Topological entropy of distal affine transformations on compact abelian groups

By Nobuo AOKI

(Received Nov. 20, 1969) (Revised June 23, 1970)

§1. Introduction.

The object of this paper is to calculate the topological entropy for a distal affine transformation on a compact abelian group.

§2. Definitions and Preliminaries.

Let X be a set and let T[X] be a family of subsets which satisfies the three conditions: the intersection of any two members of T[X] is a member of T[X], and the union of the members of each sub-family of T[X] is a member of T[X], and T[X] contains the whole space X and the empty set. We say that such a family T[X] is a topology of X. As in [1], we write $\mathfrak{A} \lor \mathfrak{B} = \{A \cap B : A \in \mathfrak{A}, B \in \mathfrak{B}\}$ for two covers \mathfrak{A} and \mathfrak{B} of X. A cover \mathfrak{B} is said to be a *refinement* of a cover \mathfrak{A} if every member of \mathfrak{B} is a subset of some member of \mathfrak{A} , and we write $\mathfrak{A} \prec \mathfrak{B}$. Let X be a compact topological space. Topological entropy is given by [1] as follows: for any open cover \mathfrak{A} we denote the topological entropy $H(\mathfrak{A})$ of \mathfrak{A} by $H(\mathfrak{A}) = \log N(\mathfrak{A})$ where $N(\mathfrak{A})$ is the number of sets in a subcover of minimal cardinality, and the topological entropy $h(\mathfrak{A}, S)$ of a continuous mapping S of X onto itself with respect to \mathfrak{A} is defined by

$$h(\mathfrak{A}, S) = \lim_{n \to \infty} 1/n H(\bigvee_{j=0}^{n-1} S^{-j} \mathfrak{A}),$$

and the topological entropy h(S) of S is defined as

$$h(S) = \sup h(\mathfrak{A}, S)$$

where the supremum is taken over all open covers. If $\mathfrak{A} \prec \mathfrak{B}$, then $h(\mathfrak{A}, S) \leq h(\mathfrak{B}, S)$. It is easily seen that if ϕ is a homomorphism of X onto some Y

The author wishes to express his thanks to the referee for variable suggestions. The standard facts concerning topological groups used in this work are contained in [10].

then $h(S) \ge h(\phi S \phi^{-1})$. A sequence $\{\mathfrak{A}_n\}$ of open covers is said to be *refining* if $\mathfrak{A}_n \prec \mathfrak{A}_{n+1}$ and for every open cover \mathfrak{B} there exists \mathfrak{A}_n such that $\mathfrak{B} \prec \mathfrak{A}_n$. Let X be a compact metric space with metric d. The diameter $d(\mathfrak{A})$ of a cover \mathfrak{A} is defined by

$$d(\mathfrak{A}) = \sup_{A \in \mathfrak{A}} d(A)$$

where d(A) is the diameter of the set A. If $\{\mathfrak{A}_n\}$ is a sequence of open covers such that $\mathfrak{A}_n \prec \mathfrak{A}_{n+1}$, and $d(\mathfrak{A}_n) \to 0$ as $n \to \infty$, then $\{\mathfrak{A}_n\}$ is a refining sequence [1]. A homeomorphism S of a compact Hausdorff space X onto itself is said to be *distal* if for any net of integers $\{n_j: j \in A\}$ (A a directed system) and points $x, y, z \in X$ the relation

$$\lim_{\Delta} S^{n_j}(x) = \lim_{\Delta} S^{n_j}(y) = z$$

implies x = y. A homeomorphism S of X onto itself is called *minimal* if no non-empty proper closed subset of X is invariant under S. S is called *totally minimal* if for every non-zero integer n, the homeomorphism S^n is minimal.

Let X be a measure space with a probability measure m and let T be a *m*-probability measure preserving transformation on X. For a finite measurable partition $\overline{\mathfrak{A}}$ of X, we write, as in [5] and [9],

$$H_m(\overline{\mathfrak{A}}) = -\sum_{A \in \overline{\mathfrak{A}}} m(A) \log m(A) ,$$

and

$$h_m(\overline{\mathfrak{A}}, T) = \lim_{n \to \infty} 1/n H_m(\bigvee_{i=0}^{n-1} T^{-i}\overline{\mathfrak{A}})$$

The measure-theoretic entropy of T is defined as

$$h_m(T) = \sup h_m(\mathfrak{A}, T)$$

where the supremum is taken over all finite measurable partitions of X. Abramov [2] has shown that if T is a totally ergodic measure preserving transformation and T has quasi-discrete spectrum, then $h_m(T) = 0$. Recently, Parry [7] has proved the following theorem: let X be a compact metric space and let T be a distal homeomorphism of X onto itself and preserves a probability measure m, then $h_m(T) = 0$.

