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\S 1. Introduction

The purpose of this paper is to prove the following1)

THEOREM. Let $V$ be an n-dimensional compact complex manifold with
negative first Chern class. Let $\mathcal{D}=\{(z^{1}, \cdot.. , z^{n})\in C^{n} ; |z^{1}|<1, \cdot.. , |z^{n}|<1\}$ and
$\mathcal{D}^{*}=\{(z^{1}, z^{n})\in \mathcal{D};z^{1}\neq 0\}$ . If a holomorphic mapping $f;\mathcal{D}^{*}\rightarrow V$ is non-
degenerate at some point, then $f$ is a meromorphic mapping from $\mathcal{D}$ into $V$ .

COROLLARY 1. Let $V$ be as above. Let $M$ be an n-dimensional complex

manifold and $A$ an analytic subvariety of M. If a holomorphic mapping $f$ of
$M-A$ into $V$ is non-degenerate at some point, then $f$ is a meromorphic mapping

from $M$ into $V$ .
COROLLARY 2. Let $V$ be as above. Let $A$ be an analytic subvariety of $V$ .

Then every holomorphic transformation of $V-A$ extends to a holomorphic

transformation of $V$ .
By a theorem of Kodaira, the assumption that the first Chern class of

$V$ be negative is equivalent to the condition that the canonical line bundle
$K_{V}$ is ample, $i.e.$ , the line bundle $K_{\gamma}^{m}$ , for some positive integer $m$ , has suf-
ficiently many holomorphic sections to induce an imbedding of $V$ into a com-
plex projective space. If this holds already for $m=1,$ $i$ . $e.,$ $K_{V}$ itself has
sufficiently many sections to induce an imbedding of $V$ into a projective
space, then $K_{V}$ is said to be very ample. Under the assumption that $K_{V}$ is
very ample, the theorem above has been proved by Griffiths [1].

\S 2. The punctured disk $D^{*}$

The upper half-plane

$H=\{w=u+iv\in C;v>0\}$

is a universal covering space of the punctured disk

$*)$ Partially supported by NSF Grant GP-8008.
1) For a generalization, see the Addendum to this paper.
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$D^{*}=\{z\in C;0<|z|<1\}$

and the covering projection $p:H\rightarrow D^{*}$ is given by

$z=p(w)=e^{2\pi tw}$ .
A fundamental domain is given by

$F=\{w\in H;0<u<1\}$ .
Up to a constant factor, the Bergman metric $ds_{H}^{2}$ of $H$ and the corresponding
area element $\mu_{H}$ are given by

$ds_{H}^{2}=\frac{dw}{v}2\underline{d\overline{w}}$ $\mu_{H}=\frac{du}{v}\bigwedge_{2}\underline{dv}$ .
We denote by $ds_{D}^{2}$. and $\mu_{D}$. the metric and the $area_{-}element$ on $D^{*}$ defined by

$p^{*}(ds_{D}^{3}.)=ds_{H}^{2}$ , $p^{*}(\mu_{D})=\mu_{H}$ .
LEMMA 2.1. Let $0<a<1$ and $D_{\alpha}^{*}=\{z\in C;0<|z|<a\}$ . Then the area of

$D_{\alpha}^{*}$ with respect to $\mu_{D}$ . is finite, i. e.,

$\int_{0_{a}}$. $\mu_{D}\cdot<\infty$ .

PROOF. The subset of the fundamental domain $F$ which corresponds to
$D_{a}^{*}$ is given by

$F_{b}=\{w\in F;v>b\}$ ,

where $b$ is a certain positive number (which can be determined from the value
$a)$ . Then

$\int_{D_{a}}$. $\mu_{D}\cdot=\int_{F_{b}}\mu_{H}=\int_{b}^{\infty}dv\int_{0^{1}}\frac{du}{v^{2}}=\frac{1}{b}$

QED.
Let

$\mathcal{D}^{*}=D^{*}\times D\times\cdots\times D\subset C^{n}$ .
If we denote by $ds_{D}^{2}$ the Bergman metric of $D=\{z\in C;|z|<1\}$ and by $\mu_{\theta}$

the corresponding area element of $D$ , then the Bargman metric $ds_{g\backslash }^{2}$ of $\mathcal{D}^{*}$

and the corresponding volume element $\mu_{\Phi}$. are given by

$ds_{\mathcal{D}^{*}}^{2}=ds_{D}^{2}.+ds_{D}^{2}+$ $+ds_{D}^{2}$ ,

$\mu_{\mathcal{D}}*=\mu_{D}\wedge\mu_{D}\wedge\cdots\wedge\mu_{D}$ .
The following lemma is an immediate consequence of Lemma 2.1.

