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Abstract. We prove the existence of extension dimension for a much
expanded class of spaces. First we obtain several theorems which state conditions
on a polyhedron or CW-complex K and a space X in order that X be an absolute
co-extensor for K. Then we prove the existence of and describe a wedge
representative of extension dimension for spaces in a wide class relative to
polyhedra or CW-complexes. We also obtain a result on the existence of a
“countable” representative of the extension dimension of a Hausdorff compactum.

1. Introduction.

Extension theory, which was introduced by A. Dranishnikov in [2], is based
on the following notion. If K is a CW-complex and X is a space, then one says that
K is an absolute extensor for X, K € AE(X), or X is an absolute co-extensor for K,
X7K, if for each closed subset A of X and map (i.e. continuous function)
f:A— K, there exists a map F': X — K such that F' is an extension of f. For
example, X is a normal space if and only if X7R. (We note that spaces in this
paper are not assumed to be Hausdorff.)

In [2], Dranishnikov defined extension dimension. Given a class € of spaces
and a class .7 of CW-complexes, there is a certain equivalence relation ~ 7) on
7. The equivalence class of K under this relation, denoted [K] 5, is called the
extension type of K relative to (¢,7). For X € €, one defines the extension
dimension relative to (%,.7), which exists under certain conditions. When it
exists (Section 5) it is a uniquely determined extension type. We shall define weak
extension dimension for a space X that might fall out of the class %. It agrees with
extension dimension when X € %.

The existence of extension dimension for certain cases has been treated in [2],
[4], [6], and [5]. The notion of a dd-space was introduced in [6] and proved useful
in that work. We shall define in Section 2 a wider class, the ddP-spaces. This will
allow us to consolidate most of the previous ideas. Our Main Theorem is
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Theorem 5.5. We prove statements (1)—(5) on the existence of weak extension
dimension for a ddP-space with some additional properties. In (1)—(3) of that
theorem, the representative we obtain for the weak extension dimension of the
given space is a wedge of polyhedra whose number of summands depends on a
certain infinite cardinal 3, and similarly the cardinality of each summand depends
on 3. We generalize the notion of a o-compact space or a compact Hausdorff space
to that of a o-pseudo-compact space (Section 4). With a space of this type, parts
(4,5) of Theorem 5.5 provide a representative that is a wedge of at most 2%
summands each of which has cardinality at most Ry. This generalizes Theorem 13
of [3].

Section 6 visits the question of whether a “better” representative of the
extension dimension of a compact Hausdorff space exists. Dranishnikov and
Dydak asked in [4] (Problems6.1 below, 2.19.2 of [3], 2.1 of [1], and 5.4 of [9])
whether with respect to the classes J# of compact Hausdorfl spaces and 7 of
CW-complexes, the extension dimension of every metrizable compactum has a
“countable” polyhedral representative. We have shown in Theorem 5.10 of [9]
that under certain conditions it would. In Theorem 6.5 we give a sufficient
condition that a polyhedron |K| which represents the extension dimension of a
Hausdorff compactum X relative to (£, ), contains a countable subcomplex M
such that |M| represents the extension dimension of X relative to (¢, 7).

2. dd- and ddP-spaces.

Recall [6] that a space X is called a dd-space if X7K for every contractible
CW-complex K. Such spaces, and the larger class of ddP-spaces (Definition 2.1),
will play a prominent role in the sequel. Sometimes we wish to consider only
polyhedra instead of arbitrary CW-complexes; therefore we make the next
definition.

DEFINITION 2.1. A space X will be called a ddP-space if X7P for every
contractible polyhedron P.

A check of the proof of the “wedge” theorem, Theorem 2.6 of [6], shows that it
can be generalized as follows.

THEOREM 2.2. Let X be a ddP-space and {K, | « € T'} be a collection of
nonempty simplicial complexes. Put K = \/ {K, | « € '}, where say v is a vertex
common to K, for all & € T'. Suppose that for each o € T, X7|K,|. Then X7|K]|.
Conversely, for any space X, if X7|K|, then X7|K,| for all« € T.

LEMMA 2.3. Let X be a space.
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(1) If X is a dd-space, then it is a ddP-space.

(2) If X is a ddP-space, then it is normal.

