
J. Math. Soc. Japan
Vol. 23, No. 1, 1971

Fuchsian groups contained in $SL_{2}(Q)$

By Kisao TAKEUCHI

(Received April 10, 1970)

\S 1. Let $G$ be the special linear group $SL_{2}(R)$ and $\Gamma$ a discrete subgroup
of $G$ such that the quotient space $ G/\Gamma$ is compact. The group $G$ operates
on the upper half plane $\mathfrak{H}=\{z\in C|{\rm Im} z>0\}$ in the following way:

$\rho(T):z-\frac{az+b}{cz+d}$ where $z\in \mathfrak{H}$ and $T=\left(\begin{array}{llllll} & & & & a & b\\ & & & & c & d\end{array}\right)\in G$ .
$\rho$ is a homomorphism of $G$ onto the group of all analytic automorphisms of

$\mathfrak{H}$. The kernel of $\rho$ is $\{\pm E\}$ . The image $\rho(\Gamma)$ of $\Gamma$ under the homomorphism
$\rho$ is a properly discontinuous group called the Fuchsian group of the first
kind. $\rho(\Gamma)$ is generated by $2g$ hyperbolic elements $\rho(A_{1}),$ $\rho(B_{1}),$ $\cdots,$ $\rho(A_{g}),$ $\rho(B_{g})$

and $n$ elliptic elements $\rho(C_{1}),$ $\cdots,$ $\rho(C_{n})$ . There are following $n+1$ fundamental
relations among these generators.

$\rho(A_{1})\cdot\rho(B_{1})\cdot\rho(A_{1})^{-1}\cdot\rho(B_{1})^{-1}$

$\rho(A_{g})\cdot\rho(B_{g})\cdot\rho(A_{g})^{-1}\cdot\rho(B_{g})^{-1}\cdot\rho(C_{1})\cdots\rho(C_{n})=\rho(E)$ (1)

$\rho(C_{j})^{e_{j}}=\rho(E)$ $(1\leqq j\leqq n)$ . (2)

$(g;e_{1}, , e_{n})$ is called the signature of $\Gamma$ . These numbers satisfy the in-
equality

$2g-2+\sum_{J=1}^{n}(1-\frac{1}{e_{j}})>0$ . (3)

Now, we shall consider the following problem: Is there any group $\Gamma$ of
the above type, that is contained in $SL_{2}(Q)$ and that has a given signature
$(g;e_{1}, \cdot.. , e_{n})$ ? The first thing to be remarked here is that if $\Gamma$ is arithmetic,
$i$ . $e.$ , if it is derived from some quaternion algebras $\Phi$ in the customary way,
then $\Gamma$ cannot be realized in $SL(Q)$ . In fact, since we assume that $ G/\Gamma$ is
compact, $\Phi$ must be a division algebra. But then, $\Gamma$ can be realized only in
$SL_{2}(k),$ $k$ being some splitting field of $\Phi$ , and not in $SL_{2}(Q)$ . The second
remark is that if $\Gamma$ is contained in $SL_{2}(Q)$ , then $e_{j}(1\leqq j\leqq n)$ must be either
2 or 3; cf. Lemma 1, \S 3. So, this is a necessary condition for the existence
of the solution $\Gamma$ .

Now, the purpose of the present paper is to prove that if this condition
on the signature is satisfied, then there exist infinitely many non-conjugate (in $G$)
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solutions $\Gamma$ . Moreover, for a given $\Gamma$ the set $\mathfrak{R}_{Q}(\Gamma)$ of all solutions which are
isomorphic to $\Gamma$ forms a dense subset in the space $\mathfrak{R}(\Gamma)$ of all $t$ deformations ”

of $\Gamma$ ; cf. Theorem in \S 2. The proof depends on the two known results,
namely, the result on the explicit generators and relations of $\rho(\Gamma)$ , and the
result on the deformations of $\Gamma$ ; cf. Weil [2].

\S 2. We shall first determine the generators and the fundamental relations
$\ovalbox{\tt\small REJECT} of\Gamma$ . By (1) and (2) we have

$A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}\ldots A_{g}B_{g}A_{g}^{-1}B_{g}^{-1}C_{1}\ldots C_{n}I^{tl_{0}}=E$ , (4)

$I^{(}x_{f}C_{j^{j}}^{e}=E$ , $(1\leqq j\leqq n)$ (5)

where $I=-E$ and $d_{j}=0$ or 1 $(0\leqq j\leqq n)$ .
PROPOSITION 1. (i) If $\Gamma$ does not contain the element $I=-E$ , then $\Gamma$ is

generated by the $2g+n$ elements $A_{1},$ $B_{1},$ $\cdots$ , $A_{g},$ $B_{g},$ $C_{1},$ $\cdots,$
$C_{n}$ and the fundamental

relations among these generators are (4) and (5). In this case $d_{j}=0(0\leqq j\leqq n)$ .
(ii) If $\Gamma$ contains the element $I=-E$ , then $\Gamma$ is generated by the $2g+n+1$

elements $A_{1},$ $B_{1},$ $\cdots$ , $A_{g},$ $B_{g},$ $C_{1},$
$\cdots,$

$C_{n},$ I and the fundamental relations are (4),

\langle 5) and the following relations (6), (7).

$I^{2}=E$ , (6)

$A_{i}IA_{i}^{-1}I^{-1}=E$ , $B_{i}IB_{i}^{-1}I^{-1}=E$ , $C_{j}IC_{j}^{-1}I^{-1}=E$ $(1 \leqq i\leqq g, 1\leqq j\leqq n)$ . (7)

PROOF. In the case (i), $\rho(\Gamma)$ is isomorphic to $\Gamma/\Gamma_{\cap}\{E, I\}$ which is equal
to $\Gamma$ . Moreover we have $d_{j}=0(0\leqq j\leqq n)$ . This settles Proposition 1 in the
case (i).

In the case (ii) we have the isomorphism

$\Gamma/\{E, I\}\cong\rho(\Gamma)$ . (8)

It is easy to show that $\Gamma$ is generated by $2g+n+1$ elements $A_{1},$ $B_{1}$ , , $A_{g},$ $B_{g}$ ,
$C_{1}$ , $\cdot$ .. , $C_{n},$ $I$. Let $\tilde{\Gamma}$ be the free group generated by $2g+n+1$ letters $\tilde{A}_{1},\tilde{B}_{1}$ ,

... $\tilde{A}_{g},\tilde{B}_{g},\tilde{C}_{1}$ , $\cdot$
., , $\tilde{C}_{n},$ $ I\sim$. We have a homomorphism $\eta$ of $\tilde{\Gamma}$ onto $\Gamma$ such that

$\eta(\tilde{A}_{i})=A_{i},$ $\eta(\tilde{B}_{i})=B_{i},$ $\eta(\tilde{C}_{j})=C_{j},$ $\eta(I)\sim=I$. Let $N$ and $\overline{N}$ be the kernels of $\eta$

and $\rho\circ\eta$ respectively. By (8), the group $N$ is of index 2 in $\overline{N}$. By the rela-
tions (1) and (2), we see that $\overline{N}$ is a normal subgroup of fi generated by the
finite set of words

