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On a construction of the twistor spaces of Joyce metrics, II
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Abstract. In this note, we explicitly construct the twistor spaces of some

Joyce metrics on the connected sum of arbitrary number of complex projective

planes. Unlike our former construction for the case of four complex projective

planes, the present construction mainly utilizes minitwistor spaces, and partially

follows the method and construction given in [5] and [6].

1. Introduction.

In a recent paper [6], we have given a systematic method for obtaining

numerous Moishezon twistor spaces admitting C�-actions. There, a key geometric

object was minitwistor spaces associated to the twistor spaces of Joyce metrics [8].

More precisely, for an arbitrary Joyce metric on nCP2 and an arbitrary

Uð1Þ-subgroup of the torus that fixes a torus-invariant 2-sphere in nCP2, we

concretely find a linear system on the twistor space (of Joyce metrics) whose

associated meromorphic map can be regarded as a quotient map of the C�-action

corresponding to the Uð1Þ-action. The quotient spaces, which are necessarily

rational surfaces, are called the minitwistor spaces. We explicitly determined

defining equations of these minitwistor spaces in projective spaces, and realized

projective models of the twistor spaces as conic bundles over (the minimal

resolution of) the minitwistor spaces. Also, they played a main role in the study of

equivariant deformations of the twistor spaces.

As we remarked in [6, Section 3.1], when we try to obtain the actual twistor

spaces from these projective models by means of blowing-ups and downs, we face a

difficulty which comes from a complexity of the base locus of the above linear

system. In this note, we find a particular case for which we can give an explicit

sequence of blowing-ups that eliminates the base locus completely, and

consequently obtain an explicit construction of the twistor spaces of Joyce

metrics on nCP2 for arbitrary n � 4. Although the number of torus-actions we
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can take is only one for each n, this seems to be the first construction which works

for arbitrary n. When n ¼ 4, the present result gives a new construction of the

twistor spaces of Joyce metrics on 4CP2 whose K-action is Type I in the

terminology of [4].

We remark that the present method is a modification of the construction in

[5], where we constructed Moishezon twistor spaces with C�-action whose

minitwistor space are the same as the present ones. In other words, the twistor

spaces and their construction in this paper can be obtained as a limit of the

twistor spaces and their construction in [5]. However, in the present case we

require much more complicated operations than those in [5], as is displayed in the

figures.

For a related work, we mention that in [7], we have given projective models of

the twistor spaces for arbitrary Joyce metrics on nCP2.

NOTATION. If Z is a twistor space, F always denotes the canonical square

root of the anticanonical line bundle of Z. The degree of a divisor on Z means its

intersection number with twistor lines. The 2-dimensional Lie group Uð1Þ � Uð1Þ
and its complexification C� �C� are denoted by K and G respectively. If a Lie

group G is acting on Z holomorphically and D is a G-invariant divisor, G

naturally acts on the vector space H0ðZ; ½D�Þ. Then H0ðZ; ½D�ÞG means the

subspace of all G-invariant sections. If V is a non-zero vector subspace in

H0ðZ; ½D�Þ, jV j implies a linear system whose members are zero divisors of s 2 V .

ZG means the set of G-fixed points. A ð�1;�1Þ-curve in a threefold means a

smooth rational curve whose normal bundle is isomorphic to Oð�1Þ�2. The

Hirzebruch surface PðOðkÞ � OÞ is denoted by �k.

2. Specifying a K-action and construction of projective models.

Joyce metrics on nCP2 are determined by an effectiveK-action on nCP2 and

a set of ðnþ 2Þ real numbers. We first specify the former K-action we shall

consider. We start from an affine plane C2 ¼ fðz; wÞg equipped with a K-action

given by ðz; wÞ 7! ðsz; twÞ for ðs; tÞ 2 K. Let n � 4 be any integer. Then we blow-

up C2 ðn� 1Þ times, with the blown-up points always on the unique K-fixed point

on (the proper transform of) z-axis. The resulting surface has a unique ð�1Þ-curve.
Among two K-fixed points on this curve, we blow-up the one which is not on the

proper transform of z-axis. Then the K-action on the resulting surface has ðnþ 1Þ
fixed points. By taking a natural one-point compactification and reversing the

