
J. Math. Soc. Japan
Vol. 23, No. 1, 1971

Topological entropy of distal affine transformations
on compact abelian groups

By Nobuo AOKI

(Received Nov. 20, 1969)
(Revised June 23, 1970)

\S 1. Introduction.

The object of this paper is to calculate the topological entropy for a
distal affine transformation on a compact abelian group.

\S 2. Definitions and Preliminaries.

Let $X$ be a set and let $T[X]$ be a family of subsets which satisfies the
three conditions: the intersection of any two members of $T[X]$ is a member
of $T[X]$ , and the union of the members of each sub-family of $T[X]$

is a member of $T[X]$ , and $T[X]$ contains the whole space $X$ and the empty
set. We say that such a family $T[X]$ is a topology of $X$. As in [1], we
write $\mathfrak{A}\vee \mathfrak{B}=\{A\cap B:A\in \mathfrak{A}, B\in \mathfrak{B}\}$ for two $CoVerS\mathfrak{A}$ and $\mathfrak{B}$ of $X$. A cover
$\mathfrak{B}$ is said to be a refinement of a cover $\mathfrak{A}$ if every member of $\mathfrak{B}$ is a subset of
some member of $\mathfrak{A}$ , and we write $\mathfrak{A}\prec \mathfrak{B}$ . Let $X$ be a compact topological
space. Topological entropy is given by [1] as follows: for any open cover
$\mathfrak{A}$ we denote the topological entropy $H(\mathfrak{A})$ of $\mathfrak{A}$ by $H(\mathfrak{A})=\log N(\mathfrak{A})$ where $N(\mathfrak{A})$

is the number of sets in a subcover of minimal cardinality, and the topological
entropy $h(\mathfrak{A}, S)$ of a continuous mapping $S$ of $X$ onto itself with respect to

$\mathfrak{A}$ is defined by

$h(\mathfrak{A}, S)=\varliminf_{n}1/nH(\overline{\ovalbox{\tt\small REJECT}}_{0}S^{-j}\mathfrak{A})j=n1$

and the topological entropy $h(S)$ of $S$ is defined as

$h(S)=\sup h(\mathfrak{A}, S)$

where the supremum is taken over all open covers. If $\mathfrak{A}\prec \mathfrak{B}$ , then $h(\mathfrak{A}, S)$

$\leqq h(\mathfrak{B}, S)$ . It is easily seen that if $\phi$ is a homomorphism of $X$ onto some $Y$
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then $h(S)\geqq h(\phi S\phi^{-1})$ . A sequence $\{\mathfrak{A}_{n}\}$ of open covers is said to be refining
if $\mathfrak{A}_{n}\prec \mathfrak{A}_{n+1}$ and for every open cover $\mathfrak{B}$ there exists $\mathfrak{A}_{n}$ such that $\mathfrak{B}\prec \mathfrak{A}_{n}$ .
Let $X$ be a compact metric space with metric $d$ . The diameter $d(\mathfrak{A})$ of a
cover $\mathfrak{A}$ is defined by

$d(\mathfrak{A})=\sup_{A\in \mathfrak{U}}d(A)$

where $d(A)$ is the diameter of the set $A$ . If $\{\mathfrak{A}_{n}\}$ is a sequence of open
covers such that $\mathfrak{A}_{n}\prec \mathfrak{A}_{n+1}$ , and $d(\mathfrak{A}_{n})\rightarrow 0$ as $ n\rightarrow\infty$ , then $\{\mathfrak{A}_{n}\}$ is a refining
sequence [1]. A homeomorphism $S$ of a compact Hausdorff space $X$ onto
itself is said to be distal if for any net of integers $\{n_{j}:j\in\Delta\}(\Delta$ a directed
system) and points $x,$ $y,$ $z\in X$ the relation

$\lim_{\Delta}S^{n_{j}}(x)=\lim_{\Delta}S^{n_{j}}(y)=z$

implies $x=y$ . A homeomorphism $S$ of $X$ onto itself is called minimal if no
non-empty proper closed subset of $X$ is invariant under S. $S$ is called totally
minimal if for every non-zero integer $n$ , the homeomorphism $S^{n}$ is minimal.