(3) If X has the homotopy extension property with respect to CW-complexes,
then X is a dd-space and for every CW-complez K, K € ANE(X).

(4) If X has the homotopy extension property with respect to polyhedra, then
X is a ddP-space and for every simplicial complex K, |K| € ANE(X).

PROOF. We leave (1) and (2) to the reader. We shall prove only (3), since a
proof of (4) is similar. Let K be a contractible CW-complex, A a closed subset of
X,and f: A— K amap. Then f is null homotopic, so it is homotopic to a map
that extends to a map of X to K. The homotopy extension property shows that f
extends to a map of X to K, so X7K.

For the second part, let K be an arbitrary CW-complex, A closed in X, and
f:A— Kamap. The cone on K, say v * K| is a contractible CW-complex and we
treat K Cwvx K canonically. So f:A— K CwvxK extends to a map
G:X—-uv+xK. Put U= (vxK)\{v} and r:U — K the obvious retraction.
Then G~1(U) is a neighborhood of A in X. Define h = G|G}(U) : G1(U) — U.
Then roh: G1(U) — K is a map that extends f. O

LEMMA 2.4. Let K be a CW-complez. Suppose that X is a normal space and
K € ANE(X). Assume that X =|J{X, | n € N} where for each n € N, X, is
closed and X, 7K. Then X7K.

PROOF. Let A be a closed subspace of X and f: A — K a map. We shall
proceed with an induction argument.

Since X;7K, then we may choose a map ¢g; : AU X; — K such that g1|A = f.
Using the ANE property of K and the fact that X is normal, there exists a closed
neighborhood D; of AU X; in X and a map hy : D; — K that extends g;.

Suppose that kK € N and we have found Dq,..., Dy, and hq,..., h; such that
for 1 <i<k:

(a) D; is a closed neighborhood of AU X; in X,
(b) h; is a map of D; to K,

(¢) hi|A=f, and

(d) if1<i< J< k, then D; C Dl and h_]|D, = h;.

Choose a map ggy1 : Dy U X1 — K such that gp.1|Dg = hi. There exists a
closed neighborhood Dyy; of Dy U Xy in X and a map hgyq 0 Dy — K that
extends gji1-

This completes the induction. Observe that (J{int Dy | k € N} = X. Define a
function F' : X — K to be |J{hr | k € N}. Clearly F'is a map, and F|[A=f. O
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LEMMA 2.5.  Suppose that X is a mormal space and every contractible
CW-complex is an ANE for X. Assume that X is the union of a countable
collection {X,, | n € N} of closed subspaces each of which is a dd-space. Then X is
a dd-space.

PROOF. Let K be a contractible CW-complex. Then by the definition of a
dd-space, for each n € N, X, 7K. An application of Lemma2.4 shows that
XTK. O

One similarly has,

LEMMA 2.6. Suppose that X is a mormal space and every contractible
polyhedron is an ANE for X. Assume that X is the union of a countable collection
{X, | n € N} of closed subspaces each of which is a ddP-space. Then X is a
ddP-space.

When a cover such as that in Lemma 2.4 is not countable, the situation is
quite different. In [11], K. Morita defined the weak topology with respect to a
collection of subsets of a given space. This terminology conflicts with current
usage, so let us make the following definition.

DEFINITION 2.7. Let X be a space and .% a collection of closed subspaces of
X. Then we shall say that X satisfies the Morita conditions with respect to .# if
for each ¥ C .F

(1) U¥ is closed in X, and
(2) as a subspace of X, [J¥ has the weak topology with respect to .

By virtue of the proof of Theorem 2 of [11], we have the next fact.

THEOREM 2.8. Let K be a CW-complex, X a space, and F a closed cover of
X so that X satisfies the Morita conditions with respect to . If for oll F' € 7,
FrK, then XTK.

Applying the definition of a dd-space, or that of a ddP-space, and
Theorem 2.8, we obtain:

COROLLARY 2.9. Let X be a space and F a closed cover of X so that X
satisfies the Morita conditions with respect to .% . Suppose that for all ' € %, F is
a dd-space. Then X is a dd-space. The same is true with dd replaced by ddP.

The next result is the same as Theorem 2.2 of [8].
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COROLLARY 2.10. Let K be a CW-complex and X a paracompactum that is
a local absolute co-extensor for K. Then XTK.