orientation, we obtain nCP2 equipped with an effective K-action. This is the

K-action we shall consider. Note that if we take another K-fixed point in the final

blow-up, the K-action on nCP2 contains a Uð1Þ-subgroup acting semi-freely.
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Let �1 < �2 < � � � < �nþ2 be the set of real numbers and g the Joyce metric on

nCP2 which has the above K-action as an automorphism group and which has

f�1; � � � ; �nþ2g as its conformal invariant. Let Z be the twistor space of g. Since g is

different from LeBrun metrics, we have dim jF j ¼ 1. Let S 2 jF j be a smooth

member. S is a toric surface whose structure is uniquely determined by the

K-action. Let C be the unique anticanonical curve on S. C consists of 2ðnþ 2Þ
rational curves C1; C2; � � � ; Cnþ2; C1; C2; � � � ; Cnþ2 which form a cycle arranged in

this order. Here Ci are the images of Ci under the real structure of Z. By the above

blow-ups, we can suppose that

C2
1 ¼ 1� n; C2

2 ¼ �2; C2
3 ¼ �1; C2

4 ¼ �3; C2
5 ¼ � � � ¼ C2

nþ1 ¼ �2; C2
nþ2 ¼ �1; ð1Þ

for the self-intersection numbers in S. We note that when n ¼ 4, this K-action

coincides with the one called Type I in [4]. By the twistor fibration Z ! nCP2, C1

and C1 are mapped to the closure of z-axis, and Cnþ2 and Cnþ2 are mapped to the

closure of w-axis.

Next let G1 � G be the isotropy subgroup of C1 and S ! CP1 the

(holomorphic) quotient map of the G1-action. The latter has exactly two

reducible fibers and they are explicitly given by

f ¼ C2 þ 2C3 þ
X

4	i	nþ2

Ci ð2Þ

and its conjugation. In particular, G1 ’ C� acts on Ci by weight one for i 6¼ 3 (and

i 6¼ 1) and by weight 2 on C3. Thus the sequence ðk2; k3; k4; � � � ; knþ2Þ obtained by

arranging the coefficients of the reducible fiber f is given by ð1; 2; 1; � � � ; 1Þ. Hence

the numberm defined in [6, Definition 2.2] is computed to be 2. By [6, Proposition

2.5], the system j2F j ¼ j �Kj contains a member Y and Y which are not in the

subsystem jV2j composed of a pencil jF j. By the formula (9) in [6], they are

explicitly given by

Y ¼ Sþ
1 þ Sþ

2 þ S�
3 þ S�

nþ2 ð3Þ

and its conjugation, where Sþ
i þ S�

i (1 	 i 	 nþ 2) are reducible members of jF j
having the property that Li :¼ Sþ

i \ S�
i is the G-invariant twistor line through

Ci \ Ciþ1 for 1 	 i 	 nþ 1 and Cnþ2 \ C1 for i ¼ nþ 2. Here, Sþ
i and S�

i are

distinguished by imposing C1 � S�
i . The 2-dimensional system jV2j and Y and Y

generate a 4-dimensional subsystem of j2F j and it coincides with j2F jG1 by

Proposition 2.11 in [6]. Let �G1

2 : Z ! CP4 be the associated meromorphic map
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and T ¼ �G1

2 ðZÞ the image surface which is a minitwistor space of Z with respect

to G1 ([6, Definition 2.9]). Then we have the following commutative diagram of

meromorphic maps

ð4Þ

where �2 is the meromorphic map onto the conic �2 ’ CP1 in CP2 associated to

jV2j, �2 is the linear projection induced from V2 � H0ð2F ÞG1 and �2 ! P_V2 is an

embedding as a conic. The restriction of �2 to T is still denoted by �2. We can

suppose that the conformal invariant f�1; � � � ; �nþ2g satisfies �i ¼ �2ðSþ
i Þ ¼

�2ðS�
i Þ. By Proposition 2.12 and 2.14 of [6], we have the following.