Let $X$ be a measure space with a probability measure $m$ and let $T$ be a
m-probability measure preserving transformation on $X$. For a finite measur-
able partition $\overline{\mathfrak{A}}$ of $X$, we write, as in [5] and [9],

$H_{m}(\overline{\mathfrak{A}})=-\sum_{A=\overline{\mathfrak{U}}}m(A)\log m(A)$
,

and
$h_{m}(\overline{\mathfrak{A}}, T)=\varliminf_{n}1/nH_{m}(\overline{\ovalbox{\tt\small REJECT}}_{0^{I}}T^{-i}\overline{\mathfrak{A}})nt=$

The measure-theoretic entropy of $T$ is defined as

$h_{m}(T)=\sup h_{m}(\overline{\mathfrak{A}}, T)$

where the supremum is taken over all finite measurable partitions of $X$.
Abramov [2] has shown that if $T$ is a totally ergodic measure preserving
transformation and $T$ has quasi-discrete spectrum, then $h_{m}(T)=0$ . Recently,
Parry [7] has proved the following theorem: let $X$ be a compact metric
space and let $T$ be a distal homeomorphism of $X$ onto itself and preserves
a probability measure $m$ , then $h_{m}(T)=0$ .

By an affine transformation on a compact abelian group $X$, we mean a
transformation of the form $T(x)=aW(x)$ , where $a$ is an element of $X$ and $W$

is a continuous automorphism of $X$. If $T$ is a totally minimal affine trans-
formation, then $T$ has quasi-discrete spectrum [7] and moreover $T$ is distal
[6].

Throughout this paper, for any subset $E$ of a topological group $X$, we
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denote by $gp[W, E]$ the smallest W-invariant closed subgroup of $X$ contain-
ing $E$ . Continuous automorphisms and their duals are denoted by the same
symbol.

\S 3. The theorem.

As before, $X$ is a compact abelian group with character group $\Gamma$ , and $T$

is a distal affine transformation on $X$ onto itself.
THEOREM. The topological entropy of $T$ is zero.
PROOF. Let $\Theta$ be the family of all sets of finite members of $\Gamma$ . For

each $\alpha\in\Theta$ , the subgroup $gp[W, \alpha]$ is finitely generated. We show this
statement.

We denote by ann $(gp[W, \alpha])$ the annihilator of $gp[W, \alpha]$ , and denote by
$X_{\alpha}$ the factor group $X/ann(gp[W, \alpha])$ . The factor group $X_{\alpha}$ is compact and
metrizable. Let $T_{\alpha}$ be the affine transformation on $X_{\alpha}$ induced by $T$. Then
$T_{\alpha}$ is distal. Thus the measure-theoretic entropy of $T_{\alpha}$ with respect to the
Haar measure $m$ on $X_{\alpha}$ is zero by [8]. For each $ f\in\alpha$ , we denote by $G(f)$

the subgroup of $gp[W, \alpha]$ generated by the set

$\{Wf, W^{2}f, \cdots W^{n}f, \}$ .
If the group $W(G(f))$ is a proper subgroup of $G(f)$ then we obtain $h_{m}(T_{\alpha})>0$,
because the Borel field of all measurable sets of the space $X_{\alpha}$ in which $T_{a}$

acts contains a sub $\sigma- field\mathcal{F}$ such that $T_{\alpha}(\mathcal{F})\subset \mathcal{F}$ and $T_{\alpha}(\mathcal{F})\neq \mathcal{F}$ . But this

is impossible. Thus we obtain $f=\prod_{j=1}^{r}W^{n_{j}}f^{p_{j}}$ where $n_{j}$ and $p_{j},$ $j=1,$ 2, $r$,

are integers. If $G^{\prime}(f)$ is a subgroup generated by

$\{Wf, W^{2}f, \cdots W^{r^{\prime}}f\}$

where $r^{\prime}=\max\{n_{1}, n_{2}, \cdots , n_{r}\}$ , we see, from the argument above, that $G^{\prime}(f)$

is invariant under $W$. Since the set $\alpha$ is finite,

$gp[W, \alpha]=\prod_{f\in\alpha}G^{\prime}(f)$

is finitely generated.
We consider the following two cases: either the compact group $X$ is

connected or $X$ is disconnected.
FIRST CASE. Let $X$ be connected, then the group $gp[W, \alpha]$ is torsion

free. Thus the factor group $X_{\alpha}$ is a finite-dimensional torus with character
group $gp[W, \alpha]$ . We may suppose that $X_{\alpha}$ is an n-dimensional torus