LEMMA 2.2. Let $0<a<1$ and $\mathcal{D}_{a}^{*}=D_{a}^{*}\times D_{a}\times\cdots\times D_{a}\subset \mathcal{D}^{*}$ , where $D_{a}^{*}$

$=\{z\in C;0<|z|<a\}$ and $D_{\alpha}=\{z\in C;|z|<a\}$ . Then
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$\int_{\mathcal{D}_{a}^{*}}\mu_{9}<\infty$ .

\S 3. Schwarz lemma for a compact complex manifold with negative first
Chern class

Let $V$ be a compact complex manifold of dimension $n$ . Let $\mu_{V}$ be a
volume element; it is an everywhere positive $2n$-form. In terms of a local
coordinate system $z^{1},$ $\cdots$ , $z^{n}$ of $V,$

$\mu_{V}$ may be written in the form

$\mu_{V}=i^{n}Wdz^{1}$ A $ d\overline{z}^{1}\wedge\cdots$ A $dz^{n}\wedge d\overline{z}^{n}$ ,

where $W$ is a positive function. To this volume element, we associate the
Ricci tensor

$\sum R_{\alpha\beta}dz^{\alpha}d\overline{z}^{\beta}$ , where $R_{\alpha\beta}=-\partial^{2}\log W/\partial z^{\alpha}\partial\overline{z}^{\beta}$ .
If there exists a volume element $\mu_{V}$ such that the associated Ricci tensor
$(R_{\alpha\beta})$ is negative definite, then we say that the first Chern class $c_{1}(V)$ of $V$

is negative (denoted by $c_{1}(V)<0$). (This is equivalent to say that the ca-
nonical line bundle of $V$ is ample, (see [4])).

LEMMA 3.1. Let $V$ be an n-dimensional compact complex manifold with
$c_{1}(V)<0$ . Let $\mu_{V}$ be a volume element of $V$ such that the associated Ricci
tensor is negative definite. Let $\mu_{g*}$ be the volume element of $\mathcal{D}^{*}=D^{*}\times D\times\cdots$

$\times D(=D^{*}\times D^{n-1})$ defined in \S 2. Then there exists a positive constant $c$ such
that, for every holomorphic mapping $f;\mathcal{D}^{*}\rightarrow V$ , the inequality

$c\cdot f^{*}(\mu_{V})\leqq\mu_{\mathcal{D}^{*}}$

holds.
REMARK. In the following, we shall replace the volume element $\mu_{V}$ by

$c\mu_{V}$ , so that $f^{*}(\mu_{V})\leqq\mu_{\mathcal{D}^{*}}$ for every holomorphic mapping $f:\mathcal{D}^{*}\rightarrow V$ (i. e., $f$ is
volume-decreasing). The Ricci tensor associated to $c\cdot\mu_{V}$ is the same as the
Ricci tensor associated to $\mu_{V}$ .

PROOF. Let
$\mathcal{H}=H\times D\times\cdots\times D(=H\times D^{n-1})$ ,

where $H$ denotes the upper-half plane as in \S 2. Take the volume element

$\mu_{R}=\mu_{H}\wedge\mu_{D}\wedge\cdots\wedge\mu_{D}$

on $\mathcal{H}$ . Let $p;\mathcal{H}\rightarrow \mathcal{D}^{*}$ the covering projection corresponding to the covering
projection $p;H\rightarrow D^{*}$ . Then

$p*(\mu_{\Phi^{*}})=\mu_{\ovalbox{\tt\small REJECT}}$ .
Hence, it suffices to prove $(f\circ p)^{*}(\mu_{V})\leqq\mu_{\mathcal{H}}$ (For this will imply $p^{*}f^{*}(\mu_{V})$

$\leqq p*(\mu_{9^{*}})$ and hence $f^{*}(\mu_{V})\leqq\mu_{\mathcal{D}^{*}}$ since $p$ is a local diffeomorphism). In other
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words, it suffices to prove that every holomorphic mapping $h;\mathcal{H}\rightarrow V$ is
volume-decreasing, i. e.,

$h^{*}(\mu_{V})\leqq\mu_{Jl}$ .
But this has been already proved in [3; Theorem 4.4 of Chapter II] and also
in [2; Theorem 3]. (Since $\mathcal{H}$ is biholomorphic with an n-dimensional poly-
disk and $V$ is a compact complex manifold with volume element $\mu_{V}$ whose
Ricci tensor is negative definite, all the assumptions in the quoted theorems
are satisfied). QED.