$\{\tilde{A}_{1}\tilde{B}_{1}\tilde{A}_{1}^{-1}\tilde{B}_{1}^{-1}\ldots\tilde{A}_{g}\tilde{B}_{g}\tilde{A}_{g}^{-1}\tilde{B}_{g}^{-1}\tilde{C}_{1}\cdots\tilde{C}_{n}, I\tilde{C}_{j^{j}}^{e}\sim,(1\leqq i\leqq n)\}$ .
Put

$\overline{\mathfrak{M}}=\{\tilde{A}_{1}\tilde{B}_{1}\tilde{A}_{1}^{-1}\tilde{B}_{1}^{-1}\ldots\tilde{A}_{g}\tilde{B}_{g}\tilde{A}_{g}^{-1}\tilde{B}_{g}^{-1}\tilde{C}_{1}\ldots\tilde{C}_{n}I^{J_{0}}, I\tilde{C}_{j}^{e_{j}}, I\sim_{(}\sim_{t_{j}}\sim, (1\leqq i\leqq n)\}$ ,

$\mathfrak{M}=\{\tilde{A}_{1}\tilde{B}_{1}\tilde{A}_{1}^{-1}\tilde{B}_{1}^{-1}\ldots\tilde{A}_{g}\tilde{B}_{g}\tilde{A}_{g}^{-1}\tilde{B}_{g}^{-1}\tilde{C}_{1}\ldots\tilde{C}_{n}I,$ $I\tilde{C}_{j^{j}}^{e},$
$I^{\sim_{2}}\sim_{l_{0}}\sim_{d_{j}}$ ,

$\tilde{A}_{i}I\tilde{A}_{l}^{-1}I\tilde{B}_{i}I\tilde{B}_{i}^{-1}l\tilde{C}_{j}I\tilde{C}_{j^{-1}}I\sim\sim_{- 1},\sim\sim_{- 1},\sim\sim_{-1}(1\leqq i\leqq g, 1\leqq j\leqq n)\}$ .
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Then $N$ contains the normal subgroup of $\tilde{\Gamma}$ generated by the elements of $\mathfrak{M}_{-}$

As $\overline{N}$ is the normal subgroup of $\tilde{\Gamma}$ generated by $\overline{\mathfrak{M}}$ , we see easily that the
normal subgroup of $\tilde{\Gamma}$ generated by $\mathfrak{M}$ is of index 2 in $\overline{N}$. Therefore, $N$ is
generated by $\mathfrak{M}$ . Q. E. D.

Let $\varphi$ be a representation of $\Gamma$ into $G,$ $i$ . $e.$ , a homomorphism (as abstract
groups) of $\Gamma$ into $G$ . Then $\varphi$ is determined by the images of generators of
$\Gamma$ . In the case where $\Gamma$ does not contain $I,$

$\varphi$ is determined by $(\varphi(A_{1}), \varphi(B_{1})_{r}$

$\ldots$ $\varphi(A_{g}),$ $\varphi(B_{g}),$ $\varphi(C_{1}),$ $\varphi(C_{n}))$ . Consider the case where $\Gamma$ contains $I$. Then
$\varphi$ is determined by $(\varphi(A_{1}), \varphi(B_{1})$ , $\cdot$ .. , $\varphi(A_{g}),$ $\varphi(B_{g}),$ $\varphi(C_{1})$ , $\cdot$ .. , $\varphi(C_{n}),$ $\varphi(I))$ . As
$\varphi(I)$ must be at most of order 2 in $G$ by (6), $\varphi(I)$ is equal to $E$ or $I$. Hence
the relations in (7) are satisfied automatically. In either case, we see that
the set of all representations are in one-to-one correspondence with that of
all elements $(A_{1}^{*}, B_{1}^{*}, C_{1}^{*}, \cdots , C_{n}^{*})$ of $G^{(2g+n)}$ (resp. ( $A_{1}^{*},$ $B_{1}^{*},$ $\cdots$ $C_{1}^{*},$ $\cdots$ , $C_{n}^{*},$ $ I^{*}\rangle$

of $G^{(2g+n+1)}$ if $\Gamma$ contains $I$) satisfying

$A_{1}^{*}B_{1}^{*}A_{1^{- 1}}^{*}B_{1^{-1}}^{*}\ldots A_{g}^{*}B_{g}^{*}A_{g^{- 1}}^{*}B_{g^{- 1}}^{*}C_{1}^{*}\ldots C_{n}^{*}I^{*d_{0}}=E$ $(4^{*})$

$I^{*d_{f}}C_{j}^{*e_{j}}=E$ $(1\leqq j\leqq n)$ $(5^{*})$

where $I^{*}=E$ or $I$.
Let $\mathfrak{R}^{\prime}(\Gamma)$ be the set of all representations of $\Gamma$ into $G$ . We shall identify

$\mathfrak{R}^{\prime}(\Gamma)$ with a closed subset of $G^{(2g+n)}$ (resp. $G^{(2g+n+1)}$ ) by the above correspond-
ence. Thus, $\mathfrak{R}^{\prime}(\Gamma)$ is provided with the relative topology induced by that of
$G^{(2g+n)}$ (resp. $G^{(2g+n+1)}$). Let $\mathfrak{R}(\Gamma)$ be the subset of $\mathfrak{R}^{\prime}(\Gamma)$ consisting of all
representations $\varphi$ which are injective and such that $\varphi(\Gamma)$ is discrete in $G$

with compact quotient space $G/\varphi(\Gamma)$ , and let $\mathfrak{R}_{Q}(\Gamma)$ be the subset of $\mathfrak{R}(\Gamma)$

consisting of all $\varphi$ such that $\varphi(\Gamma)$ is contained in $SL_{2}(Q)$ .
We shall prove the following theorem.
THEOREM. Let $\Gamma$ be a discrete subgroup of $G$ with compocl quotient space

$ G/\Gamma$ , and let $(g;e_{1}, \cdots, e_{n})$ be its signature.
(i) If $e_{j}>3$ for some index $j$ , then $\mathfrak{R}_{Q}(\Gamma)$ is empty.
(ii) Otherwise, $\mathfrak{R}_{Q}(\Gamma)$ is everywhere dense in $\mathfrak{R}(\Gamma)$ .

More accurately, for any element $\varphi$ of $\mathfrak{R}(\Gamma)$ , we can find a sequence $\{\varphi_{m}\}con-$

verging to $\varphi$ such that $\varphi_{m}$ belong to $\mathfrak{R}_{Q}(\Gamma)$ and that $\varphi_{m}(\Gamma)(m=1, 2, )$ are not
G-conjugate to one another.

\S 3. We shall prove this Theorem in \S 3--\S 7. We make use of the
following theorem which was proved by A. Weil in [2], in the more general
situation.

THEOREM (A. Weil). $\mathfrak{R}(\Gamma)$ is an open subset of $\mathfrak{R}^{f}(\Gamma)$ .
LEMMA 1. If an element $A$ of $SL_{2}(Q)$ other than $\pm E$ is of finite order,

then its order as a transformation of $\mathfrak{H}$ is equal to 2 or 3, according as its trace



Fuchsian groups contained in $SL_{2}(Q)$ 85

$tr(A)$ is equal to $0$ or $\pm 1$ respectively.
PROOF. By the assumption, the eigenvalues of $A$ are roots of unity.

