Fuchsian groups contained in $S L_{2}(\boldsymbol{Q})$

By Kisao Takeuchi

(Received April 10, 1970)
§1. Let G be the special linear group $S L_{2}(\boldsymbol{R})$ and Γ a discrete subgroup of G such that the quotient space G / Γ is compact. The group G operates on the upper half plane $\mathscr{J}=\{z \in C \mid \operatorname{Im} z>0\}$ in the following way:

$$
\rho(T): z \longmapsto \frac{a z+b}{c z+d} \quad \text { where } z \in \mathscr{K} \quad \text { and } T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G .
$$

ρ is a homomorphism of G onto the group of all analytic automorphisms of \mathfrak{H}. The kernel of ρ is $\{ \pm E\}$. The image $\rho(\Gamma)$ of Γ under the homomorphism ρ is a properly discontinuous group called the Fuchsian group of the first kind. $\rho(\Gamma)$ is generated by $2 g$ hyperbolic elements $\rho\left(A_{1}\right), \rho\left(B_{1}\right), \cdots, \rho\left(A_{g}\right), \rho\left(B_{g}\right)$ and n elliptic elements $\rho\left(C_{1}\right), \cdots, \rho\left(C_{n}\right)$. There are following $n+1$ fundamental relations among these generators.

$$
\begin{align*}
& \rho\left(A_{1}\right) \cdot \rho\left(B_{1}\right) \cdot \rho\left(A_{1}\right)^{-1} \cdot \rho\left(B_{1}\right)^{-1} \\
& \cdots \rho\left(A_{g}\right) \cdot \rho\left(B_{g}\right) \cdot \rho\left(A_{g}\right)^{-1} \cdot \rho\left(B_{g}\right)^{-1} \cdot \rho\left(C_{1}\right) \cdots \rho\left(C_{n}\right)=\rho(E) \tag{1}\\
& \quad \rho\left(C_{j}\right)^{e_{j}}=\rho(E) \quad(1 \leqq j \leqq n) . \tag{2}
\end{align*}
$$

($g ; e_{1}, \cdots, e_{n}$) is called the signature of Γ. These numbers satisfy the inequality

$$
\begin{equation*}
2 g-2+\sum_{j=1}^{n}\left(1-\frac{1}{e_{j}}\right)>0 . \tag{3}
\end{equation*}
$$

Now, we shall consider the following problem: Is there any group Γ of the above type, that is contained in $S L_{2}(\boldsymbol{Q})$ and that has a given signature $\left(g ; e_{1}, \cdots, e_{n}\right)$? The first thing to be remarked here is that if Γ is arithmetic, i. e., if it is derived from some quaternion algebras Φ in the customary way, then Γ cannot be realized in $S L(\boldsymbol{Q})$. In fact, since we assume that G / Γ is compact, Φ must be a division algebra. But then, Γ can be realized only in $S L_{2}(k), k$ being some splitting field of Φ, and not in $S L_{2}(\boldsymbol{Q})$. The second remark is that if Γ is contained in $S L_{2}(\boldsymbol{Q})$, then $e_{j}(1 \leqq j \leqq n)$ must be either 2 or 3 ; cf. Lemma 1, $\S 3$. So, this is a necessary condition for the existence of the solution Γ.

Now, the purpose of the present paper is to prove that if this condition on the signature is satisfied, then there exist infinitely many non-conjugate (in G)
solutions Γ. Moreover, for a given Γ the set $\Re_{Q}(\Gamma)$ of all solutions which are isomorphic to Γ forms a dense subset in the space $\Re(\Gamma)$ of all "deformations" of Γ; cf. Theorem in §2. The proof depends on the two known results, namely, the result on the explicit generators and relations of $\rho(\Gamma)$, and the result on the deformations of Γ; cf. Weil [2].
§ 2. We shall first determine the generators and the fundamental relations of Γ. By (1) and (2) we have

$$
\begin{gather*}
A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \cdots A_{g} B_{g} A_{g}^{-1} B_{g}^{-1} C_{1} \cdots C_{n} I^{d_{0}}=E, \tag{4}\\
I^{d_{j}} C_{j}^{e_{j}}=E, \quad(1 \leqq j \leqq n) \tag{5}
\end{gather*}
$$

where $I=-E$ and $d_{j}=0$ or $1(0 \leqq j \leqq n)$.
Proposition 1. (i) If Γ does not contain the element $I=-E$, then Γ is generated by the $2 g+n$ elements $A_{1}, B_{1}, \cdots, A_{g}, B_{g}, C_{1}, \cdots, C_{n}$ and the fundamental relations among these generators are (4) and (5). In this case $d_{j}=0(0 \leqq j \leqq n)$.
(ii) If Γ contains the element $I=-E$, then Γ is generated by the $2 g+n+1$ elements $A_{1}, B_{1}, \cdots, A_{g}, B_{g}, C_{1}, \cdots, C_{n}, I$ and the fundamental relations are (4), (5) and the following relations (6), (7).

$$
\begin{align*}
& I^{2}=E \tag{6}\\
& A_{i} I A_{i}^{-1} I^{-1}=E, \quad B_{i} I B_{i}^{-1} I^{-1}=E, \quad C_{j} I C_{j}^{-1} I^{-1}=E \quad(1 \leqq i \leqq g, 1 \leqq j \leqq n) . \tag{7}
\end{align*}
$$

Proof. In the case (i), $\rho(\Gamma)$ is isomorphic to $\Gamma / \Gamma \cap\{E, I\}$ which is equal to Γ. Moreover we have $d_{j}=0(0 \leqq j \leqq n)$. This settles Proposition 1 in the case (i).

In the case (ii) we have the isomorphism

$$
\begin{equation*}
\Gamma /\{E, I\} \cong \rho(\Gamma) \tag{8}
\end{equation*}
$$

It is easy to show that Γ is generated by $2 g+n+1$ elements $A_{1}, B_{1}, \cdots, A_{g}, B_{g}$, C_{1}, \cdots, C_{n}, I. Let $\tilde{\Gamma}$ be the free group generated by $2 g+n+1$ letters $\tilde{A}_{1}, \tilde{B}_{1}$, $\cdots, \tilde{A}_{g}, \tilde{B}_{g}, \tilde{C}_{1}, \cdots, \tilde{C}_{n}, \tilde{I}$. We have a homomorphism η of $\tilde{\Gamma}$ onto Γ such that $\eta\left(\tilde{A}_{i}\right)=A_{i}, \eta\left(\widetilde{B}_{i}\right)=B_{i}, \eta\left(\widetilde{C}_{j}\right)=C_{j}, \eta(\tilde{I})=I$. Let N and \bar{N} be the kernels of η and $\rho \circ \eta$ respectively. By (8), the group N is of index 2 in \bar{N}. By the relations (1) and (2), we see that \bar{N} is a normal subgroup of $\tilde{\Gamma}$ generated by the finite set of words

$$
\left\{\tilde{A}_{1} \tilde{B}_{1} \tilde{A}_{1}^{-1} \widetilde{B}_{1}^{-1} \cdots \widetilde{A}_{g} \widetilde{B}_{g} \tilde{A}_{g}^{-1} \widetilde{B}_{g}^{-1} \tilde{C}_{1} \cdots \widetilde{C}_{n}, \tilde{I}, \widetilde{C}_{j}^{e_{j}}(1 \leqq j \leqq n)\right\}
$$