$X_{\alpha}=X_{1}\otimes X_{2}\otimes\cdots\otimes X_{n}$ ,
and

$X_{j}=X_{1}$ , $j=2,3,$ $n$
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where $X_{1}$ is the unit interval $[0,1$). Let $H$ denote the projection mapping of
$X$ onto $X_{\alpha}$ . The factor transformation $T_{\alpha}$ of $X_{\alpha}$ is an affine transformation of
the form $T_{\alpha}(\dot{x})=d+W_{\alpha}(\dot{x}),\dot{x}\in X_{\alpha}$ , where $d\in X_{a}$ and $W_{\alpha}$ is the continuous
automorphism on $X_{\alpha}$ induced by $W$, such that $T_{\alpha}=H\circ To$ $H^{-1}$ . For the cor-
responding matrix $[W_{\alpha}]$ of $W_{\alpha}$, we put

$[W_{\alpha}]=[n_{ij} : i, j=1, 2, n]$ ,

$\dot{a}=(a_{1}, a_{2}, a_{n})$ .
Then there exists a unique element $(y_{1}, y_{2}, y_{n})\in X_{\alpha}$ such that

$\sum_{j=1}^{n}n_{kj}y_{j}=a_{k}$ , $k=1,$ 2, $n$ .

For each $\dot{x}=(x_{1}, x_{2}, x_{n})\in X_{\alpha}$ we have

$T_{\alpha}(x_{1}, x_{2}, \cdots , x_{n})=d+W_{\alpha}(x_{1}, x_{2}, \cdots , x_{n})$

$=W_{a}(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n})$ (additions $mod 1$).

Let $\mathfrak{A}^{p}$ be a family of all open sets in $X_{1}$ of diameter less than $1/p$ . Such
a family enjoys the properties that $\mathfrak{A}^{P}\vee \mathfrak{A}^{P}=\mathfrak{A}^{p}$ and $\mathfrak{A}^{p}$ is invariant under
an isometry. Since every open subset of $X_{\alpha}$ is a union of rectangles $ A_{1}\otimes$

$A_{2}\otimes\cdots\otimes A_{n},$ $A_{i}$ open subset of $X_{i}$ for $i=1,$ 2, $n$ , we see that for an
arbitrary open cover $\mathcal{D}$ of $X$ there exists a refinement of the form $\mathfrak{A}_{1}\otimes \mathfrak{A}_{2}\otimes$

$...\otimes \mathfrak{A}_{n}$ where $\mathfrak{A}_{i}$ is an open cover of $X_{i}$ for $i=1,$ 2, $n$ . Since the sequence
$\{\mathfrak{A}^{p} : p=1, 2, \}$ of open covers of $X_{1}$ is refining, there exist integers $p_{1},$ $p_{2}$ ,
... , $p_{n}$ such that

$\mathcal{D}\prec \mathfrak{A}_{1}\otimes \mathfrak{A}_{2}\otimes\cdots\otimes \mathfrak{A}_{n}\prec \mathfrak{A}^{p_{1}}\otimes \mathfrak{A}^{p_{2}}\otimes\cdots\otimes \mathfrak{A}^{p_{n}}$ .
Thus we have the following relation

$T_{\alpha}(\mathfrak{A}^{p_{1}}\otimes \mathfrak{A}^{p_{2}}\otimes\cdots\otimes \mathfrak{A}^{p_{n}})$

$=W_{\alpha}\{(A_{1}+y_{1})\otimes(A_{2}+y_{2})\otimes\cdots\otimes(A_{n}+y_{n})$ :
$A_{i}\in \mathfrak{A}^{p_{i}},$ $i=1,$ 2, $n$ }