\S 4. Proof of Theorem

Let $V$ be a compact complex manifold of dimension $n$ with volume ele-
ment $\mu_{V}$ . Let $K_{V}$ denote the canonical line bundle of $V$ . Fix a positive
integer $m$ . For each holomorphic section $s$ of $K_{V}^{m}$ , we define a non-negative
$2n$-form $s\overline{s}/\mu_{V}^{m-}$ as follows. In terms of a local coordinate system $z^{1},$ $z^{n}$

of $V$ , we write locally

$s=S\cdot(dz^{1}\wedge\cdots\wedge dz^{n})^{m}$ ,

$\mu_{V}=i^{n}$ $Wdz^{l}\wedge d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n}$ ,

where $S$ is a holomorphic function and $W$ is a positive function. Then

$s\overline{s}/\mu_{V}^{m-1}=i^{|S|^{2}}n--dz^{1}\wedge d\overline{z}^{1}\wedge W^{m-\overline{1}}\ldots\wedge dz^{n}\wedge d\overline{z}^{n}$ .

It is easy to see that $s\overline{s}/\mu_{V}^{m-1}$ is defined independent of the choice of a local
coordinate system.

LEMMA 4.1. Let $V$ be an n-dimensional compact complex manifold with
$c_{1}(V)<0$ and let $\mu_{V}$ be a volume element whose associated Ricci tensor is nega-
tive definite. Let $m$ be a positive integer and $s$ a holomorphic cross section of
the line bundle $K_{V^{m}}$ . Let $\mathcal{D}^{*}=D^{*}\times D^{n- 1}$ and $\mathcal{D}_{\alpha}^{*}=D_{\alpha}^{*}\times D_{a}^{n-1}$ be as in \S 2. Then,

for every holomorphic mapping $f:\mathcal{D}^{*}\rightarrow V$ , we have

$\int_{\mathcal{D}_{a}^{*}}f^{*}(s\overline{s}/\mu_{V}^{m-1})<\infty$ .
PROOF. Put

$s\overline{s}/\mu_{V}^{m-1}=h\cdot\mu_{V}$

Then $h$ is a non-negative function on $V$ . If we denote by $M$ the maximum
value of $h$ on $V$ , then

$\int_{\mathcal{D}_{a}^{*}}f^{*}(h\cdot\mu_{V})\leqq M\int_{\mathcal{D}_{\alpha}^{*}}f^{*}(\mu_{V})\leqq M\int_{\mathcal{D}_{a}^{*}}\mu_{g}\cdot<\infty$

where the second inequality is a consequence of Lemma 3.1 and the third
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inequality follows from Lemma 2.2. QED.

In the same way as we defined $s\overline{s}/\mu_{V}^{m-1}$ , we can define a non-negative 2n-
form $f^{*}s\cdot f^{*}\overline{s}/\mu_{\mathcal{D}^{*}}^{m-1}$ on $\mathcal{D}^{*}$ . From Lemma 3.1 and Lemma 4.1, we obtain

LEMMA 4.2. With the notations in Lemma 4.1, we have

$\int_{\mathcal{D}_{\alpha}^{*}}f^{*}s\cdot\overline{f^{*}s}/\mu_{\mathcal{D}^{*}}^{m-1}<\infty$ .

In the remainder of this section, we shall be concerned only with the
domain $\mathcal{D}^{*}$ and not with the manifold $V$ . We use $z^{1}$ , $\cdot$ .. , $z^{n}$ as a natural
coordinate system in $C^{n}$ so that $\mathcal{D}^{*}$ is defined by $0<|z^{1}|<1,$ $|z^{2}|<1$ , , $|z^{n}|$

$<1$ . Then we can write

$f^{*}s=\varphi\cdot(dz^{1}\wedge\cdots\wedge dz^{n})^{m}$ ,

where $\varphi$ is a holomorphic function on $\mathcal{D}^{*}$ . Our aim is to prove that $\varphi$ is
meromorphic in the polydisk $\mathcal{D}=D\times\cdots\times D(=D^{n})$ .