Put

$$
\begin{aligned}
& \bar{M}=\left\{\tilde{A}_{1} \tilde{B}_{1} \tilde{A}_{1}^{-1} \tilde{B}_{1}^{-1} \cdots \tilde{A}_{g} \widetilde{B}_{g} \tilde{A}_{g}^{-1} \tilde{B}_{g}^{-1} \tilde{C}_{1} \cdots \widetilde{C}_{n} \widetilde{I}^{a_{0}}, \widetilde{I}^{d_{j}} \tilde{C}_{j}^{e_{j}}, \tilde{I},(1 \leqq j \leqq n)\right\}, \\
& \mathfrak{M}=\left\{\tilde{A}_{1} \tilde{B}_{1} \tilde{A}_{1}^{-1} \tilde{B}_{1}^{-1} \cdots \tilde{A}_{g} \widetilde{B}_{g} \tilde{A}_{g}^{-1} \tilde{B}_{g}^{-1} \tilde{C}_{1} \cdots \widetilde{C}_{n} \widetilde{I}^{a_{0}}, \widetilde{I}^{d} \tilde{C}_{j}^{e_{j}}, \widetilde{I}^{2},\right. \\
& \left.\tilde{A}_{i} \tilde{I} \widetilde{A}_{i}^{-1} \widetilde{I}^{-1}, \widetilde{B}_{i} \widetilde{I}_{i}^{-1} \widetilde{I}^{-1}, \widetilde{C}_{j} \tilde{C} \widetilde{C}_{j}^{-1} \widetilde{I}^{-1}(1 \leqq i \leqq g, 1 \leqq j \leqq n)\right\} .
\end{aligned}
$$

Then N contains the normal subgroup of $\tilde{\Gamma}$ generated by the elements of \mathfrak{M}. As \bar{N} is the normal subgroup of $\tilde{\Gamma}$ generated by $\overline{\mathfrak{M}}$, we see easily that the normal subgroup of $\tilde{\Gamma}$ generated by \mathfrak{M} is of index 2 in \bar{N}. Therefore, N is generated by \mathfrak{M}.
Q. E. D.

Let φ be a representation of Γ into G, i. e., a homomorphism (as abstract groups) of Γ into G. Then φ is determined by the images of generators of Γ. In the case where Γ does not contain I, φ is determined by ($\varphi\left(A_{1}\right), \varphi\left(B_{1}\right)$, $\left.\cdots, \varphi\left(A_{g}\right), \varphi\left(B_{g}\right), \varphi\left(C_{1}\right), \cdots, \varphi\left(C_{n}\right)\right)$. Consider the case where Γ contains I. Then φ is determined by ($\left.\varphi\left(A_{1}\right), \varphi\left(B_{1}\right), \cdots, \varphi\left(A_{g}\right), \varphi\left(B_{g}\right), \varphi\left(C_{1}\right), \cdots, \varphi\left(C_{n}\right), \varphi(I)\right)$. As $\varphi(I)$ must be at most of order 2 in G by (6), $\varphi(I)$ is equal to E or I. Hence the relations in (7) are satisfied automatically. In either case, we see that the set of all representations are in one-to-one correspondence with that of all elements ($A_{1}^{*}, B_{1}^{*}, \cdots, C_{1}^{*}, \cdots, C_{n}^{*}$) of $G^{(2 g+n)}$ (resp. ($A_{1}^{*}, B_{1}^{*}, \cdots, C_{1}^{*}, \cdots, C_{n}^{*}, I^{*}$) of $G^{(2 g+n+1)}$ if Γ contains I) satisfying

$$
\begin{gather*}
A_{1}^{*} B_{1}^{*} A_{1}^{*-1} B_{1}^{*-1} \cdots A_{g}^{*} B_{g}^{*} A_{g}^{*-1} B_{g}^{*-1} C_{1}^{*} \cdots C_{n}^{*} I^{\alpha_{0}}=E \tag{*}\\
I^{*_{j}^{d j}} C_{j}^{* e_{j}}=E \quad(1 \leqq j \leqq n) \tag{5*}
\end{gather*}
$$

where $I^{*}=E$ or I.
Let $\Re^{\prime}(\Gamma)$ be the set of all representations of Γ into G. We shall identify $\Re^{\prime}(\Gamma)$ with a closed subset of $G^{(2 g+n)}$ (resp. $G^{(2 g+n+1)}$) by the above correspondence. Thus, $\Re^{\prime}(\Gamma)$ is provided with the relative topology induced by that of $G^{(2 g+n)}$ (resp. $G^{(2 g+n+1)}$). Let $\Re(\Gamma)$ be the subset of $\Re^{\prime}(\Gamma)$ consisting of all representations φ which are injective and such that $\varphi(\Gamma)$ is discrete in G with compact quotient space $G / \varphi(\Gamma)$, and let $\Re_{\bullet}(\Gamma)$ be the subset of $\Re(\Gamma)$ consisting of all φ such that $\varphi(\Gamma)$ is contained in $S L_{2}(\boldsymbol{Q})$.

We shall prove the following theorem.
Theorem. Let Γ be a discrete subg roup of G with compact quotient space G / Γ, and let $\left(g ; e_{1}, \cdots, e_{n}\right)$ be its signature.
(i) If $e_{j}>3$ for some index j, then $\Re_{Q}(\Gamma)$ is empty.
(ii) Otherwise, $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma)$ is everywhere dense in $\mathfrak{R}(\Gamma)$.

More accurately, for any element φ of $\mathfrak{N}(\Gamma)$, we can find a sequence $\left\{\varphi_{m}\right\}$ converging to φ such that φ_{m} belong to $\Re_{Q}(\Gamma)$ and that $\varphi_{m}(\Gamma)(m=1,2, \cdots)$ are not G-conjugate to one another.
§3. We shall prove this Theorem in §3-§7. We make use of the following theorem which was proved by A. Weil in [2], in the more general situation.

Theorem (A. Weil). $\mathfrak{R}(\Gamma)$ is an open subset of $\mathfrak{R}^{\prime}(\Gamma)$.
Lemma 1. If an element A of $S L_{2}(\boldsymbol{Q})$ other than $\pm E$ is of finite order, then its order as a transformation of \mathfrak{J} is equal to 2 or 3 , according as its trace
$\operatorname{tr}(A)$ is equal to 0 or ± 1 respectively.
Proof. By the assumption, the eigenvalues of A are roots of unity. Hence $\operatorname{tr}(A)$ is a rational integer whose absolute value is smaller than 2. Hence $\operatorname{tr}(A)$ is equal to 0 or ± 1. Now cosider the characteristic polynomial of A. We have $A^{2}-\operatorname{tr}(A) A+E=0$. From this we have $A^{3}+\left\{1-(\operatorname{tr}(A))^{2}\right\} A$ $+\operatorname{tr}(A) E=0$. The first equality implies that $A^{2}=-E$ if $\operatorname{tr}(A)=0$, and the second implies that $A^{3}=\mp E$ if $\operatorname{tr}(A)= \pm 1$. This proves Lemma 1. Q.E.D.

By the above lemma the case (i) in our theorem is proved.
§4. From now on, we may assume that e_{j} is equal to 2 or 3 for all $j(1 \leqq j \leqq n)$ if $n \geqq 1$.

Lemma 2. (i) $S L_{2}(\boldsymbol{Q})$ is dense in $S L_{2}(\boldsymbol{R})$.
(ii) Let t be an arbitrary rational number. The set $\left\{A \in S L_{2}(\boldsymbol{Q}) \mid \operatorname{tr}(A)=t\right\}$ is everywhere dense in the set $\left\{A \in S L_{2}(\boldsymbol{R}) \mid \operatorname{tr}(A)=t\right\}$.
(iii) The set $\left\{A \in S L_{2}(\boldsymbol{Q}) \mid(\operatorname{tr}(A))^{2}-4\right.$ is a square in $\left.\boldsymbol{Q}\right\}$ is everywhere dense in the set of all hyperbolic elements of G.

Since the proof of this lemma is easy, we omit it here.
Now we distinguish the two cases of $g \geqq 1$ and $g=0$. Let us consider first the case $g \geqq 1$.

Proposition 2. Suppose that an element φ^{\prime} of $\Re(\Gamma)$ differs from another φ only by an inner automorphism of G. Then the assertion (ii) of our theorem is true for φ^{\prime} if and only if it is true for φ.

