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Abstract. We consider asymptotic behavior of the dimension of the
invariant subspace in a tensor product of several irreducible representations of a
compact Lie group G. It is equivalent to studying the symplectic volume of the
symplectic quotient for a direct product of several coadjoint orbits of G. We
obtain two formulas for the asymptotic dimension. The first formula takes the
form of a finite sum over tuples of elements in the Weyl group of G. Each term is
given as a multiple integral of a certain polynomial function. The second formula
is expressed as an infinite series over dominant weights of G. This could be
regarded as an analogue of Witten’s volume formula in 2-dimensional gauge
theory. Each term includes data such as special values of the characters of the
irreducible representations of G associated to the dominant weights.

1. Introduction.

Let G be a connected, simply-connected, compact simple Lie group. For a
representation V of G, the symbol V& denotes the subspace of V of all G-invariant
elements. Let P, be the set of dominant weights of G and denote the complex
irreducible representation of G with highest weight A\ € P, by V). Fix a positive
integer n. For A\,..., A\, € P, we set

2=20\,...,\) =dime(Vy, ®--- @ V3 )Y,

1
YV =Y(M,. .., ) i= lirnsupﬁdimc(vk,\l R ® V;WV)G,

k—o00

where the number d is the expected degree of the leading term in dime(Viy, ®
~--®Vk,\n)G as a function of positive integers k (see Sections 2 and 3 for the
details). The purpose of this paper is to study evaluations of 2 and 7, in
particular, to find some explicit formulas for #. This should be a fundamental
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problem in representation theory. Although an exact evaluation of 2, which is
almost equivalent to determining all the multiplicities in a multiple tensor
product representation, may be involved with somewhat complicated combina-
torics, that of ¥ has a chance to become more accessible.

As we will see in Section 3, these quantities have geometric counterparts.
Namely, 2 and ¥ correspond to the Riemann-Roch number and the symplectic
volume, respectively, of the symplectic quotient

M= MM, ) ={(x1,.. 1) EON XX O\ |21+ -+, =0}/G,

where 0, is the coadjoint orbit of G associated to ;. This fact is indeed a
motivation for us to study the problem above. It is expected that an explicit
formula for ¥ contains much information about the cohomology intersection
pairings of ..

In the case of G = SU(2), explicit formulas for 2 and ¥ have been
investigated from various points of view. Especially, when A\; = --- = ), they are
closely related to the classical invariant theory for binary forms (see, e.g., [9]). We
refer to [21], [22], [23] as prototypes of this paper, where an application to the
cohomology intersection pairings of .# was also given. We refer to [14], [17], [15]
for more geometric approaches.

The case of G =SU(3) was studied by the authors in [20]. Explicit
evaluations for 2 and ¥ were done there. Related results were also obtained in
[17] and [7].

On the other hand, as far as the authors know, there have been few explicit
results on ¥ for other Lie groups. Our main results in this paper are two kinds of
formulas of ¥ for general G. It might be interesting that these two are quite
different from each other, whereas they give the same answer. In order to obtain
them, we restrict ourselves to the case that all the weights Aq,..., A\, are in the
root lattice and that they are regular in the sense that they belong to the interior
of a Weyl chamber. (See Sections 4 and 7 for the details about our other
assumptions. )

The first formula is given in Theorem 4.11, which takes the form of a finite
sum as follows:

(_1)\A+\

7/()\1,~~7>\n)=W

e(wy) - -e(wy) I, ..o, Ay wr, ..oy wy), (1.1)

(W1 ,..cywy, ) EWT

where A, is the set of all positive roots of G, W is the Weyl group, and e(w;) is the
signature of w; € W. The summand I(Ay,...,A;w1,...,w,) is the value of a
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multiple integral of a polynomial over a convex polytope. See Section 4 for the
details. We only mention here that the polynomial and the convex polytope are
determined by the root system A of G and the element wi (M) + -+ 4+ wp(\,).
This formula is a generalization of the ones obtained in [22] for G = SU(2), and
in [20] for G = SU(3). However, a concrete evaluation of the integral
I (M, A wr, ..., wy) for general G is still another problem, while we were
able to do it explicitly for G = SU(2), SU(3). The case of G = Spin(5) is treated in
[24] from the viewpoint of Gel’fand-Kapranov-Zelevinsky hypergeometric func-
tions.

The second formula is given in Theorem 7.3, which takes the form of an
infinite series as follows:

7/(>‘17 e a)\n)

(1.2)

—2mV/—1\
v H?1Xu<6 L )
_IPren, (A la
el

n—2"
i=1 acA, pePy (H%A+ 27 (p + p|a))

Here P, PV, and QV is the weight lattice, coweight lattice, and coroot lattice,
respectively. Besides, 6 is the highest root, p is the half of the sum of all positive
roots, X, is the character of the irreducible representation V,, (|) is the
normalized symmetric bilinear form on P, and L = (A; 4 - - - + A,,|6). This formula
could be regarded as an analogue of the Witten’s volume formula in [26] for the 2-
dimensional gauge theory (see also [19], [16]). The fusion coefficients and the
Verlinde formula for the affine Lie algebra associated to G play an essential role in
the proof. The main idea is to generalize the argument in [26, Section 3] for
G = SU(2) to a general compact Lie group G. The point there is to explain why
the factor |PY/Q"| arises. We mention that our proof shows that L can be replaced
by any number that is greater than L.

Let us make a comment for the case where some of Ay, ..., A, are not regular.
Also in such a case, we can proceed similarly to some extent. For example, in the
case G = SU(3) the first formula of ¥ like as (1.1) for non-regular weights was
obtained in [20]. It suggests that more careful consideration than the one in this
paper will be needed to obtain the corresponding formula in non-regular cases for
general G. On the other hand, taking into account of the Witten’s volume
formula, which is established also for non-regular case, one might expect that the
second formula like as (1.2) would hold in a slightly modified form (see
Remarks 7.4 and 7.5). However, our argument to prove (1.2) indeed requires
the regularity assumption. We thus do not pursue this issue in this paper.
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This paper is organized as follows. Section 2 is devoted to clarifying our
notation on root systems, compact Lie groups, complex simple Lie algebras, and
their representations. We explain the geometric background of our problem in
Section 3. The discussion there is essentially the same with the one given in [20].
In Section 4, we first give a combinatorial expression for 2 by the Weyl character
formula and the Weyl integration formula. After introducing the assumptions on
weights Aj,..., A\, we derive the first formula (1.1) for ¥. We also discuss the
integrals appearing in this formula for some Lie groups with low rank.

In Section 5, we review the fusion coeflicients and the Verlinde formula for a
complex simple Lie algebra (or, more precisely, for an affine Lie algebra of split
type), and give another expression for 2. In Section 6, we study some details on a
root system, especially on symmetry of a certain simplex, called an alcove,
associated to the root system. We also prepare some technical estimates. In
Section 7, we establish the second formula (1.2) for ¥ using the results in Sections
5 and 6. Finally, we write out the formula more concretely in the special case that
all of Aj,...,\, are proportional to p. As we will illustrate for G = SU(2) or
SU(3), we then have another kind of formula that expresses ¥ as an integral over
an unbounded domain.

ACKNOWLEDGEMENTS. The second author has been partly supported by
JSPS Grant-in-Aid for Scientific Research (C) No. 15540092 and No. 17540095.

2. Preliminaries.

In this section, we review some standard facts about root systems and
representations of compact Lie groups or complex simple Lie algebras, in order to
fix our notation. The symbols introduced here will be used throughout this paper
without extra notice. We refer to [2], [5], [25], and [6] for the details on the
generalities stated below.

Let G be a connected and simply-connected compact simple Lie group with
Lie algebra g and let g be the complexification of g. Let T' be a maximal torus of
G, with Lie algebra t. We denote by [ the dimension of 7. The complexification
h = t¢ of t is a Cartan subalgebra of g..

Let A C b* be the root system of g with respect to h. Let A, (resp. A_) be a
set of positive (resp. negative) roots and let {ay,..., o} C A, be a set of simple
roots. We introduce the normalized standard inner product (|) on h and §*, which
is a nondegenerate symmetric bilinear form, defined as the non zero scalar
multiple of the Killing form B(, ) normalized as (0|0) = 2, where 0 is the highest
root. Note that (|) is negative definite on t and t*. By means of the inner product
(]), we often identify b and t with h* and t* respectively. For instance, for a € b,
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define H, €h by (H,|)={«a,-). Then we often confuse o and H,. Let
{af, ..., )} C b the associated set of simple coroots, namely o = 2H,, /(o).
We set by := "' Ra; and b := >\, Ra).

Let W be the Weyl group of A. The Coxeter number h of A is defined as the
order of the element s;---s; in W, where s; (i = 1,...,1) is the reflection on h*
defined by s;(z) =z — (o, z)a; for x € h*. We can show that if we write the
highest root 6 as 0 = nyay + - - - + nyog with ny,...,n € Z<g, then h=ny +--- +
n; + 1. (See [2, Chapter VI, Section 1, no. 11].) Under the identification h* = b, we
can also write the highest root 6 as = njo +--- + 0/, with ny,...,n) € Z.,.
Then the number g =ny + -+ +n/ + 1 is called the dual Coxeter number of A.
The Coxeter number h and the dual Coxeter number g for each root system is
given by the table below. Note that g is not necessarily equal to the Coxeter
number of the dual root system AV.

Table 1. Coxeter number h and Dual Coxeter number g.

A| A B, C D, Es E. Es F Gy

h | 1+1 2l 2l 20—-2 12 18 30 12 6
g (lt+1 21-1 I+1 20-2 12 18 30 9 4

The fundamental weights Aq,...,A; € b are defined by (Aj,a)) = 6.
Similarly, the fundamental coweights A{,...,A/ €br are defined by
(aj, AY) = &, or equivalently by AY = 2H,,/(ar|ag). In view of b = v—1t*
and hp = (1/v/=1)t, let us set

1
wi=———=N; € t’, a):=2mV—-1a) €t (2.1)

2wy —1

fori=1,...,l. Since G is simply-connected, ay, ..., q) form a basis of the integral
lattice Ker(exp : t — T) (see [5, Chapter V, Section 7]).
Let p:=(1/2) 3 ca, - It is easy to see that

p—wp= Z ! (2.2)

€A NWA_

for each w € W. It is also well known that p = A; +--- + A;, which implies that
9= (plf) +1.