By an affine transformation on a compact abelian group X, we mean a transformation of the form T(x) = aW(x), where a is an element of X and W is a continuous automorphism of X. If T is a totally minimal affine transformation, then T has quasi-discrete spectrum [7] and moreover T is distal [6].

Throughout this paper, for any subset E of a topological group X, we

denote by gp[W, E] the smallest W-invariant closed subgroup of X containing E. Continuous automorphisms and their duals are denoted by the same symbol.

§ 3. The theorem.

As before, X is a compact abelian group with character group Γ , and T is a distal affine transformation on X onto itself.

THEOREM. The topological entropy of T is zero.

PROOF. Let Θ be the family of all sets of finite members of Γ . For each $\alpha \in \Theta$, the subgroup $gp[W, \alpha]$ is finitely generated. We show this statement.

We denote by $\operatorname{ann}(gp[W, \alpha])$ the annihilator of $gp[W, \alpha]$, and denote by X_{α} the factor group $X/\operatorname{ann}(gp[W, \alpha])$. The factor group X_{α} is compact and metrizable. Let T_{α} be the affine transformation on X_{α} induced by T. Then T_{α} is distal. Thus the measure-theoretic entropy of T_{α} with respect to the Haar measure m on X_{α} is zero by [8]. For each $f \in \alpha$, we denote by G(f) the subgroup of $gp[W, \alpha]$ generated by the set

$$\{Wf, W^2f, \dots, W^nf, \dots\}$$
.

If the group W(G(f)) is a proper subgroup of G(f) then we obtain $h_m(T_\alpha)>0$, because the Borel field of all measurable sets of the space X_α in which T_α acts contains a sub σ -field \mathcal{F} such that $T_\alpha(\mathcal{F}) \subset \mathcal{F}$ and $T_\alpha(\mathcal{F}) \neq \mathcal{F}$. But this is impossible. Thus we obtain $f = \prod_{j=1}^r W^{n_j} f^{p_j}$ where n_j and p_j , $j = 1, 2, \dots, r$, are integers. If G'(f) is a subgroup generated by

$$\{Wf, W^2f, \dots, W^{r'}f\}$$

where $r' = \max \{n_1, n_2, \dots, n_r\}$, we see, from the argument above, that G'(f) is invariant under W. Since the set α is finite,

$$gp[W, \alpha] = \prod_{f \in \alpha} G'(f)$$

is finitely generated.

We consider the following two cases: either the compact group X is connected or X is disconnected.

FIRST CASE. Let X be connected, then the group $gp[W, \alpha]$ is torsion free. Thus the factor group X_{α} is a finite-dimensional torus with character group $gp[W, \alpha]$. We may suppose that X_{α} is an n-dimensional torus

$$X_{\alpha} = X_1 \otimes X_2 \otimes \cdots \otimes X_n ,$$

$$X_j = X_1 , \qquad j = 2, 3, \cdots, n$$

and

N. Aoki

where X_1 is the unit interval [0, 1). Let H denote the projection mapping of X onto X_{α} . The factor transformation T_{α} of X_{α} is an affine transformation of the form $T_{\alpha}(\dot{x}) = \dot{a} + W_{\alpha}(\dot{x}), \ \dot{x} \in X_{\alpha}$, where $\dot{a} \in X_{\alpha}$ and W_{α} is the continuous automorphism on X_{α} induced by W, such that $T_{\alpha} = H \circ T \circ H^{-1}$. For the corresponding matrix $[W_{\alpha}]$ of W_{α} , we put

$$[W_{\alpha}] = [n_{ij}: i, j = 1, 2, \dots, n],$$

$$\dot{a} = (a_1, a_2, \dots, a_n).$$

Then there exists a unique element $(y_1, y_2, \dots, y_n) \in X_{\alpha}$ such that

$$\sum_{j=1}^{n} n_{kj} y_{j} = a_{k}, \qquad k = 1, 2, \cdots, n.$$

For each $\dot{x} = (x_1, x_2, \dots, x_n) \in X_{\alpha}$ we have

$$T_{\alpha}(x_{1}, x_{2}, \dots, x_{n}) = \dot{a} + W_{\alpha}(x_{1}, x_{2}, \dots, x_{n})$$
$$= W_{\alpha}(x_{1} + y_{1}, x_{2} + y_{2}, \dots, x_{n} + y_{n}) \quad (\text{additions mod } 1)$$