Proof. By the assumption, there exists an element A of G such that $\varphi^{\prime}=\operatorname{Int}(A) \circ \varphi$, where $\operatorname{Int}(A)$ denotes the inner automorphism of G defined by A. Let $\left\{\varphi_{m}\right\}$ be a sequence converging to φ such that $\varphi_{m}(m=1,2, \cdots)$ belong to $\Re_{\boldsymbol{Q}}(\Gamma)$ and that $\varphi_{m}(\Gamma)(m=1,2, \cdots)$ are not G-conjugate to one another. Then the sequence $\left\{\operatorname{Int}(A) \circ \varphi_{m}\right\}$ converges to φ^{\prime}. Take a sequence $\left\{A_{m}\right\}$ in $S L_{2}(\boldsymbol{Q})$ converging to A. Then $\left\{\operatorname{Int}\left(A_{m}\right) \circ \varphi_{m}\right\}$ converges to φ^{\prime}. The converse part is obtained merely by changing φ and φ^{\prime}.
Q.E.D.

To prove the theorem, we may assume that φ is the identity map (since we may replace $\varphi(\Gamma)$ by Γ). And we may assume by Proposition 2 that $B_{1}=\left(b_{i j}\right)$ is the diagonal matrix i. e. $b_{11}=1 / b_{22}=b\left(b^{2} \neq 1\right), b_{12}=b_{21}=0$. Now put

$$
\begin{equation*}
D=I^{d_{0}} C_{n}^{-1} C_{n-1}^{-1} \cdots C_{1}^{-1} B_{g} A_{g} B_{g}^{-1} A_{g}^{-1} \cdots B_{2} A_{2} B_{2}^{-1} A_{2}^{-1} . \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
A_{1} B_{1} A_{1}^{-1} B_{1}^{-1}=D . \tag{10}
\end{equation*}
$$

Proposition 3. Let $A_{1}=\left(a_{i j}\right), B_{1}=\left(b_{i j}\right)$ and $D=\left(d_{i j}\right)=A_{1} B_{1} A_{1}^{-1} B_{1}^{-1}$ be as above. Then none of $a_{12}, a_{21}, d_{12}, d_{21}$ are equal to 0 .

Proof. First suppose that $a_{12}=0$. Then A_{1} fixes the origin of the real
axis. By our assumption, B_{1} fixes the origin and the point at infinity. If $a_{21} \neq 0$, then $A_{1} B_{1} A_{1}^{-1} B_{1}^{-1}$ is a parabolic element of G, fixing the origin. This. is impossible because Γ contains no parabolic elements. Therefore a_{21} must be equal to 0 . Hence A_{1} commutes with B_{1}. It follows from this that for any element φ of $\mathfrak{R}(\Gamma), \varphi\left(A_{1}\right)$ commutes with $\varphi\left(B_{1}\right)$. This is a contradiction because we can easily construct a Fuchsian group $\varphi(\Gamma)$ with signature ($g ; e_{1}, \cdots, e_{n}$) such that $\varphi\left(A_{1}\right)$ does not commute with $\varphi\left(B_{1}\right)$. (cf. [1] pp. 234-239). In the case $a_{21}=0$ we are led to a contradiction in the same way as above.

Now suppose that $d_{12}=0$. Then D must be a diagonal matrix by applying the above argument for the matrix $D B_{1} D^{-1} B_{1}^{-1}$. But by the relation $D=A_{1} B_{1} A_{1}^{-1} B_{1}^{-1}$ we have $a_{11} a_{12}=0$ and $a_{21} a_{22}=0$. Since $a_{12} a_{21} \neq 0$, we obtain $a_{11}=a_{22}=0$. Hence $\operatorname{tr}\left(A_{1}\right)=0$. This shows that A_{1} is an elliptic element of G, which is impossible.
Q.E.D.

Let $X=\left(x_{i j}\right), Y=\left(y_{i j}\right)$ and $Z=\left(z_{i j}\right)$ be variable matrices defined on the: neighbourhoods of A_{1}, B_{1} and D respectively. Consider the relation

$$
\begin{equation*}
X Y X^{-1} Y^{-1}=Z \tag{11}
\end{equation*}
$$

where Y is a lower triangular matrix: $y_{12}=0$.
Now we shall show that all coefficients of X and Y can be expressed as. rational functions of x_{12}, y_{11} and $z_{i j}(1 \leqq i, j \leqq 4)$. If we fix Y and Z, (11) is. equivalent to the relations

$$
\begin{align*}
& X Y-Z Y X=0 \tag{12}\\
& x_{12} x_{22}-x_{12} x_{21}=1 \tag{13}
\end{align*}
$$

Furthermore, (12) can be expressed as a linear equation:

$$
\left(E \otimes^{t} Y-Z Y \otimes E\right)\left(\begin{array}{c}
x_{11} \tag{14}\\
x_{12} \\
x_{21} \\
x_{22}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Proposition 4. If Y and Z belong to sufficiently small neighbourhoods of B_{1} and D respectively in G, satisfying

$$
\begin{equation*}
\operatorname{tr}(Y)=\operatorname{tr}(Z Y) \tag{15}
\end{equation*}
$$

then the matrix $E \otimes^{t} Y-Z Y \otimes E$ is of rank 2.
Proof. We have

$$
\begin{align*}
& y_{11} y_{22}=1 \tag{16}\\
& z_{11} z_{22}-z_{12} z_{21}=1 \tag{17}
\end{align*}
$$

The condition (15) is equivalent to

$$
\begin{equation*}
\left(z_{11}-1\right) y_{11}+z_{12} y_{21}+\left(z_{22}-1\right) y_{22}=0 \tag{18}
\end{equation*}
$$

Since none of $b_{11}, b_{22}, b_{11}-b_{22}, d_{12}$ and d_{21} are equal to 0 , we may assume that none of $y_{11}, y_{22}, y_{11}-y_{22}, z_{12}$ and z_{21} are equal to 0 . By (18), the matrix $E \otimes^{t} Y$ $-Z Y \otimes E$ is explicitly given by

$$
\left(\begin{array}{ccccc}
\left(z_{22}-1\right) y_{22} & , & y_{21} & , & -z_{12} y_{22}, \tag{19}\\
0 & , & -y_{11}+z_{22} y_{22}, & 0 & 0 \\
-z_{21} y_{11}-z_{22} y_{21}, & 0 & , & -y_{11}-z_{22} y_{22}, & y_{21} \\
0 & , & -z_{21} y_{11}-z_{22} y_{21}, & 0 & \left(1-z_{22}\right) y_{22}
\end{array}\right)
$$

Let $\boldsymbol{a}_{i}(1 \leqq i \leqq 4)$ be the row vectors of the matrix of (19). As $z_{12} y_{22} \neq 0$, two vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ are linearly independent. By using (17) and (18), we obtain the following expressions,

$$
\begin{aligned}
& \boldsymbol{a}_{3}=\frac{y_{11}-z_{22} y_{22}}{-z_{12} y_{22}} \boldsymbol{a}_{1}+\frac{y_{21}}{-z_{12} y_{22}} \boldsymbol{a}_{2}, \\
& \boldsymbol{a}_{4}=\frac{1-z_{22}}{-z_{12}} \boldsymbol{a}_{2} .
\end{aligned}
$$

This proves Proposition 4 ,
Q. E. D.

By (14) and (19) we obtain

$$
\begin{align*}
& x_{21}=\frac{z_{22}-1}{z_{12}} x_{11}+\frac{y_{11} y_{21}}{z_{12}} x_{12} \tag{20}\\
& x_{22}=\frac{-y_{11}^{2}+z_{22}}{z_{12}} x_{12} \tag{21}
\end{align*}
$$

Using the relations (13), (20) and (21), we obtain

$$
\begin{equation*}
x_{11}=\frac{y_{11} y_{21}}{1-y_{11}^{2}} x_{12}+\frac{z_{12}}{1-y_{11}^{2}} \frac{1}{x_{12}} \tag{22}
\end{equation*}
$$

where x_{12} varies on some neighbourhood of a_{12} which is different from 0 by Proposition 3.

