
doi: 10.2969/jmsj/06141097

Extension dimension of a wide class of spaces
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Abstract. We prove the existence of extension dimension for a much

expanded class of spaces. First we obtain several theorems which state conditions

on a polyhedron or CW-complex K and a space X in order that X be an absolute

co-extensor for K. Then we prove the existence of and describe a wedge

representative of extension dimension for spaces in a wide class relative to

polyhedra or CW-complexes. We also obtain a result on the existence of a

‘‘countable’’ representative of the extension dimension of a Hausdorff compactum.

1. Introduction.

Extension theory, which was introduced by A. Dranishnikov in [2], is based

on the following notion. IfK is a CW-complex and X is a space, then one says that

K is an absolute extensor for X,K 2 AEðXÞ, or X is an absolute co-extensor forK,

X�K, if for each closed subset A of X and map (i.e. continuous function)

f : A ! K, there exists a map F : X ! K such that F is an extension of f . For

example, X is a normal space if and only if X�R. (We note that spaces in this

paper are not assumed to be Hausdorff.)

In [2], Dranishnikov defined extension dimension. Given a class C of spaces

and a class T of CW-complexes, there is a certain equivalence relation �ðC ;T Þ on

T . The equivalence class of K under this relation, denoted ½K�ðC ;T Þ, is called the

extension type of K relative to ðC ;T Þ. For X 2 C , one defines the extension

dimension relative to ðC ;T Þ, which exists under certain conditions. When it

exists (Section 5) it is a uniquely determined extension type. We shall define weak

extension dimension for a space X that might fall out of the class C . It agrees with

extension dimension when X 2 C .

The existence of extension dimension for certain cases has been treated in [2],

[4], [6], and [5]. The notion of a dd-space was introduced in [6] and proved useful

in that work. We shall define in Section 2 a wider class, the ddP-spaces. This will

allow us to consolidate most of the previous ideas. Our Main Theorem is
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Theorem 5.5. We prove statements (1)–(5) on the existence of weak extension

dimension for a ddP-space with some additional properties. In (1)–(3) of that

theorem, the representative we obtain for the weak extension dimension of the

given space is a wedge of polyhedra whose number of summands depends on a

certain infinite cardinal �, and similarly the cardinality of each summand depends

on �. We generalize the notion of a �-compact space or a compact Hausdorff space

to that of a �-pseudo-compact space (Section 4). With a space of this type, parts

(4,5) of Theorem 5.5 provide a representative that is a wedge of at most 2@0

summands each of which has cardinality at most @0. This generalizes Theorem 13

of [3].

Section 6 visits the question of whether a ‘‘better’’ representative of the

extension dimension of a compact Hausdorff space exists. Dranishnikov and

Dydak asked in [4] (Problems 6.1 below, 2.19.2 of [3], 2.1 of [1], and 5.4 of [9])

whether with respect to the classes K of compact Hausdorff spaces and T of

CW-complexes, the extension dimension of every metrizable compactum has a

‘‘countable’’ polyhedral representative. We have shown in Theorem 5.10 of [9]

that under certain conditions it would. In Theorem 6.5 we give a sufficient

condition that a polyhedron jKj which represents the extension dimension of a

Hausdorff compactum X relative to ðK ;T Þ, contains a countable subcomplex M

such that jMj represents the extension dimension of X relative to ðK ;T Þ.

2. dd- and ddP-spaces.

Recall [6] that a space X is called a dd-space if X�K for every contractible

CW-complex K. Such spaces, and the larger class of ddP-spaces (Definition 2.1),

will play a prominent role in the sequel. Sometimes we wish to consider only

polyhedra instead of arbitrary CW-complexes; therefore we make the next

definition.

DEFINITION 2.1. A space X will be called a ddP-space if X�P for every

contractible polyhedron P .

A check of the proof of the ‘‘wedge’’ theorem, Theorem 2.6 of [6], shows that it

can be generalized as follows.

