B—1)(R+1/R)+2a. For =0 we have N(R)= —(R+1/R)+2a.
The minimum of —(R+1/R)+2a, a—d < R < a+d, is attained at either R=
a—d or R=a+d. As

(G.11) at—gr—1 == 1(25 —1% >0,

we see that the values of —(R+1/R)+2a at R=a—d and R=a-+d are both
non-negative. Therefore N=0 for any S8 such that 0= 8<1 and the mini-
mum of M(R, 6) is attained at § =0. We get from (5.9)

(65.12) M(R, 0) = R+-17 (125550 +h=a e

where a—d <R =< a+d. The absolute minimum of M(R, 0) in (0, o) is attained
at Roz(ﬂiﬁi> and equals

(5.13) M(R,, 0) = 2<}:T2£jé§4_>-é- 4 llg:g .
It is easy to see that R,> a—d but R, is not always less than a+d. In such

a case the minimum of M(R,0) on the segment [a—d, at+d] is attained at
R,=a+d and equals

_ 1-2Br+(28—1)**
(5.14) MR, 0)=-T5a=@s=Dn °

These two minima coincide for such a 8 (0= < 1) for which

(5.15) R,=R,.

The inequality (5.2) follows from [(5.13) and [(5.14).
The equality signs in (5.2) are attained respectively for the second and
first inequality for the functions defined by the following equations

(5.16) fRy=z"-1-2"",

(G.17) f(@= % -[(L—2zZ)tm. (1+Z)l—m]1-ﬁ ,
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where m is determined from
(5.18) R,=a+md.

THEOREM 5.2. Let f(2)€ Hf. Let x, denote the unique positive root of the
equation x*—4x*4+2x*—8=0 and B,=(x}—4)/(4x,—4). Then
(i) for 0= B =B, f(2) is convex in

(i) for B,=p <1, f(2) is convex in
0<|z| <[B+VA—=PBB—-D I .
All these bounds are sharp.

Proor. By (5.2) the radii of convexity for the class H} can be determined
from the following equations

(5.19) (28—1y*r*—2Br-1=0
(5.20) 9 \/“Flf:?g:a* +,f;g, 0.

Equation (5.20) reduces to
(5.21) (88—3)r*—2(4—5)r2—3=0.

As we are interested in those real roots of (5.19) and (5.21) for which 0 <r <1,
hence the radii of convexity for the class Hj} are given by

©2 r=[6+v1-HEE-D I,
(5.23) r— [4/3 ,5+§2/532 B+1 ];

The formula (5.22) cannot be applied for 0 = ,B< 1 because for 0= 8< —é* it

gives imaginary values and for W'——SIBS—z—, it gives r>1. The formula
1

(56.23) is, however, true for OgﬁgT: The value of 8 for which (5.22) and

(5.23) give equal values of » must be in (é,, 1). Such values of B8 are

obtained by eliminating » from (5.22) and (5.23). Finally we get the following
result, if 8, =(x3—4)/(4x,—4), where x, is the unique positive root of x*—4x?®
+2x?—8=0, then for 0= 8=, we use the formula (5.23) and for 5, =< 8<1,
we use (5.22).

Functions given by (56.16) and (5.17) show that the bounds are sharp.

REMARK 4. Since the extremal functions given by (5.16) and (5.17) are
typically real starlike functions of order 3, they also solve a corresponding
problem for typically real starlike functions of order jB.
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§ 6. Inequalities for the class 7.

As an illustration of the use of this method we prove
THEOREM 6. If F(2)e T, then for |z|=r, 0r<]1,

1-(3—A)r+7°
6D Re[l+mo-1= "0 "502an -

1+@—=Artr* P <R
60 re[1p @] CHoCEAn STREL
) e[1+%3

1 [+ A+2a— 2@ —FF2A=1)]

A=A
for RogRl 4
where
1 _1-Ar ,_ (1—Ar , _ 1+Ar @@ 424—1
A—-‘&“—‘l, a= “1 7’2 > d-——"l__rz s Rl"““—_l_'_r and Rj= 2 d

All these bounds are sharp.
ProOOF. In the present case it is easily seen that

zF'(z) _ 14w(2)
(6.3 “F@) = 1FAwG) w(z)e B.

Differentiating logarithmically (6.3) we get

2F"(z) _  14w(z) (1—A)zw'(2)
6.4) e = T+ AwE T AFw@) 0+ Aw@)
We shall prove (6.2) because the proof of (6.1) is similar to it and moreover
it has been done by Mr. Ram Singh (to be published).
In view of (2.4) by taking n= A, (6.4) yields

65 Re[1+ 25/ |5 ! A[Lh4lk(ﬂ)+2ﬁ@1ﬂ
bl DA A L p1
1~ (=Ire) ‘

where p(2) = A+ Aw(2))/Q1+w(z)) and |p(z)—al = d.