Let \mathfrak{A}^p be a family of all open sets in X_1 of diameter less than 1/p. Such a family enjoys the properties that $\mathfrak{A}^p \vee \mathfrak{A}^p = \mathfrak{A}^p$ and \mathfrak{A}^p is invariant under an isometry. Since every open subset of X_{α} is a union of rectangles $A_1 \otimes$ $A_2 \otimes \cdots \otimes A_n$, A_i open subset of X_i for $i=1, 2, \cdots, n$, we see that for an arbitrary open cover \mathcal{D} of X there exists a refinement of the form $\mathfrak{A}_1 \otimes \mathfrak{A}_2 \otimes$ $\cdots \otimes \mathfrak{A}_n$ where \mathfrak{A}_i is an open cover of X_i for $i=1, 2, \cdots, n$. Since the sequence $\{\mathfrak{A}^p: p=1, 2, \cdots\}$ of open covers of X_1 is refining, there exist integers p_1, p_2, \cdots, p_n such that

$$\mathcal{D} \prec \mathfrak{A}_1 \otimes \mathfrak{A}_2 \otimes \cdots \otimes \mathfrak{A}_n \prec \mathfrak{A}^{p_1} \otimes \mathfrak{A}^{p_2} \otimes \cdots \otimes \mathfrak{A}^{p_n}.$$

Thus we have the following relation

$$T_{\alpha}(\mathfrak{A}^{p_{1}}\otimes\mathfrak{A}^{p_{2}}\otimes\cdots\otimes\mathfrak{A}^{p_{n}})$$

$$=W_{\alpha}\{(A_{1}+y_{1})\otimes(A_{2}+y_{2})\otimes\cdots\otimes(A_{n}+y_{n}):$$

$$A_{i}\in\mathfrak{A}^{p_{i}}, i=1, 2, \cdots, n\}$$

$$=W_{\alpha}(\mathfrak{A}^{p_{1}}\otimes\mathfrak{A}^{p_{2}}\otimes\cdots\otimes\mathfrak{A}^{p_{n}}),$$

because the translation $T_{\boldsymbol{y}_i}(x_i) = x_i + y_i$, $x_i \in X_i$, is an isometry on X_i for i=1, 2, ..., n. This implies $h(T_{\alpha}) = h(W_{\alpha})$. It follows that the transformation T_{α} is distal on X_{α} if and only if the automorphism W_{α} is so. Thus we see by [8] that $h_m(W_{\alpha}) = 0$ since X_{α} is metrizable. Since X_{α} is actually an n-dimensional torus and W_{α} a continuous automorphism on X_{α} , the measure-theoretic entropy and the topological entropy of W_{α} are equal by [4]. Thus we obtain

$$h(T_{\alpha}) = h(W_{\alpha}) = h_m(W_{\alpha}) = 0.$$

We denote by $T'[X_{\alpha}]$ a sub-topology $H^{-1}(T[X_{\alpha}])$ of X, and denote by $\bigvee_{\alpha \in \Theta} T'[X_{\alpha}]$ a topology of X generated by $\bigcup_{\alpha \in \Theta} T'[X_{\alpha}]$. A topology $\bigvee_{\alpha \in \Theta} T'[X_{\alpha}]$ must coincide with the topology T[X], because each member of α in Θ is continuous with respect to the topology $T'[X_{\alpha}]$. Thus we see that every open subset of X is a union of sets of finite intersection of sets in $\bigcup_{\alpha \in \Theta} T'[X_{\alpha}]$. For an arbitrary open cover \mathfrak{B} of X, choose a minimal subcover \mathfrak{B}' of \mathfrak{B} . Then we obtain a refinement \mathfrak{C} of \mathfrak{B}' consisting only of open sets in the topology $T'[X_{\alpha}]$ for some $\alpha \in \Theta$. We may assume that the projection mapping H is a set mapping of the sub-topology $T'[X_{\alpha}]$ onto the topology $T[X_{\alpha}]$.

$$\sup \{h(\mathfrak{A}, T) : \mathfrak{A} \text{ an open cover of } X, \mathfrak{A} \subset T'[X_{\alpha}] \}$$

 $= \sup \{h(\mathfrak{A}', T_{\alpha}): \mathfrak{A}' \text{ an open cover of } X_{\alpha}\},\$

and thus

$$h(\mathfrak{B}, T) \leq h(T_{\alpha}) = 0$$
.

It follows that h(T) = 0, because \mathfrak{B} is an arbitrary open cover of X.