Hence tr $(A)$ is a rational integer whose absolute value is smaller than 2.
Hence tr $(A)$ is equal to $0$ or $\pm 1$ . Now cosider the characteristic polynomial
$|ofA$ . We have $A^{2}-rr(A)A+E=0$ . From this we have $A^{3}+\{1-(tr(A))^{2}\}A$

$+tr(A)E=0$ . The first equality implies that $A^{2}=-E$ if $tr(A)=0$ , and the
second implies that $A^{3}=\mp E$ if tr $(A)=\pm 1$ . This proves Lemma 1. Q. E. D.

By the above lemma the case (i) in our theorem is proved.

\S 4. From now on, we may assume that $e_{f}$ is equal to 2 or 3 for all
$j(1\leqq j\leqq n)$ if $n\geqq 1$ .

LEMMA 2. (i) $SL_{2}(Q)$ is dense in $SL_{2}(R)$ .
(ii) Let $t$ be an arbitrary rational number. The set { $A\ovalbox{\tt\small REJECT}\in SL_{2}(Q)|$ tr $(A)=t$ }

is everywhere dense in the set { $A\in SL_{2}(R)|$ tr $(A)=t$ }.
(iii) The set { $A\in SL_{2}(Q)|$ (tr $(A))^{2}-4$ is a square in $Q$ } is everywhere dense

in the set of all hyperbolic elements of $G$ .
Since the proof of this lemma is easy, we omit it here.
Now we distinguish the two cases of $g\geqq 1$ and $g=0$ . Let us consider

first the case $g\geqq 1$ .
PROPOSITION 2. Suppose that an element $\varphi^{\prime}$ of $\mathfrak{R}(\Gamma)$ differs from another

$\varphi$ only by an inner automorphism of G. Then the assertion (ii) of our theorem
is true for $\varphi^{f}$ if and only if it is true for $\varphi$ .

PROOF. By the assumption, there exists an element $A$ of $G$ such that
$\psi^{\prime}=Int(A)\circ\varphi$ , where Int $(A)$ denotes the inner automorphism of $G$ defined by
$A$ . Let $\{\varphi_{m}\}$ be a sequence converging to $\varphi$ such that $\varphi_{m}(m=1, 2, )$ belong
to $\mathfrak{R}_{Q}(\Gamma)$ and that $\varphi_{m}(\Gamma)(m=1, 2, )$ are not G-conjugate to one another.
Then the sequence {Int $(A)\circ\varphi_{m}$ } converges to $\varphi^{\prime}$ . Take a sequence $\{A_{m}\}$ in
$SL_{2}(Q)$ converging to $A$ . Then {Int $(A_{m})\circ\varphi_{m}$ } converges to $\varphi^{\prime}$ . The converse
part is obtained merely by changing $\varphi$ and $\varphi^{\prime}$ . Q. E. D.

To prove the theorem, we may assume that $\varphi$ is the identity map (since

we may replace $\varphi(\Gamma)$ by $\Gamma$). And we may assume by Proposition 2 that
$B_{1}=(b_{ij})$ is the diagonal matrix $i$ . $e$ . $b_{11}=1/b_{22}=b(b^{2}\neq 1),$ $b_{12}=b_{21}=0$ . Now
put

$D=I^{d_{0}}C_{n}^{-1}C_{n-1}^{-1}\ldots C_{1}^{-1}B_{g}A_{g}B_{g}^{-1}A_{g}^{-1}$ $B_{2}A_{2}B_{2}^{-1}A_{2}^{-1}$ . (9)

Then we have
$A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}=D$ . (10)

PROPOSITION 3. Let $A_{1}=(a_{ij}),$ $B_{1}=(b_{ij})$ and $D=(d_{ij})=A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}$ be as
above. Then none of $a_{12},$ $a_{21},$ $d_{12},$ $d_{21}$ are equal to $0$ .

PROOF. First suppose that $a_{12}=0$ . Then $A_{1}$ fixes the origin of the real
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axis. By our assumption, $B_{1}$ fixes the origin and the point at infinity. If
$\cdot$

$a_{21}\neq 0$ , then $A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}$ is a parabolic element of $G$ , fixing the origin. This
is impossible because $\Gamma$ contains no parabolic elements. Therefore $a_{21}$ must
be equal to $0$ . Hence $A_{1}$ commutes with $B_{1}$ . It follows from this that for
any element $\varphi$ of $\mathfrak{R}(\Gamma),$ $\varphi(A_{1})$ commutes with $\varphi(B_{1})$ . This is a contradiction
because we can easily construct a Fuchsian group $\varphi(\Gamma)$ with signature
$(g;e_{1}, \cdot., , e_{n})$ such that $\varphi(A_{1})$ does not commute with $\varphi(B_{1})$ . (cf. [1] pp.
234–239). In the case $a_{21}=0$ we are led to a contradiction in the same way
as above.

Now suppose that $d_{12}=0$ . Then $D$ must be a diagonal matrix by ap-
plying the above argument for the matrix $DB_{1}D^{-1}B_{1}^{-1}$ . But by the relation
$D=A_{1}B_{1}A_{1}^{-1}B_{1}^{-1}$ we have $a_{11}a_{12}=0$ and $a_{21}a_{22}=0$ . Since $a_{1Z}a_{21}\neq 0$ , we obtain
$a_{11}=a_{22}=0$ . Hence tr $(A_{1})=0$ . This shows that $A_{1}$ is an elliptic element of
$G$ , which is impossible. Q. E. D.

Let $X=(x_{ij}),$ $Y=(y_{ij})$ and $Z=(z_{ij})$ be variable matrices defined on the
neighbourhoods of $A_{1},$ $B_{1}$ and $D$ respectively. Consider the relation

XYX $Y^{-1}=Z$ , (11)

where $Y$ is a lower triangular matrix: $y_{12}=0$ .
Now we shall show that all coefficients of $X$ and $Y$ can be expressed as.

rational functions of $x_{12},$ $y_{11}$ and $z_{ij}(1\leqq i, i\leqq 4)$ . If we fix $Y$ and $Z,$ (11) is.
equivalent to the relations

$XY-ZYX=0$ , (12)

$x_{12}x_{22}-x_{12}x_{21}=1$ . (13)

Furthermore, (12) can be expressed as a linear equation:

$(E\otimes {}^{t}Y-ZY\otimes E)\left(\begin{array}{l}x_{11}\\x_{J2}\\x_{21}\\x\end{array}\right)=\left(\begin{array}{l}0\\0\\0\\0\end{array}\right)$ (14)

PROPOSITION 4. If $Y$ and $Z$ belong to sufficiently small neighbourhoods of
$B_{1}$ and $D$ respectively in $G$ , satisfying

tr(Y) $=tr(ZY)$ , (15)

then the matrix $E\otimes {}^{t}Y-ZY\otimes E$ is of rank 2.
PROOF. We have

$y_{11}y_{22}=1$ , ( $ 16\rangle$

$z_{11}z_{22}-z_{12}z_{21}=1$ . (17)

The condition (15) is equivalent to
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$(z_{11}-1)y_{11}+z_{12}y_{21}+(z_{22}-1)y_{22}=0$ . (18)