PROPOSITION 2.1. The minitwistor space T satisfies the following. (i) The

indeterminacy locus of the projection �2 : T 2 ! �2 consists of two points. (ii)

These two points coincide with the singular locus of the surface T . (iii) �2 has

reducible fibers precisely over the 4 points �i, i ¼ 1; 2; 3; nþ 2, and all of them

consist of two lines.

Let ~T be the minimal resolution of T , � and � the exceptional curves, and ~�2

the composition ~T ! T ! �2. � and � are sections of ~�2. As an abstract complex

surface, ~T is obtained as 4-points blow-up of �2 ¼ PðOð�2Þ � OÞ over �2, where

the 4 points are lying on the ðþ2Þ-section PðOð�2ÞÞ and over the 4 points �i with

i ¼ 1; 2; 3; nþ 2.

The structure of ~T is as in Figure 1, where the irreducible components sþi and

s�i of reducible fibers are named after the fact that they are the images of Sþ
i and

S�
i under �G1

2 respectively (cf. [6, Section 3.1]), and fi, 4 	 i 	 nþ 1, are the

images of Sþ
i and S�

i under the same map. In the following we explicitly give a

CP2-bundle PðE Þ ! ~T and a conic bundle X ! ~T in PðE Þ. For this, we define

two holomorphic line bundles N _ and N
_
by

N _ ¼ Oð�þ ð3� nÞsþnþ2 þ s�2 þ ðn� 2ÞfÞ ð5Þ

and

N
_ ¼ Oð�þ ð3� nÞs�nþ2 þ sþ2 þ ðn� 2ÞfÞ ð6Þ
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where f denotes the fiber class of ~�2. Then we define a rank-3 bundle over ~T by

E :¼ N _ �N
_ � O: ð7Þ

E is equipped with the natural real structure induced from that on ~T . We readily

have

detE ’ Oð�þ �þ nfÞ ð8Þ

which is also equipped with the natural real structure. As a real member of a

linear system j detE j we choose

Figure 1. The structure of the resolved minitwistor space ~T .

Figure 2. The discriminant curve of the conic bundle X ! ~T .
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�þ �þ ðsþ2 þ s�2 Þ þ ðsþ3 þ s�3 Þ þ
X

4	i	nþ1

fi: ð9Þ

(See Figure 2.) Let P 2 H0ð ~T ; det E Þ be a real section that defines this curve.

Then we define a conic bundle p : X ! ~T by

xy ¼ Pz2 ð10Þ

where ðx; y; zÞ 2 E . The discriminant curve of p is exactly (9). Obviously, the

inverse images of irreducible components of the discriminant curve consist of two

irreducible components. For any singular point of the discriminant curve (9),

there exists a unique ordinary double point over there of the 3-dimensional space

X (given by ðx; y; zÞ ¼ ð0; 0; 1Þ). There are no other singularities of X. This is the

projective model we start with. We note that X is determined only by the

conformal invariant f�1; � � � ; �nþ2g.
The surface ~T has an obvious effective C�-action, which fixes � and �. Hence

PðE Þ admits an effective G-action as a combination of the C�-action on ~T and a

C�-action on PðE Þ defined by ðx; y; zÞ 7! ðtx; t�1y; zÞ for t 2 C�. p has two

G-invariant distinguished sections

E1 :¼ fx ¼ z ¼ 0g and E1 ¼ fy ¼ z ¼ 0g: ð11Þ

Also, the two irreducible components of p�1ð�Þ are G-invariant. We name these as

E2 and E4, where E2 is the one intersecting E1. Then the conjugate divisors E2

and E4 are irreducible components of p�1ð�Þ intersecting E1 and E1 respectively.

Thus we obtain 6 irreducible divisors Ei; Ei for i ¼ 1; 2; 4. For each of these

divisors, a C�-subgroup of G is acting trivially. (Ei will be contracted to Ci of the

G-invariant cycle C in Z through our construction.)