If we apply the definition of a dd-space, or that of a ddP-space, and
Corollary 2.10, we obtain:

COROLLARY 2.11.  Let X be a paracompactum that is a local dd-space. Then
X is a dd-space. The same is true with dd replaced by ddP.

3. Extension theorems.

This section contains several theorems providing conditions for X7|K| when
X is a space and K is a simplicial complex.

Let us first state a version of Lemma3.4 of [6] which is true simply by
requiring % to be a cover of X, not necessarily open.

LEMMA 3.1. Let % ={Uq | G €T} be an indexed cover of a topological
space X and A be a locally finite cover of X by nonempty closed subsets of X such
that for each B € B, BNUg # 0 for at most finitely many G € T'. For each finite
subset T of T, let By =\ J{Be # | BNUg # 0 <= G € T}. Then,

(1) for each finite subset T of ', Br is closed, and By C \J{Us | G € T},

(2) if G, Gy € T where Gy # Gs, then B{Gl} N B{GQ} =0,

(3) if Ty, Ty are finite subsets of T', G €T, and (Br, N Br,) NUg # 0, then
GeTiNTy, ie., BT1 ﬁBT2 - U{UG | GeT OTQ}, and

(4) {Br | T a finite subset of T'} is a locally finite closed cover of X.

THEOREM 3.2. Let K be a simplicial complexr and X a normal space such
that | K| € ANE(X). Suppose that T is a collection of subcomplexes of K such that:

(1) T is directed by inclusion;
(2) N{IGI | G T} #0;
(3) X7|G| for all G €T
(4) and |K| = J{int|G|| G €T}.

Then X1|K]|.

PROOF. Let A be a closed subspace of X and g : A — |K| a map. We may as
well assume that g is defined on an open neighborhood W of A. Now we choose a
neighborhood U of A such that U ¢ W. We are going to show that there exists a
map F : U — |K| having the property that F|A = g and F|bd U is constant. Our
proof will be completed by extending F' to the complement of U by that constant
map.
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Put f= glU:U — |K|. Select v € ({|G| | G €T} Let A= AUbdU. Define
f: A |K| by setting f|A = f and putting f(d) = v for all d € bdU.

Choose a locally finite cover & = {E¢ | G € T'} of |K]| so that E¢ C int |G| for
all G €T. For each G €T define, Ug = f'(Eg). Then % = {Us |G €T} is a
cover of U.

Let £ be a locally finite closed cover of | K| such that for each Q € 2, {G €
I'| EgNQ #0} is finite. Then # = {f~1(Q) | Q € 2} is a locally finite closed
cover of U such that for each B€ %, {G € T'| BNUg # 0} is finite.

Thus % and 4 satisfy the hypotheses of Lemma 3.1 in the space U. For each
finite subset T of T', let By be as in Lemma3.1. Using (2) and (4) of that lemma,
one sees that {Byg | G €T’} is a discrete closed collection in U. Because of
Lemma3.1(1) and the definition of f, one has that f(B{G} N A)
f(B{G} NAU f(B{G} NbdU) C |G|.

The remainder of our proof is the same as the part of the proof of Lemma 3.5
of [6] beginning with the sentence just before (8). One only replaces A there by A
and f by f. O

COROLLARY 3.3. Let K be a simplicial complexr and X a space having the
homotopy extension property with respect to polyhedra. Suppose that T' is a
collection of subcomplezxes of K such that:

1) T is directed by inclusion;
2) M{IGI 1 G e} #0;
3) X7|G| for all G € T
4) and |[K|={|G| |G eT}.

Then X7|K|.

(
(
(
(

PROOF. Since X has the homotopy extension property with respect to
polyhedra, then Lemma 2.3(3) shows that X is a ddP-space and |K| € ANE(X).
By this and Lemma 2.3(1,2), X is normal.