THEOREM 2.2. Let X be a ddP-space and fK� j � 2 �g be a collection of

nonempty simplicial complexes. Put K ¼
W

vfK� j � 2 �g, where say v is a vertex

common to K� for all � 2 �. Suppose that for each � 2 �, X� jK�j. Then X� jKj.
Conversely, for any space X, if X� jKj, then X� jK�j for all � 2 �.

LEMMA 2.3. Let X be a space.
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(1) If X is a dd-space, then it is a ddP-space.

(2) If X is a ddP-space, then it is normal.

(3) If X has the homotopy extension property with respect to CW-complexes,

then X is a dd-space and for every CW-complex K, K 2 ANEðXÞ.
(4) If X has the homotopy extension property with respect to polyhedra, then

X is a ddP-space and for every simplicial complex K, jKj 2 ANEðXÞ.

PROOF. We leave (1) and (2) to the reader. We shall prove only (3), since a

proof of (4) is similar. Let K be a contractible CW-complex, A a closed subset of

X, and f : A ! K a map. Then f is null homotopic, so it is homotopic to a map

that extends to a map of X to K. The homotopy extension property shows that f

extends to a map of X to K, so X�K.

For the second part, let K be an arbitrary CW-complex, A closed in X, and

f : A ! K a map. The cone onK, say v �K, is a contractible CW-complex and we

treat K � v �K canonically. So f : A ! K � v �K extends to a map

G : X ! v �K. Put U ¼ ðv �KÞ n fvg and r : U ! K the obvious retraction.

Then G�1ðUÞ is a neighborhood of A in X. Define h ¼ GjG�1ðUÞ : G�1ðUÞ ! U.

Then r � h : G�1ðUÞ ! K is a map that extends f. �

LEMMA 2.4. Let K be a CW-complex. Suppose that X is a normal space and

K 2 ANEðXÞ. Assume that X ¼
S
fXn j n 2 Ng where for each n 2 N , Xn is

closed and Xn�K. Then X�K.

PROOF. Let A be a closed subspace of X and f : A ! K a map. We shall

proceed with an induction argument.

Since X1�K, then we may choose a map g1 : A [X1 ! K such that g1jA ¼ f .

Using the ANE property of K and the fact that X is normal, there exists a closed

neighborhood D1 of A [X1 in X and a map h1 : D1 ! K that extends g1.

Suppose that k 2 N and we have found D1; . . . ; Dk, and h1; . . . ; hk such that

for 1 � i � k:

(a) Di is a closed neighborhood of A [Xi in X,

(b) hi is a map of Di to K,

(c) hijA ¼ f , and

(d) if 1 � i < j � k, then Di � Dj and hjjDi ¼ hi.

Choose a map gkþ1 : Dk [Xkþ1 ! K such that gkþ1jDk ¼ hk. There exists a

closed neighborhood Dkþ1 of Dk [Xkþ1 in X and a map hkþ1 : Dkþ1 ! K that

extends gkþ1.

This completes the induction. Observe that
S
fintDk j k 2 Ng ¼ X. Define a

function F : X ! K to be
S
fhk j k 2 Ng. Clearly F is a map, and F jA ¼ f . �
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LEMMA 2.5. Suppose that X is a normal space and every contractible

CW-complex is an ANE for X. Assume that X is the union of a countable

collection fXn j n 2 Ng of closed subspaces each of which is a dd-space. Then X is

a dd-space.

PROOF. Let K be a contractible CW-complex. Then by the definition of a

dd-space, for each n 2 N , Xn�K. An application of Lemma 2.4 shows that

X�K. �

One similarly has,

LEMMA 2.6. Suppose that X is a normal space and every contractible

polyhedron is an ANE for X. Assume that X is the union of a countable collection

fXn j n 2 Ng of closed subspaces each of which is a ddP-space. Then X is a

ddP-space.

When a cover such as that in Lemma 2.4 is not countable, the situation is

quite different. In [11], K. Morita defined the weak topology with respect to a

collection of subsets of a given space. This terminology conflicts with current

usage, so let us make the following definition.

