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Penalising symmetric stable Lévy paths
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Abstract. Limit theorems for the normalized laws with respect to two
kinds of weight functionals are studied for any symmetric stable Lévy process of
index 1 < a < 2. The first kind is a function of the local time at the origin, and the
second kind is the exponential of an occupation time integral. Special emphasis is
put on the role played by a stable Lévy counterpart of the universal o-finite
measure, found in [9] and [10], which unifies the corresponding limit theorems in
the Brownian setup for which a = 2.

1. Introduction.

Roynette, Vallois and Yor ([15], [14] and [13] and references therein) have
shown the existence of the limit laws for normalized Wiener measures with respect
to various weight processes; we call these studies penalisation problems. Najnudel,
Roynette and Yor (see [16], [8], [9] and [10]) have recently discovered that these
penalisation problems may be unified with the help of the following “universal”
o-finite measure on the canonical space:

~ g f
W:/O \/;‘EWWMP(;*B (1.1)

where W® stands for the law of the Brownian bridge from 0 to 0 of length w, P38
for that of the symmetrized 3-dimensional Bessel process starting from 0, i.e.,
pP3B = (PP —i—Pg’B’f)/Q7 and the symbol e for the concatenation between the
laws of these two processes.

The purpose of the present paper is to develop some of these penalisation
problems in the case of any symmetric stable Lévy process of index 1 < a < 2. As
an analogue of 7, we introduce the following o-finite measure

P — M/OO du Q"™ e Pl (1.2)
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where Q) stands for the law of the bridge from 0 to 0 of length u and P} for the
h-path process of the killed process with respect to the function |x|"_1. We shall
put some special emphasis on the role played by the universal o-finite measure &
which helps to unify our penalisation problems.

Let D denote the canonical space of cadlag paths w: [0,00) — R. Let (X;)
denote the coordinate process, (%) its natural filtration, and %, = V;>0%;. Let
(P,) denote the law on D of the symmetric stable process of index 1 < a < 2 such
that Py[e?¥] = e~ for X\ € R. Note that, if @ = 2, then (X;) has the same law as
V/2 times the standard Brownian motion.

We say that a family of measures {#},~, on F« converges ast — oo to a
measure M along (Fy) if, for each s > 0, we have .#,[Z,] — #|Z,] as t — oo for
all bounded .Z,-measurable functionals Z,. For a measure .#Z on %, and a
functional F' measurable with respect to %, the symbol F - .# stands for the
measure A — #Z[14F)]. Let x € R be fixed. Then penalisation problems are stated
as follows:

QUESTION 1. Let I' = (T'; : t > 0) be a given non-negative process such that
P,[T;] # 0 for large enough ¢.
(Q1) Does there exist a limit probability measure Pl such that
I'i Py t—oo

e )7 .
A P, along (%) (1.3)

(Q2) How can one characterise the limit probability measure P£ assuming it
exists?

For each x € R, let &2, denote the law of (x + X; : t > 0) under £. We can
gain a clear insight into some of these penalisation problems if we answer the
following

QUESTION 2. Let I' as above.
(Q1’) Can one find a positive function p(t) and a measurable functional T'y
such that

— I'w - P, along (%;)? (1.4)

(Q2') For any non-negative Z,-integrable functional F', can one find a non-
negative (%, P;)-martingale (M, ,(F) : t > 0) such that

(F- Pz, = Mio(F) - Polg,  £207 (1.5)
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If we can find such a function p(t) asin (1.4) and if 0 < &, [I's] < oo, then we
obtain the convergence (1.3) with the limit probability measure

e &
pPl=——". 1.6
We shall prove in Theorem 5.3 that there exist such martingales (M, ,(F)) as in
(1.5). We shall call M;,(-) the martingale generator and we shall study its
properties in Sections 5 and 9. Then the limit probability measure PE is
characterised by

M, ,Tx)
P, =t o) pi >, 1.7

Therefore, if we answer Question 2, then we have answered Question 1.