Since none of $b_{11},$ $b_{22},$ $b_{11}-b_{22},$ $d_{12}$ and $d_{21}$ are equal to $0$ , we may assume that
none of $y_{11},$ $y_{22},$ $y_{11}-y_{22},$ $z_{12}$ and $z_{21}$ are equal to $0$ . By (18), the matrix $E\otimes {}^{t}Y$

$-ZY\otimes E$ is explicitly given by

$\left(\begin{array}{llllll} & & (z_{22}-1)y_{22} , & y_{21} & -z_{12}y_{22}, & 0\\ & & 0 & -y_{11}+z_{22}y_{22}, & 0 & -z_{12}y_{22}\\ & & -z_{21}y_{11}-z_{22}y_{21}’, & 0 & y_{11}-z_{22}y_{22}, & y_{21}\\ & & 0 & -z_{2}y_{1}-zy & 0 & (1-z)y\end{array}\right)$ . (19)

Let $a_{i}(1\leqq i\leqq 4)$ be the row vectors of the matrix of (19). As $z_{12}y_{22}\neq 0$ , two
vectors $a_{1},$ $a_{2}$ are linearly independent. By using (17) and (18), we obtain
the following expressions,

$a_{3}=\frac{y_{11}-z_{22}y_{22}}{-z_{12}y_{22}}a_{1}+\frac{y_{21}}{-z_{12}y_{22}}a_{2}$ ,

$a_{4}=\frac{1-z_{22}}{-z_{12}}a_{2}$ .

This proves Proposition 4. Q. E. D.
By (14) and (19) we obtain

$x_{21}=\frac{z_{22}-1}{z_{12}}x_{11}+\frac{y_{11}y_{21}}{z_{12}}x_{12}$ (20)

$x_{22}=\frac{-y_{11}^{2}+z_{22}}{z_{12}}x_{12}$ . (21)

Using the relations (13), (20) and (21), we obtain

$x_{11}=\frac{y_{11}y_{21}}{1-y_{11}^{2}}x_{12}+\frac{z_{12}1}{1-y_{11}^{2}x_{12}}$ (22)

where $x_{12}$ varies on some neighbourhood of $a_{12}$ which is different from $0$ by
Proposition 3.

On the other hand, by (16) and (18) we obtain the following expressions ,

$Y=$ (
$y$

$\frac{01}{y_{11}})=g(y_{11}, Z)$ , (23)

and

$X=($ $\frac{y_{11}y_{21}}{1-y_{11}^{2}}x_{12}+\frac{z_{12}1}{1-y_{11}^{2}x_{12}}\frac{(z_{22}-y_{11}^{2})y_{11}y_{21}}{z_{12}(1-y_{11}^{2})}x_{12}+\frac{z_{22}-11}{1-y_{11}^{2}x_{12}}$

,
$\frac{z_{22}-y_{11}^{2}}{z_{12}}x_{12}x_{12})=f(x_{12}, y_{11}, Z)$ . (24)

Now we turn to the proof of our theorem. Let $\mathfrak{A}_{i},$ $\mathfrak{B}_{i}(1\leqq i\leqq g)$ and
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$\mathfrak{C}_{j}(1\leqq j\leqq n)$ be arbitrarily given open neighbourhoods of $A_{i},$ $B_{i},$ $C_{j}$ respec-
tively. We must prove that the intersection $\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times$

... $\times \mathfrak{C}_{n}\times\{I\}$ is non-empty in the case where $\Gamma$ contains $I$ (resp. the inter-
section $\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}$ is non-empty in the case
where $\Gamma$ does not contain 1). By the above quoted Theorem (A. Weil), we
may assume that

$\mathfrak{R}^{J}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}\times\{I\}$

(resp. $\mathfrak{R}^{\prime}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}$)

is contained in $\mathfrak{R}(\Gamma)$ . By (23) and (24) there exist neighbourhoods $a_{12},$
$b$ and

$\mathfrak{D}$ of $a_{12},$ $b_{11}$ and $D$ respectively such that $f(\mathfrak{a}_{12}, b, \mathfrak{D})\subset \mathfrak{A}_{1}$ and $g(b, \mathfrak{D})\subset \mathfrak{B}_{1}$ . On
the other hand, if we consider the following map $h$ defined on a neighbour-
hood of $(A_{2}, B_{2}, \cdots A_{g}, B_{g}, C_{1}, \cdots , C_{n})$ :

$Z=I^{d_{0}}W_{n}^{-1}\cdots W_{1}^{-1}Y_{g}X_{g}Y_{g}^{-1}x_{g}^{-1}\cdots Y_{2}X_{2}Y_{2}^{-1}X_{2}^{-1}=h(X_{2}, Y_{2}, W_{1}, W_{n})$ , (25)

we can find a neighbourhood $\mathfrak{A}_{2}^{\prime}\times \mathfrak{B}_{2}^{\prime}\times\cdots\times \mathfrak{A}_{g}^{\prime}\times \mathfrak{B}_{g}^{\prime}\times \mathfrak{C}_{1}^{\prime}\times\cdots\times \mathfrak{C}_{n}^{\prime}$ of ( $A_{2},$ $B_{2}$ , $\cdot$ ..
, $A_{g},$ $B_{g},$ $C_{1}$ , $\cdot$ .. , $C_{n}$) contained in $\mathfrak{A}_{2}\times \mathfrak{B}_{2}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}$ such that
$h(\mathfrak{A}_{2}^{\prime}, \mathfrak{B}_{2}^{\prime}, \cdot.. , \mathfrak{A}_{g}^{\prime}, \mathfrak{B}_{g}^{\prime}, \mathfrak{C}_{1}^{\prime}, \cdot.. , \mathfrak{C}_{n}^{\prime})\subset \mathfrak{D}$ . Take arbitrary elements $A_{i^{(0)}},$ $B_{i^{(0)}}$ and $C_{f}^{(0)}$

from the intersection $\mathfrak{A}_{4^{\prime}}\cap SL(Q),$ $\mathfrak{B}_{l}^{\prime}\cap SL(Q)$ and $\mathfrak{C}_{j}^{\prime}\cap SL(Q)$ such that tr $(C_{f}^{(0)})$

$=tr(C_{j})$ respectively $(2\leqq i\leqq g, 1\leqq i\leqq n)$ . This is possible by Lemma 2.
Furthermore, take rational numbers $a_{12}^{(0)}$ and $b_{11}^{(0)}$ from $\mathfrak{a}_{12}$ and $b$ respectively,
and put

$D^{(0)}=h(A_{2}^{(0)}, B_{2}^{(0)}, \cdots , A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdots , C_{n}^{(0)})$ ,

$A_{1}^{(0)}=f(a_{12}^{(0)}, b_{11}^{(0)}, D^{(0)})$ ,

$B_{1}^{(0)}=g(b_{11}^{(0)}, D^{(0)})$ .
Then the representation $\varphi_{0}$ of $\Gamma$ defined by $(A_{1}, B_{1}, \cdots A_{g}, B_{g}, C_{1}, \cdots C_{n}, I)$

$\leftrightarrow$ $(A_{1}^{(0)}, B_{!}^{(0)}, \cdot.. , A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdot.. , C_{n}^{(0)}, I)$ in the case where $\Gamma$ contains $I$ (resp.