Let q : X ! �2 be the composition of the two morphisms p : X ! ~T and

~�2 : ~T ! �2. Any fiber of q is G-invariant. (q will correspond to �2.) If � 6¼ �i for

1 	 i 	 nþ 2, q�1ð�Þ is a smooth toric surface. The intersection q�1ð�Þ \ ðE1 þ
E2 þ E4 þ E1 þ E2 þ E4Þ is the unique G-invariant anticanonical cycle on q�1ð�Þ.
If � ¼ �i for some 1 	 i 	 nþ 2, q�1ð�Þ consists of 2 or 4 irreducible components;

if i ¼ 2; 3, it consists of 4 components and otherwise 2 components. Note that

q�1ð�iÞ are mutually isomorphic for 4 	 i 	 nþ 1. We also note that all

irreducible components of q�1ð�iÞ are smooth toric surfaces, and their structure

can be readily determined by our explicit description. These are illustrated as in

(a) of Figures 4–11. There, dotted points (appearing in (a) of Figures 6, 7, 9, 10,

11) are precisely the singular locus of the threefold X. Namely, X has singularities
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at points where four G-invariant smooth divisors meet, and all of them are

ordinary double points. In this way we obtain a projective fiber space over �2 ’
CP1 whose fibers are toric surfaces.

3. Construction of the twistor spaces.

In this section, starting from the projective 3-fold X given in the previous

section, we construct the twistor spaces of Joyce metrics whose K-action is the

one we specified in the beginning of Section 2, by applying a number of blowing-

ups and downs. All these operations are given in such a way that they preserve the

G-action and the real structure.

Broadly speaking, there are two kinds of operations we are going to apply.

One is a blowing-up along a section of q : X ! �2. These operations of course

affect every fibers of p. The other is a blowing-up or down inside a singular fiber of

p, which does not affect other fibers. (In particular, we do not make a blow-up or

down inside a smooth fiber of q.) In the following we first give a sequence of blow-

ups along sections of q (1
 below), and next give sequences of blowing-ups and

downs for each reducible fibers of q (2
–8
 below). Any of the latter sequences

involve the former sequence as a subsequence.

1� Blowing-ups along G-invariant sections of q.

First we blow-up E2 \ E4 and E2 \ E4. Let E3 and E3 be the exceptional

divisors respectively. Next we blow-up E1 \ E4 and E1 \ E4, and let E5 and E5 be

the exceptional divisors respectively. Next we blow-up E1 \ E5 and E1 \ E5, and

let E6 and E6 be the exceptional divisors respectively. Repeat these blow-ups until

obtaining the exceptional divisors Enþ2 and Enþ2. Under these blow-ups, smooth

fibers of q are transformed as in Figure 3. By looking the self-intersection numbers

of the irreducible components of the anti-canonical cycle, the last toric surface is

isomorphic to the surface S ¼ ��1
2 ð�Þ in Section 2 which is a smooth member of

the pencil jF j.

2� Operations for the fibers over �nþ2 and �1.

For these two reducible fibers, we do not make a blowing-up or down inside

the fibers, with only exception in the following contractions. Namely after

applying all the blow-ups in 1
, the two fibers are transformed as in Figures 4 and

5 respectively to become (reducible) toric surfaces (c). Then we contract bold

ð�1;�1Þ-curves inside the fibers which are denoted by the bold lines. Then the

images of the ð�1;�1Þ-curves become ordinary double points of the threefold

represented by the dotted points in (d). After these operations, the fibers become

isomorphic to the reducible members ��1
2 ð�nþ2Þ and ��1

2 ð�1Þ in jF j respectively.
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Figure 3. Changes of smooth fibers.
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Figure 4. Changes of fibers over �nþ2.
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Figure 5. Changes of fibers over �1.
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3� Operations for the fiber over �2.

The fiber q�1ð�2Þ consists of two �1’s (named Sþ
2 and S�

2 ) and two �0’s as in

Figure 6 (a), and contains 3 ordinary double points of X. We take small

resolutions that do not change two �0’s to obtain the situation displayed in (b) in

the figure. Then we can blow-down two �0’s along both of the projections. We

blow-down these in such a way that the divisors E2 and E2 are not changed as in

(c) in the figure. Next we apply all the blow-ups in 1
 to obtain the (reducible)

toric surface (e) in the figure. Finally we contract the two bold ð�1;�1Þ-curves.
The resulting surface is isomorphic to ��1

2 ð�2Þ 2 jF j in Z.