On the other hand, by (16) and (18) we obtain the following expressions;

$$
Y=\left(\begin{array}{cc}
y_{11} & ,
\end{array} \begin{array}{c}
0 \tag{23}\\
\frac{1-z_{11}}{z_{12}} y_{11}+\frac{1-z_{22}}{z_{12}} \frac{1}{y_{11}},
\end{array} \frac{1}{y_{11}}\right)=g\left(y_{11}, Z\right)
$$

and

$$
X=\left(\begin{array}{lc}
\frac{y_{11} y_{21}}{1-y_{11}^{2}} x_{12}+\frac{z_{12}}{1-y_{11}^{2}} \frac{1}{x_{12}} & , \tag{24}\\
x_{12} \\
\frac{\left(z_{22}-y_{11}^{2}\right) y_{11} y_{21}}{z_{12}\left(1-y_{11}^{2}\right)} x_{12}+\frac{z_{22}-1}{1-y_{11}^{2}} \frac{1}{x_{12}}, & \frac{z_{22}-y_{11}^{2}}{z_{12}} x_{12}
\end{array}\right)=f\left(x_{12}, y_{11}, Z\right)
$$

Now we turn to the proof of our theorem. Let $\mathfrak{A}_{i}, \mathfrak{B}_{i}(1 \leqq i \leqq g)$ and
$\mathbb{S}_{j}(1 \leqq j \leqq n)$ be arbitrarily given open neighbourhoods of A_{i}, B_{i}, C_{j} respectively. We must prove that the intersection $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma) \cap \mathfrak{R}_{1} \times \mathfrak{B}_{1} \times \cdots \times \mathfrak{R}_{g} \times \mathfrak{B}_{g} \times \mathfrak{C}_{1} \times$ $\cdots \times \mathfrak{๒}_{n} \times\{I\}$ is non-empty in the case where Γ contains I (resp. the intersection $\mathfrak{R}_{\mathbf{g}}(\Gamma) \cap \mathfrak{A}_{1} \times \mathfrak{F}_{1} \times \cdots \times \mathfrak{A}_{g} \times \mathfrak{B}_{g} \times \mathfrak{C}_{1} \times \cdots \times \mathfrak{C}_{n}$ is non-empty in the case where Γ does not contain I). By the above quoted Theorem (A. Weil), we may assume that

$$
\begin{aligned}
& \mathfrak{R}^{\prime}(\Gamma) \cap \mathfrak{A}_{1} \times \mathfrak{B}_{1} \times \cdots \times \mathfrak{A}_{g} \times \mathfrak{B}_{g} \times \mathfrak{C}_{1} \times \cdots \times \mathfrak{C}_{n} \times\{I\} \\
& \quad \quad\left(\text { resp. } \mathfrak{R}^{\prime}(\Gamma) \cap \mathfrak{A}_{1} \times \mathfrak{B}_{1} \times \cdots \times \mathfrak{H}_{g} \times \mathfrak{B}_{g} \times \mathfrak{C}_{1} \times \cdots \times \mathfrak{C}_{n}\right)
\end{aligned}
$$

is contained in $\mathfrak{R}(\Gamma)$. By (23) and (24) there exist neighbourhoods $\mathfrak{a}_{12}, \mathfrak{b}$ and \mathfrak{D} of a_{12}, b_{11} and D respectively such that $f\left(\mathfrak{a}_{12}, \mathfrak{b}, \mathfrak{D}\right) \subset \mathfrak{A}_{1}$ and $g(\mathfrak{b}, \mathfrak{D}) \subset \mathfrak{B}_{1}$. On the other hand, if we consider the following map h defined on a neighbourhood of ($A_{2}, B_{2}, \cdots, A_{g}, B_{g}, C_{1}, \cdots, C_{n}$):
$Z=I^{d_{0}} W_{n}^{-1} \cdots W_{1}^{-1} Y_{g} X_{g} Y_{g}^{-1} x_{g}^{-1} \cdots Y_{2} X_{2} Y_{2}^{-1} X_{2}^{-1}=h\left(X_{2}, Y_{2}, \cdots, W_{1}, \cdots, W_{n}\right)$,
we can find a neighbourhood $\mathfrak{H}_{2}^{\prime} \times \mathfrak{B}_{2}^{\prime} \times \cdots \times \mathfrak{H}_{g}^{\prime} \times \mathfrak{B}_{g}^{\prime} \times \mathfrak{F}_{1}^{\prime} \times \cdots \times \mathfrak{G}_{n}^{\prime}$ of $\left(A_{2}, B_{2}, \cdots\right.$, $A_{g}, B_{g}, C_{1}, \cdots, C_{n}$) contained in $\mathfrak{U}_{2} \times \mathfrak{B}_{2} \times \cdots \times \mathfrak{R}_{g} \times \mathfrak{B}_{g} \times \mathfrak{F}_{1} \times \cdots \times \mathfrak{®}_{n}$ such that $h\left(\mathfrak{H}_{2}^{\prime}, \mathfrak{B}_{2}^{\prime}, \cdots, \mathfrak{X}_{g}^{\prime}, \mathfrak{B}_{g}^{\prime}, \mathfrak{C}_{1}^{\prime}, \cdots, \mathfrak{S}_{n}^{\prime}\right) \subset \mathfrak{D}$. Take arbitrary elements $A_{i}^{(0)}, B_{i}^{(0)}$ and $C_{j}^{(0)}$ from the intersection $\mathfrak{U}_{i}^{\prime} \cap S L(\boldsymbol{Q}), \mathfrak{F}_{i}^{\prime} \cap S L(\boldsymbol{Q})$ and $\mathbb{C}_{j}^{\prime} \cap S L(\boldsymbol{Q})$ such that $\operatorname{tr}\left(C_{j}^{(0)}\right)$ $=\operatorname{tr}\left(C_{j}\right)$ respectively $(2 \leqq i \leqq g, 1 \leqq j \leqq n)$. This is possible by Lemma 2. Furthermore, take rational numbers $a_{12}^{(0)}$ and $b_{11}^{(0)}$ from a_{12} and \mathfrak{b} respectively, and put

$$
\begin{aligned}
& D^{(0)}=h\left(A_{2}^{(0)}, B_{2}^{(0)}, \cdots, A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdots, C_{n}^{(0)}\right), \\
& A_{1}^{(0)}=f\left(a_{12}^{(0)}, b_{11}^{(0)}, D^{(0)}\right), \\
& B_{1}^{(0)}=g\left(b_{11}^{(0)}, D^{(0)}\right) .
\end{aligned}
$$