\langle $A_{1},$ $B_{1},$ $\cdots$ $A_{g},$ $B_{g},$ $C_{1},$ $\cdots$ $C_{n}$) $\leftrightarrow(A_{1}^{(0)}, B_{1}^{(0)}, \cdots , A_{g}^{(0)}, B_{g}^{(0)}, C_{1}^{(0)}, \cdots C_{n}^{(0)})$ in the case
where $\Gamma$ does not contain $I$ ) is contained in $\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times$

$\mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}\times\{I\}$ (resp. $\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{A}_{1}\times \mathfrak{B}_{1}\times\cdots\times \mathfrak{A}_{g}\times \mathfrak{B}_{g}\times \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}$). This
proves that $\mathfrak{R}_{Q}(\Gamma)$ is everywhere dense in $\mathfrak{R}(\Gamma)$ , in the case of $g\geqq 1$ .

\S 5. Let $A=(a_{ij})$ and $B=(b_{ij})$ be two elements of $G$ . Consider variable
matrices $X=(x_{ij})$ and $Y=(y_{ij})$ of $G$ defined on some neighbourhoods of $A$

and $B$ respectively. We impose the condition,

tr(Y) $=tr(B)$ , (26)

on Y. Put $v_{0}=tr(B),$ $w_{0}=tr(AB)$ and $w=tr(XY)$ . Then we have
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$y_{11}+y_{22}=v_{0}$ , (27)

$x_{11}y_{11}+x_{12}y_{21}+x_{21}y_{12}+x_{22}y_{22}=w$ , (28)

$y_{11}y_{22}-y_{12}y_{21}=1$ . (29)

By (27), (28) and (29), we have

$y_{22}=v_{0}-y_{11}$ , (30)

and
$x_{12}y_{21}+x_{21}y_{12}=(x_{22}-x_{11})y_{11}+w-x_{22}v_{0}$ , (31)

$x_{12}y_{21}\cdot x_{21}y_{12}=(1-x_{11}x_{22})(y_{11}^{2}-v_{0}y_{11}+1)$ . (32)

The discriminant of the quadratic equation whose roots are $x_{12}y_{21}$ and $x_{21}y_{12}$ ,

is given by the following polynomial,

$d(y_{11}, w, X)=\{(x_{11}+x_{22})^{2}-4\}y_{11}^{2}$

$+2\{(x_{22}-x_{11})(w-x_{22}v_{0})+2(1-x_{11}x_{22})v_{0}\}y_{11}$

$+(w-x_{22}v_{0})^{2}+4(x_{11}x_{22}-1)$ . (33)

Now assume that
$a_{12}a_{21}\neq 0$ , (34)

$a_{12}b_{21}\neq a_{21}b_{12}$ . (35)

Then we have $d(b_{11}, w_{0}, A)>0$ . Hence we have $d(y_{11}, w, X)>0$ on some
neighbourhood of $(b_{11}, w_{0}, A)$ .

Let $(y_{11}, w, X)$ be sufficiently near $(b_{11}, w_{0}, A)$ so that $x_{12}x_{21}\neq 0$ and that
$d(y_{11}, w, X)>0$ . Then we have the following expression,

$y_{12}=\underline{(x_{22}-x_{11})y_{11}+w_{2x_{21}}-}x_{22}v_{0}\pm\sqrt{d(y_{11},w,X)}$ (36)

$y_{21}=\underline{(x_{22}-x_{11})y_{11}+w_{2x_{12}}-}x_{22}v_{0}\mp\sqrt{d(y_{11},w,X)}$ (37)

where the sign $\pm in(36)$ and (37) is determined by the one at $(b_{11}, w_{0}, A)$ .
Therefore, under the assumptions (34) and (35), we obtain the following

expression,
$Y=f_{A,B}(y_{11}, w, X)$ (38)

where $f_{A,B}$ is a matrix valued function given explicitly by (30), (36) and (37),

which is defined on some neighbourhood of $(b_{11}, w_{0}, A)$ .
REMARK. Let $A=(a_{ij})$ and $B=(b_{ij})$ be two elements of $G$ which are

elliptic or hyperbolic. Let $\{\xi_{A}, \eta_{A}\}$ and $\{\xi_{B}, \eta_{B}\}$ be the sets of the fixed
points of $A$ and $B$ respectively. Assume that

$\{\xi_{A}, \eta_{A}\}\neq\{\xi_{B}, \eta_{B}\}$ . (39)
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Now we shall show that we can find an element $Q$ of $G$ such that the
conjugate matrices $A^{\prime}=QAQ^{-1},$ $B^{J}=QBQ^{-1}$ satisfy the conditions (34) and
(35). Conjugating $A$ and $B$ by a suitable element of $G$ , we may assume that
$a_{12}a_{21}\neq 0,$ $b_{12}b_{21}\neq 0$ .

Put $A^{\prime}=TAT^{-1}=(a_{ij}^{\prime}),$ $B^{\prime}=TBT^{-1}=(b_{ij}^{\prime})$ , where $T=(t_{ij});t_{11}=t_{22}=1,$ $t_{21}=0$ ,
$ t_{12}=\alpha$ . Then, for the sets $\{\xi_{A}, \eta_{A},\},$ $\{\xi_{B’}, \eta_{B}’\}$ of the fixed points of $A^{\prime},$ $B^{\prime}$

respectively, we have
$\xi_{A^{\prime}}=\xi_{A}+\alpha$ , $\eta_{A^{\prime}}=\eta_{A}+\alpha$ ,

$\xi_{B^{\prime}}=\xi_{B}+\alpha$ , $\eta_{B^{\prime}}=\eta_{B}+\alpha$ .
Since $a_{12}/a_{21}=-\xi_{A}\cdot\eta_{A}$ , and $b_{12}/b_{21}=-\xi_{B}\cdot\eta_{B}$ , in view of (39) we can find

a real number $\alpha$ such that $a_{12}^{\prime}a_{21}^{\prime}\neq 0,$ $b_{12}^{\prime}b_{21}^{\prime}\neq 0,$ $a_{12}^{\prime}/a_{21}^{\prime}\neq b_{12}^{\prime}/b_{21}^{\prime}$ .

\S 6. Let us consider the case of $g=0$ . By the inequality (3) we see that
$n\geqq 3$ . If $n=3$ , then (3) is equivalent to the following inequality,

$1/e_{1}+1/e_{2}+1/e_{3}<1$ .
Hence $e_{j}>3$ for some $j(1\leqq j\leqq 3)$ . In view of Lemma 1, we see that there
exist no triangular groups $\Gamma$ contained in $SL_{2}(Q)$ with compact quotient
space $ G/\Gamma$ . Hence we may assume that $n\geqq 4$ .