If we write
$\mu_{\mathcal{D}^{*}}=i^{n}Kdz^{1}$ A $d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n}$ ,

then
$f^{*}s\cdot\overline{f^{*}s}/\mu_{\mathcal{D}^{*}}^{m-1}=i^{n}-K\frac{|\varphi|^{2}}{m-1}dz^{1}\wedge d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n}$ .

Since $\mu_{\mathcal{D}^{*}}=\mu_{D*}\wedge\mu_{D}\wedge\cdots\wedge\mu_{D}$ , we may write

$K=K_{1}\cdot K_{2}$ ,

where $K_{1}$ is a function of $z^{1}$ and $K_{2}$ is a function of $z^{2}$ , $\cdot$ .. , $z^{n}$ . Moreover, in
terms of the polar coordinate system $z^{1}=re^{t\theta}$ , we can write

$iK_{1}dz^{1}\wedge d\overline{z}^{1}=\frac{dr\wedge d\theta}{r(\log r)^{2}}$ , $K_{1}=\frac{l}{2r^{2}(\log r)^{2}}$ .

This follows from the formula for $\mu_{H}$ in \S 2 and from $p^{*}(\mu_{D}\cdot)=\mu_{H}$ . Since $\varphi$

is holomorphic in $\mathcal{D}^{*}=D^{*}\times D^{n- 1}$ , we may write $\varphi$ in a Laurent series in $z$
‘

as follows:

$\varphi(z^{1}, z^{n})=\sum_{j=-\infty}^{\infty}A_{j}(z^{2}, z^{n})(z^{1})^{f}$ ,

where each $A_{j}$ is holomorphic in $z^{2}$ , $\cdot$ .. , $z^{n}$ . We want to prove that $A_{j}=$ (}

for $j\leqq-m$ .
Since

$\int_{0^{2\pi}}(z^{1})^{j}(\overline{z}^{1})^{k}d\theta=0$ for $j\neq k$ ,

we obtain
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$\int_{\mathcal{D}_{\alpha}^{*i^{n}-}K}|\varphi\frac{1^{2}}{m-1}dz^{1}$ A $d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n}$

$=\sum_{j}\{\int_{D_{\alpha}}.i\frac{|z^{1}|^{2f}}{K_{1}^{m-1}}dz^{1}\wedge d\overline{z}^{1}\}\{\int_{D_{a}^{n-1}}i^{1}n_{K}-1-\frac{A_{j}|^{2}}{2m-1}dz^{2}$ A $ d\overline{z}^{2}\wedge\cdots$ A $dz^{n}\wedge d\overline{z}^{n}\}$ .
According to Lemma 4.2, this integral exists and is finite. It suffices there-
fore to prove

$I_{j}=\int_{D_{\alpha}}.i_{-}^{1}\frac{z^{1}|^{2f}}{K_{1}^{m-1}}dz^{1}$ A $ d\overline{z}^{1}=\infty$ for $j\leqq-m$ .
In terms of the polar coordinate system, this integral $I_{j}$ is given by

$ 1_{j}=\int_{0}^{2\pi}\int_{0}^{\alpha}2^{m}r^{2m+2j-1}(\log r)^{2m-2}drd\theta$

$\geqq 2\pi\cdot 2^{m}(\log a)^{2m-z}\int_{0^{\alpha}}r^{2m+2j-1}dr$

and hence $ I_{f}=\infty$ for $j\leqq-m$ . This implies $A_{j}=0$ for $j\leqq-m$ .
We summarize what we have proved in the following
LEMMA 4.3. Let $V$ be an n-dimensional compact complex manifold with

$c_{1}(V)<0$ . Let $K_{V}$ be the canonical line bundle of V. Let $m$ be a positive
integer. Let $s$ be a holomorphic section of $K_{V}^{m}$ . If $f$ is a holomorphic mapping
of $\mathcal{D}^{*}=D^{*}\times D^{n-1}$ into $V$, then