Then the representation φ_{0} of Γ defined by ($A_{1}, B_{1}, \cdots, A_{g}, B_{g}, C_{1}, \cdots, C_{n}, I$) $\mapsto\left(A_{1}^{(0)}, B_{1}^{(0)}, \cdots, A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdots, C_{n}^{(0)}, I\right)$ in the case where Γ contains I (resp. $\left(A_{1}, B_{1}, \cdots, A_{g}, B_{g}, C_{1}, \cdots, C_{n}\right) \mapsto\left(A_{1}^{(0)}, B_{1}^{(0)}, \cdots, A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdots, C_{n}^{(0)}\right)$ in the case where Γ does not contain I) is contained in $\mathfrak{R}_{\boldsymbol{g}}(\Gamma) \cap \mathfrak{H}_{1} \times \mathfrak{B}_{1} \times \cdots \times \mathfrak{A}_{g} \times \mathfrak{B}_{g} \times$ $\mathfrak{C}_{1} \times \cdots \times \mathfrak{C}_{n} \times\{I\} \quad$ (resp. $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma) \cap \mathfrak{H}_{1} \times \mathfrak{B}_{1} \times \cdots \times \mathfrak{H}_{g} \times \mathfrak{B}_{g} \times \mathfrak{E}_{1} \times \cdots \times \mathfrak{C}_{n}$). This proves that $\Re_{Q}(\Gamma)$ is everywhere dense in $\Re(\Gamma)$, in the case of $g \geqq 1$.
§5. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two elements of G. Consider variable matrices $X=\left(x_{i j}\right)$ and $Y=\left(y_{i j}\right)$ of G defined on some neighbourhoods of A and B respectively. We impose the condition,

$$
\begin{equation*}
\operatorname{tr}(Y)=\operatorname{tr}(B), \tag{26}
\end{equation*}
$$

on Y. Put $v_{0}=\operatorname{tr}(B), w_{0}=\operatorname{tr}(A B)$ and $w=\operatorname{tr}(X Y)$. Then we have

$$
\begin{align*}
& y_{11}+y_{22}=v_{0} \tag{27}\\
& x_{11} y_{11}+x_{12} y_{21}+x_{21} y_{12}+x_{22} y_{22}=w \tag{28}\\
& y_{11} y_{22}-y_{12} y_{21}=1 . \tag{29}
\end{align*}
$$

By (27), (28) and (29), we have

$$
\begin{equation*}
y_{22}=v_{0}-y_{11}, \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{12} y_{21}+x_{21} y_{12}=\left(x_{22}-x_{11}\right) y_{11}+w-x_{22} v_{0}, \tag{31}\\
& x_{12} y_{21} \cdot x_{21} y_{12}=\left(1-x_{11} x_{22}\right)\left(y_{11}^{2}-v_{0} y_{11}+1\right) . \tag{32}
\end{align*}
$$

The discriminant of the quadratic equation whose roots are $x_{12} y_{21}$ and $x_{21} y_{12}$, is given by the following polynomial,

$$
\begin{align*}
d\left(y_{11}, w, X\right)= & \left\{\left(x_{11}+x_{22}\right)^{2}-4\right\} y_{11}^{2} \\
& +2\left\{\left(x_{22}-x_{11}\right)\left(w-x_{22} v_{0}\right)+2\left(1-x_{11} x_{22}\right) v_{0}\right\} y_{11} \\
& +\left(w-x_{22} v_{0}\right)^{2}+4\left(x_{11} x_{22}-1\right) \tag{33}
\end{align*}
$$

Now assume that

$$
\begin{align*}
& a_{12} a_{21} \neq 0, \tag{34}\\
& a_{12} b_{21} \neq a_{21} b_{12} . \tag{35}
\end{align*}
$$

Then we have $d\left(b_{11}, w_{0}, A\right)>0$. Hence we have $d\left(y_{11}, w, X\right)>0$ on some neighbourhood of (b_{11}, w_{0}, A).

Let $\left(y_{11}, w, X\right)$ be sufficiently near $\left(b_{11}, w_{0}, A\right)$ so that $x_{12} x_{21} \neq 0$ and that $d\left(y_{11}, w, X\right)>0$. Then we have the following expression,

$$
\begin{align*}
& y_{12}=\frac{\left(x_{22}-x_{11}\right) y_{11}+w-x_{22} v_{0} \pm \sqrt{d\left(y_{11}, w, X\right)}}{2 x_{21}}, \tag{36}\\
& y_{21}=\frac{\left(x_{22}-x_{11}\right) y_{11}+w-x_{22} v_{0} \mp \sqrt{d\left(y_{11}, w, X\right)}}{2 x_{12}}, \tag{37}
\end{align*}
$$

where the $\operatorname{sign} \pm$ in (36) and (37) is determined by the one at (b_{11}, w_{0}, A).
Therefore, under the assumptions (34) and (35), we obtain the following expression,

$$
\begin{equation*}
Y=f_{A, B}\left(y_{11}, w, X\right) \tag{38}
\end{equation*}
$$

where $f_{A, B}$ is a matrix valued function given explicitly by (30), (36) and (37), which is defined on some neighbourhood of (b_{11}, w_{0}, A).

REMARK. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two elements of G which are elliptic or hyperbolic. Let $\left\{\xi_{A}, \eta_{A}\right\}$ and $\left\{\xi_{B}, \eta_{B}\right\}$ be the sets of the fixed points of A and B respectively. Assume that

$$
\begin{equation*}
\left\{\xi_{A}, \eta_{A}\right\} \neq\left\{\xi_{B}, \eta_{B}\right\} \tag{39}
\end{equation*}
$$

Now we shall show that we can find an element Q of G such that the conjugate matrices $A^{\prime}=Q A Q^{-1}, B^{\prime}=Q B Q^{-1}$ satisfy the conditions (34) and (35). Conjugating A and B by a suitable element of G, we may assume that $a_{12} a_{21} \neq 0, b_{12} b_{21} \neq 0$.

Put $A^{\prime}=T A T^{-1}=\left(a_{i j}^{\prime}\right), B^{\prime}=T B T^{-1}=\left(b_{i j}^{\prime}\right)$, where $T=\left(t_{i j}\right) ; t_{11}=t_{22}=1, t_{21}=0$, $t_{12}=\alpha$. Then, for the sets $\left\{\xi_{A^{\prime}}, \eta_{A^{\prime}}\right\},\left\{\xi_{B^{\prime}}, \eta_{B^{\prime}}\right\}$ of the fixed points of A^{\prime}, B^{\prime} respectively, we have

$$
\begin{array}{ll}
\xi_{A^{\prime}}=\xi_{A}+\alpha, & \eta_{A^{\prime}}=\eta_{A}+\alpha, \\
\xi_{B^{\prime}}=\xi_{B}+\alpha, & \eta_{B^{\prime}}=\eta_{B}+\alpha .
\end{array}
$$

Since $a_{12} / a_{21}=-\xi_{A} \cdot \eta_{A}$, and $b_{12} / b_{21}=-\xi_{B} \cdot \eta_{B}$, in view of (39) we can find a real number α such that $a_{12}^{\prime} a_{21}^{\prime} \neq 0, b_{12}^{\prime} b_{21}^{\prime} \neq 0, \quad a_{12}^{\prime} / a_{21}^{\prime} \neq b_{12}^{\prime} / b_{21}^{\prime}$.
§6. Let us consider the case of $g=0$. By the inequality (3) we see that $n \geqq 3$. If $n=3$, then (3) is equivalent to the following inequality,

$$
1 / e_{1}+1 / e_{2}+1 / e_{3}<1
$$

Hence $e_{j}>3$ for some $j(1 \leqq j \leqq 3)$. In view of Lemma 1, we see that there exist no triangular groups Γ contained in $S L_{2}(\boldsymbol{Q})$ with compact quotient space G / Γ. Hence we may assume that $n \geqq 4$.

Let us note again the relations (4) and (5):

$$
\begin{gather*}
C_{1} C_{2} \cdots C_{n} I^{d_{0}} E, \tag{40}\\
C_{j}^{e_{j}}=I^{d_{j}} \quad(1 \leqq j \leqq n), \tag{41}
\end{gather*}
$$

where $I=-E, d_{j}=0$ or $1, e_{j}=2$ or 3 .
Put

$$
\begin{equation*}
D_{j}=C_{1} C_{2} \cdots C_{j} \quad(2 \leqq j \leqq n-2) . \tag{42}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& C_{1} C_{2}=D_{2}, \tag{43}\\
& D_{j-1} C_{j}=D_{j} \quad(3 \leqq j \leqq n-2), \tag{44}\\
& D_{n-2} C_{n-1} C_{n}=I^{d_{0}} . \tag{45}
\end{align*}
$$

Proposition 5. The notations being as above, the matrices $D_{j}(2 \leqq j \leqq n-2)$ are hyperbolic.