Let us note again the relations (4) and (5):

$C_{1}C_{2}\cdots C_{n}I^{d_{0}}=E$ , (40)

$Ci=I^{d_{j}}$ $(1 \leqq j\leqq n)$ , (41)

where $I=-E,$ $d_{j}=0$ or 1, $e_{f}=2$ or 3.
Put

$D_{j}=C_{1}C_{2}\cdots C_{j}$ $(2\leqq j\leqq n-2)$ . (42)

Then we have
$C_{1}C_{2}=D_{2}$ , (43)

$D_{f-1}C_{j}=D_{j}$ $(3\leqq j\leqq n-2)$ , (44)

$D_{n-2}C_{n-1}C_{n}=I^{d_{0}}$ . (45)

PROPOSITION 5. The notations being as above, the matrices $D_{f}(2\leqq j\leqq n-2)$

are hyperbolic.
PROOF. Since $C_{j}(1\leqq j\leqq n)$ have the different fixed points, we see that

$D_{2}\neq\pm E,$ $D_{n-2}\neq\pm E$ . $NowsupposethatD_{2}$ is elliptic. $ThenD_{2}$ is $\Gamma$ -conjugate
to $\pm C_{k}^{\nu}$ for some index $k$ where $\nu=1$ or-l. Now we shall show that $\{D_{n-2}$ ,
$C_{n- 1}\}$ satisfy the condition (39) in \S 5. If $D_{n- 2}$ is hyperbolic, this is obvious.
Suppose that $D_{n-2}$ is elliptic and that the fixed point of $D_{n-2}$ coincide with
the fixed point of $C_{n-1}$ . Then we have
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$D_{n-2}=\pm C_{n-1}^{\lambda}$ , where $\lambda=1$ or $-1$ .

Hence we have $C_{n}=\pm C_{n1}^{-\underline{\lambda}-1}$ , which is impossible.
$\{C_{1}, C_{2}\}$ also satisfy the condition (39) in \S 5. Therefore, by the remark

in \S 5, taking a conjugate of $\Gamma$ , we may assume that $\{D_{n-2}, C_{n-1}\}$ and $\{C_{1}, C_{2}\}$

satisfy the conditions (34) and (35) for $\{A, B\}$ in \S 5. By applying the argu-
ment in \S 5, we can find three elements $C_{j^{\prime}}(j=2, n-1, n)$ sufficiently near $C_{j}$

$(j=2, n-1, n)$ respectively such that

tr $(C_{j^{\prime}})=tr(C_{j})$ $(j=2, n-2, n)$ ,

and that
tr $(C_{1}C_{2}^{\prime})\neq\pm tr(C_{1}C_{2})$ , (46)

and that
$C_{1}C_{2}^{\prime}C_{3}\cdots C_{n- 2}C_{n- 1}^{\prime}C_{n}^{\prime}I^{d_{0}}=E$ .

By the Theorem (A. Weil), the representation $\varphi$ determined by $(C_{1},$ $C_{2},$ $C_{3}$ ,
$\ldots$ $C_{n-2},$ $C_{n-1},$ $C_{n}$) $-(C_{1}, C_{2}^{\prime}, C_{3}, \cdot.., C_{n-z}, C_{n-1}^{\prime}, C_{n}^{\prime})$ can be taken to be contained
in $\mathfrak{R}(\Gamma)$ . Put $D_{2}^{\prime}=C_{1}C_{2}^{\prime}$ . Then $D_{2}^{\prime}$ is the image $\varphi(D_{2})$ of $D_{2}$ under $\varphi$ . Hence,
$D_{2}^{\prime}$ is $\varphi(\Gamma)$-conjugate to $\pm\varphi(C_{k})^{\nu}$ . Therefore, we have tr $(D_{2}^{\prime})=\pm tr(\varphi(C_{k})^{\nu})$

$=\pm tr(C_{k}^{\nu})=\pm tr(D_{2})$ , which is impossible by (46). This proves that $D_{2}$ is
hyperbolic. In the same way, we see that $D_{n-2}$ is also hyperbolic.

Assume now that $D_{2},$ $D_{3},$ $D_{j-1}$ are hyperbolic. We shall show that
$D_{f}$ is also hyperbolic. Since $D_{j-1}=D_{j}C_{j}^{-1}$ is hyperbolic, we see that $D_{j}\neq\pm E$.
Suppose that $D_{j}$ is elliptic. Since $\{D_{f-1}, C_{j}\}$ and $\{D_{n-2}, C_{n-1}\}$ satisfy the con-
dition (39) in \S 5, by taking a conjugate of $\Gamma$ , we may assume that $\{D_{j-1}, C_{j}\}$

and $\{D_{n-2}, C_{n-1}\}$ satisfy the conditions (34) and (35). Therefore, by the argu-
ment in \S 5, we can find three elements C\’i $(i=j, n-1, n)$ sufficiently near $C_{i}$

such that tr $(C\text{{\it \’{i}}})=tr(C_{i})$ , tr $(D_{j-1}C_{j^{\prime}})\neq\pm tr(D_{j-1}C_{j})$ and that

$C_{1}C_{2}\cdots C_{j- 1}C_{f^{\prime}}C_{j+1}\cdots C_{n-2}C_{n^{\prime}-1}C_{n^{\prime}}I^{d_{0}}=E$ .
We are led to the contradiction by the same argument as in the case of

$D_{2}$ . This proves that $D_{j}$ is hyperbolic. Q. E. D.
PROPOSITION 6. Let $A=(a_{ij})$ be a hyperbolic element of $G$ and let $B=(b_{ij})$

be an elliptic element such that tr $(B)=0$ or $\pm 1$ . Assume that $\{A, B\}$ satisfy
the conditions (34) and (35) in \S 5. Then, for an arbitrary neighbourhood $\mathfrak{B}$ of
$B$, there exist a neighbourhood $W\times \mathfrak{A}$ of (tr (AB), $A$) satisfying the following
condition,

$(C)$ : For any point $(r, A^{(0)})$ of $(W\times \mathfrak{A})\cap(Q\times SL_{2}(Q))$ such that $tr(A^{(0)})^{2}-4$

is a non-zero square in $Q$ , we can find an element $B^{(0)}$ in $\mathfrak{B}\cap SL_{2}(Q)$ such that
tr $(B^{(0)})=tr(B)$ and that tr $(A^{(0)}B^{(0)})=r$.

PROOF. We may use the notations in \S 5 and we can apply the argument
there. Since $f_{A.B}(y_{11}, w, X)$ and $d(y_{11}, w, X)$ are continuous, we can take a
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neighbourhood $\mathfrak{b}_{11}\times W\times \mathfrak{A}$ of $(b_{11}, w_{0}, A)$ such that $f_{A,B}(\mathfrak{b}_{11}, W, \mathfrak{A})\subset \mathfrak{B}$ and that

$d(y_{11}, w, X)>0$ on $b_{11}\times W\times \mathfrak{A}$ .

We may assume that tr $(X)^{2}-4>0$ for any $X\in \mathfrak{A}$ . Now, take any rational
number $r$ in $W$ and any matrix $A^{(0)}$ in $\mathfrak{A}\cap SL_{2}(Q)$ such that tr $(A^{(0)})^{2}-4$ is a
square in $Q$ . Then, in view of (33), $d(y_{11}, r, A^{(0)})$ is a polynomial of degree 2
with rational coefficients. Moreover, by the assumption on $A^{(0)}$ , the coefficient
of the highest term is a non-zero square in $Q$ . Since $d(y_{11}, r, A^{(0)})>0$ on $b_{11}$ ,

we can find a rational number $b_{11}^{(0)}$ in $\mathfrak{y}_{11}$ such that $d(b_{11}^{(0)}, r, A^{(0)})$ is a square
in $Q$ . Put $B^{(0)}=f_{A,B}(b_{11}^{(0)}, r, A^{(0)})$ . Then by (36) and (37) we see that $B^{(0)}$ is
contained in $\mathfrak{B}\cap SL_{2}(Q)$ and that tr $(B^{(0)})=tr(B)$ , tr $(A^{(0)}B^{(0)})=r$. Q. E. D.