DEFINITION 2.7. Let X be a space and F a collection of closed subspaces of

X. Then we shall say that X satisfies the Morita conditions with respect to F if

for each G � F

(1)
S
G is closed in X, and

(2) as a subspace of X,
S
G has the weak topology with respect to G .

By virtue of the proof of Theorem 2 of [11], we have the next fact.

THEOREM 2.8. Let K be a CW-complex, X a space, and F a closed cover of

X so that X satisfies the Morita conditions with respect to F . If for all F 2 F ,

F�K, then X�K.

Applying the definition of a dd-space, or that of a ddP-space, and

Theorem 2.8, we obtain:

COROLLARY 2.9. Let X be a space and F a closed cover of X so that X

satisfies the Morita conditions with respect to F . Suppose that for all F 2 F , F is

a dd-space. Then X is a dd-space. The same is true with dd replaced by ddP.

The next result is the same as Theorem 2.2 of [8].
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COROLLARY 2.10. Let K be a CW-complex and X a paracompactum that is

a local absolute co-extensor for K. Then X�K.

If we apply the definition of a dd-space, or that of a ddP-space, and

Corollary 2.10, we obtain:

COROLLARY 2.11. Let X be a paracompactum that is a local dd-space. Then

X is a dd-space. The same is true with dd replaced by ddP.

3. Extension theorems.

This section contains several theorems providing conditions for X� jKj when
X is a space and K is a simplicial complex.

Let us first state a version of Lemma 3.4 of [6] which is true simply by

requiring U to be a cover of X, not necessarily open.

LEMMA 3.1. Let U ¼ fUG j G 2 �g be an indexed cover of a topological

space X and B be a locally finite cover of X by nonempty closed subsets of X such

that for each B 2 B, B \ UG 6¼ ; for at most finitely many G 2 �. For each finite

subset T of �, let BT ¼
S
fB 2 B j B \ UG 6¼ ; () G 2 Tg. Then,

(1) for each finite subset T of �, BT is closed, and BT �
S
fUG j G 2 Tg,

(2) if G1, G2 2 � where G1 6¼ G2, then BfG1g \ BfG2g ¼ ;,
(3) if T1, T2 are finite subsets of �, G 2 �, and ðBT1

\ BT2
Þ \ UG 6¼ ;, then

G 2 T1 \ T2, i.e., BT1
\BT2

�
S
fUG j G 2 T1 \ T2g, and

(4) fBT j T a �nite subset of �g is a locally finite closed cover of X.

THEOREM 3.2. Let K be a simplicial complex and X a normal space such

that jKj 2 ANEðXÞ. Suppose that � is a collection of subcomplexes of K such that:

(1) � is directed by inclusion;

(2)
T
fjGj j G 2 �g 6¼ ;;

(3) X� jGj for all G 2 �;

(4) and jKj ¼
S
fint jGj j G 2 �g.

Then X� jKj.

PROOF. Let A be a closed subspace of X and g : A ! jKj a map. We may as

well assume that g is defined on an open neighborhood W of A. Now we choose a

neighborhood U of A such that U � W . We are going to show that there exists a

map F : U ! jKj having the property that F jA ¼ g and F jbdU is constant. Our

proof will be completed by extending F to the complement of U by that constant

map.
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Put f ¼ gjU : U ! jKj. Select v 2
T
fjGj j G 2 �g. Let eA ¼ A [ bdU . Define

~f : eA ! jKj by setting ~f jA ¼ f and putting ~fðdÞ ¼ v for all d 2 bdU.

Choose a locally finite cover E ¼ fEG j G 2 �g of jKj so that EG � int jGj for
all G 2 �. For each G 2 � define, UG ¼ f�1ðEGÞ. Then U ¼ fUG j G 2 �g is a

cover of U.

Let Q be a locally finite closed cover of jKj such that for each Q 2 Q, fG 2
� j EG \Q 6¼ ;g is finite. Then B ¼ ff�1ðQÞ j Q 2 Qg is a locally finite closed

cover of U such that for each B 2 B, fG 2 � j B \ UG 6¼ ;g is finite.

