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\S 1. The main result.

Let $X$ be a compact (Hausdorff, non-empty) space and $B$ a Banach space.
We then donote by $C(X:B)$ the Banach space of all continuous B-valued
functions on $X$, by $C(X)\otimes B$ the algebraic tensor product of $C(X)$ and $B$ , and
by $ C(X)\otimes B\wedge$ the completion of $C(X)\otimes B$ with the projective $\otimes_{7\zeta}$ norm.
$ C(X)\otimes B\wedge$ can and will be regarded in the natural manner as a linear subspace
of $C(X:B)[4]$ .

Suppose that $Y$ is another compact space, and that $p$ is a continuous
mapping from $X$ onto Y. The mapping $p$ induces a linear isometry $P$ from
$C(Y)$ into $C(X)$ defined by

$(P(f))(x)=f(p(x))$ $(f\in C(Y), x\in X)$ .
Consider now the operator

$P_{B}=P\otimes I_{B}$ :
$\wedge$

$C(Y)\otimes B\wedge\rightarrow C(X)^{\wedge}\otimes B$ ,

where $I_{B}$ denotes the identity operator on $B$ . As is shown in \S 2, $P_{B}$ is an
isometry.

In this paper we are concerned with the problem of determining the
range of the operator $P_{B}$ . This problem was solved by N. Th. Varopoulos
[7; pp. 65-70] under some assumptions on $X$ and Y. To state our main
result, let us introduce the notation

$[C(X)\otimes B;p]\wedge=$ { $F\in C(X)\otimes B:\wedge F=G\circ p$ for some $G\in C(Y:B)$ },

which is obviously a closed linear subspace of $ C(X)\otimes B\wedge$ containing the range
of $P_{B}$ .

THEOREM 1.1. The range of $P_{B}$ is exactly the space $[C(X)\otimes B\wedge ; p]$ .
In \S 2 we give some auxiliary theorems. The proof of Theorem 1.1 is

given in \S 3. \S 4 is devoted to generalize Theorem 1.1. Finally, \S 5 contains
some remarks on the problem of spectral synthesis for tensor algebras and
group algebras.
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\S 2. Some theorems on tensor products of Banach spaces.

THEOREM 2.1. The operator $ P_{B}=P\otimes I_{B}\wedge$ defined in \S 1 is an isometry.
PROOF. We construct an approximating inverse of the operator $P$ as

follows (for the definition, see [7; p. 53]). Let $u=\{U_{k}\}_{1}^{n}$ be any finite open
covering of Y. Then there exist functions $\{\varphi_{k}\}_{1}^{n}$ in $C(Y)$ such that [5; (3.1)]

(1) $\sum_{k=1}^{n}\varphi_{k}(y)=1$ for all $y\in Y$ ;

(2) $0\leqq\varphi_{k}\leqq 1$ and $\varphi_{k}(U_{k}^{c})=\{0\}$ for all $k=1,2,$ $\cdots$ , $n$ .
Let $\{x_{k}\in p^{-1}(U_{k})\}_{1}^{n}$ be any choice of points, and define an operator $Q_{u}$ : $C(X)$

$\rightarrow C(Y)$ by

$Q_{u}(g)=\sum_{k=1}^{n}g(x_{k})\varphi_{k}$ $(g\in C(X))$ .

Then, for any $f\in C(Y)$ and $y\in Y$ we have

$|((Q_{u}\circ P)(f))(y)-f(y)|\leqq\sum_{k=1}^{n}|f(p(x_{k}))-f(y)|\varphi_{k}(y)$

$\leqq\sum_{k=1}^{n}\sup\{|f(y^{\prime})-f(y^{\prime\prime})| : y^{\prime}, y^{\prime\prime}\in U_{k}\}\cdot\varphi_{k}(y)$

$\leqq\sup_{k}\sup\{|f(y^{\prime})-f(y^{\prime\prime})| : y^{\prime}, y^{\prime\prime}\in U_{k}\}$ .

Therefore it is easy to see that the family $\{Q_{u} : u\in \mathcal{U}\}$ of operators is an
approximating inverse of $P$, where $\mathcal{U}$ is the directed set consisting of all
finite open coverings of $Y$ (for $u$ and $v$ in $\mathcal{U},$ $u\prec v$ if and only if $v$ is a
refinement of $u$). It follows from [7; p. 54] that $P_{B}$ is an isometry.

REMARK. Using approximating inverses constructed as above, we can
improve the result in [7; p. 63] as follows.

Let $\{X_{j}\}_{1}^{N}$ and $\{Y_{j}\}_{1}^{N}$ be two families of $N$ compact spaces, let { $p_{j}$ ; $x_{j}$

$\rightarrow Y_{j}\}_{1}^{N}$ be $N$ continuous “ onto “ mappings, and denote by

$p=p_{1}\times\cdots\times p_{N}$ : $X_{1}\times\cdots\times X_{N}\rightarrow Y_{1}\times\cdots\times Y_{N}$

the product mapping of $\{p_{j}\}_{1}^{N}$ . Then the algebra homomorphism

$P:C(Y_{1})\otimes\wedge\ldots\otimes C(Y_{N})\wedge\rightarrow C(X_{1})^{\wedge}\otimes\cdots\wedge\otimes C(X_{N})$ ,

naturally induced by $p$ , has a local approximating inverse (for the definition,

see [7; p. 57]).