Figure 6. Changes of fibers over �2.
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4� Operations for the fiber over �3.

The fiber q�1ð�3Þ requires complicated operations. First, noting that q�1ð�3Þ
is isomorphic to q�1ð�2Þ, we apply the same small resolutions to obtain the

situation displayed in Figure 7 (b). Next we insert the blow-ups of E2 \ E4; E2 \
E4; E1 \ E4 and E1 \ E4 of 1
 to obtain (d). We subsequently blow-up the two

bold curves in (d) to obtain Figure 8 (e). Then we contract the two bold curves

that are ð�1;�1Þ-curves in the threefold to obtain (f). The two dotted points are

the resulting ordinary double points. We can interpret the operations from (c) to

(f) as ‘inserting two exceptional divisors (E5 and one �0) and their conjugations’

and they can be replaced by a single operation of blowing-up along reducible

Figure 7. Changes of fibers over �3.
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curves (which are the unions of the bold curves in (c) and (d)). We repeat this

procedure until obtaining the exceptional divisors Enþ2 and Enþ2 as in (g). (All

the dotted points are ordinary double points of the threefold.) Then all the

squares in (g) are isomorphic to �0 and can be simultaneously blow-down in such

a way that their images are contained in the anticanonical cycles of Sþ
4 and S�

4 as

Figure 8. Changes of fibers over �3 (continued).
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in (h). Finally, we contract the bold ð�1;�1Þ-curves to ordinary double points.

Then the resulting (reducible) toric surface is isomorphic to ��1
2 ð�3Þ 2 jF j.

5� Operations for the fiber over �4.

The fiber q�1ð�4Þ consists of two irreducible components, both of which are

isomorphic to �1 that are mapped surjectively to p�1ð�4Þ ¼ f4 ’ CP1 (Figure 9

(a)). These two components share two nodes of X as in the figure. We first take

their small resolutions to obtain the situation displayed in (b). Then we

subsequently blow-up G-invariant sections in the order specified in 1
, obtaining

(d). Finally we contract a conjugate pair of bold ð�1;�1Þ-curves. Then the

resulting (reducible) toric surface is isomorphic to ��1
2 ð�4Þ.

Figure 9. Changes of fibers over �4.
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6� Operations for the fiber over �5.

The fiber q�1ð�5Þ is isomorphic to q�1ð�4Þ (Figure 10 (a)). We make the same

operations until we obtain the situation (b) in Figure 10 (which is the same as (c)

of Figure 9). Next we insert the blow-up at E1 \ E4 and E1 \ E4 in 1
 to obtain

(c). Then the intersections E4 \ Sþ
5 and E4 \ S�

5 become ð�1;�1Þ-curves (bold

curves in (c)). We flop these two curves to obtain (d). After this process, we go

back to the blow-ups in 1
 to obtain the situation of (e). Finally we contract

E5 \ Sþ
5 and E5 \ S�

5 which are ð�1;�1Þ-curves. Then the resulting (reducible)

Figure 10. Changes of fibers over �5.
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toric surface is isomorphic to ��1
2 ð�5Þ.

7� Operations for the fiber over �6.

The fiber q�1ð�6Þ is also isomorphic to q�1ð�5Þ ((a) of Figure 11). We apply

the same operation as q�1ð�5Þ until we obtain the situation displayed in Figure 11

(b). Next we insert the blow-up at E1 \ E5 and E1 \ E5 in 1
 to obtain (c). Then

we apply flops at E5 \ Sþ
6 and E5 \ S�

6 to obtain (d). Next we go back to the blow-

Figure 11. Changes of fibers over �6.
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ups in 1
 to obtain the situation of (e). Finally we contract E6 \ Sþ
6 and E6 \ S�

6

which are ð�1;�1Þ-curves. Then the resulting (reducible) toric surface is

isomorphic to ��1
2 ð�6Þ. (So this fiber, we flop pairs of ð�1;�1Þ-curves twice.)

8� Operations for the remaining fibers.