$f^{*}s=\varphi\cdot(dz^{1}\wedge\cdots\wedge dz^{n})^{m}$ ,

where $z^{1},$ $z^{n}$ is the natural coordinate system in $C^{n}$ and $\varphi$ is a holomorphic
function in $\mathcal{D}^{*}$ of the form

$\varphi(z^{1}, z^{n})=\sum_{j=-(m-1)}^{\infty}A_{j}(z^{2}, z^{n})(z^{1})^{f}$ .
Here all $A_{j}$ are holomorphic functions of $z^{2},$ $\cdots$ , $z^{n}$ in $D^{n-1}$ .

If $c_{1}(V)<0$ , then a theorem of Kodaira [4] implies that there is a posi-
tive integer $m$ such that the line bundle $K_{V^{m}}$ admits a sufficiently many holo-
morphic sections to induce an imbedding of $V$ into a complex projective
space. More precisely, let $s_{0},$ $s_{1}$ , $\cdot$ . , $s_{N}$ be a basis for the space $H^{0}(V, K_{V}^{m})$

of holomorphic sections of $K_{\gamma}^{m}$ . Then the mapping $z\in V\rightarrow(s_{0}(z), s_{1}(z),$ $s_{N}(z))$

$\in P_{N}(C)$ is an imbedding. Applying Lemma 4.3 to $s_{0},$ $\cdots$ , $s_{N}$ , we obtain our
theorem (here we use the non-degeneracy of $f$).

\S 5. Proofs of Corollaries

To prove Corollary 1, let $B$ be the set of singular points of $A$ . If $s$ is a
holomorphic section of $K_{V}^{m}$ , then $f^{*}s$ is meromorphic in $M-B$ by Lemma 4.3.
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Since $\dim B\leqq\dim V-2,$ $f^{*}s$ is meromorphic also in $M$. The remainder of
the proof is the same as that of the theorem.

To prove Corollary 2, let $f$ be a biholomorphic mapping of $V-A$ onto
itself. By Corollary 1, $f$ is a bimeromorphic mapping of $V$ onto itself. By
a theorem of Peters [5] (see [3; Ch. VIII, \S 2, Example 1]), $f$ is a biholomor-
phic mapping of $V$ onto itself.

University of California, Berkeley
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Addendum

In his letter of June 5, Professor Kodaira kindly remarked that our
theorem can be generalized as follows:

Let V be an n-dimensional compact algebraic manifold of general type. Let
M be an n-dimensional complex manifold and A an analytic subvariety of M.
If a holomorphic mapping f of M–A into V is non-degenerate at some point,
then f is a meromorphic mapping from M into V.

A projective algebraic manifold V of dimension n is said to be of general
type if

$\sup\lim_{m\rightarrow+\infty}\frac{1}{m^{n}}\dim H^{0}(V, K^{m})>0$ ,

where K denotes the canonical line bundle of V.
To understand the significance of the condition above, we prove the

following lemma. (This lemma will be needed also in the proof of the
generalized theorem).

LEMMA 1. Let $F$ be any line bundle over a projective algebraic manifold
$V$ of dimension $n$ . Then

$\sup\lim_{m\rightarrow+\infty}\frac{1}{m^{n}}\dim H^{0}(V, F^{m})<\infty$ .
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PROOF. Choose an ample line bundle $L$ such that $FL$ is also ample. If
$m$ is large enough so that $L^{m}$ is very ample, then we have an exact sequence

$ 0\rightarrow H^{0}(V, F^{m})\rightarrow H^{0}(V, F^{m}L^{m})\rightarrow H^{0}(S, (F^{m}L^{m})_{S})\rightarrow$ ,

where $S$ is a non-singular positive divisor of $V$ obtained as the zero set of
a general holomorphic section of $L^{m}$ , and $(F^{m}L^{m})_{S}$ denotes the restriction of
$F^{m}L^{m}$ to $S$ (for the proof of this exact sequence, see Kodaira-Spencer, On a
theorem of Lefschetz and the lemma of Enriques-Severi-Zariski, Proc. Nat.
Acad. Sci. USA, 39 (1953), 1273-1278 or Hirzebruch, Topological methods in
algebraic geometry, p. 130). From this exact sequence, we obtain

$\dim H^{0}(V, F^{m})\leqq\dim H^{0}(V, F^{m}L^{m})$ for $m\geqq m_{0}$ .