REMARK 2.1. Here are some technical remarks which will be used later. Let
a € A, . According to our normalization of the inner product,
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2
(a]a) = 3 1,2. (2.3)

It follows that (p|la) > 1/3, since (pla) > (Aj|a;) = (a4lay)/2 > 1/3, where we
picked an i € {1,...,l} such that (A;]a) > 0. We thus have

(1 +pla) = (2.4)

W =

for each p € Py, since (u+ pla) > (p|a).

Let us consider lattices

l l l l
Q=) Za, Q=) Za), P:=) ZA, P':=) ZA).
i=1 i=1 i=1

i=1

It is easy to see that Q¥ C Q C P and QY C PV C P under the identification
bz = bgr. The finite abelian groups P/Q and PY/Q" are in duality each other and
the order |P/Q| = |PY/Q"| is called the connection index of the root system A (see
[2, Chapter VI, Section 1, no. 9]). Since we assumed that G is simply connected,
the group PY/QV is canonically isomorphic to the center Z(G) of G (see [3,
Chapter IX, Section 4, no. 9]).

Table 2. Connection index |P/Q)|.

A|A1 B C D E;, E. Es F Gy
|P/Q\|l+12 2 4 3 2 1 1 1

Let us set

! ! ! !
Cy = ZRZOAz‘, th = Z Rogw;, P,:= Z ZoN;, Ppyo= Z Z oA\
' =1 =1 p

i=1

Elements in P, are called dominant weights of A. For A € P,, let V) be the finite
dimensional irreducible representation of G or g¢ with highest weight \, and
X : G — C the character of V). By the Weyl character formula, x) is given by

3 wew E(w) el X
e(ﬂsX> HQEA+ (]- - 67<0‘1X>)

xa(t) = (2.5)
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for t = exp X € T with X € t, where e(w) = %1 is the signature of w € W. If we set

Ap(X) = e(w)e 0 (2.6)
weW

for p € P and X €t (or, more generally, X € §j), then the Weyl denominator
formula tells us that

_ X _ @)y — (/2T sin Kl
A (X) = el X ag+(1 X)) = (V=1) ag+2 Wi (2.7)
and (2.5) is also written as
A)\er(X)
(1) A (2.8)

Note that, in our convention, weights of a representation of G are regarded as
elements in P C b}, not in Hom(T, C*) or t*.

Given a representation V of G or go and A € Py, let Mult(V,V)) be the
multiplicity of the irreducible representation V) in V. It is obvious that
dim¢e V€ = Mult(V, Vp), where Vj = C is the trivial 1-dimensional representation.
Now, we define 2(A\1,...,\,) and ¥ (A1,...,A,) more precisely, although they
have already been introduced in Section 1. For A € P, denote

AL ={a e Ay | (o)) =0}. (2.9)

DEFINITION 2.2. Fix a positive integer n. For Ay,..., A\, € P, we define

20, A s =dime(Va, @ ® W, )¢
=Mult(V), ® --- @ Vy , Vo).

n?

Supposing that k runs over positive integers, we set

. 1.
Y (A, An) = hmsupg dime 2(kAq, ..., kN,

k—oo

where the integer d = d(\,...,\,) is defined by
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n

d:i=> (AL = |AY]) —dimp G = (n—2)|AL| =D |AY| -1 (2.10)

i=1 i=1

and we suppose that n is large enough that d > 0.

A geometric meaning of the number d will be explained in Section 3. Our
purpose in this paper is to seek formulas which express 2(\j,...,\,) and
Y (AM,..., ) as explicitly as possible. Later in Sections 4 and 7, we restrict
ourselves to the case that A} =0 for all i=1,...,n. More details on the
assumptions on Aq, ..., A, will be given in Sections 4 and 7.

REMARK 2.3. More generally, let H be a closed subgroup of G. Then, we
can also consider

25N\, ) =dime(Vy, @ - @ W)Y,

1
YHOL ) = limsupWQH(k)\l, k)

k—o00

where in this case we set d' = 3" (|A,| — |AY]) — dimg H.

3. Geometric background.

In this section, we will explain geometric counterparts for 2(\y, ..., A,) and
Y (M, ..., ). See [10] and [20, Section 2] for the details of the subjects explained
below.

The left coadjoint action of G on g* is defined by g - f := Ad*(¢7!)f for g€ G
and f € g*, where (Ad"(¢g7)f, X) = (f, Ad(g7!)X) for X € g. If we identify g* with
g by the inner product (|), coadjoint orbits correspond to adjoint orbits. By the
identification

t={feg|t-f=f(VteT)}

we regard t* as a subset of g%, so that t} and A, become subsets of g*. For A € C,
let 0 denote the coadjoint orbit through (1/2mv/—1)A € t%. Then &) Nt* is the
W-orbit of (1/2mv/—1)A and the set €, Nt* consists of the single point
(1/2mv/—1)\.

LEMMA 3.1.  For X € C., we have dimg 0 = 2(|A+| — |A}]), where A is as
in (2.9).
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PROOF. Let G) be the isotropy subgroup at (1/27v/—1)\ € t* C g* with
respect to the coadjoint action, and let g, be its Lie algebra. Under the
identification t* 2 t, suppose that (1/27v/—1)\ € t* corresponds to X € t. Then
we have g, =Ker(ad(X):g— g). The root space decomposition go=Hh®

@ia6A+ (g¢), of g¢ shows that

9, ® C=Ker(ad(X) :g¢ — 8¢) =0 & @ (80)a>

:taEAf

where A% :={a € A, | (e, X) =0}, which is equal to A}. Thus we have
dime(gy, ® C) =1+2|A}|, and hence dimg G, =dimgg, =1+ 2|A}|. Now it
follows that

dimpg 0, = dimg G — dimg Gy = 2(|AL| — |A}])

as required. O

On the coadjoint orbit &), there is a G-invariant symplectic structure wy,

called the Kirillov-Kostant-Souriau symplectic structure, defined by (wy),(X,Y) :

= (z,[X,Y]) for x € O and X,Y € g, where X denotes the vector field over &y

- d
given by X, = p7 (exptX)-x. And then, the action of G on €, becomes
t=0
Hamiltonian and the moment map is given by the inclusion ¢ : &) —g*. Namely,

we have d(t, X)(-) = wa(X,-). Besides, there is a G-invariant complex structure J)
on 0, which is compatible with the symplectic structure wy (i.e. wy(-, Jy-) is a
Riemannian metric), so that & becomes a Kéhler manifold.

Moreover, when A € P, there is a G-equivariant holomorphic line bundle L)
over 0) such that ¢;(L)) = [wy]. The Borel-Weil theorem shows that

H(O)\,L\)=V,, H'(0),L\)=0 (i>0)

as representations of G, where H'(0), L)) denotes the i-th cohomology group of
O\ with coefficients in the sheaf of germs of holomorphic sections of L.

For Ay,..., A\, € C4, consider the diagonal action of G on the direct product
Oy, X -+ x Oy, of the coadjoint orbits also becomes Hamiltonian and its moment
map ®:0, x---x 0, —¢g" is given by ®(xy,...,z,) =21+ -+ z,. Now
consider the symplectic quotient
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M= M. \) =D 0)/C

={(x1,...,2p) €O\ X - X Oy |21+ + 2, =0}/G.

We assume that 0 is a regular value of the moment map ® and . is a non-empty
smooth manifold. Then .# has a natural symplectic structure w = w(Aq,..., \y)
and a compatible complex structure induced from those on ), x --- x O, which
make .# a Kdhler manifold. By Lemma 3.1, the number d = d(\y, ..., A,) in (2.10)
is the complex dimension of .Z .

Now suppose Aj,...,\, € Py. Let pr; : Oy x --- x Oy, — O, be the projec-
tion to the i-th factor and let

Z =200, 0) = (il @ @ Pl le) /G

Although .Z is in general an orbifold holomorphic line bundle over .#, we assume
here that .Z is a genuine holomorphic line bundle. Then we have ¢ (%) = [w].

The following proposition gives geometric interpretations of 2 = 2(Aq, ...,
An)and ¥ =Y (A1,..., \).

PROPOSITION 3.2.  Suppose that (A1,...,\,) € (Py)" satisfies the assump-
tions as above. Then we have

9= /ﬂch(f) td(a) = ////exp(w) (),

. 1 w?

Y = ]}LIEO w ///[ exp(kw) td(AZ) = ///{ T

where ch(L) denotes the Chern character of £ and td(A') denotes the Todd class
of M .

In other words, 2 is the Riemann-Roch number of (.#,.¢), whereas ¥ is the
symplectic volume of (.#,w). The proof of this proposition is the same as that of
[20, Proposition 2.5]. It is essential that

d
(Vi ®-@W) 2> (-1)'H' (A, Z)
=0

as virtual vector spaces, by the theorem of Guillemin-Sternberg [8] and its
generalization (see, e.g., [18]). We mention that H'(.#, %) = 0 for i > 0 (see [4]).
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REMARK 3.3.  Let H be a closed subgroup of G. Then 27 ()\,...,\,) and
¥H(\1,...,\,) given in Remark 2.3 correspond to the characteristic numbers of
the symplectic quotient of the H-action on &), x --- x 0.

4. The first formula.

In this section, we describe 2(\i,...,\,) =dime(V), @ -+ ® V'An)G in a
combinatorial form and use it to obtain the first formula for ¥(\1,...,A,). The
content of this section is a generalization of the one given in [20], where the case
G = SU(3) was considered. We also refer to [24], which is closely related to the

discussion below.

4.1. Combinatorial expression.

Let A, A1,..., A\, € Pr. As an element in CleM, ... eMN][[e™™,... e7Y]], let us
set
) w(A+p)
YA = ZwEW 5(’[0)6 — D=¢ H (1 7 efoz)
e’ Ha€A+(1 —€ a) aEAL
and define
(_1)\A+\
Fy oo, IZW'XM“'X,\W - D?