Let now $\{B_{j}\supset K_{j}\}_{1}^{N}$ be Banach spaces and closed linear subspaces and let
$\{Q_{j} : B_{j}\rightarrow B_{j}/K_{j}\}_{1}^{N}$ be the quotient mappings. It is then trivial that the kernel
of the mapping



Isometries of tensor products of Banach spaces 29

$ Q=Q_{1}\otimes\wedge\ldots\otimes Q_{N}\wedge$ : $ B_{1}\otimes\wedge\ldots\wedge\otimes B_{N}\rightarrow B_{1}/K_{1}\otimes\wedge\ldots\otimes B_{N}/K_{N}\wedge$

contains the linear subspace

$\chi=K_{1}\otimes B_{2}\otimes\cdots\otimes B_{N}+\cdots+B_{1}\otimes\cdots\otimes B_{N-1}\otimes K_{N}$

of $B_{1}\otimes\cdots\otimes B_{N}$ .
THEOREM 2.2. (cf. [7; pp. 55-56]) Using the above notations, we have:
(a) $JC=(B_{1}\otimes\cdots\otimes B_{N})\cap KerQ$ ;
(b) $JC$ is dense in $KerQ$ ;
(c) If we denote by

$\tilde{Q}:(B_{1}\otimes\wedge\ldots\wedge\otimes B_{N})/KerQ\rightarrow B_{1}/K_{1}\otimes\wedge\ldots\otimes B_{N}/K_{N}\wedge$

the mapping naturally induced by $Q$ , then $\tilde{Q}$ is an “ onto ‘’ isometry.
PROOF. Every element $F\in B_{1}\otimes\cdots\otimes B_{N}$ can be expressed in the form

(1)
$F=\sum_{l_{1}}\cdots\sum_{\iota_{N}}a(l_{1}, l_{N})f_{1^{(l_{1})}}\otimes\cdots\otimes f_{N}^{(\iota_{N)}}+G$

,

where $\{f_{j^{(l_{j})}}\}$ are finite elements of $B_{j}$ linearly independent $mod K_{j}(j=1,2$,
... , $N$) and $G\in JC$ . If $F$ is in $KerQ$ , then we have

$0=\sum_{l_{1}}\cdots\sum_{\iota_{N}}a(l_{1}, l_{N})Q_{1}(f_{1^{(l_{1})}})\otimes\cdots\otimes Q_{N}(f_{N}^{(tN)})$ .

Since the elements $Q_{1}(f_{1}^{(\iota_{1})})\otimes\cdots\otimes Q_{N}(f_{N^{(lN)}})$ are linearly independent in $B_{1}/K_{1}$

$\otimes\cdots\otimes B_{N}/K_{N}$ , this implies that

$a(l_{1}, l_{N})=0$

for all indices $l_{1}$ , $\cdot$
., , $l_{N}$ . It follows from (1) that $ F=G\in c\kappa$ , which proves (a).

To prove statements (b) and (c), it suffices to verify that for any element
$F\in B_{1}\otimes\cdots\otimes B_{N}$ we have

(2) $\Vert Q(F)\Vert_{\pi}=\Vert F+JC\Vert=\inf\{\Vert F+G\Vert_{\pi} : G\in J\zeta\}$ .
The inequality $\Vert Q(F)\Vert_{\pi}\leqq\Vert F+cK\Vert$ is trivial. Take now an arbitrary $\epsilon>0$ .
$Q(F)$ has an expansion of the form

$Q(F)=\sum_{\iota=1}^{n}Q_{1}(f_{1}^{(i)})\otimes\cdots\otimes Q_{N}(f_{N}^{(i)})$ ,

where $f_{j}^{(i)}$ are elements of $B_{j}$ ($j=1,2$ , $\cdot$ .. , $N;i=1,2$ , $\cdot$ .. , n) such that

$\Vert Q(F)\Vert_{\pi}+\epsilon>\sum_{t=1}^{n}\Vert Q_{1}(f_{1^{(i)}})\Vert\ldots\Vert Q_{N}(f_{N}^{(i)})\Vert$ .

We can find then $h_{j}^{(i)}\in f_{j}^{(i)}+K_{j}$ such that

$\Vert Q(F)\Vert_{\pi}+\epsilon>\sum_{t=1}^{n}\Vert h_{1}^{(i)}\Vert\ldots\Vert h_{N}^{(i)}\Vert$ .
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Putting

$H=\sum_{i=1}^{n}h_{1}^{(i)}\otimes\cdots\otimes h_{N}^{(i)}\in B_{1}\otimes\cdots\otimes B_{N}$ ,

we see that $Q(F)=Q(H)$ and so $H\in F+JC$ by (a). It follows that

$\Vert Q(F)\Vert_{\pi}+\epsilon>\Vert H\Vert_{\pi}\geqq\Vert F+JC\Vert$ .
Since $\epsilon>0$ was arbitrary, this yields the required equality (2).