Thus U and B satisfy the hypotheses of Lemma 3.1 in the space U . For each

finite subset T of �, let BT be as in Lemma 3.1. Using (2) and (4) of that lemma,

one sees that fBfGg j G 2 �g is a discrete closed collection in U . Because of

Lemma 3.1(1) and the definition of ~f , one has that ~fðBfGg \ eAÞ ¼
~fðBfGg \ AÞ [ ~fðBfGg \ bdUÞ � jGj.

The remainder of our proof is the same as the part of the proof of Lemma 3.5

of [6] beginning with the sentence just before (8). One only replaces A there by eA
and f by ~f . �

COROLLARY 3.3. Let K be a simplicial complex and X a space having the

homotopy extension property with respect to polyhedra. Suppose that � is a

collection of subcomplexes of K such that:

(1) � is directed by inclusion;

(2)
T
fjGj j G 2 �g 6¼ ;;

(3) X� jGj for all G 2 �;

(4) and jKj ¼
S
fjGj j G 2 �g.

Then X� jKj.

PROOF. Since X has the homotopy extension property with respect to

polyhedra, then Lemma 2.3(3) shows that X is a ddP-space and jKj 2 ANEðXÞ.
By this and Lemma 2.3(1,2), X is normal.

Let K00 be the second barycentric subdivision of K. For each G 2 �, let G�

denote the simplicial neighborhood of G with respect to K00. This means that G� is

the subcomplex of K00 consisting of all simplexes � such that � � jGj or � is a face

of a simplex � of K00 with � \ jGj 6¼ ;. It is well known that jGj is a strong

deformation retract of jG�j, so since X has the homotopy extension property with

respect to G�, then X� jG�j. Now just replace � by �� ¼ fG� j G 2 �g and apply

Theorem 3.2. �

The next result is a slight variation of Theorem 3.3 of [6]. The reader will

easily see that if one fixes in advance a vertex v of K, then one can replace L by
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L [ fvg (see also the proof of Theorem 4.12) in the proof to obtain statement (5)

below, so we will not repeat that proof.

For a simplicial complex K and cardinal number �, let

K�� ¼ fL j L is a subcomplex of K and cardL � �g:

THEOREM 3.4. Let � be an infinite cardinal, X a space such that wtX � �,

and K a simplicial complex with X� jKj. Then there exists a collection F ¼ fFT j
T 2 K��g of subcomplexes of K so that for each T 2 K��:

(1) T � FT ;

(2) X� jFT j;
(3) cardFT � 2�;

(4) for each T0 2 K�� with T � T0, FT � FT0
; and

(5)
T
fFT j T 2 K��g 6¼ ;.

4. Extension properties of pseudo-compact spaces.

Recall that a space X is called pseudo-compact if for every map f : X ! R,

fðXÞ is contained in a compact subset ofR. The prototypical pseudo-compact non

compact space is the first uncountable ordinal space, ½0;�Þ with the order

topology. It is known that ½0;�Þ is binormal, i.e., ½0;�Þ � I is normal. In this

section we prove some extension-theoretic properties of pseudo-compact spaces,

which in the realm of extension theory, behave in many ways exactly like compact

spaces.

LEMMA 4.1. Let X be a space. Then X is pseudo-compact if and only if for

each CW-complexK and map f : X ! K, fðXÞ is contained in a compact subset of

K.

PROOF. Suppose that X is pseudo-compact, K is a CW-complex,

f : X ! K is a map, and fðXÞ is not contained in a compact subset of K. Then

there exists a countably infinite closed discrete subspace A of K such that

A � fðXÞ. Let g : A ! R be a function such that gðAÞ ¼ N . Then g is a map, and

since K is normal, there exists a map h : K ! R such that hjA ¼ g.

Define F ¼ h � f : X ! R. Then F is a map of X to R. But N � F ðXÞ, which
implies that X is not pseudo-compact, a contradiction.