Now we turn to the proof of our theorem. Suppose that an arbitrary
neighbourhood $\mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}$ of $(C_{1}$ , $\cdot$ .. , $C_{n})$ is given. We may assume that
$\mathfrak{R}^{\gamma}(\Gamma)\cap(\mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}\times\{I\})\subset \mathfrak{R}(\Gamma)$ if $\Gamma$ contains $I$ (resp. $\mathfrak{R}^{\prime}(\Gamma)\cap(\mathfrak{C}_{1}\times \mathfrak{C}_{2}\times\cdots$

$\times \mathfrak{C}_{n})\subset \mathfrak{R}(\Gamma)$ if $\Gamma$ does not contain $I$ ).

Since we have shown that $D_{j}(2\leqq j\leqq\uparrow-2)$ are hyperbolic, we see that
$\{D_{2}, C_{2}^{-1}\},$ $\{D_{2}, C_{3}\},$ $\cdots$ $\{D_{n-2}, C_{n-1}\}$ satisfy the condition (39) in \S 5. Therefore,
by the remark of \S 5, taking a conjugate of $\Gamma$ , we may assume that $\{D_{2}, C_{2}^{-1}\}$ ,
$\{D_{2}, C_{3}\}$ , $\cdot$ .. , $\{D_{n- 2}, C_{n- 1}\}$ satisfy the conditions (34) and (35). Now we can
apply Proposition 6 to these pairs of matrices.

Let $\mathfrak{D}_{n- 2}$ and $\mathfrak{C}_{n- 1}^{\prime}$ be the neighbourhoods of $D_{n- 2}$ and $C_{n-1}$ respectively
such that $\mathfrak{D}_{n- 2}\cdot \mathfrak{C}_{n-1}^{\prime}\subset \mathfrak{C}_{n}^{-1}$ $I^{d_{0}}$ and that $\mathfrak{C}_{n- 1}^{\prime}\subset \mathfrak{C}_{n- 1}$ . Applying Proposition 6
to $\{D_{n- 2}, C_{n- 1} ; \mathfrak{C}_{n-1}^{\prime}\}$ , we can find a neighbourhood $W_{n}\times \mathfrak{D}_{n- 2}^{\prime}$ of $(tr(C_{n}^{-1}I^{a_{0}})$ ,
$D_{n- 2})$ satisfying the condition $(C)$ for $\mathfrak{C}_{n-1}^{\prime}$ in Proposition 6. Moreover we
may take $\mathfrak{D}_{n- 2}^{\prime}$ so that $\mathfrak{D}_{n- 2}^{\prime}\subset \mathfrak{D}_{n-2}$ . Hence we have

$\mathfrak{D}_{n- 2}^{\prime}\cdot \mathfrak{C}_{n- 1}^{\prime}\subset \mathfrak{C}_{n}^{-1}I^{d_{0}}$ . (47)

Let $\mathfrak{D}_{n- 3}$ and $\mathfrak{C}_{n-2}^{\prime}$ be the neighbourhoods of $D_{n-3}$ and $C_{n-2}$ respectively
such that $\mathfrak{D}_{n-3}\cdot \mathfrak{C}_{n- 2}^{\prime}\subset \mathfrak{D}_{n- 2}^{\prime}$ and that $\mathfrak{C}_{n- 2}^{\prime}\subset \mathfrak{C}_{n- 2}$ . Applying Proposition 6 to
$\{D_{n- 3}, C_{n- 2} ; \mathfrak{C}_{n- 2}^{\prime}\}$ , we can find a neighbourhood $W_{n- 2}\times \mathfrak{D}_{n-3}^{\prime}$ of (tr $(D_{n- 2}),$ $D_{n- 3}$)
satisfying the condition $(C)$ for $\mathfrak{C}_{n-2}^{\prime}$ in Proposition 6. We may take $\mathfrak{D}_{n-3}^{\prime}$ so
that

$\mathfrak{D}_{n- 3}^{\prime}\cdot \mathfrak{C}_{n- 2}^{\prime}\subset \mathfrak{D}_{n- 2}^{\prime}$ . (48)

Repeating the above argument, we can find the neighbourhoods $\mathfrak{C}_{f+1}^{\prime},$ $W_{J+1}\times \mathfrak{D}_{j}^{\prime}$

of $C_{j+1}$ , (tr $(D_{j+1}),$ $D_{j}$) respectively such that $W_{j+1}\times \mathfrak{D}_{j}^{\prime}$ satisfy the condition
$(C)$ for $\mathfrak{C}_{j+1}$ in Proposition 6, and that

$\mathfrak{D}_{J}^{\prime}\cdot \mathfrak{C}_{J+1}^{\prime}\subset \mathfrak{D}_{j+1}^{\prime},$ $\mathfrak{C}_{j+1}^{\prime}\subset \mathfrak{C}_{j+1}(3\leqq j\leqq n-2)$ . (49)

Finally, let $\mathfrak{D}_{2},$ $\mathfrak{C}_{2}^{\prime}$ and $\mathfrak{C}_{3}^{\prime}$ be the neighbourhoods of $D_{2},$ $C_{2}$ and $C_{\theta}$ respec-
tively such that
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$\mathfrak{D}_{2}\cdot \mathfrak{C}_{2^{-1}}^{\prime}\subset \mathfrak{C}_{1}$ , $\mathfrak{D}_{2}\cdot \mathfrak{C}_{3}^{\prime}\subset \mathfrak{D}_{3}^{\prime}$ ,

$\mathfrak{C}_{2}^{\prime}\subset \mathfrak{C}_{2}$ , $\mathfrak{C}_{3}^{\prime}\subset \mathfrak{C}_{3}$ .

Then, by Proposition 6 we can find the neighbourhoods $\mathfrak{D}_{2}^{\prime},$ $W_{1}$ and $W_{a}$

of $D_{2}$ , tr $(C_{1})$ and tr $(D_{3})$ respectively such that

$\mathfrak{D}_{2}^{\prime}$ . $\mathfrak{C}_{2^{-1}}^{\prime}\subset \mathfrak{C}_{1}$ , $\mathfrak{D}_{2}^{\prime}$ . $\mathfrak{C}_{3}^{\prime}\subset \mathfrak{D}_{8}^{\prime}$ , (50)

and that $W_{1}\times \mathfrak{D}_{2}^{\prime}$ and $W_{3}\times \mathfrak{D}_{2}^{\prime}$ satisfy the condition $(C)$ for $\mathfrak{C}_{2^{-1}}^{\prime}$ and $\mathfrak{C}_{3}^{\prime}$ respec-
tively in Proposition 6.