$=W_{\alpha}(\mathfrak{A}^{p_{1}}\otimes \mathfrak{A}^{p_{2}}\otimes\cdots\otimes \mathfrak{A}^{p_{n}})$ ,

because the translation $T_{Vi}(x_{i})=x_{i}+y_{i},$ $x_{i}\in X_{i}$ , is an isometry on $X_{i}$ for $i=1$ ,
2, $n$ . This implies $h(T_{\alpha})=h(W_{\alpha})$ . It follows that the transformation $T_{\alpha}$

is distal on $X_{\alpha}$ if and only if the automorphism $W_{\alpha}$ is so. Thus we see by
[8] that $h_{m}(W_{\alpha})=0$ since $X_{\alpha}$ is metrizable. Since $X_{\alpha}$ is actually an n-dimen-
sional torus and $W_{\alpha}$ a continuous automorphism on $X_{\alpha}$ , the measure-theoretic
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entropy and the topological entropy of $W_{\alpha}$ are equal by [4]. Thus we obtain

$h(T_{\alpha})=h(W_{\alpha})=h_{m}(W_{\alpha})=0$ .
We denote by $T^{\prime}[X_{\alpha}]$ a sub-topology $H^{-1}(T[X_{\alpha}])$ of $X$, and denote by
$\alpha\in\partial\ovalbox{\tt\small REJECT} T^{\prime}[X_{\alpha}]$ a topology of $X$ generated by $\bigcup_{\alpha\in\partial}T^{\prime}[X_{\alpha}]$ . A topology $\alpha\in\theta\ovalbox{\tt\small REJECT} T^{\prime}[X_{\alpha}]$

must coincide with the topology $T[X]$ , because each member of $\alpha$ in $\Theta$ is
continuous with respect to the topology $T^{\prime}[X_{\alpha}]$ . Thus we see that every
open subset of $X$ is a union of sets of finite intersection of sets in $\bigcup_{\alpha\in\partial}T^{\prime}[X_{\alpha}]$ .
For an arbitrary open cover $\mathfrak{B}$ of $X$, choose a minimal subcover $\mathfrak{B}^{\prime}$ of $\mathfrak{B}$ .
Then we obtain a refinement $\mathfrak{C}$ of $\mathfrak{B}^{\gamma}$ consisting only of open sets in the
topology $T^{J}[X_{\alpha}]$ for some $\alpha\in\Theta$ . We may assume that the projection map-
ping $H$ is a set mapping of the sub-topology $T^{\prime}[X_{\alpha}]$ onto the topology $T[X_{a}]$ .
This establishes the following relation

$\sup$ { $h(\mathfrak{A},$ $T):\mathfrak{A}$ an open cover of $X,$ $\mathfrak{A}\subset T^{\prime}[X_{\alpha}]$ }

$=\sup$ { $h(\mathfrak{A}^{J},$ $T_{\alpha}):\mathfrak{A}^{\prime}$ an open cover of $X_{\alpha}$ },

and thus
$h(\mathfrak{B}, T)\leqq h(T_{\alpha})=0$ .

It follows that $h(T)=0$ , because $\mathfrak{B}$ is an arbitrary open cover of $X$.
SECOND CASE. Let $X$ be disconnected. Since $gp[W, \alpha]$ is finitely gener-

ated, $gp[W, \alpha]$ is decomposable into the direct product of cyclic subgroups

$U_{1},$ $U_{2},$ $\cdots$ $U_{m}$ ; $V_{1},$ $V_{2},$ $\cdots$ $V_{n}$

where $U_{i},$ $i=1,2$ , $\cdot$ .. , $m$ , are free cyclic groups and $V_{i},$ $i=1,2$, $\cdot$ .. , $n$ , are
cyclic groups of finite order, that is to say,