The converse follows from the fact that R may be given the structure of a

CW-complex. �

LEMMA 4.2. Let X be a normal pseudo-compact space and A a closed subset

of X. Then A is pseudo-compact.
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LEMMA 4.3. Let X be a normal pseudo-compact space and K a CW-com-

plex. Then K 2 ANEðXÞ.

PROOF. Let A � X be closed and f : A ! K a map. By Lemma 4.2, A is

pseudo-compact. So by Lemma 4.1, there exists a finite subcomplex L of K with

fðAÞ � L. Since X is normal and L is finite, then L 2 ANEðXÞ. So we may extend

the map f to a map of a neighborhood of A in X with values in L � K. �

PROPOSITION 4.4. Let X be a binormal pseudo-compact space. Then for

each CW-complex K, X has the homotopy extension property with respect to K.

PROOF. Let A � X be closed, h : X � f0g ! K, and H : A� I ! K be

maps, and suppose that Hða; 0Þ ¼ hða; 0Þ for all a 2 A. Put D ¼
ðA� IÞ [ ðX � f0gÞ and F ¼ H [ h : D ! K. Now X � I is normal and pseudo-

compact. By Lemma 4.2, its closed subspace D is pseudo-compact. So there exists

a finite subcomplex L of K with F ðDÞ � L. Since X � I is normal, then

L 2 ANEðX � IÞ. Hence there exists a neighborhood W of D in X � I and a map

F � : W ! L � K that extends F . We leave it to the reader to apply from this the

standard argument that F extends to a map of X � I to K. �

Let us recall Definition 4.2 of [9].

DEFINITION 4.5. A space X is called a Hausdorff �-compactum if X is a

normal Hausdorff space, every CW-complex is an absolute neighborhood extensor

for X, and X can be written as a countable union of compact Hausdorff subspaces.

The next definition extends Definition 4.5.

DEFINITION 4.6. A space X will be called a �-pseudo-compactum if it is a

normal Hausdorff space, every CW-complex is an absolute neighborhood extensor

for X, and X can be written as a countable union of closed subspaces each of

which is a pseudo-compactum.

LEMMA 4.7. Every Hausdorff �-compactum is a �-pseudo-compactum.

LEMMA 4.8. Let X be a �-pseudo-compactum, K a CW-complex, and f :

X ! K a map. Then fðXÞ is contained in a countable subcomplex of K.

Proposition 4.3 of [9] goes through with �-pseudo-compacta in place of

Hausdorff �-compacta. Therefore, Corollary 4.5 of [9] can be stated as follows.

PROPOSITION 4.9. LetK be a simplicial complex, X a �-pseudo-compactum,

and X� jKj. Then for every subcomplex L of K, X� j�1ðLÞj.
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The �1 in Proposition 4.9 is an operator on the subcomplexes of K. The

important properties of this operator for us come from its definition and from

Lemma 3.2(2,3) of [9]. Let us state these here.

LEMMA 4.10. Let K be a simplicial complex and L � L0 be subcomplexes of

K. Then,

(1) L � �1ðLÞ,
(2) if L is countable, then �1ðLÞ is countable, and

(3) �1ðLÞ � �1ðL0Þ.

Let us repeat Lemma 3.1 of [6].

LEMMA 4.11. Let X be a space of weight � � for some infinite cardinal �.

Suppose that f : X ! jKj is a map where K is a simplicial complex. Then

fðXÞ � jLj for some subcomplex L of K with cardL � �.

The next result is similar to Theorem 3.3 of [6] (see also Theorem 3.4 above).

THEOREM 4.12. Let X be a �-pseudo-compactum and K a nonempty

simplicial complex with X� jKj. Then there exists a collection F ¼ fFT j T 2
K�@0

g of subcomplexes of K so that for each T 2 K�@0
,

(1) T � FT ;

(2) X� jFT j;
(3) cardFT � @0;

(4) for each T0 2 K�@0
with T � T0, FT � FT0

; and

(5)
T
fFT j T 2 K�@0

g 6¼ ;.

PROOF. Let v be a vertex of K. For each L 2 K�@0
, let FL ¼ �1ðL [ fvgÞ.