The proof is complete.
COROLLARY 2.2.1. Let $X$ be a compact space, $E$ a closed subset of $X$, and

$B$ a Banach space. Denote by

$I(E:C(X))=$ { $f\in C(X):f=0$ on $E$ };

$ I(E:C(X)\otimes B)=\wedge$ { $F\in C(X)\otimes B:\wedge F=0$ on $E$ }.

Then the natural imbedding

$\theta:I(E:C(X))\otimes B\wedge\rightarrow C(X)\otimes B\wedge$

is an isometry and the range of $\theta$ is $I(E:C(X)^{\wedge}\otimes B)$ .
PROOF. Since the imbedding $I(E:C(X))\subset C(X)$ has an approximating

inverse, $\theta$ is an isometry [7; p. 54]. To show that $I(E:C(X))\otimes B\wedge=$

$ I(E:C(X)\otimes B)\wedge$ (or more precisely that $\theta[I(E:C(X))\otimes B]\wedge=I(E:C(X)^{\wedge}\otimes B)$),

consider the restriction mapping

$Q_{E}(f)=f|_{E}\in C(E)$ $(f\in C(X))$ .
The mapping $Q_{E}$ may be also regarded as the quotient mapping

$Q_{E}$ : $C(X)\rightarrow C(E)=C(X)/I(E:C(X))$ .
Thus the preceding theorem applies, and we see that $I(E:C(X))\otimes B$ is dense
in the kernel of the mapping

$Q=Q_{E}\otimes I_{B}$ :
$\wedge$

$C(X)\otimes B\wedge\rightarrow C(E)^{\wedge}\otimes B$ .
Since the closure of $I(E:C(X))\otimes B$ in $ C(X)\otimes B\wedge$ is $ 1(E:C(X))\otimes B\wedge$ , it follows
that $KerQ=I(E:C(X))\otimes B\wedge$ . On the other hand, it is easy to see that $Q$ is
realized as the restriction mapping

$Q(F)=F|_{E}\in C(E)^{\wedge}\otimes B$ $(F\in C(X)\otimes B)\wedge$ ,

from which we conclude that

$I(E:C(X)^{\wedge}\otimes B)=KerQ=1(E:C(X))^{\wedge}\otimes B$ .
This completes the proof.



Isometries of tensor products of Banach spaces 31

DEFINITION. Let $X$ and $B$ be as before, and let $\Phi$ be any bounded linear
functional on the Banach space $ C(X)\otimes B\wedge(\Phi\in(C(X)\otimes B)^{\prime})\wedge$ . The X-support
of $\Phi$ , denoted by X-supp $(\Phi)$ , is the intersection of all closed subsets $E$ of $X$

satisfying the following condition:
$(\#)$ If $ F\in C(X)\otimes B\wedge$ , and if $F=0$ on some neighborhood of $E$, then $\Phi(F)=0$ .

THEOREM 2.3. Let $\Phi\in(C(X)\otimes B)^{\gamma}\wedge$ and $S=X- supp(\Phi)$ . Then we have

$(\#)^{\prime}$ $F\in I(S:C(X)\otimes B)\wedge\Rightarrow\Phi(F)=0$ .
Therefore the X-support of $\Phi$ is the smallest closed subset $S$ for which $(\#)^{\prime}$

holds.
PROOF. It is easy to see that the family of the closed subsets $E$ satisfy-

ing condition $(\#)$ has the finite intersection property, and so $S$ belongs to that
family. In order to establish $(\#)^{\prime}$ , consider an arbitrary $F$ in $ I(S:C(X)\otimes B)\wedge$ .
Since $ I(S:C(X)\otimes B)\wedge=I(S:C(X))\otimes B\wedge$ by Corollary 2.2.1, it follows that for
any $\epsilon>0$ we can find $f_{\epsilon}\in C(X)$ such that $\Vert F-f_{\epsilon}F\Vert_{\pi}<\epsilon$ and $f_{e}=0$ on some
neighborhood of $S$ . Since $S$ satisfies condition $(\#)$ , we conclude that $\Phi(f_{\epsilon}F)$

$=0$ , and so
$|\Phi(F)|=|\Phi(F-f_{\epsilon}F)|\leqq\Vert\Phi\Vert\epsilon$ .

Since $\epsilon$ is arbitrary, this yields $\Phi(F)=0$ , and consequently $(\#)^{\prime}$ holds.
This completes the proof.
Let us now take $\Phi\in(C(X)\otimes B)^{\prime}\wedge$ and $b\in B$ arbitrarily, and observe that

$|\Phi(f\otimes b)|\leqq\Vert\Phi\Vert\cdot\Vert b\Vert_{B}\cdot\Vert f\Vert_{\infty}$ $(f\in C(X))$ .
Thus, by F. Riesz’s representation theorem [5], there exists a unique mea-
sure $\mu[\Phi, b]\in M(X)$ such that

$\Phi(f\otimes b)=\int_{X}fd\mu[\Phi, b]$ $(f\in C(X))$ .