Let K” be the second barycentric subdivision of K. For each G € T, let G*
denote the simplicial neighborhood of G with respect to K”. This means that G* is
the subcomplex of K" consisting of all simplexes ¢ such that o C |G| or o is a face
of a simplex 7 of K" with 7N|G|#@. It is well known that |G| is a strong
deformation retract of |G*|, so since X has the homotopy extension property with
respect to G, then X7|G*|. Now just replace I" by I'* = {G* | G € '} and apply
Theorem 3.2. (]

The next result is a slight variation of Theorem 3.3 of [6]. The reader will
easily see that if one fixes in advance a vertex v of K, then one can replace L by
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LU {v} (see also the proof of Theorem 4.12) in the proof to obtain statement (5)
below, so we will not repeat that proof.
For a simplicial complex K and cardinal number «, let

K., ={L| L is a subcomplex of K and card L < «a}.

THEOREM 3.4. Let a be an infinite cardinal, X a space such that wt X < «,
and K a simplicial complex with X7|K|. Then there exists a collection F = {Fr |
T € K<} of subcomplezxes of K so that for each T € K<,:

)
) card Fp < 2%

4) for each Ty € K<, with T C Ty, Fr C Fr; and
) (UFr | T € Ko} 0.

4. Extension properties of pseudo-compact spaces.

Recall that a space X is called pseudo-compact if for every map f: X — R,
f(X) is contained in a compact subset of R. The prototypical pseudo-compact non
compact space is the first uncountable ordinal space, [0,€)) with the order
topology. It is known that [0,€2) is binormal, i.e., [0,2) x I is normal. In this
section we prove some extension-theoretic properties of pseudo-compact spaces,
which in the realm of extension theory, behave in many ways exactly like compact
spaces.

LEMMA 4.1. Let X be a space. Then X is pseudo-compact if and only if for
each CW-complex K and map f : X — K, f(X) is contained in a compact subset of
K.

PROOF. Suppose that X is pseudo-compact, K is a CW-complex,
f:X — K is a map, and f(X) is not contained in a compact subset of K. Then
there exists a countably infinite closed discrete subspace A of K such that
A C f(X). Let g : A — R be a function such that g(A) = N. Then g is a map, and
since K is normal, there exists a map h : K — R such that h|4A = g.

Define F = ho f: X — R. Then F'is a map of X to R. But N C F(X), which
implies that X is not pseudo-compact, a contradiction.

The converse follows from the fact that R may be given the structure of a
CW-complex. O

LEMMA 4.2. Let X be a normal pseudo-compact space and A a closed subset
of X. Then A is pseudo-compact.
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LEMMA 4.3. Let X be a normal pseudo-compact space and K a CW-com-
plex. Then K € ANE(X).

PROOF. Let A C X be closed and f: A — K a map. By Lemma4.2, A is
pseudo-compact. So by Lemma4.1, there exists a finite subcomplex L of K with
f(A) C L. Since X is normal and L is finite, then L € ANE(X). So we may extend
the map f to a map of a neighborhood of A in X with values in L C K. O

PROPOSITION 4.4. Let X be a binormal pseudo-compact space. Then for
each CW-complex K, X has the homotopy extension property with respect to K.

PROOF. Let A C X be closed, h: X x {0} - K, and H: AxI— K be
maps, and suppose that H(a,0)=h(a,0) for all a€ A. Put D=
(AxIU(X x{0}) and F=HUh:D — K. Now X x [ is normal and pseudo-
compact. By Lemma 4.2, its closed subspace D is pseudo-compact. So there exists
a finite subcomplex L of K with F(D) C L. Since X x I is normal, then
L € ANE(X x I). Hence there exists a neighborhood W of D in X x I and a map
F*: W — L C K that extends F. We leave it to the reader to apply from this the
standard argument that F' extends to a map of X x I to K. O

Let us recall Definition 4.2 of [9].

DEFINITION 4.5. A space X is called a Hausdorff o-compactum if X is a
normal Hausdorff space, every CW-complex is an absolute neighborhood extensor
for X, and X can be written as a countable union of compact Hausdorff subspaces.

The next definition extends Definition 4.5.

DEFINITION 4.6. A space X will be called a o-pseudo-compactum if it is a
normal Hausdorff space, every CW-complex is an absolute neighborhood extensor
for X, and X can be written as a countable union of closed subspaces each of
which is a pseudo-compactum.

LEMMA 4.7.  Every Hausdorff o-compactum is a o-pseudo-compactum.

LEMMA 4.8. Let X be a o-pseudo-compactum, K a CW-complex, and f :
X — K a map. Then f(X) is contained in a countable subcomplex of K.