Now just apply Proposition 4.9 and Lemma 4.10. �

5. Extension Dimension.

Let C be a class of spaces, T a class of CW-complexes, and K;K0 2 T . If it is

true that for all X 2 C , X�K implies X�K0, then we write K �ðC ;T Þ K
0, (see [4]).

This defines a preorder on T . One specifies K �ðC ;T Þ K
0 if and only if K �ðC ;T Þ K

0

and K0 �ðC ;T Þ K; then �ðC ;T Þ is an equivalence relation on T . The equivalence

class of K under this relation is called the extension type of K relative to ðC ;T Þ.
By ETðC ;T Þ we mean the class of extension types relative to ðC ;T Þ. The relation

�ðC ;T Þ induces a partial order, also denoted �ðC ;T Þ, on the extension types

ETðC ;T Þ. Let D 2 ETðC ;T Þ and X 2 C . In [6] we have the notion that X�D when

X 2 C , and this means that X�L for all L 2 D. If X 2 C , then the extension

�-compacta 1105



dimension relative to ðC ;T Þ of X, extdimðC ;T Þ X, is the initial element1, if it

exists, of the following class of extension types:

fD 2 ETðC ;T ÞjX�Dg:

If the space X falls out of the class C , then we are going to propose two

definitions of its extension dimension relative to ðC ;T Þ.

DEFINITION 5.1. Let C be a class of spaces, T a class of CW-complexes, X

a space, and D 2 ETðC ;T Þ. Then denote X�wD to mean that for some L 2 D, X�L,

and X�D to mean that for all L 2 D, X�L.

DEFINITION 5.2. Let C be a class of spaces, T a class of CW-complexes,

and X a space. Define DðXÞ ¼ fD 2 ETðC ;T Þ j X�Dg and DwðXÞ ¼ fD 2
ETðC ;T Þ j X�wDg.

If there is an initial element P 2 DðXÞ, then P is called the extension

dimension of X relative to ðC ;T Þ, extdimðC ;T Þ X. If there is an initial element

P 2 DwðXÞ, then P is called the weak extension dimension of X relative to

ðC ;T Þ, wextdimðC ;T Þ X.

REMARK 5.3. If X 2 C , then DðXÞ ¼ DwðXÞ. So if X 2 C and one of the

extension dimensions in Definition 5.2 exists, then so does the other and they are

the same.

Let us repeat Lemma 3.1 of [6].

LEMMA 5.4. Let X be a space of weight � � for some infinite cardinal �.

Suppose that f : X ! jKj is a map where K is a simplicial complex. Then fðXÞ �
jLj for some subcomplex L of K with cardL � �.

Next is our Main Theorem on the existence of extension dimension.

THEOREM 5.5. Suppose that X is a space.

(1) Let S be the class of polyhedra, � an infinite cardinal, and C a class of

spaces of wt � �. If X is a ddP-space, then wextdimðC ;S Þ X exists.

(2) Let S be the class of polyhedra and C a class of spaces each having the

homotopy extension property with respect to S . If X is a ddP-space, then

wextdimðC ;S Þ X exists.

(3) Let S be the class of CW-complexes, � an infinite cardinal, and C a class

1By an initial element of S, we mean s0 2 S having the property that s0 �ðC ;T Þ s for all s 2 S. If such

s0 exists, it is unique.
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of spaces of wt � � each having the homotopy extension property with

respect to S . If X is a ddP-space, then wextdimðC ;S Þ X exists.

(4) Let S be the class of polyhedra and C a class of �-pseudo-compacta.

Suppose that X is a ddP-space and a �-pseudo-compactum. Then

wextdimðC ;S Þ X exists.

(5) Let S be the class of CW-complexes and C a class of �-pseudo-compacta

each having the homotopy extension property with respect to S . Suppose

that X is a ddP-space and a �-pseudo-compactum. Then wextdimðC ;S Þ X

exists.