) (Suew sw)en ) (5, e e(wg e ) o

w (n—2)
| | (e/) H(Y€A+ (1 - e—u))

As in the Weyl character formula (2.5), we also regard them as functions on 7.

PROPOSITION 4.1.  For A,..., A, € P, 2(\,...,\,) is equal to the coef-

ficient of €° (i.e., the constant term) in Fy, .\, .

PROOF. Let dug and dur be the normalized invariant measure on G and 7,
respectively. Then, by the Weyl integration formula, we have

dime(Vy, @ - @ V3,)% = / X (9) - xn (9)due
G

- ﬁ / X (), (1 D(0) Py

(_1)|A+|

-0 [0 D@t 412)
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Here note that for the denominator D(t) = e/»X) [Toea, (1= e~ @X)) in the Weyl
character formula (2.5), we have D(t) = (—1)‘A*‘D(t)7 and hence |D(t)|* =
(=D D)?.

Let ay,...,a € t be the basis of the integral lattice in t as in (2.1), and write
an element ¢ in T as t = exp(z1a) + -+ + xya)) with z; € [0,1]. Let us set u; =
e2™=17 and define an isomorphism T’ 2 U(1)' by t — (ug,...,u). Then we have

duy duy

dur =dxy ---dx; = .
T =00 " onv ST 2mv—1u

Hence (4.2) is equal to the coefficient of u - - - u in F), _, (t), which is regarded as

a Laurent series of (uy,...,u;). If we write F), .\, as

_ § my A+ A
F)\],.“,)\n - le,.“,mle E ! 17

then we have

Therefore, (4.2) is equal to the coefficient of €” in Fy, . O
PROPOSITION 4.2.  For (Ay,..., ) € (Py)", we have
(_1)|A+|
DM,y Ay) = —F— e(wy) -+ e(wy)C(A, .oy Apswr, - oy wy),
Wi ,,
Wy ...;wy, ) EW
where for (wi,...,w,) € W", we define
h+n—3 j +n—-3
CAy e Answi, ey wy) = Z <31 ) (]m ) (4.3)
(J15eedjag)) n—3 n—3
the sum over all (jy,...,j|a,|) € (ZZO)‘A*‘ that satisfy the condition
wi (A1) + -+ wp(An) +wi(p) + -+ wa(p)
—(n—=2)p—jioqx — - = jja,jaa, = 0. (4.4)

PROOF. Applying the generalized binomial theorem to
(e [Toea, (1 = e™®))*" in (4.1), we have a power series expansion
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_ (_1)|A+| P 2—n 2—n
Fy o —W Z Z )8(1111)-“5(10")(—1) ( i >< >

(Wi yeeswn) (J150501A, | J1A]

% ewl(Al+p)+~~+wn()\n+p)fj1a17'“*1’@40\@\*(“*2)/1

(- i4+n—3 Jia +n—3
W 2 D clw)elwn)|T T n—3
(Wi yeeswn) (J1502J1A4 )

> 671/1()\1+p)+<-~+11)7, (Antp)—Jror——Jja,|¥a.| —(71,—2)/).

Now our claim follows form Proposition4.1. O

REMARK 4.3. Since w(p) —p € Q for any w € W by (2.2) and 2p € Q, we
see wi(p) +---+wp(p) — (n —2)p € Q. Therefore, if wi(A) + - +w,( M) € Q,
then there are no ji,...,jja,| € Z>9 which satisfy (4.4), and hence
C()\l,.. .,)\n;wl,...7wn) =0.

REMARK 4.4.  Similarly, 27(\;,...,\,) =dime(Vy, @ ---®@ V3,)" is equal
to the coefficient of € in

(Zwleﬂ/ e(wy)e™ </\IH))) ”. (zwnew5(w'rz)€w”(/\”+p)>

Fg;/\ =X X = n
(eﬂ HaeA+(1 - 67“))
and we have
TN, ) = Z g(wy) - e(w,)CT (AL, .., Ay wy, .., wy),
(Wi yeeeywy ) EWT
where for (wy,...,w,) € W", we define
! hitn—1 Ja+n—1
C (A, AW,y wy) = Z ,
Jyeeesd n—1 n—1
Gsesdiagg)

the sum over all (ji,...,ja,|) € (Zs0)**! that satisfy the condition
wi (A1) 4 Fwa(A) Fwi(p) + - Fwn(p) —np — jrar — - = jja, jya,| = 0.

4.2. The formula.
In the sequel of this section, let n be an integer with n > 3, and assume that
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Aty ...y Ay € Py satisfy the following three conditions:

(A1) (wi(M) + - 4+ wu (M), AY) #0, for each wy,...,w, € W and each i =
l

g ooy ly

(A2) AlyeeosAp € Q,
(A3) Ai,..., A\n € Py

It follows from (A3) that A} =0 for each i, and hence we have d =
(n—2)|Ay] — 1 in (2.10).

REMARK 4.5. The assumption (Al) might be a technical assumption,
whereas it simplifies the arguments below. Note that even if Aj,..., A, do not
satisfy (A2), after simultaneously multiplied by |P/Q)|, they do satisfy (A2). On
the other hand, we have to say that the assumption (A3) is essential in our
argument below.

In the following, let us set N =|A| for brevity and enumerate all the
elements of A, as ay,...,qq,q41,...,Qy, Where ay,...,q; are the fixed simple
roots.

DEFINITION 4.6. Let A\,..., A\, € Py and wy,...,w, € W.

e Define | x (N — I)-matrix R by
(1, an) = (aq,...,q)R.
For¢=1,...,l, the i-th row of the matrix R is denoted by R;.
e Fori=1,...,1, we define integers

pi = pi(An, A wn, . w), @ = gi(wr, . wy)

wi(A1) + - Fwp(Ny) =prag + -+ poy, (4.5)
wi(p) + -+ walp) — (n=2)p=qon + -+ qay.

e Define the subset # = #'(\1,...,\,) of W" by

o= {(wy,...,w,) € W" | p >0,...,p >0} (4.7)
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REMARK 4.7. By means of the fundamental coweights, we can write as

R, = (<al+17A;/>a SER) <04|AA|+11AZ\‘/>)7
Pi = <w1(>\1) +---+ ’LU,,L(AV,,,),AZ-V%
g = (wi(p) + -+ + wa(p) — (n = 2)p, Af).

All the entries of R are nonnegative integers. The assumption (Al) shows
p1,. .-, # 0, whereas (A2) shows that py,...,p, are integers.

Now that the condition (4.4) is written as

Ji=—Ri' Gt 8) 01+ @0t = =R (s 0n) ot @
we have the following from Proposition4.2.

PROPOSITION 4.8.  Let C(Aq,..., A\y;wr,...,wy) be as in (4.3) and let p;, g;
be as in (4.5), (4.6). Then we have

C(Al,...7)\n;w1,...,wn)

= Z lj(Rit(jz+1,-~-,jN)+pi,+qz:+n3) lN—[ (ji+n3>)

(Jit5-:5N) n—3
the sum over all (jis, ..., jn) € (Z=0)N " which satisfies
Ri'(irts - 508) <o+, R G, 0n) <ot ae

Now, in order to seek a formula for #(\,...,\,) = limsup,_ . (1/k%)
(kM. .., k\,), we consider the asymptotic behavior of C(kMAy, ..., kX wy,. ..,
wy,) as a function of a positive integer k. We will see below that the assumptions
(A1), (A2), and (A3) imply that the limit limj . (1/k%)2(kA,...,k)\,) indeed

exists.
DEFINITION 4.9. For &,...,§ € Ryy, we define the convex polytope

S =5(¢,...,&) in RY! as the set consisting of all (t,1,...,ty) € RV~ which
satisfy the condition

t1 > 0,0ty >0, Ri'(tiga, .o tn) <&, RN, ..o ty) < &
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For r € Z>, we define

L (&, &)
1 L N
=N (& — Ri"(teers - tn)" [ (80) dtigr -+ dty. (4.8)
(r!)N /9(5“..,51) 11:[1 igl
If one of &, ...,& is nonpositive, then S(&1, ..., &) degenerates, and hence in such

a case we define

Ir(glv . '751) =0.

PROPOSITION 4.10.  Let Ay,..., A\, € Py satisfy (Al), (A2), (A3) and let
Wi, ..., w, € W. Then we have

. 1
lim i CkM, ... kX yywr, ..o wy) = L—3(p1, -, 1), (4.9)

k—o0

where p; = pi(A,. .., Ap;wi, ..., wy) is as in (4.5).

PrROOF. It follows from Proposition 4.2 that

C(kA1, .. kA wr, -, wy)

! _th(] a"'vj )+kpz+qz+n_3 N ]Z+n_3
SO | (R DI

Getrosjy) =1 i=lF1 n—3
the sum over (jii1,.-.,4n8) € (ZZO)N_I satisfying the condition
Ri' ity dn) < kpr+q, - R G, - dn) < ko qre (4.10)

Case 1: If (wy,...,w,) ¢ #, then one of py,...,p; is negative (see (4.7) and
Remark 4.7). Since entries of Ry,...,R; are nonnegative integers, for each

sufficiently large k, any (ji41,-..,Jn) € (ZZO)NJ can not satisfy (4.10). Hence we
have

C’(k})\l,...,k)\n;wl,...,wn) =0.

On the other hand, we have I, 3(p1,...,p;) = 0 by definition. Thus both sides of
(4.9) are equal to 0.
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Case 2: If (wy,...,w,) € #, then we have

CkA, .. kA wy, . wy)

SI O | (LELAE R |

(Ji15-in) = - 3)! i=l+1 (n —3)!
k/.(n72)Nfl [ ( i in n—=3 N ji n—3 1 N-1
e 2RO
((n — 3)')N (]H?JN) 111 k K Zl;[rl & k ’
which implies (4.9). O

Thus, from Propositions 4.8 and 4.10, we obtain the first formula for

1
V(Ao An) = hm k—,@(k)\l,...,k)\n)

k—o0

as follows.