Proposition4.3 of [9] goes through with o-pseudo-compacta in place of
Hausdorff o-compacta. Therefore, Corollary 4.5 of [9] can be stated as follows.

PROPOSITION 4.9.  Let K be a simplicial complex, X a o-pseudo-compactum,
and X7|K|. Then for every subcomplex L of K, X7|¥*(L)|.
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The ¥ in Proposition4.9 is an operator on the subcomplexes of K. The
important properties of this operator for us come from its definition and from
Lemma 3.2(2,3) of [9]. Let us state these here.

LEMMA 4.10. Let K be a simplicial complex and L C Ly be subcomplezes of
K. Then,

(1) L cu™(L),
(2) if L is countable, then (L) is countable, and
(3) U*(L) C U=(Ly).

Let us repeat Lemma 3.1 of [6].

LEMMA 4.11. Let X be a space of weight < a for some infinite cardinal c.
Suppose that f: X — |K| is a map where K is a simplicial complex. Then
f(X) C |L| for some subcomplex L of K with card L < a.

The next result is similar to Theorem 3.3 of [6] (see also Theorem 3.4 above).

THEOREM 4.12. Let X be a o-pseudo-compactum and K a mnonempty
simplicial complex with X7|K|. Then there exists a collection F ={Fp|T €
K<y, } of subcomplezes of K so that for each T € K<y,

( ) T C FT,
(2) Xr|Frl;
(3)
(4) for each TU € K<NU with T C Ty, Fr C Fr,; and
(5) M{Fr | T € Kay ) # 0.

PROOF. Let v be a vertex of K. For each L € K<y, let F, = (L U {v}).
Now just apply Proposition4.9 and Lemma4.10. O

5. Extension Dimension.

Let & be a class of spaces, .7 a class of CW-complexes, and K, K’ € .7. If it is
true that for all X € ¢, X7K implies X7K', then we write K <4 7) K', (see [4]).
This defines a preorder on .7. One specifies K ~(¢, ) K’ if and only if K <4 ) K’
and K’ <(%,7) K; then ~ 7 is an equivalence relation on 7. The equivalence
class of K under this relation is called the extension type of K relative to (€, .7).
By ET(¢,7) we mean the class of extension types relative to (¢, 7). The relation
<(¢,7) induces a partial order, also denoted <(4 7), on the extension types
ET, 7). Let D € ET(¢ 7) and X € %. In [6] we have the notion that X7D when
X € ¥, and this means that X7L for all L € D. If X € ¥, then the extension
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dimension relative to (¢,.7) of X, extdim ) X, is the initial element?, if it
exists, of the following class of extension types:

{D S ET((g,yﬂXTD}.

If the space X falls out of the class ¥, then we are going to propose two
definitions of its extension dimension relative to (€, .7).

DEFINITION 5.1. Let & be a class of spaces, .7 a class of CW-complexes, X
aspace, and D € ET ¢ 7). Then denote X7, D to mean that for some L € D, XTL,
and X7D to mean that for all L € D, X7L.

DEFINITION 5.2. Let % be a class of spaces, .7 a class of CW-complexes,
and X a space. Define 2(X)={De€ETg 5 | XTD} and 2,(X)={Dc¢c
ET(%/,y) | XT,UD}.

If there is an initial element P € 2(X), then P is called the extension
dimension of X relative to (¢, .7), extdim 7 X. If there is an initial element
P e 2,(X), then P is called the weak extension dimension of X relative to
((g, ﬂ), WeXtdim(cg’y) X.

REMARK 5.3. If X € ¢, then 2(X) = 2,(X). So if X € ¢ and one of the
extension dimensions in Definition 5.2 exists, then so does the other and they are
the same.

Let us repeat Lemma 3.1 of [6].

LEMMA 5.4. Let X be a space of weight < « for some infinite cardinal c.
Suppose that  : X — |K| is a map where K is a simplicial complex. Then f(X) C
|L| for some subcomplex L of K with card L < a.

Next is our Main Theorem on the existence of extension dimension.

THEOREM 5.5.  Suppose that X is a space.

(1) Let .7 be the class of polyhedra, o an infinite cardinal, and € a class of
spaces of wt < . If X is a ddP-space, then wextdimg o) X exists.