These are inductively given as follows. Let 5 	 i 	 n be an integer and

suppose that the operations for the previous fiber q�1ð�i�1Þ are already given. We

may suppose that the number of times of flops for q�1ð�i�1Þ is ði� 5Þ, up to

conjugation. Noting that q�1ð�iÞ is isomorphic to q�1ð�i�1Þ (’ q�1ð�5Þ), we first

apply the same procedure as q�1ð�i�1Þ until just finishing the final flop. Next we

insert the blow-up at Ei�1 \ E1 and Ei�1 \ E1. Then Ei�1 \ Sþ
i and Ei�1 \ S�

i

become ð�1;�1Þ-curves. So we flop these curves. Then we go back to the blow-ups

along sections of q in 1
. After this, we contract two ð�1;�1Þ-curves Sþ
i \ Ei and

S�
i \ Ei to ordinary double points. Then the resulting (reducible) toric surface is

isomorphic to ��1
2 ð�iÞ 2 jF j in Z. Also, the number of flops we have applied is

clearly ði� 5Þ þ 1 ¼ i� 4. So the induction works to give operations for any

5 	 i 	 nþ 1.

9� Contracting the union ð[EiÞ [ ð[EiÞ.
Let Ẑ0 be the 3-fold obtained as a result of all the operations in 1
–8
, and

q̂ : Ẑ0 ! �2 the natural projection obtained from the original projection

q : X ! �2. Ẑ0 is equipped with a natural G-action induced by that on X, as

well as a real structure. As is already verified, any fiber q̂�1ð�Þ is isomorphic to

��1
2 ð�Þ 2 jF j, where �2 : Z ! �2 is the meromorphic map associated to the pencil

jF j on Z as before. On each reducible fibers q̂�1ð�iÞ, 1 	 i 	 nþ 2, Ẑ0 has two

ordinary double points. Ẑ0 contains 2ðnþ 2Þ divisors Ei and Ei (1 	 i 	 nþ 2Þ, all
of which are G-invariant. By the explicitness of all the constructions, we can

verify, after long but tedious computations, that all these divisors are isomorphic

to �0. We can also verify that the union ð[1	i	nþ2EiÞ [ ð[1	i	nþ2EiÞ can be blown-

down in such a way that the image becomes a cycle of rational curves which is the

anticanonical curve of the images of any smooth fibers of q̂. Let Ẑ0 ! Z0 be the

contraction map. In this way, starting from the projective variety X, we obtain a

smooth 3-fold Z 0 equipped with a G-action and a real structure. This is the

required twistor space as the following result shows.

THEOREM 3.1. There exists a biholomorphic map j : Z ! Z0.

PROOF. Let Ẑ ! Z be the blowing-up of the twistor space along the cycle

C. Any fibers of the natural projection Ẑ ! �2 is biholomorphic to the

corresponding fiber of q̂ : Ẑ 0 ! �2. Therefore, by Fujiki’s proof of Theorem 8.1 in
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[2] (especially the proof of Lemmas 8.3–8.6), in order to obtain the isomorphism j,

it suffices to show the existence of a smooth rational curve L̂0 in Ẑ0 satisfying the

following properties: (i) L̂0 is disjoint from the divisor ð[1	i	nþ2EiÞ [ ð[1	i	nþ2EiÞ,
(ii) the restriction of q̂ to L̂0 is two to one over �2, and unramified at any �i,

1 	 i 	 nþ 2. To find this curve, we choose and fix any 1 	 i 	 nþ 2 and let

L̂0
i � Ẑ0 be the intersection of the two irreducible component of q̂�1ð�iÞ. Let

L0
i � Z0 be the image of L̂0

i by the blowing-down Ẑ0 ! Z0. Then by the fact that

the two irreducible components of q̂�1ð�iÞ intersect along L̂0
i transversally and the

normal bundles of L̂0
i in the irreducible components are exactly degree one, we

obtain that the normal bundle of L0
i in Z0 is isomorphic to Oð1Þ�2. Thus by

deformation theory, the universal family of deformations of L0
i in Z0 is para-

meterized by a smooth complex 4-manifold. If we choose a general member L0

among this family and letting L̂0 to be the inverse image of L̂ by Ẑ0 ! Z0, L̂0

satisfies the properties (i) and (ii), as desired. �
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