Since $F^{m}L^{m}$ is ample, Kodaira’s vanishing theorem implies

$\dim H^{0}(V, F^{m}L^{m})=x(V, F^{m}L^{m})$ for $m\geqq m_{0}$ .
On the other hand, we have (see p. 150 of Hirzebruch’s book)

$\chi(V, F^{m}L^{m})=a_{0}+a_{1}m+$ $+a_{n}m^{n}$ ,

where $a_{0},$ $a_{1},$ $a_{n}$ are rational numbers determined by $V$ and $FL$ (in parti-
cular, $n!a_{n}=(c_{1}(FL))^{n}[V]$ , where $c_{1}(FL)$ denotes the Chern class of $FL$).
Hence,

$\sup\lim_{m\sim+\infty}\frac{1}{m^{n}}\dim H^{0}(V, F^{m})\leqq a_{n}$ . QED.

The main step in the generalization lies in the following construction of
a projective imbedding of $V$ by Kodaira.

LEMMA 2. Let $V$ be a projective algebraic manifold of general type and $L$

a very ample line bundle over V. Then there exists a positive integer $m$ such
that $H^{0}(V, K^{m}L^{-1})\neq 0$ .

PROOF. Let $X$ be a non-singular positive divisor of $V$ obtained as the
zero set of a general holomorphic section of $L$ . As in the proof of Lemma
1, we have an exact sequence:

$ 0\rightarrow H^{0}(V, K^{m}L^{-1})\rightarrow H^{0}(V, K^{m})\rightarrow H^{0}(X, K_{X}^{m})\rightarrow$ ,

where $K_{X}$ denotes the restriction of the canonical bundle $K$ of $V$ to $X$. Since
$\dim H^{0}(V, K^{m})$ is of order $m^{n}$ by assumption and since $\dim H^{0}(X, K_{X}^{m})$ is of
order at most $m^{n-1}$ , it follows that $H^{0}(V, K^{m}L^{-1})\neq 0$ if $m$ is sufficiently
large. QED.

Let $\alpha$ be a nontrivial holomorphic section of $K^{m}L^{-1}$ . Then we obtain an
injection

$\varphi\in H^{0}(V, L)\rightarrow\alpha\cdot\varphi\in H^{0}(V, K^{m})$ .
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This means that although $K^{m}$ is not very ample, we can still obtain a pro-
jective imbedding of $V$ by considering the subspace of $H^{0}(V, K^{m})$ consisting

of those sections which are divisible by $\alpha$ .
Let $\varphi_{0},$ $\varphi_{1},$ $\varphi_{N}$ be a basis for $H^{0}(V, L)$ . Then $\alpha\overline{\alpha}\cdot\sum_{j}\varphi_{j}\overline{\varphi}_{j}$

may be con-

sidered as a $C^{\infty}$ section of $(K^{m}L^{-1})L\otimes(\overline{K}^{m}\overline{L}^{-1})\overline{L}=K^{m}\otimes\overline{K}^{m}$ and can be locally
expressed as follows:

$|a(z)|^{2}\sum_{f}|h_{j}(z)|^{2}(i^{n}dz^{1}\wedge d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n})^{m}$
,

where $a(z),$ $h_{0}(z),$ $h_{1}(z),$ $\cdots,$ $h_{N}(z)$ are locally defined holomorphic functions
corresponding to $\alpha,$ $\varphi_{0},$ $\varphi_{1},$ $\varphi_{N}$ , and $z^{1},$ $\cdots$ , $z^{n}$ is a local coordinate system

in $V$ . We consider now a volume element $\mu_{V}$ defined by

$\mu_{V}=|a(z)|^{2/m}\cdot W\cdot i^{n}dz^{1}\wedge d\overline{z}^{1}\wedge\cdots\wedge dz^{n}\wedge d\overline{z}^{n}$ ,

where
$W=(\sum_{f}|h_{j}(z)|^{2})^{1/m}$ .

We set
$R_{\alpha\beta}=-\partial^{2}\log W/\partial z^{\alpha}\partial\overline{z}^{\beta}$ .