(2) Let & be the class of polyhedra and € a class of spaces each having the
homotopy extension property with respect to .. If X is a ddP-space, then
wextdimg, o) X exists.

(3) Let . be the class of CW-complexes, a an infinite cardinal, and € a class

1By an initial element of S, we mean sy € S having the property that s, <%.,7) sforalls € S. If such
sp exists, it is unique.
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of spaces of wt < a each having the homotopy extension property with
respect to . If X is a ddP-space, then wextdimg o) X exists.

(4) Let & be the class of polyhedra and € a class of o-pseudo-compacta.
Suppose that X is a ddP-space and a o-pseudo-compactum. Then
wextdimg o) X exists.

(5) Let . be the class of CW-complezes and € a class of o-pseudo-compacta
each having the homotopy extension property with respect to . Suppose
that X is a ddP-space and a o-pseudo-compactum. Then wextdimg, o) X
exists.

Indeed, in (1)-(3) we may represent wextdim o) X by a wedge of at most 2°
polyhedra each having triangulation with at most p = 2% elements where in cases
(1) and (3) B = max{a, wtX} and in case (2) § = max{Ry, wt X}. In cases (4), (5)
we may represent wextdimg o) X by a wedge of at most 2% polyhedra each having
triangulation with at most Xy elements.

PROOF. We need to prepare some notation. Let 3 be an infinite cardinal
and denote p = 27, Choose a collection % of triangulated polyhedra | M|, each M
having cardinality < p, so that % enjoys the property that if L is a simplicial
complex with card L < p, then for some |M| € %, L is simplicially isomorphic to
M, and if | M|, |[N| € % with M simplicially isomorphic to N, then M = N. Then
card Z < 2°. We may assume that there is a fixed 0-simplex v such that for each
|M| e %, ve M.

For (1) and (3), put f = max{a, wt X}, for (2), put § = max{R, wt X}, and
use p, % as in the preceding paragraph. Let K =\/ {M | |M| € % and X7|M]|}.
Since card % < 2°, then the number of summands in K is at most 2°. In both cases
X is a ddP-space, so by Theorem 2.2, X7|K|. We claim that wextdimg, o) X =
1K, Let |L| € 7, X7|L|, and Y € €. We must show that Y'7|K| implies that
Yr|L|.

Noting that wtX < 3 and X7|K|, apply Theorem 3.4 to X, the simplicial
complex L, and a = 3. Using (3) of Theorem 3.4, for all T € Lg, there is an
isomorphic copy of Fr in %. Therefore because of (2) of Theorem 3.4, we may as
well assume that |Fr| is a summand in |K|. By Theorem 2.2, Y7|Fr|.

In case of (1), let A CY be closed and f: A — |L| be a map. Since wtY < 3,
then wt A < 3, so by Lemma 5.4, there exists T' € L.z with f(A) C |T|. By (1) of
Theorem 3.4, |T| C |Fr|. So there exists a map F:Y — |Fr| C |L| such that
F|A=f.

Now to prove (2). Put I' = L<g. Then from Theorem 3.4 we see that for L and
Y, the hypotheses of Corollary 3.3 have been satisfied, so Y7|L|.

For (3), recall that if B, C € .# are homotopy equivalent and Z is a space
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having the homotopy extension property with respect to ., then Z7B if and only
it Z7C'. In the proof of (2) where |L| arises, in the setting of (3) one would have an
arbitrary CW-complex B. But Y has the homotopy extension property with
respect to ., so we may replace B by a polyhedron and proceed with the rest of
the proof of (2).

For (4) or (5), construct % with p = ¥y, i.e., ignore 3. Then card % < 2%, so
the number of summands in K is at most 2%, and each summand has cardinality
at most Rg. The proof of (4) goes as above for (1); this time we do not need any
information about wt X because we may use Theorem4.12 in place of Theo-
rem 3.4. The proof of (5) just employs the notions we used in (3). O

This theorem and Remark 5.3 show the following.

COROLLARY 5.6.  If in any part of Theoremb5.5 the space X lies in the class
%, then wextdim may be replaced by extdim.

With the help of Corollary 5.6, part (5) (as noted in Section 1) generalizes
Theorem 13 of [3]. Since stratifiable spaces have the homotopy extension property
with respect to CW-complexes, then part (4) includes Theorem 4.4 of [6].