$gp[W, \alpha]=G_{u}\otimes G_{v}$

where $G_{u}=U_{1}\otimes U_{2}\otimes\cdots\otimes U_{m}$ and $G_{v}=V_{1}\otimes V_{2}\otimes\cdots\otimes V_{n}$ . We denote by $X_{\alpha}$

the dual space of $gp[W, \alpha]$ , and by $T_{\alpha}$ the affine transformation on $X_{\alpha}$ induced
by $T$. Let $X_{v}$ be the factor group $X/ann(G_{v})$ , and let $X_{u}$ be the factor group
$X/ann(G_{u})$ . The factor group $X_{v}$ is a compact totally disconnected abelian
group with character group $G_{v}$ . However, $X_{v}$ is actually discrete. The
factor group $X_{u}$ is the finite-dimensional torus. We may assume that the
group $X_{\alpha}$ is equal to the product group $X_{u}\otimes X_{v}$ with the product topology
$T[X_{u}]\otimes T[X_{v}]$ . Since the transformation $T_{\alpha}$ is a distal affine transformation
on the group $X_{u}\otimes X_{v}$ , the transformation $T_{\alpha}$ induces a distal affine transfor-
mation $T^{\prime}$ on the factor group $(X_{u}\otimes X_{v})/\{e_{u}\}\otimes X_{v}$ where $e_{u}$ is the identity of
$X_{u}$ . Clearly the group $(X_{u}\otimes X_{v})/\{e_{u}\}\otimes X_{v}$ is a finite-dimensional torus. Thus
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we conclude as in the first case that the topological entropy of the trans-
formation $T^{\prime}$ is zero, in other words, $h(T^{\prime})=0$ . The transformation $T_{\alpha}$ induces
a distal affine transformation $T^{\prime\prime}$ on the factor group $(X_{u}\otimes X_{v})/X_{u}\otimes\{e_{v}\}$

where $e_{v}$ is the identity of $X_{v}$ . Since the factor group is discrete, it is
clearly that $h(T^{\prime\prime})=0$ . Let $\mathfrak{B}$ be an arbitrary open cover of $X_{u}\otimes X_{v}$ . Then
there exist open covers $\mathfrak{A}_{u}\subset T[X_{u}]$ and $\mathfrak{A}_{v}\subset T[X_{v}]$ such that $\mathfrak{B}\prec \mathfrak{A}_{u}\otimes \mathfrak{A}_{v}$ .
So we obtain

$f=0^{1}f=0^{1}n\overline{\ovalbox{\tt\small REJECT}}T^{-f}(?\mathfrak{l}_{u}\otimes \mathfrak{A}_{v})=^{n}\ovalbox{\tt\small REJECT} T^{-J}((\mathfrak{A}_{u}\otimes\{X_{v}\})\ovalbox{\tt\small REJECT}(\{X_{u}\}\otimes \mathfrak{A}_{v}))$ .

Thus it is easy to see that

$h(\mathfrak{B}, T_{\alpha})\leqq h(\mathfrak{A}_{u}\otimes \mathfrak{A}_{v}, T_{\alpha})\leqq h(\mathfrak{A}_{u}\otimes\{X_{v}\}, T_{\alpha})+h(\{X_{u}\}\otimes \mathfrak{A}_{v}, T_{\alpha})$ .

Since the transformations $T^{\prime}$ and $T^{\prime\prime}$ are continuous images of $T_{\alpha}$ , we see that

$h(\mathfrak{A}_{u}\otimes\{X_{v}\}, T_{\alpha})\leqq h(T^{\prime})$ , $h(\{X_{u}\}\otimes \mathfrak{A}_{v}, T_{\alpha})\leqq h(T^{\nu})$ .
Thus we obtain

$h(\mathfrak{B}, T_{a})\leqq h(T^{J})+h(T^{\prime\prime})=0$

and since $\mathfrak{B}$ is arbitrary, $h(T_{\alpha})=0$ . By the technique of the first case, we
have the desired result, $i$ . $e.,$ $h(T)=0$ .

REMARK 1. Let $T$ be a totally minimal affine transformation on a com-
pact abelian group. Then $h(T)=0$ , because $T$ is distal by [6].

REMARK 2. Let $X$ be the unit interval $[0,1$) imposed the usual topology
and let $S$ be a translation mapping on $X$ onto itself. A transformation $T$

defined by

$T(x, y)=(Sx, y+nx)$ (addition $mod 1$),

where $n$ is an integer, is called a skew product transformation. As in the
theorem above, we obtain $h(T)=0$ .

Josai University
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