Since $\varphi_{0},$ $\varphi_{1},$ $\varphi_{N}$ define an imbedding of $V$ into $P_{N}(C)$ , it follows that $(R_{\alpha\beta})$

is negative definite. Since $a(z)$ is holomorphic, we have

$R_{\alpha\beta}=-\partial^{2}\log(|a(z)|^{2/m}W)/\partial z^{\alpha}\partial\overline{z}^{\beta}$

wherever $a(z)$ is different from zero. This fact, as Professor Kodaira points
out, makes the Schwarz lemma (Lemma 3.1) valid even in the present situa-
tion without any change in the proof. Then the remainder of the proof is
the same as before except for the following technical point.

Let $s$ be a holomorphic section of $K^{m}$ divisible by $\alpha$ , i. e., an element in
the image of $H^{0}(V, L)\rightarrow H^{0}(V, K^{m})$ . In the proof of Lemma 4.1, we defined
a non-negative function $h$ on $V$ by

$s\overline{s}/\mu_{V}^{m}=h$ .
Since $s\overline{s}$ and $\mu_{V}^{m}$ have the common factor $|a(z)|^{2}$ and since $|a(z)|^{2}$ is the only
contributing factor to the zeros of $\mu_{V}^{m},$

$h$ is well defined everywhere on $V$.
This completes the proof of the generalized theorem.

We take this opportunity to give a slightly different and, perhaps, con-
ceptually more natural proof of our theorem. Let $s$ be a holomorphic section
of $K^{m}$ divisible by $\alpha$ . Then

LEMMA 3.

$\int_{\underline{\mathcal{D}}_{a}^{*}}f^{*}(s\overline{s})^{1/m}<\infty$ .
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This lemma replaces Lemmas 4.1 and 4.2.
PROOF. Since both $\mu_{V}$ and $(s\overline{s})^{1/m}$ have the common factor of $|a(z)|^{2/m}$

and since $|a(z)|^{2/m}$ is the only contributing factor to the zeros of $\mu_{V}$ , we can
define a non-negative function $h$ on $V$ by

$h=(s\overline{s})^{1/m}/\mu_{V}$ .
Let $M$ be the maximum value of $h$ on $V$. Then

$\int_{\mathcal{D}_{\alpha}^{*}}f^{*}(s\overline{s})^{1/m}\leqq\int_{\mathcal{D}_{a}^{*}}f^{*}(h\mu_{V})\leqq M\int_{\mathcal{D}_{\alpha}^{*}}f^{*}(\mu_{V})\leqq M\int_{\mathcal{D}_{a}^{*}}\mu_{\mathcal{D}^{*<\infty}}$ ,

where the third inequality is a consequence of the Schwarz lemma. QED.
In order to complete the proof, we shall conclude from Lemma 3 that

the section $f^{*}s$ is meromorphic on $\mathcal{D}_{\alpha}$ . It is easy to see that the problem
reduces to the following lemma. We learned the proof from Mr. Shintani.

LEMMA 4. $1ff(z)=\sum_{n=-\infty}^{+\infty}a_{n}z^{n}$ is a holomorphic function on the punctured

unit disk $D^{*}=\{z\in C;0<|z|<1\}$ such that

$\int_{D^{*}}|f(z)|^{2/m}dxdy<\infty$

for a positive integer $m$ , then $f$ is meromorphic of order $m-1$ at the origin,
$i$ . $e.,$ $f(z)=\sum_{n=-(m-1)}^{+\infty}a_{n}z^{n}$.

PROOF. The problem can be easily reduced to the case where $f$ is of
the form

$f(z)=\sum_{n\leqq-m}a_{n^{Z^{n}}}$ .

Then we have to show that $f(z)\equiv 0$ . Assuming the contrary, let $p$ be the
least integer, $p\geqq m$ , such that $a_{-p}\neq 0$ . If we write

$f(z)=z^{-p}\sum_{n\leqq-p}a_{n}z^{n+p}$

and put

$g(z)=\sum_{n=0}^{\infty}a_{-n- p^{Z^{n}}}$ ,

then
$f(z)=z^{-p}g(\frac{1}{z})$

so that $g(z)$ is an entire function with $g(O)\neq 0$ . If we put

$w=1/z$ and $w=u+iv$ ,

then

$(^{*})$ $\int_{D^{\prime}}|f(z)|^{2/m}dxdy=\int_{|w|>1}|g(w)|^{2/m}|w|^{(2p-4m)/m}dudv$ .
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If we introduce the polar coordinate system $w=re^{i\theta}$ , then this integral is
equal to

$\langle**)$ $\int_{1}^{\infty}\int_{0^{2_{/}\tau}}|g(re^{i\theta})|^{2/m}r^{(2p-3m)/m}d\theta dr$ .