6. Countable representatives.

In this section J#” denotes the class of Hausdorff compacta and .7 the class of
CW-complexes.

PROBLEM 6.1. Determine whether for each compact metrizable space X,
there is a countable CW-complex M such that extdim(, 7) X = [M]<[7)

We give a partial affirmative solution to this problem in Theorem 6.5 (see
also the remarks after Proposition6.2). The next fact is immediate from
Corollary 1.3 of [7].

PROPOSITION 6.2. Let K be a countable CW-compler and « an infinite
ordinal. Suppose that X is a compact Hausdorff space with wt X < « having the
property that XTK and each compact Hausdorff space Y with YTK and wtY < «
embeds in X. Then extdim , 7) X = [K]((%,’g).

This provides many examples of compact Hausdorff spaces with “countable”
extension dimension, since by Corollary 1.9 of [10], every finite CW-complex K
admits a universal Hausdorff compactum X of a given weight, i.e., X meets the
requirements set forth in Proposition 6.2.

Now we state Definition 5.8 of [9].
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DEFINITION 6.3. Let £ be a class of spaces, K be a simplicial complex,
and % a collection of subcomplexes of K having the property that whenever
Y € %" and |K]| is not an absolute extensor for Y, then there exist a closed
subspace Aof Y, F € #, and map f: A — |F| that does not extend to a map of Y
into |K|. Then we shall call .% an anti-basis for K relative to J¢™.

Next is a slight variation of Theorem 5.10 of [9]. The addition that M C K
comes from the proof given there.

THEOREM 6.4. Let ™ be a class of Hausdorff o-compacta, X € ™, and K
a simplicial complex. Suppose that extdim -~ 7) X ezists and equals [|K|](%*,9>. If
K has a countable anti-basis F relative to ™ such that F consists of finite
subcomplezes of K, then there is a countable subcomplex M of K such that

Let ¢ be a collection of finite simplicial complexes having the property that:

(1) if Gy is a finite simplicial complex, then there exists G € ¥4 and a
simplicial isomorphism from G to Gy, and

(2) if G, G' € 4 where G is simplicially isomorphic to G, then G = G'.

Then ¢ is a countably infinite set. Let K be a simplicial complex. For each
G €Y, let M ¢ be the set of maps of |G| to |K| that are induced by simplicial
injections of G to K. Define .# ¢ ~. to be the set of [h] € [|G], |K|] as h varies in 4 .

THEOREM 6.5. Let ™ be a subclass of ¥, X € #*, K a simplicial
complex, and [|K|]<%¥)y> = extdim+ 7) X. Suppose that for all G €Y, Mg~ is
countable. Then K contains a countable subcomplex M so that [|[M|] - 7 =

KN ) -

PROOF. We will show that there is a countable set .% of finite subcomplexes
of K such that % is an anti-basis for K relative to #™. Then Theorem 6.4 will
yield our result.

For each G € ¥, select a countable set R consisting of one element from each
class in .# ¢ ~. For each [g] € Rg let ¢° : G — K be a simplicial injection so that
¢° € [g9]. Define Lg ={¢°(G) | g € Rg}. Since R is countable, then Lg is a
countable collection of finite subcomplexes of K. Hence % = | J{Lg | G € ¥} is a
countable collection of finite subcomplexes of K. We shall show that % is as
stated above.

Let Y € 2™ and suppose that Y7|K]| is false. Choose a closed subset A of Y
and a map f: A — |K| that does not extend to a map of Y to |K|. There exist a
finite subcomplex H of K such that f(A) C|H|, G€¥, and a simplicial
isomorphism o : G — H. Let j: H — K be the inclusion. Then gy =joo:G —
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K is a simplicial injection. Above we have chosen a simplicial injection gj : G —
K so that joo=~gj. Note that ¢j(G) € Lg. Also note that since o is a
homeomorphism, then gjoo ' ~j. Thus gioo'of~jof as maps of A to
|K|. Since j o f does not extend to a map of Y to | K|, then the homotopy extension
property implies that g5 o 07! o f does not extend to a map of Y to |K|. We finally

observe that g5 oo™ ! o f(A) C |g5(G)| and ¢§(G) € Le C Z. O
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