Now, take an element $D_{2}^{(0)}$ in $\mathfrak{D}_{2}^{\prime}\cap SL_{2}(Q)$ such that $tr(D_{2}^{(0)})^{2}-4$ is a non-
zero square in $Q$ . Then by the choice of $W_{1}\times \mathfrak{D}_{2}^{\prime}$ , we can find an element
$C_{2}^{(0)}$ in $\mathfrak{C}_{2}^{\prime}\cap SL_{2}(Q)$ such that $tr(C_{2}^{(0)})=tr(C_{2}),$ $tr(D_{2}^{(0)}C_{2}^{(0)}-1)=tr(C_{1})$ . Put $C_{1}^{(0)}=$

$D_{2}^{(0)}C_{2}^{(0)- 1}$ . Then by (50) we see that $C_{1^{(0)}}$ is contained in $\mathfrak{C}_{1}\cap SL_{2}(Q)$ and that
tr $(C_{1}^{(0)})=tr(C_{1})$ .

Take a rational number $r_{3}$ in $W_{3}$ such that $r_{3}^{2}-4$ is a non-zero square in
$Q$ . Then by the choice of $W_{3}\times \mathfrak{D}_{2}^{\prime}$ , we can find an element $C_{3}^{(0)}$ in $\mathfrak{C}_{3}^{\prime}\cap SL_{2}(Q)$

such that tr $(C_{3^{(0)}})=tr(C_{3})$ and that tr $(D_{2}^{(0)}C_{3^{(0)}})=r_{3}$ . Put $D_{3}^{(0)}=D_{2}^{(0)}C_{2}^{(0)}$ . Then
by (50) we see that $D_{3}^{(0)}$ is contained in $\mathfrak{D}_{3}^{\prime}\cap SL_{2}(Q)$ and that $tr(D_{3}^{(0)})^{2}-4$ is a
non-zero square in $Q$ by the choice of $r_{3}$ . Repeating the above argument,
we can find inductively $C_{f}^{(0)},$ $D_{j}^{(0)}$ in $\mathfrak{C}_{j}^{\prime}\cap SL_{2}(Q),$ $\mathfrak{D}_{f}^{\prime}\cap SL_{2}(Q)$ respectively such
that

tr $(C_{f}^{(0)})=tr(C_{j})$ , $D_{j-1}^{(0)}C_{f}^{(0)}=D_{f^{(0)}}$ , $(3\leqq j\leqq n-2)$

and that tr $(D_{j^{(0)}})^{2}-4$ is a non-zero square in $Q$ .
Finally, we can find an element $C_{n-1}^{(0)}$ in $\mathfrak{C}_{n-1}^{\prime}\cap SL_{2}(Q)$ such that

tr $(C_{n-1}^{(0)})=tr(C_{n-1})$ , tr $(D_{n-2}^{(0)}C_{n-1}^{(0)})=tr(C_{n}^{-1}I^{a_{0}})$ .
Put $C_{n}^{(0)}=D_{n-2}^{(0)}C_{n-1}^{(0)-1}I^{d_{0}}$ . Then we see that $tr(C_{n}^{(0)})=tr(C_{n})$ and that $C_{n}^{(0)}$

is contained in $\mathfrak{C}_{n}\cap SL_{2}(Q)$ by (47).
The representation $\varphi_{0}$ of $\Gamma$ defined by $(C_{1}, \cdot.. , C_{n}, I)-\rangle$ $(C_{1}^{(0)}, \cdot., , C_{n}^{(0)}, I)$ in

the case where $\Gamma$ contains $I$ (resp. $(C_{1}$ , $\cdot$ .. , $ C_{n})-\rangle$ $(C_{1}^{(0)}$ , $\cdot$ .. , $C_{n}^{(0)})$ in the case
where $\Gamma$ does not contain $I$ ) is contained in $\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n}\times\{I\}$ (resp.
$\mathfrak{R}_{Q}(\Gamma)\cap \mathfrak{C}_{1}\times\cdots\times \mathfrak{C}_{n})$ . This shows that $\mathfrak{R}_{Q}(\Gamma)$ is everywhere dense in $\mathfrak{R}(\Gamma)$ ,
in the case of $g=0$ .

\S 7. In order to complete the proof of our theorem, we need the follow-
ing proposition.

PROPOSITION 7. Let $\Gamma$ be a discrete subgroup of $G$ such that the quotient
space $ G/\Gamma$ is compact. Then the set tr $(\Gamma)$ cosisting of tr $(A)$ for all elements
$A$ of $\Gamma$ is discrete in $R$ .

The proof of this proposition is given in the book of Gel’fand-Graev-
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Pyatetskii:Shapiro ([3] p. 88). By using Proposition 7, we shall make a
sequence $\{\varphi_{m}\}$ converging to an arbitrarily given $\varphi$ of $\mathfrak{R}(\Gamma)$ such that $\varphi_{m}$

$(m=1, 2, )$ are contained in $\mathfrak{R}_{Q}(\Gamma)$ and that the set $tr(\varphi_{m}(\Gamma))$ is different
from one another. First, consider the case $g\geqq 1$ . We may assume that $\varphi$ is
the identity representation of $\Gamma$ . Fix a bounded neighbourhood $U$ of $tr(B_{1})$

in $R$. Take an element $\varphi_{1}$ of $\mathfrak{R}_{Q}(\Gamma)$ . Then by Proposition 7, the intersection
$tr(\varphi_{1}(\Gamma))\cap U$ is a finite set. As $y_{11}$ is a variable in (23), the element $\varphi_{2}$ of
$\mathfrak{R}_{Q}(\Gamma)$ can be taken such that $tr(\varphi_{2}(B_{1}))$ is contained in $U-tr(\varphi_{1}(\Gamma))$ . In the
same way, we can determine inductively the element $\varphi_{m}$ of $\mathfrak{R}_{Q}(\Gamma)$ such that

tr $(\varphi_{m}(B_{1}))$ is contained in $U-\overline{\bigcup_{i=1}}trm1(\varphi_{i}(\Gamma))$ . Of course we take the sequence
$\{\varphi_{m}\}$ so as to converge to the identity representation.

Next consider the case $g=0$ . Fix a bounded neighbourhood $V$ of tr $(D_{2})$

in $R$ . In view of the choice of $\varphi_{m}(D_{2})$ in \S 6, we see that the element $\varphi_{m}$ of
$\mathfrak{R}_{Q}(\Gamma)$ can be taken such that $tr(\varphi_{m}(D_{2}))$ is contained in $V-|d_{1}^{-}trm_{i=}1(\varphi_{i}(\Gamma))$ .
This completes our theorem.

\S 8. Let us note about the generalization of our theorem. Let $\Gamma$ be a
discrete subgroup of $G$ such that the quotient space $ G/\Gamma$ is of finite volume
with respect to the invariant measure. We define $\mathfrak{R}^{\prime}(\Gamma),$ $\mathfrak{R}(\Gamma)$ and $\mathfrak{R}_{Q}(\Gamma)$ in
the same way as in \S 2. If the Theorem (A. Weil) can be proved in this
case, then our method used in this paper is valid, and we can generalize our
theorem to the non-compact quotient case. We note here that Proposition 7
is valid in this case, although we do not give the proof.
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