Let $\mathcal{B}(X)$ be the space of all bounded Borel measurable functions on $X$, and
for any $\varphi\in \mathcal{B}(X)$ , let $\varphi\Phi$ be the functional in $(C(X)^{\wedge}\otimes B)^{\prime}$ uniquely defined
by the requirement

$(\varphi\Phi)(f\otimes b)=\int_{X}\varphi fd\mu[\Phi, b]$ $(f\in C(X), b\in B)$ .

It is then trivial that $\Vert\varphi\Phi\Vert\leqq\Vert\varphi\Vert_{\infty}\cdot\Vert\Phi\Vert$ , and that $supp(\mu[\Phi, b])\subset X- supp(\Phi)$

for all $b\in B$ . Note also that if $\varphi\in C(X)$ we have

$(\varphi\Phi)(f\otimes b)=\int_{X}\varphi fd\mu[\Phi, b]=\Phi(\varphi f\otimes b)$ $(f\in C(X), b\in B)$ .

THEOREM 2.4. For any $\Phi\in(C(X)\otimes B)^{\prime}\wedge$ we have:
(a) If $\varphi\in \mathcal{B}(X)$ , then
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X-supp $(\varphi\Phi)\subset supp\varphi\cap X- supp(\Phi)$ .

(b) If $\varphi\in \mathcal{B}(X),$
$ F\in C(X)\otimes B\wedge$ , and if $\varphi F=0$ on X-supp $(\Phi)$ , then $(\varphi\Phi)(F)$

$=0$ .
(c) Let $\{\varphi_{n}\}_{1}^{\infty}$ and $\{F_{n}\}_{1}^{\infty}$ be any sequences in $\mathcal{B}(X)$ and $ C(X)\otimes B\wedge$ , respec-

tively, such that

$\sum_{n=1}^{\infty}\Vert\varphi_{n}\Vert_{\infty}\cdot\Vert F_{n}\Vert_{\pi}<+\infty$

and suppose that

$\sum_{n=1}^{\infty}\varphi_{n}(x)F_{n}(x)=0$ $(x\in X- supp(\Phi))$ .
Then

$\sum_{n=1}^{\infty}(\varphi_{n}\Phi)(F_{n})=0$ .

PROOF. We easily see that the part (a) is an immediate consequence of
the part (b).

In order to prove the part (b), let $\varphi$ and $F$ be as in (b), and set $E=\{x\in X$ :
$F(x)=0\}$ . It then follows from Corollary 2.1.1 that for any $\epsilon>0$ , there exists
$f_{\epsilon}\in C(X)$ such that $f_{\epsilon}=0$ on some open set $U$ containing $E$ and such that

$\Vert f_{\epsilon}\Vert_{\infty}\leqq 1$ , and $\Vert F-f_{\epsilon}F\Vert_{\pi}<\epsilon$ .
Let

$F=\sum_{t=1}^{\infty}f_{i}\otimes b_{i}$ $(f_{i}\in C(X), b_{t}\in B)$

be any fixed expansion of $F$ with

$\sum_{t=1}^{\infty}\Vert f_{t}\Vert_{\infty}\cdot\Vert b_{i}\Vert_{B}<+\infty$ .

Putting $\mu_{i}=\mu[\Phi, b_{i}]$ , we then have

$(\varphi\Phi)(F)=\sum_{i=1}^{\infty}\int_{X}\varphi f_{i}d\mu_{i}$ .

Take any natural number $n=n_{\epsilon}$ so that

$\sum_{i=n}^{\infty}\Vert f_{i}\Vert_{\infty}\cdot\Vert b_{i}\Vert_{B}<\epsilon$ .

Using Luzin’s theorem, we see that there exists a closed subset $K_{\epsilon}$ of $X$

such that

$\varphi|_{K_{*}}\in C(K_{\epsilon})$ , and $\sum_{i=1}^{n}\Vert f_{i}\Vert_{\infty}\cdot|\mu_{i}|(K_{e^{C}})<\epsilon$ .

Since $\varphi=0$ on the closed set $U^{c}\cap X- supp(\Phi)$ , we may assume that
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$U^{c}\cap X- supp(\Phi)\subset K_{\epsilon}$ .
Let $\tilde{\varphi}\in C(X)$ be any continuous extension of $\varphi|_{K_{\epsilon}}$ such that $\Vert\tilde{\varphi}\Vert_{\infty}\leqq\Vert\varphi\Vert_{\infty}$ .
Then $\tilde{\varphi}f_{\epsilon}=0$ on X-supp $(\Phi)$ and so by Theorem 2.2 we have

$\Phi(\tilde{\varphi}f_{\epsilon}F)=0$ .
It follows that

$|(\varphi\Phi)(f_{\epsilon}F)|=|(\varphi\Phi)(f_{\epsilon}F)-\Phi(\tilde{\varphi}f_{\epsilon}F)|$

$\leqq\sum_{i=1}^{\infty}|\int_{x}(\varphi-\tilde{\varphi})f_{\epsilon}f_{t}d\mu_{t1}$

$\leqq 2\Vert\varphi\Vert_{\infty}${ $\sum_{i=1}^{n}$ I $ f_{i}\Vert_{\infty}\cdot|\mu_{i}|(K_{\epsilon^{C}})+\sum_{i=n}^{\infty}\Vert f_{i}\Vert_{\infty}\cdot\Vert b_{i}\Vert_{B}\cdot\Vert\Phi\Vert$ }
$\leqq 2\Vert\varphi\Vert_{\infty}(1+\Vert\Phi\Vert)\epsilon$ .