Proof. Since $C_{j}(1 \leqq j \leqq n)$ have the different fixed points, we see that $D_{2} \neq \pm E, D_{n-2} \neq \pm E$. Now suppose that D_{2} is elliptic. Then D_{2} is Γ-conjugate to $\pm C_{k}^{\nu}$ for some index k where $\nu=1$ or -1 . Now we shall show that $\left\{D_{n-2}\right.$, $\left.C_{n-1}\right\}$ satisfy the condition (39) in $\S 5$. If D_{n-2} is hyperbolic, this is obvious. Suppose that D_{n-2} is elliptic and that the fixed point of D_{n-2} coincide with the fixed point of C_{n-1}. Then we have

$$
D_{n-2}= \pm C_{n-1}^{\lambda}, \quad \text { where } \lambda=1 \text { or }-1 .
$$

Hence we have $C_{n}= \pm C_{n-1}^{-\lambda-1}$, which is impossible.
$\left\{C_{1}, C_{2}\right\}$ also satisfy the condition (39) in $\S 5$. Therefore, by the remark in $\S 5$, taking a conjugate of Γ, we may assume that $\left\{D_{n-2}, C_{n-1}\right\}$ and $\left\{C_{1}, C_{2}\right\}$ satisfy the conditions (34) and (35) for $\{A, B\}$ in $\S 5$. By applying the argument in $\S 5$, we can find three elements $C_{j}^{\prime}(j=2, n-1, n)$ sufficiently near C_{j} ($j=2, n-1, n$) respectively such that

$$
\operatorname{tr}\left(C_{j}^{\prime}\right)=\operatorname{tr}\left(C_{j}\right) \quad(j=2, n-2, n),
$$

and that

$$
\begin{equation*}
\operatorname{tr}\left(C_{1} C_{2}^{\prime}\right) \neq \pm \operatorname{tr}\left(C_{1} C_{2}\right), \tag{46}
\end{equation*}
$$

and that

$$
C_{1} C_{2}^{\prime} C_{3} \cdots C_{n-2} C_{n-1}^{\prime} C_{n}^{\prime} I^{d_{0}}=E
$$

By the Theorem (A. Weil), the representation φ determined by (C_{1}, C_{2}, C_{3}, $\left.\cdots, C_{n-2}, C_{n-1}, C_{n}\right) \mapsto\left(C_{1}, C_{2}^{\prime}, C_{3}, \cdots, C_{n-2}, C_{n-1}^{\prime}, C_{n}^{\prime}\right)$ can be taken to be contained in $\mathfrak{R}(\Gamma)$. Put $D_{2}^{\prime}=C_{1} C_{2}^{\prime}$. Then D_{2}^{\prime} is the image $\varphi\left(D_{2}\right)$ of D_{2} under φ. Hence, D_{2}^{\prime} is $\varphi(\Gamma)$-conjugate to $\pm \varphi\left(C_{k}\right)^{\nu}$. Therefore, we have $\operatorname{tr}\left(D_{2}^{\prime}\right)= \pm \operatorname{tr}\left(\varphi\left(C_{k}\right)^{\nu}\right)$ $= \pm \operatorname{tr}\left(C_{k}^{\nu}\right)= \pm \operatorname{tr}\left(D_{2}\right)$, which is impossible by (46). This proves that D_{2} is hyperbolic. In the same way, we see that D_{n-2} is also hyperbolic.

Assume now that $D_{2}, D_{3}, \cdots, D_{j-1}$ are hyperbolic. We shall show that D_{j} is also hyperbolic. Since $D_{j-1}=D_{j} C_{j}^{-1}$ is hyperbolic, we see that $D_{j} \neq \pm E$. Suppose that D_{j} is elliptic. Since $\left\{D_{j-1}, C_{j}\right\}$ and $\left\{D_{n-2}, C_{n-1}\right\}$ satisfy the condition (39) in $\S 5$, by taking a conjugate of Γ, we may assume that $\left\{D_{j-1}, C_{j}\right\}$ and $\left\{D_{n-2}, C_{n-1}\right\}$ satisfy the conditions (34) and (35). Therefore, by the argument in $\S 5$, we can find three elements $C_{i}^{\prime}(i=j, n-1, n)$ sufficiently near C_{i} such that $\operatorname{tr}\left(C_{i}^{\prime}\right)=\operatorname{tr}\left(C_{i}\right), \operatorname{tr}\left(D_{j-1} C_{j}^{\prime}\right) \neq \pm \operatorname{tr}\left(D_{j-1} C_{j}\right)$ and that

$$
C_{1} C_{2} \cdots C_{j-1} C_{j}^{\prime} C_{j+1} \cdots C_{n-2} C_{n-1}^{\prime} C_{n}^{\prime} I^{d_{0}}=E .
$$

We are led to the contradiction by the same argument as in the case of D_{2}. This proves that D_{j} is hyperbolic.
Q. E. D.

Proposition 6. Let $A=\left(a_{i j}\right)$ be a hyperbolic element of G and let $B=\left(b_{i j}\right)$ be an elliptic element such that $\operatorname{tr}(B)=0$ or ± 1. Assume that $\{A, B\}$ satisfy the conditions (34) and (35) in §5. Then, for an arbitrary neighbourhood \mathfrak{B} of B, there exist a neighbourhood $W \times \mathfrak{Y}$ of $(\operatorname{tr}(A B), A)$ satisfying the following condition,
(C): For any point $\left(r, A^{(0)}\right)$ of $(W \times \mathfrak{Q}) \cap\left(\boldsymbol{Q} \times S L_{2}(\boldsymbol{Q})\right)$ such that $\operatorname{tr}\left(A^{(0)}\right)^{2}-4$ is a non-zero square in \boldsymbol{Q}, we can find an element $B^{(0)}$ in $\mathfrak{B} \cap S L_{2}(\boldsymbol{Q})$ such that $\operatorname{tr}\left(B^{(0)}\right)=\operatorname{tr}(B)$ and that $\operatorname{tr}\left(A^{(0)} B^{(0)}\right)=r$.

Proof. We may use the notations in $\S 5$ and we can apply the argument there. Since $f_{A, B}\left(y_{11}, w, X\right)$ and $d\left(y_{11}, w, X\right)$ are continuous, we can take a
neighbourhood $\mathfrak{b}_{11} \times W \times \mathfrak{A}$ of $\left(b_{11}, w_{0}, A\right)$ such that $f_{A, B}\left(\mathfrak{b}_{11}, W, \mathfrak{Y}\right) \subset \mathfrak{B}$ and that

$$
d\left(y_{11}, w, X\right)>0 \quad \text { on } \quad \mathfrak{b}_{11} \times W \times \mathfrak{A} .
$$

We may assume that $\operatorname{tr}(X)^{2}-4>0$ for any $X \in \mathfrak{N}$. Now, take any rational number r in W and any matrix $A^{(0)}$ in $\mathfrak{A} \cap S L_{2}(\boldsymbol{Q})$ such that $\operatorname{tr}\left(A^{(0)}\right)^{2}-4$ is a square in \boldsymbol{Q}. Then, in view of (33), $d\left(y_{11}, r, A^{(0)}\right)$ is a polynomial of degree 2 with rational coefficients. Moreover, by the assumption on $A^{(0)}$, the coefficient of the highest term is a non-zero square in \boldsymbol{Q}. Since $d\left(y_{11}, r, A^{(0)}\right)>0$ on \mathfrak{b}_{11}, we can find a rational number $b_{11}^{(0)}$ in \mathfrak{b}_{11} such that $d\left(b_{11}^{(0)}, r, A^{(0)}\right)$ is a square in \boldsymbol{Q}. Put $B^{(0)}=f_{A, B}\left(b_{11}^{(0)}, r, A^{(0)}\right)$. Then by (36) and (37) we see that $B^{(0)}$ is contained in $\mathfrak{B} \cap S L_{2}(\boldsymbol{Q})$ and that $\operatorname{tr}\left(B^{(0)}\right)=\operatorname{tr}(B), \operatorname{tr}\left(A^{(0)} B^{(0)}\right)=r$. Q.E.D.