Our strategy to answer (Q1’) is as follows. Since the index « is supposed to be
in (1,2], each point of R is regular and recurrent. Hence, associated with the
process, there is a jointly continuous local time (L(t,z)). We simply write
Ly = L(t,0), and, associated with this local time, there is Ité’s measure n of
excursions away from the origin (see Section 3). Let R denote the lifetime of an
excursion path. For ¢ > 0, we define M® as the probability measure on .%; given
by

: Lr>t)
M 7m-n|yt (1.8)
and here we call M® the distribution of the stable meander. We remark that our
meander distribution (1.8) is definitely different from that of [4] etc. where the
meander is defined by conditioning on {R >t} the excursion process for the
reflected stable Lévy process (X; —ming<; X:¢>0). We shall prove the
following formula (Theorem 4.1) of disintegration of Fp|, for each t > 0 with
respect to last exit time from the origin: '

1
1 r(1/a) [* w\ ot du _
—— Pyl =——= 1—-- () o pplt=w), 1.9
n(R > t) 0|,,, A Qe (1.9)

am t ul/e

As a check, the total masses of both sides agree, as we shall show in Proposition
3.4. Then, we shall establish (in Theorem 4.9) the convergence
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t—00

MO X P along (Z). (1.10)

Noting that (1 — (u/t))"*™" — 1 as t — 0o, we may expect that, in some sense:

1
t w\o ' du ¢ < du
-z (u) (t—u) 1790 (u) h
/0 (1 t) e @ e =S /0 Qe Ry (1.11)

We shall prove several analytic lemmas which justify the convergence (1.11) and
then we shall establish the convergence (1.4) with the function pu(t) = n(R > t).

In order to answer Question 2 (and in particular (Q2')), we shall establish the
convergence (1.4) and compute the martingale generator by case study. We
confine ourselves to the following two kinds of weight functionals:

(i) T'y = f(L) for some non-negative Borel functions f with some integra-
bility property;

(ii) Iy = exp{— [ L(t,2)V(dz)} for some non-negative Borel measure V.
We call the problems in such a case the Feynman-Kac penalisations.

The organisation of the present paper is as follows. In Section 2 we recall
some preliminary facts about symmetric stable Lévy processes. In Section 3 we
study It6’s measure of excursions away from the origin relatively to the symmetric
stable process. In Section 4 we prove several formulae concerning the stable
meander and h-path process, which play important roles in the study of our
penalisation problems. In Section 5 we make general observations on the universal
o-finite measure &7, and the martingale generator M, ,(-). In Section 6 we prove
several convergence lemmas which play fundamental roles in the proof of our
penalisation problems. Section 7 is devoted to the study of penalisations with a
function of the local time at the origin. Section 8 is devoted to the study of
Feynman-Kac penalisations. In Section 9 we characterise certain non-negative
(Py, F:)-martingales in terms of 2.

2. Preliminaries about the symmetric stable process of index
1<a<?2

Recall that (X, %, P,) is the canonical representation of a one-dimensional
symmetric stable Lévy process of index 1 < a < 2 such that

Pyle™] =e ™" for A€ R. (2.1)
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All results presented in this section are well-known; see, e.g., [1].

1). (X;) has a transition density P,(X: € dy) = pi(y — x)dy where p;(z) is
given by

pi(x) = l/Ooo(cosan)\)et’\ﬁd)\. (2.2)

™

For ¢ > 0, we set

0 1 [ A
uq(a:):/o e_q‘tpt(sc)dt:—/0 ORI n (2.3)

i g+

In particular, if we take x = 0, we have

pe(0) = pl(O)t’% where p;(0) = F(;Zra) (2.4)
and
uqg(0) = ul(O)qi’1 where u;(0) = [ = Ya)T({1/a) . (2.5)

am
2). Let Ty, denote the first hitting time of a for the coordinate process (X;):
T{u} = inf{t >0:X; = a}. (26)

Then the Laplace transform of the law of Ty, is given by

PZ [equ{O}} —

, ze€R, ¢g>0 (2.7)

(see, e.g., [1, p. 64]). For further study of the law of Ty, see [21].
Since Ty, under P, has the same law as Tjoy under P,_,, the formula (2.7)
implies the following facts:
(i) Each point is a recurrent state, i.e., Pp(Ty,) < oo) =1 for any z,y € R
with x # y;
(ii) Each point is regular for itself, i.e., P,(T(,; = 0) =1 for any = € R.