Consequently we have

$|(\varphi\Phi)(F)|\leqq|(\varphi\Phi)(f_{\text{\’{e}}}F)|+\Vert\varphi\Vert_{\infty}\cdot\Vert\Phi\Vert\cdot\epsilon$

$\leqq 3\Vert\varphi\Vert_{\infty}\cdot(1+\Vert\Phi\Vert)\epsilon$ .
Letting $\epsilon\rightarrow 0$ , we have $(\varphi\Phi)(F)=0$ and so the part (b) is proved.

The part (c) is obviously a generalization of the part (b). Let $\{\varphi_{n}\}_{1}^{\infty}$ and
$\{F_{n}\}_{1}^{\infty}$ be as in (c). In order to show that $\sum_{n=1}^{\infty}(\varphi_{n}\Phi)(F_{n})=0$ , we can and will
assume without loss of generality that

(1) $\Vert\varphi_{n}\Vert_{\infty}=1$ , $F_{n}=f_{n}\otimes b_{n}$ , and $\Vert f_{n}\Vert_{\infty}=1$

for some $f_{n}\in C(X)$ and $b_{n}\in B(n=1, 2, )$ . Then

$\sum_{n=1}^{\infty}\Vert b_{n}\Vert_{B}<+\infty$ ,

and hence

(2) $\mu=\sum_{n=1}^{\infty}|\mu_{n}|\in M(X)$

converges in the norm of $M(X)$ , where $\mu_{n}=\mu[\Phi, b_{n}]$ . By the Radon-Nikod\’ym
theorem, we can find $w_{n}\in \mathcal{B}(X)$ so that

(3) $ d\mu_{n}=w_{n}d\mu$ $(n=1,2, )$ .
Then the series

(4) $g=\sum_{n=1}^{\infty}\varphi_{n}f_{n}w_{n}\in L^{1}(d\mu)$

absolutely converges in the norm of $L^{1}(d\mu)$ by (1), (2), and (3). Let $\epsilon>0$ be
arbitrary. From the absolute continuity of indefinite integrals, there is a
$\delta=\delta(\epsilon)>0$ such that for every Borel subset $E$ of $X$ we have
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(5) $\mu(E)<\delta 0\int_{E}|g|d\mu<\epsilon$ .

Using Luzin’s theorem as before, we see that there is a closed subset $K=K_{\delta}$

of $X$ such that

(6) $\mu(K^{c})<\delta$ , and $\varphi_{n}|_{K}\in C(K)$ $(n=1, 2, )$ .
We then have by (1), (3), (4), (5), and (6)

(7) $|\sum_{n=1}^{\infty}(\varphi_{n}\Phi)(F_{n})-\sum_{n=1}^{\infty}\int_{K}\varphi_{n}f_{n}d\mu_{n}|=|\int_{K^{c}}gd\mu|<\epsilon$ .

Let now $\tilde{\varphi}_{n}$ be any continuous extension of $\varphi_{n}|_{K}$ such that $\Vert\tilde{\varphi}_{n}\Vert_{\infty}\leqq 1$ for all
$n=1,2,$ $\cdots$ let

(8) $ G=\sum_{n=1}^{\infty}\tilde{\varphi}_{n}f_{n}\otimes b_{n}\in C(X)\otimes B\wedge$ ,

and observe that

$\chi_{K}(x)G(x)=\chi_{K}(x)\sum_{n=1}^{\infty}\varphi_{n}(x)F_{n}(x)=0$ $(x\in X- supp\Phi)$

by assumption. It follows from the part (b) and (8) that

$0=(\chi_{K}\Phi)(G)$

$=\sum_{n=1}^{\infty}\int_{K}\tilde{\varphi}_{n}f_{n}d\mu_{n}=\sum_{n=1}^{\infty}\int_{K}\varphi_{n}f_{n}d\mu_{n}$ .

This combined with (7) shows that

$|\sum_{n=1}^{\infty}\varphi_{n}\Phi(F_{n})|<\epsilon$ .

Since $\epsilon$ can be taken as small as one pleases, we have the desired conclusion.
The proof is now complete.

\S 3. The proof of Theorem 1.1.

Let $X,$ $Y$, etc., be as in \S 1. We first prove the following.
(I). If both $X$ and $Y$ are metrizable, then Theorem 1.1 holds.
To show this, take any $F\in[C(X)\otimes B\wedge ; p]$ and $\Phi\in(C(X)\otimes B)^{\prime}\wedge$ such that

(1) $\Phi(P_{B}(H))=0$ $(H\in C(Y)\otimes B)\wedge$ .
Since the range of $P_{B}$ is a closed linear subspace of $ C(X)\otimes B\wedge$ by Theorem
2.1, the proof will be complete by the Hahn-Banach theorem as soon as we
have shown that $\Phi(F)=0$ .