Now we turn to the proof of our theorem. Suppose that an arbitrary neighbourhood $\mathbb{E}_{1} \times \cdots \times \mathbb{E}_{n}$ of (C_{1}, \cdots, C_{n}) is given. We may assume that $\mathfrak{R}^{\prime}(\Gamma) \cap\left(\mathfrak{C}_{1} \times \cdots \times \mathfrak{C}_{n} \times\{I\}\right) \subset \mathfrak{R}(\Gamma)$ if Γ contains I (resp. $\mathfrak{R}^{\prime}(\Gamma) \cap\left(\mathfrak{C}_{1} \times \mathfrak{F}_{2} \times \cdots\right.$ $\times\left(\mathscr{F}_{n}\right) \subset \mathfrak{R}(\Gamma)$ if Γ does not contain $\left.I\right)$.

Since we have shown that $D_{j}(2 \leqq j \leqq n-2)$ are hyperbolic, we see that $\left\{D_{2}, C_{2}^{-1}\right\},\left\{D_{2}, C_{3}\right\}, \cdots,\left\{D_{n-2}, C_{n-1}\right\}$ satisfy the condition (39) in $\S 5$. Therefore, by the remark of $\S 5$, taking a conjugate of Γ, we may assume that $\left\{D_{2}, C_{2}^{-1}\right\}$, $\left\{D_{2}, C_{3}\right\}, \cdots,\left\{D_{n-2}, C_{n-1}\right\}$ satisfy the conditions (34) and (35). Now we can apply Proposition 6 to these pairs of matrices.

Let \mathfrak{D}_{n-2} and $\mathbb{E}_{n-1}^{\prime}$ be the neighbourhoods of D_{n-2} and C_{n-1} respectively such that $\mathfrak{D}_{n-2} \cdot \mathfrak{C}_{n-1}^{\prime} \subset \mathbb{C}_{n}^{-1} I^{d_{0}}$ and that $\mathfrak{C}_{n-1}^{\prime} \subset \mathfrak{C}_{n-1}$. Applying Proposition 6 to $\left\{D_{n-2}, C_{n-1} ; \mathfrak{E}_{n-1}^{\prime}\right\}$, we can find a neighbourhood $W_{n} \times \mathfrak{D}_{n-2}^{\prime}$ of $\left(\operatorname{tr}\left(C_{n}^{-1} I^{d_{0}}\right)\right.$, D_{n-2}) satisfying the condition (C) for $\mathbb{C}_{n-1}^{\prime}$ in Proposition 6. Moreover we may take $\mathfrak{D}_{n-2}^{\prime}$ so that $\mathfrak{D}_{n-2}^{\prime} \subset \mathfrak{D}_{n-2}$. Hence we have

$$
\begin{equation*}
\mathfrak{D}_{n-2}^{\prime} \cdot \mathfrak{C}_{n-1}^{\prime} \subset \mathfrak{C}_{n}^{-1} I^{d_{0}} . \tag{47}
\end{equation*}
$$

Let \mathfrak{D}_{n-3} and $\mathfrak{๒}_{n-2}^{\prime}$ be the neighbourhoods of D_{n-3} and C_{n-2} respectively such that $\mathfrak{D}_{n-3} \cdot \mathbb{C}_{n-2}^{\prime} \subset \mathfrak{D}_{n-2}^{\prime}$ and that $\mathbb{C}_{n-2}^{\prime} \subset \mathbb{C}_{n-2}$. Applying Proposition 6 to $\left\{D_{n-3}, C_{n-2} ; \mathfrak{๒}_{n-2}^{\prime}\right\}$, we can find a neighbourhood $W_{n-2} \times \mathfrak{D}_{n-3}^{\prime}$ of $\left(\operatorname{tr}\left(D_{n-2}\right), D_{n-3}\right)$ satisfying the condition (C) for $\mathfrak{C}_{n-2}^{\prime}$ in Proposition 6, We may take $\mathfrak{D}_{n-3}^{\prime}$ so that

$$
\begin{equation*}
\mathfrak{D}_{n-3}^{\prime} \cdot \mathfrak{๒}_{n-2}^{\prime} \subset \mathfrak{D}_{n-2}^{\prime} . \tag{48}
\end{equation*}
$$

Repeating the above argument, we can find the neighbourhoods $\mathfrak{G}_{j+1}^{\prime}, W_{j+1} \times \mathfrak{D}_{j}^{\prime}$ of $C_{j+1},\left(\operatorname{tr}\left(D_{j+1}\right), D_{j}\right)$ respectively such that $W_{j+1} \times \mathfrak{D}_{j}^{\prime}$ satisfy the condition (C) for \mathbb{C}_{j+1} in Proposition 6, and that

$$
\begin{equation*}
\mathfrak{D}_{j}^{\prime} \cdot \mathfrak{C}_{j+1}^{\prime} \subset \mathfrak{D}_{j+1}^{\prime}, \quad \mathfrak{C}_{j+1}^{\prime} \subset \mathfrak{C}_{j+1}(3 \leqq j \leqq n-2) \tag{49}
\end{equation*}
$$

Finally, let $\mathfrak{D}_{2}, \mathfrak{C}_{2}^{\prime}$ and $\mathfrak{C}_{3}^{\prime}$ be the neighbourhoods of D_{2}, C_{2} and C_{3} respectively such that

$$
\begin{gathered}
\mathfrak{D}_{2} \cdot \mathfrak{\Im}_{2}^{\prime-1} \subset \mathfrak{\Im}_{1}, \quad \mathfrak{D}_{2} \cdot \mathfrak{\Im}_{3}^{\prime} \subset \mathfrak{D}_{3}^{\prime}, \\
\mathfrak{5}_{2}^{\prime} \subset \mathfrak{F}_{2}, \quad \mathfrak{\Im}_{3}^{\prime} \subset \mathfrak{\Im}_{3} .
\end{gathered}
$$

Then, by Proposition 6 we can find the neighbourhoods $\mathfrak{D}_{2}^{\prime}, W_{1}$ and W_{3} of $D_{2}, \operatorname{tr}\left(C_{1}\right)$ and $\operatorname{tr}\left(D_{3}\right)$ respectively such that

$$
\begin{equation*}
\mathfrak{D}_{2}^{\prime} \cdot \mathfrak{F}_{2}^{\prime-1} \subset \mathfrak{C}_{1}, \quad \mathfrak{D}_{2}^{\prime} \cdot \mathfrak{S}_{3}^{\prime} \subset \mathfrak{D}_{3}^{\prime} \tag{50}
\end{equation*}
$$

and that $W_{1} \times \mathfrak{D}_{2}^{\prime}$ and $W_{3} \times \mathfrak{D}_{2}^{\prime}$ satisfy the condition (C) for $\mathfrak{C}_{2}^{\prime-1}$ and $\mathfrak{C}_{3}^{\prime}$ respectively in Proposition 6.

Now, take an element $D_{2}^{(0)}$ in $\mathfrak{D}_{2}^{\prime} \cap S L_{2}(\boldsymbol{Q})$ such that $\operatorname{tr}\left(D_{2}^{(0)}\right)^{2}-4$ is a nonzero square in \boldsymbol{Q}. Then by the choice of $W_{1} \times \mathfrak{D}_{2}^{\prime}$, we can find an element $C_{2}^{(0)}$ in $\left(_{2}^{\prime} \cap S L_{2}(\boldsymbol{Q})\right.$ such that $\operatorname{tr}\left(C_{2}^{(0)}\right)=\operatorname{tr}\left(C_{2}\right), \operatorname{tr}\left(D_{2}^{(0)} C_{2}^{(0)-1}\right)=\operatorname{tr}\left(C_{1}\right)$. Put $C_{1}^{(0)}=$ $D_{2}^{(0)} C_{2}^{(0)-1}$. Then by (50) we see that $C_{1}^{(0)}$ is contained in $\mathbb{E}_{1} \cap S L_{2}(\boldsymbol{Q})$ and that $\operatorname{tr}\left(C_{1}^{(0)}\right)=\operatorname{tr}\left(C_{1}\right)$.