Hereafter the argument used here is similar to the one given in the proof
of (2.7). Putting p(2) =a-+u-+tiv, R*=(a+u)*+v% and denoting the right hand
side of (6.5 by S,(u, v) we get

- 2A)(a+u) di—u?—v%
68  S(uv)=-= , [1+A—(a+u+- 1720 e b
By analysis similar to the previous we find that the maximum of S,(¥, v) on
each chord u =constant inside the circle |p(2)—a|=d is attained on the
diameter v=0. We get from (6.6)
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_ 2 .2
(67)  L(R)= Sy, 0)=T1'“A""[1+ At2a—opr+ A 2A;d a )]

where R=a-tu and (a¢—d) £ R < (a+d). The absolute maximum of L,(R) in
(0, c0) is attained at Rzz(az—-d2+2A—1)/2 and equals

(6.8) L(R)y=—~—, [1+ A+2a—2+/2(a*—d*+2A-1)].

It is easy to see that R,<a-+d but R, is not always greater than a—d. In
such a case the minimum of L,(R) on the segment [a—d, a+d] is attained at
R=R,=a—d and equals
_ 1+@=Ar+r*

63 (R =" na+an
The two maxima coincide where R,= R,. The inequality (6.2) follows from
(68) and [63)

The equality signs in (6.2) are attained respectively for the first and
second inequality for the functions defined by the following equations

(6.10) F(z2)=2(1+Az)"~#4  for R, =R,,

(6.11) zF'(z) _ 1—2z cos -+ 2°
’ F( — 1—-A+A)cosf-z+ Az*
where cos § is given by

__ 1—(1+A)rcos 4 Ar*
(6.12) R,= 1—2rcos G+7?

for Ry=R,,

COROLLARY. Each function F(2)in T maps |z| <
a convex domain.

— A—-5_BA1 A%
3—4 «/52‘6A+A onto

§7. Radius of starlikeness for the class P.

As another illustration of the use of our method we determine the radius
of starlikeness for the class P of functions p(2) =1—2bz+ ---, belonging to P,
with the additional condition that b is fixed.

Since p(ze®) belongs to P whenever p(z) € P, we may without loss of
generality assume b > 0.

THEOREM 7. If p(z2) € P and |p'(0)|=2b>0, then for 0<|z|<b,

zp'(z) b—2r+br? N
Re[ 3 T]Z Gonary  121=7
The result is sharp.
ProoF. We note that no due restriction is involved by taking 0=]|z| <b

Indeed, if p(2) is expressed in the form

1) P& =TT
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where w(z)€ B and |w/(0)| =0, then it is well known [9, p. 171] that w(2) is
univalent in |z|< b/(14+/1—5b%) which is always less than b.
Using we obtain

2@ ww(z)

@2 p@)—1 = w1+ wE) *
Such functions w(z) are known [9, p. 167] to satisfy the inequalities
@3) D e PPAD-
On using Lemma 2, we obtain from (7.2)

zp’(2) 1 79 r—lw*
9 Re[ o112 Re [ riuey 1= a=rju) 1wl
which on substituting

_ w@

7.5 w,(2) = 1w
reduces to

zp'(2) 7 1—w,(2)|>— |w,(2)|®
@.6) Re[ pp-r]z1-Rew(a— 10 By or o

In view of the second inequality in (7.3) it is easily seen that
rt r
.7 |w1(2)+‘1'_’;z‘ S -
However, because of the first inequality in (7.3) the values in the interior of

the circle given by (7.7) are not all taken.
Putting w,(2)=u-}+iv, R®?=u*+v? and then denoting the right hand side

of by Sy(u, v) we get
= Qu—1r*
(7.8) Sy(u, v)=1—u+R+ (1_r5pR
Since [7.8) is symmetric with respect to v it is enough to confine ourselves

to the case v=0. We note first that S,(u, v) is, for a fixed u, a monotone in-
creasing function of v for v=0,

0S;