First note that (1) implies
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\langle 2) $(\chi_{p(E)}-1\Phi)(P_{B}(H))=0$
$(H\in C(Y)^{\wedge}\otimes B)$

for all Borel subsets $E$ of Y. This may be proved as Theorem 2.4 was
proved. Let

\langle 3) $F=\sum_{n=1}^{\infty}f_{n}\otimes b_{n}$ $(f_{n}\in C(X), b_{n}\in B)$

be any fixed expansion of $F$ such that

$\Vert f_{n}\Vert_{\infty}\leqq 1(n=1, 2, )$ , and $\sum_{n=1}^{\infty}\Vert b_{n}\Vert_{B}<+\infty$ .

Let $\mu_{n}=\mu[\Phi, b_{n}]$ ,

$\mu_{X}=\sum_{n=1}^{\infty}|\mu_{n}|\in M(X)$

and choose $w_{n}\in \mathcal{B}(X)$ so that

$d\mu_{n}=w_{n}d\mu_{X}$ $(n=1,2, )$ .
Then we have for any Borel subset $D$ of $X$

\langle 4) $(\chi_{D}\Phi)(F)=\int_{D}gd\mu_{X}$

where

$g=\sum_{n=1}^{\infty}f_{n}w_{n}\in L^{1}(d\mu)$ .

We now define $\mu_{Y}\in M(Y)$ to be the measure obtained by setting

(5) $\mu_{Y}(E)=\mu_{X}(p^{-1}(E))$

for all Borel subsets $E$ of Y.
Since both $X$ and $Y$ are compact and metrizable, and since $p$ is a con-

tinuous mapping from $X$ onto $Y$, there exists a Borel measurable mapping
$q:Y\rightarrow X$ such that

(6) $p(q(y))=y$ $(y\in Y)$ .
(See [1]). Let $\epsilon>0$ be given. Since $f_{n}\circ q\in \mathcal{B}(Y)$ , we can find a closed sub-
set $K$ of $Y$ such that

(7) $\mu_{Y}(K^{c})<\epsilon$ and $f_{n}\circ q|_{K}\in C(K)$ $(n=1, 2, )$ .
Let $\tilde{g}_{n}\in C(Y)$ be any continuous extension of $f_{n}\circ q|_{K}$ such that $\Vert\tilde{g}_{n}\Vert\leqq 1$ and
let

(8) $ G=\sum_{n=1}^{\infty}\tilde{g}_{n}\otimes b_{n}\in C(Y)\otimes B\wedge$ .

Setting $K_{X}=p^{-1}(K)$ , we see from (2) that

(9) $(\chi_{K_{X}}\Phi)(P_{B}(G))=0$ .
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On the other hand, since $ F\in[C(X)\otimes B;p]\wedge$ , we have by (3), (6), and (8), for
all $x\in K_{X}$

$F(x)=F(q(p(x)))=\sum_{n=\iota}^{\infty}f_{n}(q(p(x)))b_{n}$

$=\sum_{n=1}^{\infty}\tilde{g}_{n}(p(x))b_{n}=(P_{B}(G))(x)$ .

Therefore Theorem 2.4 combined with (9) shows

$(\chi_{K_{X}}\Phi)(F)=0$ .
It follows from (4) that

(10) $\Phi(F)=(\chi_{(K_{X})^{c}}\Phi)(F)=\int_{(K_{X})}cgd\mu$

We have also by (5) and (7) $\mu_{X}(K_{X}^{c})<\epsilon$ . Since $\epsilon$ was arbitrary, (10) implies
$\Phi(F)=0$ , which proves (I).

We now prove Theorem 1.1 for general $X$ and Y. Let $ F\in[C(X)\otimes B;p]^{t}\wedge$

be as in (3). There exists $G\in C(Y:B)$ such that

(1) $F(x)=G(p(x))$ $(x\in X)$ .
Regarding as a single point each closed subset of $X$ on which every $f_{n}$ is $\cdot$

constant, we obtain a compact metrizable space $\tilde{X}$ and a continuous mapping
$q_{X}$ from $X$ onto $\tilde{X}$ such that
$(2^{J})$ $F(x)=\tilde{F}(q_{X}(x))$ $(x\in X)$

for some $\tilde{F}\in C(\tilde{X})^{\wedge}\otimes B$ . Similarly regarding as a single point each closed
subset of $Y$ on which $G$ is constant, we obtain a compact metrizable space

$\tilde{Y}$, a continuous mapping $q_{Y}$ from $Y$ onto $\tilde{Y}$, and a continuous mapping $\tilde{p}$

from $\tilde{X}$ onto $\tilde{Y}$ such that: In the diagram

$X\rightarrow^{p}Y$

$ q_{X}\downarrow$

$\tilde{p}$

$\downarrow q_{Y}$

$\tilde{X}\rightarrow\tilde{Y}$

we have

(3) $q_{Y}\circ P=\tilde{P}\circ q_{x}$

and

$(4^{\gamma})$ $G(y)=\tilde{G}(q_{Y}(y))$ $(y\in Y)$

for some $\tilde{G}\in C(\tilde{Y}:B)$ . It follows from (1), (2), $(3^{\prime})$ , and (4’) that we have
for all $x\in X$

$\tilde{F}(q_{X}(x))=F(x)=G(p(x))=(\tilde{G}\circ\tilde{p})(q_{X}(x))$ ,
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that is, that $\tilde{F}=\tilde{G}\circ\tilde{p}$ . Therefore (I) assures that $\tilde{G}\in C(\tilde{Y})\otimes B\wedge$ , which com-
bined with $(4^{\prime})$ yields $ G\in C(Y)\otimes B\wedge$ . We have thus $F=G\circ p=P_{B}(G)$ , being

. , the required conclusion.
The proof of Theorem 1.1 is now established.