3). The process admits a jointly continuous local time L(t, ) such that
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1ot
L(t,l‘):sli%iQ—a/o 1{\Xsfz\<s}d5 (28)

almost surely. We simply write Ly = L(¢,0). Denote the inverse local time at the
origin by 77 = inf{t > 0: L; > l}. Then (7, : [ > 0) is a stable subordinator of index
1 —1/a such that

Pyle™] = e /ul0) (2.9)
(see, e.g., [1, p. 131]), where u,(0) is given explicitly by (2.5). Let 6,: D — D
stand for the shift operator: 6;(w) = w(t + -). Since 7, = Typy + 7 0 01, , we have

P, [ / eqtst} =P, / e"”dl] =Pe @] [ Ple™dl  (2.10)
0 0 0
o0
dt

_ Ya(®) 1y (0) = /0 e 'py()

(2.11)

for all ¢ > 0. Hence we see that
Pz{ f(t)st} = F@®)pi(x)dt (2.12)
0 0

for any non-negative measurable function f on [0,00). Consequently, we may
write

PJdL] = pi(z)dt,  z€R. (2.13)

3. Itd’s measure of excursions away from the origin.

Since the origin is a regular and recurrent state, we can apply 1td’s excursion
theory ([7]; see also [1] and [2] for details).
We denote by F the set of cadlag paths e : [0,00) — RU{A} such that

{ e(t) € R\ {0} for 0 < t < R(e), (3.1)

e(t) =A for t > R(e)
where

R=R(e) =inf{t > 0:e(t) = A}. (3.2)
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We call E the set of excursions and every element e of E an excursion path. For an
excursion path e € E, we call R(e) the lifetime of e. The point A is called the
cemetery.

We set D={l:7 —mn_ >0}. For each | € D, we set

Xivn for 0< t<m—1,

elt) = { (3.3)

A, for t> 7—T7_.

Then It6’s fundamental theorem ([7]) asserts that the point process (e;: 1 € D)
taking values on F is a Poisson point process. Its characteristic measure will be
denoted by n and called It6’s measure of excursions away from the origin. 1td’s
measure n is a o-finite measure on any .%; which has no mass outside the set

{e€ E:Xy(e) =0, 0 < R(e) < o0} (3.4)

For the fact that n({X, = 0}°) = 0, see [20].
For z € R\ {0}, we denote by P? the law of the killed process, i.e., the law on
E of the path (X?) under P, where

X, 0 <t < Ty,
X0 = { ’ © (3.5)
A>Ty
We shall utilise the following formulae.
THEOREM 3.1 (Markov property of n). It holds that
nlZiF (X0 8)) = [ nlZi X; € dal P2IF(X) (3.6)

for anyt > 0, any non-negative % -measurable functional Z; and any non-negative
measurable functional F on E.

THEOREM 3.2 (Compensation formula). Let F'= F(t,w,e) be a measurable
functional on [0,00) x D x E such that, for every fized e € E, the process
(F(t,-,e):t >0) is (F,)-predictable. Then”

PO ZF(T177X,81)

leD

=P ﬁ[/ooo dLF(t, X, )?)} . (3.7)

“Here the symbol ~ means independence.
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We omit the proofs of Theorems 3.1 and 3.2. For their proofs, see [1], [2] and
[12].

3.1. Entrance law.
In order to characterise the entrance law, we need the following

THEOREM 3.3 ([5] and [6]).  For any non-negative measurable function f on
R, it holds that

/ e Mn[f(X,)]dt = /f [e~ 0] dz. (3.8)
0

We remark that the relation (3.8) can be found in Chen-Fukushima-Ying [5,
Equation (2.8)] and Fitzsimmons-Getoor [6, Equation (3.22)] in a fairly general
Markovian framework as

e ln , ellTo() T .
/0 F(X)]de = /f 0] m(dz) (3.9)

where (X, P;) and ()?, 131) are in weak duality with respect to the reference
measure m. In our case, (X,P,)=(—X,,P,) and m(dz) = dz, the Lebesgue
measure. Although (3.8) is a special case of (3.9), we give the proof of Theorem 3.3
for completeness of this paper.