THEOREM 4.11.  For A\,..., A\, € P, satisfying (A1), (A2), and (A3), we
have

(_1)\A+\

qj/(Alw"a)\n): ‘Wl

e(wy) - -e(wy) Li—s(p1,- - -, m), (4.11)

(w1 4...ywy, ) EW™

where pr,...,p; and I_s(p1,...,p1) are as in (4.5) and (4.8).

REMARK 4.12. Let Ay,...,\, € Py be as in Theorem 4.11. In the same way,
we see from Remark 4.4 that

1
”//T()\l,...,/\ )= lirglo o QT(k‘)\h...,k}\n)

= Z E(wl)-"€(er) In—l(pl,---apl)v (4'12)

(w1,...,wy, ) EW™

where d' = n|A,| -1

REMARK 4.13.
(1) The sum in the right-hand side of (4.11) or (4.12) is equal to the sum over
all (wy,...,w,) € ¥.
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(2) More generally than (4.8), it might be significant to consider the integral
of the form

1 ! . §
m/s(& ’ ];[(fi_Rz‘ (tig1s - tw))

IRESA(S PR &) =1
N
< [T &) dtier - dty (4.13)
i=I¥1
for r1,...,ry € Z>¢. In fact, if the assumption (A3) is not satisfied, we
encounter such an integral to express ¥ (A,..., \,) (see [20] for the case

G = SU(3)). The integral (4.8) or (4.13) is a kind of hypergeometric
integral. We refer to [24] for more details, where these integrals are
studied from the point of view of Gel’fand-Kapranov-Zelevinsky hyper-
geometric functions.

(3) Although our method here is quite combinatorial, the data arising in
(4.11) and (4.12) have geometric meanings, under the interpretation
explained in Section 3. For example, (wyAg,...,w,A,) with wy, ..., w, €
W corresponds to a fixed point of the diagonal action of T on
Oy, %X -+ x O, . It might be interesting to compare the formulas (4.11)
and (4.12) with the residue formula due to Jeffrey-Kirwan [12] and with
the result of Martin [17].

4.3. Examples.

Let us compute concretely the integral I, 3(&1,...,&) as in (4.8) for some G.
As we will see below, it will be quite complicated, even if the rank of GG is not so
large. Consequently, it is still difficult to make the formula (4.11) more explicit for
general G.

EXAMPLE 4.14. When A is of type A;, ie., G=SU(2), we see that
I =|Ay| =1, and hence the matrix R does not appear. In this case I,,_3(£;) is not
an integral but just a number;

1
(n —3)!

n—3

177,73 (51) ==

for & > 0. (Recall that we have defined I,,_3(&1) =0 for & <0.) Next, let us
consider the formula (4.11) for ¥ (\,..., \,). In view of the assumptions (A2) and
(A3), let us set



Asymptotic dimension of invariant subspace in tensor product 939
m;
i = ?’TL,‘Al = 7041 (m,; S 2Z>0)

fori=1,...,n. Since W = {£1}, we have

m m,
wi(A) + -+ w,(\y) = (51 71 +---t+ey 71)011,

where ¢; = +1, and hence

my mpy
pl:pl()\lw-w)‘n;wla"'awn)2817"_""’_5717'

The assumption (Al) means that eym/2+---+e,m,/2#0 for any

(€1,...,6n) € {£1}". The set # in (4.7) consists of all (ey,...,&,) € {£1}" such
that eymy/2+ - +¢&,m,/2 > 0. Thus (4.11) becomes

V(M) = —————

This is nothing but the formula for the symplectic volume of #Z(A,...,\,) in
[22]. (See also [15].)

EXAMPLE 4.15.  When A is of type A, i.e., G = SU(3), we see that | = 2,
|AL]=3,and R = (}) Hence

1 min(&,&2)
fsl€1,62) = m /0 {(&1 = t3)(& — ta)ts}" "t

n—

LO

§°
!
fﬁ

(3n— )(2”— 3—(5) 3n—8— ‘(& — 51)C (if 0 < & < &),

Q

ﬁ > 3(3”58)(2”5_‘"; Verele — &) (£0<6 <),

| n
c=0

The formula (4.11) for ¥ (Ay,...,\,) is explicitly given in [20], where the cases
that A,..., A, do not satisfy the assumption (A3) are also studied.

EXAMPLE 4.16. When A is of type B, i.e., G = Spin(5), we see [ =2,
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1 1
|Ai| =4, and R= (1 2>.Hence
1 »
I -3(&,6) = 74/ {(& — ts — t4) (& — t3 — 20y)tsta}"  dtadty.
((n=3))" Jsig.e)

Suppose 0 < & < & < 2&; for simplicity. Then the evaluation of this integral was
done in [24], which shows that

-1 =1/ 4n — 10 2n+c—>5 —c—1
477,*10']—— ) =
( N Lo3(61,&2) C;+7;<n_c_3><n+c+i—2>< i )

« (_ 1)H+C*22n—i—3£§1’m,+c—7§g—(:—3

+”zf"z% 4n — 10 2n+c—5)\[c+i
s \n—c—3 n—1—3 c

« (_ 1)n+c+7f2 Qn—i—Sgi}nqtcf?g;fc%ﬂ .

EXAMPLE 4.17. When A is of type Go, then [=2, |A.|=6, and

1 2 3 3
R(l 11 2>.Hence

1
I, 3(&1,6) = ((n_g)!)(j/s(& @){(51 — t3 — 2ty — 3t5 — 3i)

X (fz —t3 —ty— 15 — 2t6)t3t4t5t6}nigdtgdt4dt5dt6.

The evaluation might become more complicated.

5. A consequence of the Verlinde formula.

In this section, by means of the Verlinde formula for the fusion coefficients of
the complex simple Lie algebra g (or, more precisely, of the corresponding affine
Lie algebra of sprit type), we will obtain another formula for 2(X\,...,\,) in
Proposition 5.9, which is quite different from the one given in Proposition 4.2.

5.1. Fusion coefficients and Verlinde formula.

We review some generalities about fusion coefficients for the complex simple
Lie algebra g (or the corresponding affine Lie algebra of split type). We refer to
[13], [25], and [6] for more details. Most of the description below is based on
Chapters 4 and 5 in [25].
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Let t € R-o and
C={zeC,|(z0)<t}, P :=C.NP={zeP, |0 <t}

where 6 is the highest root of the root system A and C., P, and P, are as in
Section 2. The set C", is referred to as an alcove of A. We are mainly interested in
the case where t is a positive integer. In such a case, we will use the letter m
instead of t.

Recall from Section 2 that under the identification hp = b via the standard
inner product (|), we have Q¥ C Q C P C b}.

LEMMA 5.1.  Let us fizm € Z~y. Consider the action of the group W x mQ"
on by, given by x — w(z) + ma" for x € by, we W, and o € QY. Then the set
C? is a fundamental domain for this action.

See [2, Chapter VI, Section 2| for the proof. Although the case m =1 is
considered there, the proof works also for general m. The group W x m@Q" is
referred to as the affine Weyl group at level m.

DEFINITION 5.2.  Let m € Z+. For A\, pu,v € P}, we define
N{ = e(w)Mult(Vy @V, V3), (5.1)
v

the sum over all v € P, such that v + p is in the (W x (m + g)Q")-orbit through
v+ p, namely v+ p = w(v + p) mod (m + g)Q" for some w € W, where g is the
dual Coxeter number of A. The number NY  is called the fusion coefficient. In
addition, we define

ap) = (VED)PP/(m+ 900" 2 Y e(w)exp

weW

(_ 271'\/——1

g (A+plw(u+p))>,

a(N) : =a()0)

— (VEDRP/m + 90" Y e(w) exp

weWw

< QW\/jl

mtg (A+ plw(p))>-

Due to (2.6), (2.7), and (2.8), we can write them as



942 T. SUZUKI and T. TAKAKURA

a) = (V=D 1P/ (m + 9)Q"| 24, (2m/_1 %>

= [P/(m+g)Q"| 2 11 2sinM, (5.2)

a€A m+g

o) = VDRP o+ Q' e, (2P TIEL) (53

—|P/(m +g>QV|%< I] 2sin 2101 xh>

aEA, m+g

X (exp (—271'\/——1 %) > : (5.4)

where x, is the character of the irreducible representation V, and
exp(—2mv—1(A + p)/(m + g)) is regarded as an element in the maximal torus T
of G. See [25, Section 4.3] for the proof of the following lemma.

LEMMA 5.3. Letm € Z~y and A, € P". Then we have

a()‘v 1) = a(p, )‘)7 a(t)‘v 1) = a(A, M)ﬂ Z a(A, V)a(tyv n) = 5)\,#7

ug
VEPY

where '\ is the transpose of \.

REMARK 5.4. Let us denote by wy the unique element in W that sends A
to A_. Then we have ‘A = —wp\ and it is the highest weight of the contragredient
representation Vy of V). It is easy to see that A € PI" implies '\ € P

Now we quote the following theorem from [25, Chapter 5].

THEOREM 5.5 (Verlinde formula).  For A, p,v € P, we have

+ 7

‘v, x)

N,\V,H _ Z a(A, x)a(p, x)a(

zePY a(x)

As a consequence, we obtain the following.

PROPOSITION 5.6.  For Ay,..., \,,v € P, we have

+ 7
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V3 V4 Up 14
Z N>\1)\2 les,/\s o NVu—ly/\\n—lNVn-,)‘n

V3o Un EPT!

-y a(M, pa(Ke, ) - - a(he, pa('v, p)

()] . (5.5)
HEP

PROOF. Tt follows from Theorem 5.5 that the left-hand side of (5.5) is equal

to
Z Z a(Ai, z2)a( N, 22)a('vs, ) Z a(vs, m3)a(Xs, z3)a('va, x3) o
V3y.eesln T2 a(xz) &3 a(xg)
Z a(Vy, Tp)a( Ay, xn)a(ty, Zn)
Zy a’(x’ﬂ)
_ Z (a()\l,xg)a()\27 z9)a(Ng, 3) - - a( My, z,)a('v, z,)
T,y a(.’I}Q)CL(.’L‘g) e a(mn)
X Z a(tV37 .’172)@(V37 {E3) e a(tVnu xnfl)a(yru xn)) 5
[Z R
where v3,...,1, and z3,...,7, are supposed to run over P{. Since

ZueP;" a('v,z)a(v,y) = 6., by Lemma 5.3, the term

Z a(tyiia x?)a(Viia 333) T G/(tyn; xnfl)a(yna ‘rn)

V3,...,Vp

becomes nonzero only if x9 = -+ = x,,. Denoting it by u, we obtain (5.5). d

5.2. Relation to the Littlewood-Richardson coefficients.
For A\, u,v € Py, let us set

nK,u = Mult(% & ‘//1,7 ‘/V)v (56)

so that V}@V#:Z%P+ nK’MV,,. The integer njlu is called the Littlewood-
Richardson coefficient.