Indeed, in (1)–(3) we may represent wextdimðC ;S Þ X by a wedge of at most 2�

polyhedra each having triangulation with at most � ¼ 2� elements where in cases

(1) and (3) � ¼ maxf�;wtXg and in case (2) � ¼ maxf@0;wtXg. In cases (4), (5)

we may represent wextdimðC ;S Þ X by a wedge of at most 2@0 polyhedra each having

triangulation with at most @0 elements.

PROOF. We need to prepare some notation. Let � be an infinite cardinal

and denote � ¼ 2�. Choose a collection U of triangulated polyhedra jMj, each M

having cardinality � �, so that U enjoys the property that if L is a simplicial

complex with cardL � �, then for some jMj 2 U , L is simplicially isomorphic to

M, and if jMj, jNj 2 U with M simplicially isomorphic to N, then M ¼ N. Then

cardU � 2�. We may assume that there is a fixed 0-simplex v such that for each

jMj 2 U , v 2 M.

For (1) and (3), put � ¼ maxf�;wtXg, for (2), put � ¼ maxf@0;wtXg, and
use �, U as in the preceding paragraph. Let K ¼

W
vfM j jMj 2 U andX� jMjg.

Since cardU � 2�, then the number of summands in K is at most 2�. In both cases

X is a ddP-space, so by Theorem 2.2, X� jKj. We claim that wextdimðC ;S Þ X ¼
½jKj�ðC ;S Þ. Let jLj 2 S , X� jLj, and Y 2 C . We must show that Y � jKj implies that

Y � jLj.
Noting that wtX � � and X� jKj, apply Theorem 3.4 to X, the simplicial

complex L, and � ¼ �. Using (3) of Theorem 3.4, for all T 2 L��, there is an

isomorphic copy of FT in U . Therefore because of (2) of Theorem 3.4, we may as

well assume that jFT j is a summand in jKj. By Theorem 2.2, Y � jFT j.
In case of (1), let A � Y be closed and f : A ! jLj be a map. Since wtY � �,

then wtA � �, so by Lemma 5.4, there exists T 2 L�� with fðAÞ � jT j. By (1) of

Theorem 3.4, jT j � jFT j. So there exists a map F : Y ! jFT j � jLj such that

F jA ¼ f.

Now to prove (2). Put � ¼ L��. Then from Theorem 3.4 we see that for L and

Y , the hypotheses of Corollary 3.3 have been satisfied, so Y � jLj.
For (3), recall that if B, C 2 S are homotopy equivalent and Z is a space
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having the homotopy extension property with respect to S , then Z�B if and only

if Z�C. In the proof of (2) where jLj arises, in the setting of (3) one would have an

arbitrary CW-complex B. But Y has the homotopy extension property with

respect to S , so we may replace B by a polyhedron and proceed with the rest of

the proof of (2).

For (4) or (5), construct U with � ¼ @0, i.e., ignore �. Then cardU � 2@0 , so

the number of summands in K is at most 2@0 , and each summand has cardinality

at most @0. The proof of (4) goes as above for (1); this time we do not need any

information about wtX because we may use Theorem 4.12 in place of Theo-

rem 3.4. The proof of (5) just employs the notions we used in (3). �

This theorem and Remark 5.3 show the following.

COROLLARY 5.6. If in any part of Theorem 5.5 the space X lies in the class

C , then wextdim may be replaced by extdim.

With the help of Corollary 5.6, part (5) (as noted in Section 1) generalizes

Theorem 13 of [3]. Since stratifiable spaces have the homotopy extension property

with respect to CW-complexes, then part (4) includes Theorem 4.4 of [6].

6. Countable representatives.

In this section K denotes the class of Hausdorff compacta and T the class of

CW-complexes.

PROBLEM 6.1. Determine whether for each compact metrizable space X,

there is a countable CW-complex M such that extdimðK ;T Þ X ¼ ½M�ðK ;T Þ.

We give a partial affirmative solution to this problem in Theorem 6.5 (see

also the remarks after Proposition 6.2). The next fact is immediate from

Corollary 1.3 of [7].