Take a rational number r_{3} in W_{3} such that $r_{3}^{2}-4$ is a non-zero square in \boldsymbol{Q}. Then by the choice of $W_{3} \times \mathfrak{D}_{2}^{\prime}$, we can find an element $C_{3}^{(0)}$ in $\mathfrak{S}_{3}^{\prime} \cap S L_{2}(\boldsymbol{Q})$ such that $\operatorname{tr}\left(C_{3}^{(0)}\right)=\operatorname{tr}\left(C_{3}\right)$ and that $\operatorname{tr}\left(D_{2}^{(0)} C_{3}^{(0)}\right)=r_{3}$. Put $D_{3}^{(0)}=D_{2}^{(0)} C_{2}^{(0)}$. Then by (50) we see that $D_{3}^{(0)}$ is contained in $\mathfrak{D}_{3}^{\prime} \cap S L_{2}(\boldsymbol{Q})$ and that $\operatorname{tr}\left(D_{3}^{(0)}\right)^{2}-4$ is a non-zero square in \boldsymbol{Q} by the choice of r_{3}. Repeating the above argument, we can find inductively $C_{j}^{(0)}, D_{j}^{(0)}$ in $\mathfrak{V}_{j}^{\prime} \cap S L_{2}(\boldsymbol{Q})$, $\mathfrak{D}_{j}^{\prime} \cap S L_{2}(\boldsymbol{Q})$ respectively such that

$$
\operatorname{tr}\left(C_{j}^{(0)}\right)=\operatorname{tr}\left(C_{j}\right), \quad D_{j-1}^{(0)} C_{j}^{(0)}=D_{j}^{(0)}, \quad(3 \leqq j \leqq n-2)
$$

and that $\operatorname{tr}\left(D_{j}^{(0)}\right)^{2}-4$ is a non-zero square in \boldsymbol{Q}.
Finally, we can find an element $C_{n-1}^{(0)}$ in $\mathfrak{S}_{n-1}^{\prime} \cap S L_{2}(\boldsymbol{Q})$ such that

$$
\operatorname{tr}\left(C_{n-1}^{(0)}\right)=\operatorname{tr}\left(C_{n-1}\right), \quad \operatorname{tr}\left(D_{n-2}^{(0)} C_{n-1}^{(0)}\right)=\operatorname{tr}\left(C_{n}^{-1} I^{d_{0}}\right)
$$

Put $C_{n}^{(0)}=D_{n-2}^{(0)} C_{n-1}^{(0)}{ }^{-1} I^{d_{0}}$. Then we see that $\operatorname{tr}\left(C_{n}^{(0)}\right)=\operatorname{tr}\left(C_{n}\right)$ and that $C_{n}^{(0)}$ is contained in $\mathbb{S}_{n} \cap S L_{2}(\boldsymbol{Q})$ by (47).

The representation φ_{0} of Γ defined by $\left(C_{1}, \cdots, C_{n}, I\right) \mapsto\left(C_{1}^{(0)}, \cdots, C_{n}^{(0)}, I\right)$ in the case where Γ contains I (resp. $\left(C_{1}, \cdots, C_{n}\right) \mapsto\left(C_{1}^{(0)}, \cdots, C_{n}^{(0)}\right)$ in the case where Γ does not contain I) is contained in $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma) \cap \mathfrak{F}_{1} \times \cdots \times \mathfrak{®}_{n} \times\{I\}$ (resp. $\mathfrak{R}_{Q}(\Gamma) \cap \mathfrak{\digamma}_{1} \times \cdots \times\left(\wp_{n}\right)$. This shows that $\mathfrak{R}_{Q}(\Gamma)$ is everywhere dense in $\mathfrak{R}(\Gamma)$, in the case of $g=0$.
§7. In order to complete the proof of our theorem, we need the following proposition.

Proposition 7. Let Γ be a discrete subgroup of G such that the quotient space G / Γ is compact. Then the set $\operatorname{tr}(\Gamma)$ cosisting of $\operatorname{tr}(A)$ for all elements A of Γ is discrete in \boldsymbol{R}.

The proof of this proposition is given in the book of Gel'fand-Graev-

Pyatetskii=Shapiro ([3] p. 88). By using Proposition 7, we shall make a sequence $\left\{\varphi_{m}\right\}$ converging to an arbitrarily given φ of $\mathscr{R}(\Gamma)$ such that φ_{m} ($m=1,2, \cdots$) are contained in $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma)$ and that the set $\operatorname{tr}\left(\varphi_{m}(\Gamma)\right)$ is different from one another. First, consider the case $g \geqq 1$. We may assume that φ is the identity representation of Γ. Fix a bounded neighbourhood U of $\operatorname{tr}\left(B_{1}\right)$ in \boldsymbol{R}. Take an element φ_{1} of $\Re_{\boldsymbol{Q}}(\Gamma)$. Then by Proposition 7, the intersection $\operatorname{tr}\left(\varphi_{1}(\Gamma)\right) \cap U$ is a finite set. As y_{11} is a variable in (23), the element φ_{2} of $\Re_{Q}(\Gamma)$ can be taken such that $\operatorname{tr}\left(\varphi_{2}\left(B_{1}\right)\right)$ is contained in $U-\operatorname{tr}\left(\varphi_{1}(\Gamma)\right)$. In the same way, we can determine inductively the element φ_{m} of $\mathfrak{R}_{\boldsymbol{Q}}(\Gamma)$ such that $\operatorname{tr}\left(\varphi_{m}\left(B_{1}\right)\right)$ is contained in $U-\bigcup_{i=1}^{m-1} \operatorname{tr}\left(\varphi_{i}(\Gamma)\right)$. Of course we take the sequence $\left\{\varphi_{m}\right\}$ so as to converge to the identity representation.

Next consider the case $g=0$. Fix a bounded neighbourhood V of $\operatorname{tr}\left(D_{2}\right)$ in \boldsymbol{R}. In view of the choice of $\varphi_{m}\left(D_{2}\right)$ in $\S 6$, we see that the element φ_{m} of $\Re_{\boldsymbol{e}}(\Gamma)$ can be taken such that $\operatorname{tr}\left(\varphi_{m}\left(D_{2}\right)\right)$ is contained in $V-\bigcup_{i=1}^{m-1} \operatorname{tr}\left(\varphi_{i}(\Gamma)\right)$. This completes our theorem.
§ 8. Let us note about the generalization of our theorem. Let Γ be a discrete subgroup of G such that the quotient space G / Γ is of finite volume with respect to the invariant measure. We define $\Re^{\prime}(\Gamma), \Re(\Gamma)$ and $\Re_{Q}(\Gamma)$ in the same way as in $\S 2$. If the Theorem (A. Weil) can be proved in this case, then our method used in this paper is valid, and we can generalize our theorem to the non-compact quotient case. We note here that Proposition 7 is valid in this case, although we do not give the proof.

Saitama University

References

[1] J. Lehner, Discontinuous groups and automorphic functions, AMS Mathematical Surveys, ${ }^{\circ}{ }^{\circ}$ VIII, 1964.
[2] A. Weil, On discrete subgroups of Lie groups, Ann. of Math., 72 (1960), 369-384.
[3] Gelfand, Graev, Pyatetskii-Shapiro, Representation theory and automorphic function, Acad. Sci. USSR, 1966, Translated from the Russian by K. A. Hirsch, W. B. Saunders Company, 1969.
[4] Kisao Takeuchi, On some discrete subgroups of $S L_{2}(\boldsymbol{R})$, J. Fac. Sci. Univ. Tokyo, Sec. I, 16 (1969), 97-100.