LEMMA 5.7.  Let \,u € P.. If m > (A + p|f), then we have

o Ny, (if ve PP,
M 0o (ifvg PTY).
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PROOF.  Notice that nf , 7 0 implies A+ p —v € Zxoan + -+ + Z>o0y (see,
g., [5, Chapter VI, Lemma 2.8]). Since the highest root € is in P, we have
(v0) < (A + u|0) < m, and hence v € P}". Similarly,

v+pl0) <A+plf) +g-—1<m+g

shows that v + p in an interior point in C}'". Now suppose that v € P satisfies
Y+p= w(v + p) mod (m + ¢)Q" for some w € W as in the definition (5. 1) of NY .
and that nA # 0. Then just as above, n/\ # 0 tells us that v+ p is an interior
point of C7/ o . Since, by Lemma 5.1, C’m+g is a fundamental domain of the action
of the affine Weyl group W x (m+¢)Q" on b, the condition v+ p=
w(v + p) mod (m + g)Q for some w € W implies that v+ p =v + p, and hence
v = v. Then we have also w = e. Thus, we have n§ , = N, by the definitions (5.1)

and (5.6). O

COROLLARY 5.8.  Let A, A2 € Py and m > (A + A\2|0). Then we have

V)\l ® ‘/:\2 = Z NAVI,)\ZV;"

vepn
Similarly, if \i,..., A\ € Py andm > (A + -+ - + \,|0), then we have

V@@V, = 3 NG N Vi (5.7)

V1yeesVn—1 GPJ'F"

Consequently, we obtain the following expression for 2(A\i,...,A\,) =
Mult(Vy, @ --- @ Vi, Vo).

n )

PROPOSITION 5.9.  Ifm > (A; + - -+ + \,|0), then we have

2= a(A1, p)a(Ns, u); —a(Any 1) .

PrROOF. By (5.7) we see Z2(\,....\)=>, . Ny, N

VRS
Vp—2 0

Vp—3An—1" Vn—2,An" It is equal to

a(Ar, zp)a(da, ) - alny ) a0, p) a(Ar, p)a(As, p) -+~ a(Aa, 1)
ueP” a(M)WI peP? a(p)"

by Proposition 5.6. O
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6. Some details on root systems and alcoves.

In this section, we discuss some details about root systems. In particular, we
will study a certain group of transformations on an alcove. After that, we prove
somewhat technical estimates which will be used to prove our second formula for
¥ (A1,-..,A,) in the next section.

6.1. Special indices associated to the highest root.
Let us write the highest root 0 as

0 =niay + - + may, (6.1)
with ny,...,n; € Z-g and let us set
J={ie{l,....l} |ni=1}.

DEFINITION 6.1. Let j € J. Denote by A; the root system generated by all
a; (1 €{1,...,1} —{j}) and denote by W; the Weyl group of A;, which is regarded
as a subgroup of W. Let Aj; = A;N AL and A~ = A; N AL be the set of positive
and negative roots of A;, respectively. We denote by w; the unique element in W;
that sends Aj; to Aj_, whereas wy is the unique element in W that sends A, to
A_ as in Remark 5.4.

REMARK 6.2.
(1) The set A; is also written as AN in view of the notation (2.9).

(2) If « € Ay — Ajy, then the coefficient of «; in « is 1.

(3) One has w? = w? = 1, e(wg) = (—1)/**], e(w)) = (=1)!**], wy(p) = —p, and
w0(9) = —0.

LEMMA 6.3. Letje J. Ifa € Ay —Aj, then wj(a) € Ay — Ajy. In partic-
ular, wij(f) € AL — Ay,

PROOF. a € Ay — Ay is of the form
a=qaj+ Zpy;ai.
i#]

Since the Weyl group W of A; is generated by the reflections s;(z) = z — (o, 2)
(te{l,...,1} —{j}) on by, w; is a composition of them. Hence w;(c) is of the
form
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wi(a) = a;+ Y g,

i#i

namely the coefficient of «; in wj(a) is 1. On the other hand, we know that
wj(a) € A since w; € W; C W. Therefore, wj(a) must be in A, and hence in

COROLLARY 6.4. Let us fir j € J. Then we have the following.
(2) {wya) |a € A} U{-uy(a) [ac Ay AL} = A

PROOF. By Lemma6.3, we see {a € A;|wj(a)e Ay} =A; —A;; and
{a € Ay |wj(a) € A_} = Aj;, which is equivalent to (1) since wJ2 = 1. Part (2)
follows immediately. O

LEMMA 6.5. For j € J, we have w;j(c;) = 0, or equivalently, w;(6) = ;.

PROOF. Let f = wj(;). Then f € A, — Aj; by Lemma6.3, and hence we
see

0—p0¢€ Z Zzoai.
i7]

Since wj(«;) € Aj_ for i # j, we have

wj(a — ﬁ) S Z Zgoai. (62)

On the other hand, w;(0 — 5) = w;(0) — w;(B) = w;() — a; shows that

wj(9 — ﬁ) S Z Zzoai, (63)
i#j

since w;(0) € Ay —Aj; by Lemma6.3. Now (6.2) and (6.3) implies that
w;j(6 — B) =0, that is, = 0. O

REMARK 6.6. In particular, we have (aj|a;) = (0]0) = 2, namely «; is a long
root, for j € J. (It can be also checked by the classification of root systems (see,
e.g., the table in [2]).) Hence we have o = a; and A = A;.
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LEMMA 6.7.  For je J, we have wjA; = A;.

PROOF. Let us prove that w;Aj =AY. Let i€ {1,...,1}. If i # j, then
wj(e;) € Aj- and hence (Af|wj(a;)) =0. On the other hand, (Af|w;(ay)) =
(A7]0) = 1 by Lemma6.5. Thus, we have (w;(A})|a;) = (Af|w;(c;)) = 8, which
means that w;(A}) = AJ. O

LEMMA 6.8.  For j€ J, we have wi(p) + p = gA;.

PROOF. Since Ay Nw;(A_) = Aj; by Corollary 6.4, we see from (2.2) that

wip=p— Y a=p—2p;,

aEh;,
where p; = (1/2) ZQGAH a, and hence w;p + p = 2(p — p;). It follows that for ¢ # j,
(w5(0) + pla) = 2((pla?) = (pla)) = 2(1 — 1) = 0.
On the other hand, we see from Lemma 6.5 that
(w(p) + plasf) = (w,(p)lo) + (pla) = (ply(e)) +1 = (ol6) +1 =g,

Thus, we have w;(p) + p = gA;. O
6.2. Symmetry of the alcove.

DEFINITION 6.9.  For m € Z» and j€ J, let 7" : hr — bk be the map
defined by

Vi (@) := wjwo(x) +mA; (= wjwo(x) +mA).

LEMMA 6.10.  For any j € J, 7" is a bijection from C' (resp. P") to itself.

PROOF. For the fact that 7;" is a bijection from C to itself, see [2, Chapter
VI, Section 2, no. 3]. (The case that m = 1 is considered there, but the same proof
works for general m.) On the other hand, we see that v} (1) = wjwo(p) +mA; is in
P if and only if p¢ is in P. Since P{" = C' N P, it follows that 7" is a bijection from
P to itself. O

LEMMA 6.11. Let us fit m € Z~y.
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(1) The set {1} U{~]" | j € J} forms a group, which is isomorphic to P'/Q"
(= P/Q). In particular, |J|+1=|P*/Q"| (= |P/Q)).

(2) If j€ J, then ('y}”)fl =7 for some s € J.

PROOF. See [2, Chapter VI, Section 2, no. 3] for (1). Part (2) immediately
follows from (1). O

REMARK 6.12. It follows from a simple calculation that (7;.”)’1(33):
wow;(x) — mwow;A;, and hence that

(V") (@) = wow;(x) — mangA (6.4)

by Lemma6.7. Then the condition ('y;-”')_l =™ in Lemma6.11 (2) means that

S

wow; = wswy and —weA; = A,.
Now we observe the following.

PROPOSITION 6.13.  Let m € Z~y and j€ J. For A€ QNP and p € P,
we have

a(A, 7" (1) = a(A p),  a(]"(p) = a(p).
In order to prove it, we will prepare several lemmas.

LEMMA 6.14.  Forj € J, let I'[' : b — by be the map defined by
L7 () i= " (u+ p) — p.
Then we have " =T"7".
PROOF. From wpp = —p and Lemma 6.8, we obtain

m

I (2) = wjwo(z + p) + (m+ g)A; — p =" (z) + gA; —wip — p = ;" ()

as claimed. O

LEMMA 6.15. Letje€ J. For any A € Q and w € W, we have
exp(=2mV/=T( + plwdy) ) = (=1)4 3 (= (g )e(wy).