SECOND CASE. Let X be disconnected. Since $gp[W, \alpha]$ is finitely generated, $gp[W, \alpha]$ is decomposable into the direct product of cyclic subgroups

$$U_1, U_2, \cdots, U_m; V_1, V_2, \cdots, V_n$$

where U_i , $i=1, 2, \dots, m$, are free cyclic groups and V_i , $i=1, 2, \dots, n$, are cyclic groups of finite order, that is to say,

$$g p [W, \alpha] = G_u \otimes G_v$$

where $G_u = U_1 \otimes U_2 \otimes \cdots \otimes U_m$ and $G_v = V_1 \otimes V_2 \otimes \cdots \otimes V_n$. We denote by X_α the dual space of $gp[W, \alpha]$, and by T_α the affine transformation on X_α induced by T. Let X_v be the factor group $X/\text{ann}(G_v)$, and let X_u be the factor group $X/\text{ann}(G_u)$. The factor group X_v is a compact totally disconnected abelian group with character group G_v . However, X_v is actually discrete. The factor group X_u is the finite-dimensional torus. We may assume that the group X_α is equal to the product group $X_u \otimes X_v$ with the product topology $T[X_u] \otimes T[X_v]$. Since the transformation T_α is a distal affine transformation on the group $X_u \otimes X_v$, the transformation T_α induces a distal affine transformation T' on the factor group $(X_u \otimes X_v)/\{e_u\} \otimes X_v$ where e_u is the identity of X_u . Clearly the group $(X_u \otimes X_v)/\{e_u\} \otimes X_v$ is a finite-dimensional torus. Thus N. Aoki

we conclude as in the first case that the topological entropy of the transformation T' is zero, in other words, h(T') = 0. The transformation T_{α} induces a distal affine transformation T'' on the factor group $(X_u \otimes X_v)/X_u \otimes \{e_v\}$ where e_v is the identity of X_v . Since the factor group is discrete, it is clearly that h(T'') = 0. Let \mathfrak{B} be an arbitrary open cover of $X_u \otimes X_v$. Then there exist open covers $\mathfrak{A}_u \subset T[X_u]$ and $\mathfrak{A}_v \subset T[X_v]$ such that $\mathfrak{B} \prec \mathfrak{A}_u \otimes \mathfrak{A}_v$. So we obtain

$$\bigvee_{j=0}^{n-1} T^{-j}(\mathfrak{A}_u \otimes \mathfrak{A}_v) = \bigvee_{j=0}^{n-1} T^{-j}((\mathfrak{A}_u \otimes \{X_v\}) \vee (\{X_u\} \otimes \mathfrak{A}_v)).$$

Thus it is easy to see that

$$h(\mathfrak{B}, T_{\alpha}) \leq h(\mathfrak{A}_u \otimes \mathfrak{A}_v, T_{\alpha}) \leq h(\mathfrak{A}_u \otimes \{X_v\}, T_{\alpha}) + h(\{X_u\} \otimes \mathfrak{A}_v, T_{\alpha}).$$

Since the transformations T' and T'' are continuous images of T_{α} , we see that

$$h(\mathfrak{A}_u \otimes \{X_v\}, T_\alpha) \leq h(T'), \qquad h(\{X_u\} \otimes \mathfrak{A}_v, T_\alpha) \leq h(T'').$$

Thus we obtain

$$h(\mathfrak{B}, T_{\alpha}) \leq h(T') + h(T'') = 0$$

and since \mathfrak{B} is arbitrary, $h(T_{\alpha}) = 0$. By the technique of the first case, we have the desired result, i.e., h(T) = 0.

REMARK 1. Let T be a totally minimal affine transformation on a compact abelian group. Then h(T) = 0, because T is distal by [6].

REMARK 2. Let X be the unit interval [0, 1) imposed the usual topology and let S be a translation mapping on X onto itself. A transformation T defined by

$$T(x, y) = (Sx, y+nx) \pmod{1}$$
,

where n is an integer, is called a skew product transformation. As in the theorem above, we obtain h(T) = 0.

Josai University Sakado, Saitama

References

- [1] R. L. Adler, A. G. Konheim and M. H. MacAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
- [2] L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Amer. Math. Soc. Transl., 39 (1964), 37-56.
- [3] L. M. Abramov, On the entropy of flows, Amer. Math. Soc. Transl., 49 (1966), 167-170.

- [4] K.R. Berg, Entropy of torus automorphisms, Topological dynamics, An International Symposium, Benjamin, New York, (1968), 67-79.
- [5] P. Bilingsley, Ergodic theory and information, John Wiley and Sons, New York, 1965.
- [6] F. Hahn and W. Parry, Minimal dynamical systems with quasi-discrete spectrum, J. London Math. Soc., 40 (1965), 309-323.
- [7] A.H. Hoare and W. Parry, Affine transformations with quasi-discrete spectrum (II), J. London Math. Soc., 41 (1966), 529-530.
- [8] W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, An International Symposium, Benjamin, New York, (1969), 383-389.
- [9] W. Parry, Entropy and generators in ergodic theory, Benjamin, New York, 1969.
- [10] L. Pontrjagin, Topological groups, Princeton Univ. Press, New Jersey, 1958.