\S 4. Generalizations of Theorem 1.1.

In this section we shall generalize Theorem 1.1. We begin as follows.
THEOREM 4.1. Let $\{X_{j}\}_{1}^{N}$ and $\{Y_{j}\}_{1}^{N}$ be two families of $N$ compact spaces,

$\{p_{j} : X_{j}\rightarrow Y_{j}\}_{1}^{N}N$ continuous “ onto “ mappings, and $B$ a Banach space. Denote
$by$

$p=p_{1}\times\cdots\times p_{N}$ : $X=X_{1}\times\cdots\times X_{N}\rightarrow Y=Y_{1}\times\cdots\times Y_{N}$

the product mapping of $p_{1},$ $p_{N}$ , and define the operator

$ P:C(Y_{1})\otimes\wedge\ldots\otimes C(Y_{N})\otimes B\wedge\wedge\rightarrow C(X_{1})\otimes\wedge\ldots\otimes C(X_{N})\otimes B\wedge\wedge$

$ly$

$P(G)=G\circ p$ $(G\in C(Y_{1})\otimes\wedge\ldots\otimes C(Y_{N})\wedge\otimes B)\wedge$ .
Then $P$ is a linear isometry, and its range is

$[C(X_{1})\otimes\cdot\cdot\otimes C(X_{N})\otimes B;p]\wedge.\wedge\wedge$

$=$ { $F\in C(X_{1})\otimes\wedge\ldots\wedge\wedge\otimes C(X_{N})\otimes B:F=G\circ p$ for some $G\in C(Y:B)$ }.

PROOF. We prove this only for the case $N=2$ . The general proof pro-
ceeds similarly. The first statement that $P$ is a linear isometry is easily
seen (cf. Theorem 2.1). Suppose now that $ F\in C(X_{1})\otimes C(X_{2})\otimes B\wedge\wedge$ is such that
$F=H\circ p$ for some $H\in C(Y_{1}\times Y_{2} : B)$ . Regarding $F$ as a $ C(X_{1})\otimes B\wedge$ -valued
function on $X_{2}$ , we then see that $ F\in C(X_{2})\otimes(C(X_{1})\wedge\otimes B)\wedge$ and that $F=c\circ p_{2}$

for some $ G\in C(Y_{2} : C(X_{1})\otimes B)\wedge$ . It follows from Theorem 1.1 that $G\in C(Y_{2})$

$ V\otimes(C(X_{1})\otimes B)\wedge\wedge$ . Regarding $G$ as a $ C(Y_{2})\otimes B\wedge$ -valued functions on $X_{1}$ , we also
see that $ G\in C(X_{1})\otimes(C(Y_{2})\otimes B)\wedge\wedge$ and that $G=H\circ p_{1}$ for some $H\in C(Y_{1}$ : $C(Y_{2})$

$\otimes B)\wedge$ . (Note that in general we have linearly and isometrically

$ A\otimes B\otimes C\wedge\wedge=A^{\wedge}\otimes(B\otimes C)\wedge=(A\otimes B)\otimes C\wedge\wedge$

for any Banach spaces $A,$ $B$ , and $C.$) Therefore we have $ H\in C(Y_{1})\otimes C(Y_{2})\wedge\otimes B\wedge$

by Theorem 1.1, and $F=H\circ p$ as B-valued functions on $X_{1}\times X_{2}$ .
This clearly establishes our theorem.
Let now $A$ be any semi-simple commutative Banach algebra with a unit

1. We denote by $M_{A}$ the maximal ideal space of $A$ , and regard $A$ as a sub-
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algebra of $C(M_{A})$ .
Let $X$ be any non-empty set, and let $\mathcal{F}(X)$ be the Banach algebra con-

sisting of the bounded complex-valued functions on $X$, the norm of $f\in \mathcal{F}(X)$

being
$\Vert f\Vert_{\infty}=\sup\{|f(x)| : x\in X\}$ .

DEFINITION. A $\mathcal{B}$-algebra on a non-empty set $X$ is any closed subalgebra
$A$ of $\mathcal{F}(X)$ satisfying the following three conditions:

(a) $A$ contains the constants.
(b) The functions of $A$ separate points of $X$.
(c) $f\in A$ implies $\overline{f}\in A$ .
If $X$ is a compact topological space, then both of the algebras $C(X)$ and

$\mathcal{B}(X)$ (for the definition, see \S 2) are $\mathcal{B}$ -algebras on $X$. For any $\mathcal{B}$ -algebra $A$

on a set $X$, we have $A=C(M_{A})$ algebraically and isometrically [2], and it is
easy to see that $X$ may be regarded as a dense subset of $M_{A}$ .