PROOF. It follows that
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exp(—27rv—1()\ + plwA; ) = exp( 21V —1(w T A|A; )) exp(—27r\/—1(w71p|Aj))
exp( 21V —1(w ™ (p)|A, )) (6.5)

since the assumption A €@ (and hence w'A€ Q) implies (w'AA)) =

(w'AAY) € Z. Tn addition, by (2.2), we know w™'p—p € Q for w € W. Hence

we have (w™'plA;) — (p|A)) = (wp = p|lA;) = (w'p—p|A]) € Z. Thus (6.5) is
equal to

exp<—27r\/:(p|Aj)) = exp <—7r\/——7 Z (a|Aj)>. (6.6)

aEA,L
Since we see for j € J

(OL|A]') = (OZ|A;/) = { 1 (lf o€ A+ — A+)

(6.6) is equal to (—1)2+ 2l = e(wo)e(w;). O

PROOF OF PROPOSITION 6.13. It is enough to show that a(A I'}'(u)) =
a(A,p) and a(I'f'(p)) = a(u) in view of Lemma6.14. Let a(A, p) = (vV=1)" 14+l

1
|P/(m+ ¢)QV]2a(\, 1). Then Lemma6.15 shows that

(AT (1))

> e(w)exp i rg_ (A + plw(wjwo(p + p) + (m + g)A;))

weW
—2my/—1
= Z e(w )exp( 27r\/_(>\+,0|w( ))) exp<m+g

(A + plwwjwo(u + P)))
weW
— Z e(w)e(w;)e(wo) (exp %

(A + plwwjwo (e + P)))
weW

3 ew) <exp Z2VEL gl (u+p))> = ().

= m+g

Thus we conclude a(A,I'/'(u)) = a(A, p). By substituting A =0, we obtain
oI (1)) = a(s). 0
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6.3. Technical estimates.
Below, we prove some rather technical inequalities, which will be used in the
next section. First, we observe the following.

LEMMA 6.16. Let p € P! and o € A,. Then we have

2 . m(ptpla)  m(p+ pla)
< s < .
3(m+g) m+g m+g

PROOF. Since x > sinz for z > 0, it immediately follows that 7(u + pla)/
(m+ g) > sin(m(p + pla)/(m + g)). Recall from (2.4) that (p + p|la) > 1/3. Com-
bining it with

1
(M+P|0¢)S(M+p|9)§m+g—l<m+g—§,

we see that sin(m(u + pla)/(m + ¢)) > sin(x/(3(m + ¢))). In addition, due to the
fact that sinz > (2/7)x for 0 < z < 7/2, we have

. T - 2 T 2
S1n — = .
3(m+g) 7w 3(m+g) 3(m+yg)

Thus we obtain sin(w(u + pla)/(m + g)) > 2/(3(m + g)). O

Next, let 6 > 0 be sufficiently small and let us set ¢ = ém. We consider the
small alcove P!.

PROPOSITION 6.17.  Let 0 < 6§ < 1/h, where h is the Cozeter number of the
root system A, and let t = ém. For p € PT, the following two conditions are
equivalent.

(i) p€ PLUUjes 7" (PL).
(ii) For any o € A4, either (ula) <t or (pla) > m —t holds.

PROOF OF (i) = (ii). If p € P!, then (p|#) <t implies that (ula) < (ulf) <
t for any o € A;. Hence (ii) certainly holds. Suppose next that u € ’y}"(Pi) for
some j € J. Since (7']’-”)71 =" for some s € J by Lemma6.11 (2), we have

™ (p) € PL, and hence (77(u)|0) < t. Therefore, (v (p)|er) < ¢, namely

(wswo(p) +mAs|a) <1t (6.7)
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for any o € A;. Note that s € J implies that (As|a) = (AY|a) is either 0 or 1.

(1) If (Asla) =0, namely o« € Ay, then (6.7) becomes (wswo(p)|a) < ¢, and
hence we have (p|wows(a)) < t.

(2) If (As]a) =1, namely o € Ay — Ay, then (6.7) becomes (wswo(u)|or) +
m < t, and hence we have (u| — wows(a)) > m —t.

Since we know from Corollary 6.4 (2) that
{wows(@) |a € Agi U {—wows(a) |la € A — Ay} = AL,

(1) and (2) above show that for each § € A, either (u|8) <t or (u|f) >m —t
holds. Thus we obtain (ii). O

Before beginning a proof of the converse, we mention the following.

LEMMA 6.18.  Let0 < 6 < 1/2. Suppose u € P satisfies the condition (ii) in
Proposition6.17.

(1) Ifi e {1,...,1} — J, then (u|a;) < t.
(2) If (p|aj) > m —t for some j € J, then (pu|oy) <t for any i € J — {j}.

PROOF. By the assumption in (1), we have n; > 21in (6.1). If (p|oy) > m —t,
then

(1) > mi(pla) > 2(m — ) > m,

since 6 < 1/2 implies 2(m —¢) = 2(1 — 6)m > m. However, it contradicts to the
fact that 4 € P". Hence we obtain (1).
If (uley) > m —t and (p|aj) > m —t for some distinct 4, j € J, then we have

(ul0) = (ulai) + (pley) = 2(m — 1) > m.
Again, it contradicts to the fact that p € P}". Thus we obtain (2). O

PROOF OF (ii) = (i) IN PROPOSITION 6.17.  Let us assume that p € P
satisfies (ii). We consider two cases.

Case 1: Suppose (u|ay) <t for all j € {1,...,l}. Then in view of (6.1), we are
led to

(1l0) = ma(plar) + - -+ m(plar) < (m+ -+t = (h— 1)t
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By the assumption § < 1/h, we have (u|f) < m — t. It follows form the condition
(ii) that (p|@) < t, and hence p € P!.

Case 2: Suppose (p|aj) > m —t for some j € {1,...,l}. Then by Lemma6.18
we have jeJ and (ploy) <t for ie€{l,...,l} —{j}. Now we claim that
p € 7} (PL), namely ((7}”)71(,@\9) < t. From (6.4) and Lemma 6.5, we obtain

(V") (w)10) = (wow; (1) — mavgA;10) = (palwjwo(8)) — m(A,|wo(6))
= —(plw;(0)) + m(A;]0) = —(ulay) +m
<—(m-t)+m=t

as claimed. O

COROLLARY 6.19.  Suppose that m > g and let 6 and t be as in Proposition
6.17. Then for any p € P — (Pi U UjEJ 7;"'(Pi)) , there exists at least one a € A
such that 76/2 < w(p + pla)/(m + g) < #— w6/2, and hence

. m(ptpla) . owo
n— —= >
m-+g 2

S1 3

PROOF. By Proposition 6.17, there exists at least one o € A, such that
t < (pja) < m —t. Then we have

t t 6 6
(utpl) _t+(ol) ¢ X
m-+g m-+g m+g 14+g/m 2
and
(1 + pla) <m—t+(p|a) <m—t+(p|€)_m+g—t—1
m-+g m-+g o m-+g m+g
t 6 )
<1l- =1- <l-—-.
m+g 1+g/m 2
This completes the proof. ([l

We conclude this section by the following observation.

LEMMA 6.20. Suppose 0<6<1/2 and m> (g—2)/(1—26), and let
uwe Pi, Then for any a € A, we have the following.
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(1)O<ﬂ(u+p|a) T
m-+g 2
2
(2) sin m(utple) 2 W(u+pla)} nd
m—+g s m+g
1 2
(3) o omr9 2
gin Tt pla) - w(u+ pla) ™
m-+ g

PROOF. In fact, we have
0<(p+pla)<(ut+plf)<t+g-—1=dm+g—1,
and hence

(B+pla)  sm+g—1
< .
m—+g m-+g

0
0<

If m > (g —2)/(1 — 26), the right-hand side is less than 7/2. This completes the
proof of (1). Since (2/m)z < sinz and 1/sinx — 1/z <1—2/7for 0 < & < 7/2, we
obtain (2) and (3). O

7. The second formula.

In what follows, unless otherwise stated, we suppose that weights \,..., A, €
P, satisfy the assumptions

(A2) Ap,..., € Q,
(A3) Ala"wAn € P++7

as in Section 4.2. In particular, one has d = (n —2)|A;| — . Further, we will
introduce a new condition

(A4) n > max{l+3,5}.

In this section, we will establish our second formula for ¥ (\,...,\,;). The
formula itself is given in Section 6.1 together with some related remarks.
Section 6.2 is devoted to the proof of the formula. Although our proof becomes
somewhat long and technical, the main idea is to generalize the argument in [26,
Section 3] for G = SU(2) to a general compact Lie group G.
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In Section 7.3, we consider special cases where all of \y,..., \, are propor-
tional to p, and write out our formula more explicitly. Moreover, as we will
illustrate for the root systems of type A; and Ay, we have another kind of formula
that expresses ¥ (\1,...,\,) as an integral over an unbounded domain.

7.1. The formula and related remarks.
In view of Proposition 5.9, let us consider the asymptotic behavior of

a(k)\h /’L)a’(k)‘% ,U/) e a(k)\Tw /J’)

n—2 ?

Dk, ... k\y) =
,u,ez:}’i7 CL(M)

as k — oo, where k runs over positive integers. We need the condition m >
k(A1 + -+ 4+ A\y]0) according to the assumption in Proposition 5.9. So from now on,
let us set

m=k(A +---+ \,]0) (7.1)
and let us denote
L=+ -+M\|0)

for simplicity, so that m = kL. Note that L is a positive integer.
First of all, we observe the following.

LEMMA 7.1. Fiz p € P.. As k— o0, and hence m — 0o, we have

1 i ! 1 1
kA A |P/QY|2 , (7.2)
a(p) [Toea, 2m(p+ ple)
_L _L _1 —27 _1)\2
alBhsy ) ~ K (VDAL [P/QYIH Ay (— 2) (73)
i =27V =1\
— k‘% . L‘% |P/QV|_]§ ((Yg 2sin ult L|a)> X <eXp VT 7 ) . (7.4)

PROOF. Since |P/(m + ¢)Q"| = (m+ ¢)'|P/Q"| = (kL + ¢)'|P/Q"|, it fol-
lows from (5.2) that

m+g

=(m+g)%|P/Qv|% 11 (it pl)

! il
alw) | 5 ~ o P 1]
aEA,

m+g acA,

~ k%HAH . L%+|A+| ‘p/Qvﬁ

[Loca, 27(p + ple)’
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while (7.3) and (7.4) immediately follow from (5.3) and (5.4). O

REMARK 7.2. If A\j,..., A, does not satisfy the assumption (A3), namely if
\i € P, — P, for some i, then A,,,(—27v—1\;/L) = A,(—27vV—1X;/L) =0.
Hence we need to be more careful. In this case, instead of (7.4) we have

AN 1o 2m(pla) . m(Aila)
kX, p) ~ k-2 1Y p/QYITRL s 2
(ki 1) Qs T [ 2sm™

L
( —27T\/—1>\i>
XXu|lEXP———F |

Ai Ai
aeAY a€A—AY
L

where A} is as in (2.9). This follows from (5.4) since one has

1 27(pler) B
O G NS (if (Asle) = 0)
kL +g o in w(/\]é\a) G () £0).