PROPOSITION 6.2. Let K be a countable CW-complex and � an infinite

ordinal. Suppose that X is a compact Hausdorff space with wtX � � having the

property that X�K and each compact Hausdorff space Y with Y �K and wtY � �

embeds in X. Then extdimðK ;T Þ X ¼ ½K�ðK ;T Þ.

This provides many examples of compact Hausdorff spaces with ‘‘countable’’

extension dimension, since by Corollary 1.9 of [10], every finite CW-complex K

admits a universal Hausdorff compactum X of a given weight, i.e., X meets the

requirements set forth in Proposition 6.2.

Now we state Definition 5.8 of [9].
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DEFINITION 6.3. Let K � be a class of spaces, K be a simplicial complex,

and F a collection of subcomplexes of K having the property that whenever

Y 2 K � and jKj is not an absolute extensor for Y , then there exist a closed

subspace A of Y , F 2 F , and map f : A ! jF j that does not extend to a map of Y

into jKj. Then we shall call F an anti-basis for K relative to K �.

Next is a slight variation of Theorem 5.10 of [9]. The addition that M � K

comes from the proof given there.

THEOREM 6.4. Let K � be a class of Hausdorff �-compacta, X 2 K �, and K

a simplicial complex. Suppose that extdimðK �;T Þ X exists and equals ½jKj�ðK �;T Þ. If

K has a countable anti-basis F relative to K � such that F consists of finite

subcomplexes of K, then there is a countable subcomplex M of K such that

extdimðK �;T Þ X ¼ ½jMj�ðK �;T Þ.

Let G be a collection of finite simplicial complexes having the property that:

(1) if G0 is a finite simplicial complex, then there exists G 2 G and a

simplicial isomorphism from G to G0, and

(2) if G, G0 2 G where G is simplicially isomorphic to G0, then G ¼ G0.

Then G is a countably infinite set. Let K be a simplicial complex. For each

G 2 G , let MG be the set of maps of jGj to jKj that are induced by simplicial

injections of G toK. DefineMG;’ to be the set of ½h� 2 ½jGj; jKj� as h varies inMG.

THEOREM 6.5. Let K � be a subclass of K , X 2 K �, K a simplicial

complex, and ½jKj�ðK �;T Þ ¼ extdimðK �;T Þ X. Suppose that for all G 2 G , MG;’ is

countable. Then K contains a countable subcomplex M so that ½jMj�ðK �;T Þ ¼
½jKj�ðK �;T Þ.

PROOF. We will show that there is a countable set F of finite subcomplexes

of K such that F is an anti-basis for K relative to K �. Then Theorem 6.4 will

yield our result.

For each G 2 G , select a countable set RG consisting of one element from each

class in MG;’. For each ½g� 2 RG let gs : G ! K be a simplicial injection so that

gs 2 ½g�. Define LG ¼ fgsðGÞ j g 2 RGg. Since RG is countable, then LG is a

countable collection of finite subcomplexes of K. Hence F ¼
S
fLG j G 2 Gg is a

countable collection of finite subcomplexes of K. We shall show that F is as

stated above.

Let Y 2 K � and suppose that Y � jKj is false. Choose a closed subset A of Y

and a map f : A ! jKj that does not extend to a map of Y to jKj. There exist a

finite subcomplex H of K such that fðAÞ � jHj, G 2 G , and a simplicial

isomorphism � : G ! H. Let j : H ! K be the inclusion. Then g0 ¼ j � � : G !
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K is a simplicial injection. Above we have chosen a simplicial injection gs0 : G !
K so that j � � ’ gs0. Note that gs0ðGÞ 2 LG. Also note that since � is a

homeomorphism, then gs0 � ��1 ’ j. Thus gs0 � ��1 � f ’ j � f as maps of A to

jKj. Since j � f does not extend to a map of Y to jKj, then the homotopy extension

property implies that gs0 � ��1 � f does not extend to a map of Y to jKj. We finally

observe that gs0 � ��1 � fðAÞ � jgs0ðGÞj and gs0ðGÞ 2 LG � F . �
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