"oy = VRTT(u, v),
where
2u—1)r?
T5(u, 1)) = R?— ( i‘;rZ’f_ .
r r—1

Since u—=Re wl(z)§~I_T_—7;-, it follows that 2u—1§~——7;:}:1*<0 and hence
Ts(u, v) >0 (r+0). Thus the minimum of S,(u, v) on each chord u = constant
is either attained on the real axis within the circle (7.7) or on the image of
jw(z)| =r(b—r)/(1—br) under the transformation [7.5). In the latter case
putting w(z) = R’e*’, R’ =r(b—r)/(1—br) in the right hand side of (7.4) we have
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_2p'(2) _ 1+R’cos§ _ rP-R” 1
@9 Re| 35 T |2 1 Rirrorrcos s ~ RU—ry  VITRGTIR cosT -

If G(@) denotes the right hand side of (7.9) we get

(7.10) ac _ R’ sin 8 ) [ 1—R" __r*—R”? ]
' d6 — (A4+R”+2R’cos0)*? L I+ R?+2R' cosf  R'A—r?) d-

Thus the minimum of G(@) is attained either at sin # =0, that is, the points
of intersection of the circle with the real axis, or at the points where

1 R*(1—r?%?-(1—R'?)?
(711) cos = ORI . [ (Tz—Rlzjz —_ l—Rlz] .

Since R’ vanishes at =0 and r=2,, the right hand side of (7.11) does not
lie between —1 and +1. The value of cos @ lies in 0=<cos f <1, provided

(7.12) K =0—n*A—r»*A—2b0r+r?)*—r*1—0)LA—br)*+r3(b—r)*]1=0
and
(7.13) K(r)—2r*(1—br)(b—r)(1—0b%)%<0.
On simplification condition (7.13) reduces to
(7.14) LO—nA—-2br+r®)+rA—b)ILb—rA—2br+r®—r(1—5>]1<0.

Thus we find that 0 =<cos@ <1 for », <»=<r, where 7, and »; denote respec-
tively the smallest positive roots of K(»)=0 and

(7.15) i =0b—A—-2br+r®)—r(1—56%=0.

Similarly we can show that —1 <cos § =0 for »,<r <7, where r, and », denote
respectively the smallest positive roots of K(»)=0 and

(7.16) LN =0—,A—r®)—r(1—5b»=0.

It is easy to see that f,(*) and f,(#) are monotone decreasing functions
of  in 0 <7 <b and further f,(*) <0 for r>7r, and f,(*) >0 for r<r,. Thus,
we notice that the value of cos @ lies in —1<cosf@ <1 if r,<r<r,.

On substituting the value of cos @ from (7.11) in (7.9) we get

2p'(2) 1 r¥(1—b2)?
(7.17)  Re [?@-:1—] z—[1- T=r 50— 2677 1 for n<r<r,.

We shall now consider the case when the minimum of S,(u, v) is attained
on the diameter v=0. Putting v=0 in we obtain

1472 7?2 1

T 1=y for u>0,
(7.18) Sy, 0) = 2 2
Tty for u<o.
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We notice that S,(u, 0) is a monotone increasing function of % for u >0 and
Ss(u, 0) is a monotone decreasing function of u for u<0. For >0 and v=0
we have
— Jw@a| 1 rb—=n)

“E @] T T IR @l 21—
where we have used the first inequality in (7.3). Hence the minimum of the
first expression of the right hand side of is equal to

b—2r+br?

(7.19) =n—=r? -
Likewise for u <0 the minimum of the second expression of the right hand
side of is attained at u= —r(b—r)/(1—2br+r* and equals

b—2r4br*
(7.20) (b=PA—2brr? -
It is easy to see that
b—2r4-br? b—2r+4-br?
G-na—ry = Gmna-2erry o r<b
Hence finally we obtain
_2p'(2) _b—2r4-br®
(7.21) Re [ p(z)fl‘]g G—pd—ry for 0=r<b.

In order to establish the theorem it is enough to show that for r, <r<r7,,

71~[1_ r*(1—b%)? ]> br2—2r--b
2 A—rdb—r)?Q—-2br+r* 1= (b—1A—r? -
This follows easily from (7.14). .
The equality sign in is attained for the function p(z):i:l—z_%——g—
which obviously belongs to the class P.
This completes the proof of the theorem.
COROLLARY 1. FEach function p.(z) e P maps |z| <—(ﬁ\—/bf—_—?—7) onto a
starlike domain (with centre at the point ‘1°).

COROLLARY 2. If F(2)=z+a,2*+-- belongs to S§ where a, is fixed, then
| a,|

< __1%2]
for 0=lzl< 2(1_ﬁ):
2(zF'(2)/F(2))’ la,[r*—4(—B)r+|a,| _
Re{ 2@ ]g (la|—20—pra-ry »  1#=7
F(z)
The result follows immediately from on noting that in this case

2F(z) = —
_Fw_a—p)p(zﬁﬂ, b=—5a1"p -
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