Now let us define

(\/jl_)”'lA+‘Ld [T Ay (eXp QﬂFA )
1P/QY| (H%A+ 2m(p + p|a)) 2

)\|a T X (exp =21
|P/QV (H H 251n )

n—2"
i=1 aeA, (HQGA+ 2m(p + p|a))

T(p) =

By Lemma 7.1, for a fixed u € Py and for a sufficiently large k, we see

a(kAr, 1) - a(kAn, @) N
a(p)"”

Now our second formula for ¥ (Aq,...,\,) is the following. It might be interesting
to compare it with the first formula (4.11) in Theorem4.11.

THEOREM 7.3.  Let us suppose Ay,..., A\, € QN Py, and n > max{5,l+ 3},
and let L= (A1 + -+ M\,|0). Then we have ¥ (A1, ..., \) = [PV /QY| 3 .ep, T(1)
namely
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V(A An)
n —Zﬂ\/——l)\;
N |PY/QY| J T Au+p( L )
vV n—2
IP/QY  ieF (Hae o 2n(p+ p|a)>

\Y \ n n ex —2mV =1\
WLd(ansmw(Mo‘))Z H’:IX“< P ) (7.7)

- v n—2"
|1P/QY] i=1 aeA, L pePy (HaeA+ 2m(p + p|a)>

= (V-1

(7.6)

The proof of this theorem is given in Section 7.2. The main point there is to
explain why the factor |PY/QV| arises. Before proceeding further, we collect some
remarks concerned with this formula.

REMARK 7.4.
(1) From the proof and our convention (7.1), we will see that we can replace L
in (7.6) or (7.7) to any larger number.

(2) In view of Remark 7.2, even if Aj,..., A, does not satisfy the assumption
(A3), one might expect that ¥ (\1,...,\,)/L? is given by

1P/Ql [T _m(Aile)
— HHQw(p|a) H 2sin 7

v
|P/Q ‘ =1 anAi‘ aEAJr—Ai‘
[T Xu (eXP —2ny-1y )

x n—2"7
HEP; (HaGA+ 27 (p + p|a))

(7.8)

where d = (n—2)|Ay| =Y, |A%] = 1. (See also Remark7.5 below.)
Unfortunately, in this case our arguments in Section 7.2 will not work;
we need some extra efforts. However, we will not go into this issue in this
paper.

(3) The assumption (A4), namely n > max{5,! 4+ 3}, might also be technical,
although our proof indeed needs it.

REMARK 7.5. Theorem 7.3 is closely related to Witten’s volume formula in
2-dimensional gauge theory. For X; €t (i=1,...,n), let denote by €x, the
conjugacy class in G containing exp(X;). Here X; is not necessarily regular. Let
P(Xy,...,X,) be the moduli space of flat G connections over a punctured sphere
S? —{z1,...,2,} such that the holonomy around the point z; is in €y, for each
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i=1,...,n. It is well known that this moduli space has a natural symplectic
structure. Witten’s volume formula claims that the symplectic volume of it is
given by

12(C)] ﬁvol(%xi) H QSin\/_ Z H” 1 Xe(exp Xi) (7.9)

VOI(G)2 i=1 ach, —AY sep. (dime Vi)' (dime V)"

(see, e.g., [26], [16], [19]). Here vol(G) and vol(¥x,) denote the Riemannian
volume of G and %x,, respectively (see [1] for their concrete expressions), and
AY ={ae A, |(a,X;) =0}.

On the other hand, it is shown in [11] that we can identify the moduli space
P(Xy,...,X,) with our symplectic quotient .#(\1,..., ;) as in Section 2 by
letting X; = —27v/—1)\;/L € t* = t. (To be precise, we have to assume that
X1,..., X, are sufficiently close to 0. It is achieved by multiplying them
simultaneously by a small positive constant. Further, we have to be careful to
compare the symplectic forms of these two spaces.) Hence ¥ (\1,...,\,), the
volume of .#(\i,...,\,), should be essentially the same with the volume of
P(X1,...,Xy,). In fact, we can check that (7.8) in Remark7.4 and Witten’s
formula (7.9) indeed coincide up to a constant factor. See also [23] and [15] for the
case of G = SU(2).

However, our proof of Theorem 7.3 is independent of the geometric context
described above; it is based on the rather combinatorial results in Sections 5 and 6.

7.2. Proof of the formula.

7.2.1. Outline.

Recall that we have set m = Lk. Let § be a positive real number and let us set
t =6m = 6Lk as in Section 5. In the sequel, we will prove the following two
propositions, which are the essential parts of the proof of Theorem 7.3.

PROPOSITION 7.6.  Suppose n > 1+ 3 and 0 < § < 1/h. Then there exists a
positive constant Cy, which might depend on Ay, ..., A\, and 6, such that for any
positive integer k with m > g, one has

Z k)\h (k)‘n> ) |PV/QV‘ Z k)‘h a’(k)‘rh/L) . 1
k(] PEPY a ,U,) /1€P‘ a(,u) 2 k

PROPOSITION 7.7.  Suppose n>5 and 0 <6< 1/2. Then there exists a
positive constant Co, which might depend on Ay,..., A, and 8, such that for any
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positive integer k with m > (g — 2)/(1 — 26), one has

a(kAr, p) - k)\,,,u
kdz : ) ZT S

pePt pePt

N‘l'—‘

PROOF OF THEOREM 7.3 ASSUMING PROPOSITIONS 7.6 AND 7.7.
propositions imply that there exists a positive constant C such that for any

sufficiently large k, the following holds:

a(kA, p) - kA, vy
kdz 1 ( 1) P/Q|ZT <C

HEPY ) pePt

Therefore, we obtain

NlH

These two

o a(kAr, 1) (k&”u)
Y (Ayeeos ) = lim o5 2k, kA *Bir?okd Z )
HEPY
= lim |PY/QV Y T(u) = |P/Q Y T(n)
pePt HEP:
as claimed.

REMARK 7.8.  We will also verify the existence of the limit limy_,o >

T(p) = > ,cp, T(p) in due course. See Remark 7.18.

7.2.2. Proof of Proposition 7.6.

O

t
HEP,

Throughout this Section 7.2.2, let us suppose n >+ 3 and 0 < § < 1/h, and
let k be a positive integer such that m >g. Due to Lemma6.11 (1) and

Proposition 6.13, we have

(kXn, )

alkh, p) - - akAn, Ay, 1) - -
pryqr - W) el ) s B )l

: a(w)"” a(p)
HeP, pePLUJ, (P

and hence

)
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a’(k>\ 7“) T a(kAna :u) a(k)‘ 7#) U CL(k')\n, /.L)
D S  [PYQY Y S
/J,EPJZ‘ G/(/J,) ,uEPi M)

_ Z a(k)\la u) e a(k>\m ,LL)

( )n72
pePy—(PLol ., 7 (L)

Therefore, it is enough to show the following in order to prove Proposition 7.6.

CLAIM 7.9.  There exists a positive constant Cy such that for any k, one has

<Oy -k

5 a(kAi, ) -k, 1)
n—2
LTV

The proof of this claim will be given after several lemmas.

LEMMA 7.10. There exists a positive constant C such that for any
p€ P — (PLUUje 7] (PL)) and m with m > g, one has

< C-ml/At (= CLA+I-1. k\AHfl).

m(ptple)

ach, 2sin e

PROOF. By Lemma6.16, we see that for any o € A,

(tple) 2
m+g 3(m+g)

.
Sin

In addition, by Corollary 6.19 there exists at least one @ € A, such that

. m(ptpla) . omo
SiIn —— > Sin—.
m-+g 2
It thus follows that
1 1A+l-1
—_— < (m+g)> < C-mlAt
acA, 2sin W(ergla) <4 2sin %6

for any p € P — (Pi U Ujeﬂjm(m)), where C' = (3/2)/2171/(2sin(r8/2)). O
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LEMMA 7.11.  There exists a positive constant C such that for any k and
i€ P (PLUUses 7 (PL), one has

a(k)\la /”/) o G/(k)\n, :u’)

— < C k02 (7.10)
a(p)

PROOF. Lemma7.10 above shows that there exists a positive constant C’
such that

1 1 1 i
—— = |P/m+g) QP ] ———— < - kA1, 7.11
a(p) [P/(m+9)Q"] CLL 2 sin T(tele) (711

m-+g

On the other hand, there exist a positive constant C" such that for any pu € P
and each i =1,...,n,

la(ki, p)| < O -k (7.12)

holds, since

la(kA, 1) = |P/QY| 2 (m + g) 2

5%
Ay (—2m/—1 ’+p> ‘

m—+ g
_1 _L
< [P/Q[2(m + g) 2 W]

Here note that

|AH+,;(—27T\/jIm)| = Z E(w)eﬂ"ﬁ(“’(““’”x)

weWw

< W]

for x € hj. It follows from (7.11) and (7.12) that

a(k>\1, /14) s a(k)\m /~L)
n—2
a(p)

<C- k(n72)(\A+Hé71)fén —C- kd—(n—?)

with C' = (C")"*(C")". 0

Now we are in a position to prove Claim 7.9.
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PROOF OF CLAIM 7.9. Due to the assumption n > [ + 3, (7.10) implies that

a(kAy, ) - - a(kn, 1)

= <C-ETL
a(p)

Since there exists a positive constant C’ such that

<IPP <O ml = 'L,

- (ruyore)

jeJ

we obtain

Z a(kAr, p1) - - a(kAn, p)

)"_2 < C- kd—l—l . C/Ll . kl _ Cc/Ll . kd_l

m m afp
pePy =P, (PL) (
as claimed. O

7.2.3. Proof of Proposition7.7.

Throughout this Section 7.2.3, let us suppose n > 5 and 0 < § < 1/2, and let
k be a positive integer such that m > (¢g—2)/(1 —26). In order to prove
Proposition 7.7, it is enough to show that there exists a positive constant Cy
such that for any k

1 a(kAr, w) - a(kA,, p1)
Foa W

pePt

holds. Equivalently, we will show the following.