Let now $\{X_{j}\}_{1}^{N}$ be a family of $N$ non-empty sets, $andA_{j}$ a $\mathcal{B}$ -algebra on
$X_{j}$ for $j=1,2$ , $\cdot$ .. , $N$. We then have $ A_{1}\otimes\wedge\ldots\otimes A_{N}\wedge=C(M_{A_{1}})\otimes\wedge\ldots\otimes C(M_{A_{N}})\wedge$ as
Banach algebras and the natural dense imbedding: $ X=X_{1}\times\cdots\times X_{N}\subset M_{A_{1}}\times$

... $\times M_{AN}$ . Therefore for any Banach space $B$ , we can identify the Banach
space $A_{1}\otimes\wedge\ldots\wedge\wedge\otimes A_{N}\otimes B$ with a linear subspace of $\mathcal{F}(X:B)$ , the space of all
bounded B-valued functions on $X$.

THEOREM 4.2. Let $\{X_{j}\}_{1}^{N}$ and $\{Y_{j}\}_{1}^{N}$ be two families of $N$ non-empty sets.
$\{p_{j} : X_{j}\rightarrow Y_{j}\}_{1}^{N}N$

” onto ‘’ mappings, and $B$ a Banach space. Let $\{A_{j}\subset \mathcal{F}(Y_{j})\}_{1}^{N}$

be $\mathcal{B}$ -algebras, and define the operator

$P:A_{1}\otimes\wedge\ldots\otimes A_{N}\otimes B\wedge\wedge\rightarrow \mathcal{F}(X_{1})^{\wedge}\otimes\cdots\wedge\wedge\otimes \mathcal{F}(X_{N})\otimes B$

$by$

$P(G)=c\circ p$ $(G\in A_{1}\otimes\wedge\ldots\otimes A_{N}\otimes B)\wedge\wedge$ ,
where

$p=p_{1}\times\cdots\times p_{N}$ : $X=X_{1}\times\cdots\times X_{N}\rightarrow Y=Y_{1}\times\cdots\times Y_{N}$ .

Then $P$ is a linear isometry, and any $ F\in \mathcal{F}(X_{1})\otimes\wedge\ldots\otimes \mathcal{F}(X_{N})\wedge\otimes B\wedge$ is in the
range of $P$ if and only if $F=G\circ p$ for some $ G\in C(M_{A_{1}}\times\cdots\times M_{A_{N}} : B)\subset$

$\mathcal{F}(Y:B)$ .
PROOF. The proof follows from the above observations and Theorem 4.1.

We omit the details.
THEOREM 4.3. Let $\{X_{j}\}_{1}^{N}$ be $N$ compact spaces, and $B$ a Banach space-

Then we have

$ C(X_{1})\otimes\wedge\ldots\otimes C(X_{N})\otimes B=C(X:B)\wedge\wedge\cap(\mathcal{F}(X_{1})\otimes\wedge\ldots\otimes \mathcal{F}(X_{N})\otimes B)\wedge\wedge$ ,

where $X=X_{1}\times\cdots\times X_{N}$ .
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PROOF. Setting $Y_{j}=X_{j}$ and $A_{j}=C(X_{J})$ for $j=1,2$ , , $N$, we see that
this statement is a special case of Theorem 4.2.

\S 5. Some remarks on the problem of spectral synthesis for tensor
algebras and group algebras.

This section is independent of the preceding four sections, and contains
some rather trivial remarks on the problem of spectral synthesis for tensor
algebras and group algebras.

THEOREM 5.1. Let $\{X_{j}\}_{1}^{N}$ be $N$ compact spaces, and let $ V=C(X_{1})\otimes\wedge\ldots\wedge\otimes$

$C(X_{N})$ . Then spectral synthesis fails in the algebra $V$ if and only if $X_{j}$ con-
tains a perfect subset for at least two values of the $j’ s$ .

This follows from [6; p. 562] and [7; p. 102].

THEOREM 5.2. Suppose that $G$ is a locally compact abelian group, and that
$p$ is a natural number $\geqq 2$ . Let $\{K_{j}\}_{1}^{N}$ be $NK_{p}$ -sets of $G$ , and $\{x_{j}\}_{1}^{N}\subset G$ . Then

the union $\bigcup_{1}^{N}(x_{j}+K_{f})$ is an SH-set (for the definition, see [6; p. 551]).

This follows from [6; p. 552] and [3].

THEOREM 5.3. Suppose that $G$ is a locally compact abelian group, that
$\{K_{j}\}_{1}^{N}$ are $N$ quasi-Kronecker sets of $G$ (for the definition, see [6; p. 549]), and
that $\{x_{j}\}_{1}^{N}\subset G$ . If $K_{j}$ is totally disconnected for $N-1$ values of the $j’ s$ , then

the union $\bigcup_{1}^{N}(x_{j}+K_{j})$ is an SH-set.

This follows from [6; p. 552] and [8; p. 957].

Tokyo Metropolitan University
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