Since $|g(w)|^{2/m}=\exp(\frac{2}{m}\log|g(w)|)$ is subharmonic, we have

$\int_{0^{2\pi}}g(re^{i\theta})^{2/m}d\theta\geqq|g(0)|^{2/m}\neq 0$ .

Hence, the integral $(^{**})$ is greater than or equal to

$|g(0)|^{2/m}\int_{1}^{\infty}r^{(2p-3m)/m}dr=\infty$

because $(2p-3m)/m\geqq-1$ . This is a contradiction. QED.

CONCLUDING REMARKS. Given a complex manifold $X$ of dimension $n$ , we
define an intrinsic measure $\mu_{X}$ on $X$ as follows ([3 ; Chapter IX]). Let $\mu$ be
the measure on the unit ball $D_{n}$ in $C^{n}$ defined by the Bergman metric of $D_{n}$ .
Given a Borel set $B$ in $X$, choose holomorphic mappings $f_{i}$ : $D_{n}\rightarrow X$ and Borel
sets $E_{i}$ in $D_{n}$ for $i=1,2$ , $\cdot$ .. such that $B\subset\bigcup_{t}f_{i}(E_{i})$ . Then the measure $\mu_{X}(B)$

of $B$ is defined by

$\mu_{X}(B)=\inf\sum_{i}\mu(E_{i})$ ,

where the infimum is taken over all possible choices for $f_{i}$ and $E_{i}$ . This
intrinsic measure possesses the following two properties: (1) if $X=D_{n}$ , then
$J^{1_{X}}=\mu;(2)$ if $X$ and $Y$ are complex manifolds of the same dimension and
$f:X\rightarrow Y$ is a holomorphic mapping, then

$\mu_{Y}(f(B))\leqq\mu_{X}(B)$ for every Borel set $B$ in $X$ .
Moreover, $\mu_{X}$ is the largest measure on $X$ such that

$\mu_{X}(f(E))\leqq\mu(E)$ for every Borel set $E$ in $D_{n}$

and for every holomorphic mapping $f:D_{n}\rightarrow X$.
We say that a complex manifold $X$ is measure-hyperbolic if $\mu_{X}(B)$ is non-

zero for every nonempty open subset $B$ of $X$. Some examples of measure-
hyperbolic manifolds are given in [3]. The fact that the Schwarz lemma

$1\langle for$ volume) holds for an algebraic manifold of general type means that an
algebraic manifold of general type is measure-hyperbolic.

On the other hand, the intrinsic measure $\mu_{c^{n}}$ for $C^{n}$ is identically zero.
If $f$ is a holomorphic mapping from $C^{n}$ into a measure-hyperbolic manifold
$X$ of dimension $n$ , then for any Borel set $B$ of $C^{n}$ we have $\mu_{X}(f(B))\leqq\mu_{c^{n}}(B)$

$=0$ . This implies that $f(B)$ has no interior points, $i$ . $e.,$ $f$ is everywhere
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degenerate. This may be considered as a generalized little Picard theorem.
(For another version of the little Picard theorem, see [3; Chapter V]). For
a certain class of algebraic manifolds containing those of general type, Koda-
ira has obtained inequalities of Nevanlinna type, which also imply the little
Picard theorem for the algebraic manifolds of general type.

Now the following questions arise.
(1) Let $X$ be an n-dimensional complex manifold with the property that

every holomorphic mapping $f:C^{n}\rightarrow X$ is everywhere degenerate. Is $X$ mea-
sure-hyperbolic? (The answer is probably negative unless we assume that
$X$ is compact. Compare [3; Chapter IX, \S 3]).

(2) Are there measure-hyperbolic algebraic manifolds which are not of
general type?

The main theorem of the present paper may be considered as a result
of the type of the great Picard theorem (Compare [3; Chapter VI]).

(3) Does our theorem generalize to a compact measure-hyperbolic mani-
fold?
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