CLAIM 7.12.  There exists a positive constant Cy such that for any k, one has

1 a(kAr, pw) - a(kin, p)
K a(p)" S

< Ch.

(m+g)- >

t
HEP]

The proof will be completed at the end of Section 7.2.3. From (5.2) and (5.3),
we see that
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n [ k)\ g
1 a(kAi,p) - a(kdg, p) (vV=1)"Al 1 [T Awp( 2 m:;)

K a(p)"? O IP/QY Ki(m + g) (ITcs, 25 meteel)" ’
_( /__1)7L\A+\ (m—i—g)d H?:l AN+P( 21/ — kn);jgp)
P v ' kd . 7 « n—2"
/9" (Mocs, 20m + g) sin )

This together with the definition (7.5) of T(u) shows that

P/Q] (; a(kh, p) - - alkAasp) T(u)>

(V=D"SAR )
n [ k)\ n =2V =1\
(m+ g)d | Y A;Hrp( 2m m++9p) 1 ITim) Ay (QT\/_M)
- Ld ' . N n—2"
(e 2 aon )™ (I 2t 00
For simplicity, let us set N = |A.| and denote
d
k)\ 1
A:%’ Ri:A/th( 27'('\/ jp> Xj: ( o) ol
m qg - m(ptploy
(2(m + g) sin ﬁ)
=21V =1\ 1
B = Ld, Sz = Ap,+p (Wi>a Y} = n—2"
L (2m(u+ play))
where i € {1,...,n} and j € {1,...,N}. Then
1 a(kA,p)---alk\,, @) L N z N
1P/Q"| - |3 ) ,1,5 ~T(w)| = | AT R II X - BITS ][V
a(p) i=1  j=1 i=1  j=1
n N n p—1 n N
<= afTini [T+ (s s 1T ) T
i=1 j= =1 i=1 i=p+1 j=1
N n
+ZBH|S<HY>|X Y,| H X;. (7.13)
=1 = J=q+1

We have to estimate each term in (7.13) after multiplying it by m + g. First,
observe the following.



Asymptotic dimension of invariant subspace in tensor product 963

LEMMA 7.13.  There exists a positive constant C' such that for any p € PL, 1,
7, and k, one has

PROOF. The first one is obvious. As in the proof of Lemma 7.11, we see | R;]
< |W] and |S;] < |W/|. Finally, by Lemma6.20 (2), we have X; < (x/2)"Y;. O

LEMMA 7.14. There exists a positive constant C such that for any positive
integer k, one has (m + g)|A — B| < C.

PROOF. Let us set z = g/m. One has 0 < x < g by recalling that m is a
positive integer. We now see that

1+2)" -1 1+9)%—1
since the function (1 + 2)((1 4 2)? — 1)/ is monotone increasing for z > 0. O

LEMMA 7.15.  There exists a positive constant C such that for any p € PL, 4,
and k, one has

(m+g)|R; — Si| < C2m(p+ plon) + -+ 27(p + pleu)).

PROOF. We have

(m+ g)|R; — Si
< (m+g) Y |e(w)e 2V Tl /L)( —2mv/ =T (w(atp) [(kAi+p)/(m+)~ i/ L) _ 1) ‘
weW
—2my/
=Y |(m+g) exp< (u+p))pA>1 (7.14)
weW +g L

Since |(e-2™V=1#t —1)/t| < 2x|z| for x,t € R with at # 0, the right-hand side of

(7.14) is not greater than
- g
(ool (= 20))]

g
Z o <w(,u+p) ‘p—L/M)’ = Z 27
Let us write w™(p—(g9/L)N) =pa(w)as + - +py(w)ey and let C=

weW weW
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maxy; ; [pij(w)|/|[W]|. Then we obtain

ZQT(

weW

(s ot (o= ) )| < 200G + gl 4+ -+l

as claimed. O

LEMMA 7.16.  There exists a positive constant C such that for any p € Pj“r, Js
and m with m > (g — 2)/(1 — 26), one has

1
2m(p+ ploy))

(m+9)(X; -Y)) <C-

n—3 "

PrROOF. By Lemma6.16, one has

3 1 1
- > > >0

4 2(m—|—g)sin”(’%+ﬂg‘“) 2m(p + ple)

for any o € A,. Since
oV =y = (2 —y) @+ 2 Py b V) < (@ - ) N

for 1 >x >y >0, we have

(m+g) 1 1
m 9 n—2 n—2
(Z(m + g) sin ﬂ(ﬁfs‘]a)) (2m(p + pla))
<(m+g) 1 1 n—2
m-+g — —.
2m +g) sin " 2 A10) [ (g 1 g) sin o))"
m+g
We see

m+ g 1 1 ! (1 2)
m-+g - —(1——
2(m + g) sin T 27(p+pla) |2 m

m+g

by Lemma6.20 (3), while
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1 T n—3 1
3 < (2> P
<2(m + g) sin M) 27 (p + pler))

m+g

by Lemma6.20 (2). Therefore, by setting C = (1 —2/7)(n/2 —1)(x/2)" > we
obtain the conclusion. O

1
LEMMA 7.17. Ifs > 1, the series Z = converges.
iP. (Taea, 27+ plo))

PROOF. Recall from (2.4) that 0 < 1/(27(p+ pla)) < 3/(27) <1 for any
uw € Py and a € A,. It implies

1 1
0< < — .
(IT- 2r(a + ple) )

(Maca, 271+ pla))”

1
Therefore, it is enough to show that the series Z l 5
i (T 2+ pla))
converges. Let us set u+ p=miA; +---+myA;. If g runs over Py, the tuple

(my,...,m;) runs over (Z-y)". In view of (2.3) we have
2w
2n(p + ploy) = 2mm;(A|ag) = mmy(oulou) > 3 ™ > my

fori=1,...,l, and hence

1 1
0< - <

(I 27+ pla)) (e om)™

1
Since E T SEE— indeed converges, SO does

> L . O

(1eP, (]_[,li:l 2m(p + P|ai))

REMARK 7.18. This lemma also shows that the convergence of the series
Zﬂeﬁ T(u), since
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1

T(w)| < C-
' (Maea, 27+ pl))

for some positive constant C.
Now we are ready to prove Claim 7.12.

PROOF OF CLAIM 7.12. By the inequality (7.13) and a series of the lemmas
above, we see that there exist positive constants C' and D such that

1 a(kd,p) - alkA,, pw)
m+g)|— - -T
(m+9)5 G (1)
<C Y 14 27(pu+ plag) + - - + 27(p + ploy) + —
Yy (2m (i + plag))" ™
<C ! +D !
T ILL (e play) [T 2+ plag)"
Therefore, we obtain
1 a(kAi, p) - - a(kAn, p)
(m+9) S| - - T()
,; K a(u) ’
1
<C —~+D —
Z 27T(u o))" Z T, 2n(a + plag))™
1
<C — + D — .
p;R 277(# + play)" ™ peZR 15 @i+ play)" ™
It follows from Lemma7.17 that the right-hand side is finite if n — 3 > 2. (]

7.3. Examples.

In order to make the formula in Theorem 7.3 more explicit, we need to write
out the value of the character y,(exp(—2mv—1)\;/L)) or A,,,(—2mv—1X\;/L),
which itself seems to be quite complicated in general. Here, let us consider the
very special case that \; = m;p with m; € Z-( for all i = 1,...,n. In this case, we
can apply the Weyl denominator theorem for A/l+,,(—27r\/—_1)\7;/L) in (7.6).
Namely, it is equal to
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—2mv/—1m;(p + . omm(p + pla
Ap< 7 a p)) :(—\/——1)‘A | H QSlnw.

aEAL

Let M =my + -+ m,. Since L = M(p|0) = M(g — 1), we obtain the following.

COROLLARY 7.19.  Suppose \; = m;p with m; € Z~y and A\ € Q for all
i=1,...,n. Then we have

n -y (ptplo)
[T acA, 2sin M(g—1)

|PY/Q"]
1P/QY|

7/()\1’~--7/\77)— (M(g_l))dz

n—2 7
4 (Taca, 27+ pla))

where d = (n — 2)|AL|—1land M =my +---+m,,.

Let us consider as typical examples the cases that the root system A is of type
Al or AQ.

EXAMPLE 7.20. When A is of type Ay, we see Ay ={aq}, Ay =p=a1/2,
0=oai, g=2, (v|ag) =2, PV =P, and Q¥ = Q. Let us apply Corollary 7.19 to
AL =mup, ..., Ay =myup, where m; € 2Z-y. For pe€ P, =Z>0A;, let us set
©~+ p=pA with p € Z.y. Then we have

Tmip

YA,y ) 74M”3ZHZ 15132 : (7.15)
p=1 (mp)

which has already appeared in [23] and [15]. It is interesting to compare it with
the result (4.14) in Example 4.14. Moreover in view of Remark 7.4 (1), by taking
the limit as L — oo, we can also express the right-hand side of (7.15) as an

integral as follows:
/ HZ L sinmx
n— T on—2
EXAMPLE 7.21. When A is of type Ay, A, = {Ozl,OtQ,Ozl + 042}, A=
(200 + @2)/3, Ay = (g +209) /3, p=0 = oy + a9, g = 3, and
(ai]an) =2, (ao|a) =2, (oq|as) = —1.

Note that PY =P and QY = Q. Let us apply Corollary 7.19 to A\ = myp,...,
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An = myp, where m; € Z-y. For pe Py, let us set pu+p=pA; +qAs with
p,q € Z~y. Then we have

mi(p+q)
2M

TP ™miq

Y (A, ooy A) =20 (2M)° Z [y sin 7 o S0
PAEZ g (mp-7q-7(p+q))

sin

sin

sin

As before, the right-hand side can be expressed in the form

20 [T, sinm;z - sinmyy - sinm; (z + y)

7 Juy>0 (zy(z + )"

dxdy.

It would be interesting to compare them with the formula given in [20].
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