PROOF OF THEOREM 3.3. Note that

/ e (Xt = D e / v o fle(t))dt. (3.10)
0 0

leD

By Theorem 3.2, we obtain

R [ /O e f(Xt)dt} oy { A N eqtst] n [ /0 f e f(Xt)dt} . (3.11)

Since By[ [ e dL;| = u,4(0), we have

/Ooo el f(X,)]dt = / (@) ZZEE; da. (3.12)

By the identity (2.7), we obtain (3.8). The proof is complete. O
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The following formula holds:

PROPOSITION 3.4.
n(R>t) = n(R > 1)ta—! (3.13)

where

aTm

B> ) = T (e

(3.14)

In particular,

n(R>t—s)

1
S «
W(B> 1) = (1——) for0<s<t. (3.15)

t

Although it is well-known, we again give the proof for completeness of this
paper.

PROOF. Take f=11in (3.12). Then we have n[f(X;)] = n(R > t), and the
identity (3.12) implies that

b 1 1
e "n(R>t)dt = —— = g Ve 3.16
e na = e - (3.16)

This completes the proof. ]
The following theorem characterises the entrance law.

THEOREM 3.5.  There exists a bi-measurable function p(t,x) which is at the
same time a space density of the entrance law

n(X; € dz) = p(t, z)dz (3.17)
and a time density of the first hitting time
Px(T{g} e dt) = p(t, x)dt. (3.18)

That is,



766 K. YANO, Y. YANO and M. YOR

n(X; edz) P,(Tyn € dt)
plt,z) = tdx = {d}t . (3.19)

PROOF. Note that PY(X; € dy) = p)(z,y)dy where

P(@,y) = puly — 2) — / Py Pa(Tyo) € ds). (3.20)
0

Now we set
plt,z) = / n(X € dy)pls (3, 7). (3.21)

Let f be a non-negative measurable function on R. By the Markov property, we
see that

n[f(Xy)] = / n(Xt/Z € dy)R?[f(Xt/2)] = /f(x)p(t,m)dx. (3.22)

Hence we obtain (3.17). Using the formulae (3.22) and (3.8), we see that

/ def(x) /0 et 2)dt = /0 et (Xt (3.23)
:/da?f(x)Pl.[e_qT{”}]. (3.24)
Hence we obtain (3.18). O

4. Stable meander and h-path process.

4.1. Disintegration with respect to the last exit time.

For u > 0, let Q™ denote the law of the bridge Py(:|X, = 0) considered to be
a probability measure on .%,. We denote by X = (X, : 0 < ¢ < u) the coordinate
process considered up to time u. We denote the concatenation between the two
processes X and X = (X,:0<t<v) by X® e X = ((X® .)?@))t :0<
t<u+wv):

' (4.1)
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The measure Q) ¢ M) is defined as the law of the concatenation X e X
between the two processes X and X® where (X®, X®) is considered under the
product measure Q™ @ M. Here and in what follows, we emphasize independ-
ence with the symbol ~, unless otherwise stated.

For t > 0, we denote last exit time from the origin before ¢ by

g =sup{s <t¢:X,=0}. (4.2)

The following formula describes disintegration of Fy|z with respect to g;:

THEOREM 4.1. For each t > 0, it holds that

t
Py = / n(R >t — u)Py[dL,]Q™ e M1~ (4.3)
0

In other words, the following statements hold:
(i) The distribution of g, is given by Py(g, € du) = n(R >t — u) Py[dL,];
(ii) Given g =wu, (X;:t € [0,u]) and (Xyqi :t € [0,t —u]) are independent
under Py;
(iii) Given g, = u, (X; : t € [0,u]) under Py is distributed as the bridge Q");
(iv) Given g = u, (Xyts : ¢ € [0, — u]) under Py is distributed as the meander
M=),

REMARK 4.2. We note that the formula (4.3) is the counterpart of
Salminen [17, Proposition 4] in his study of last exit decomposition for linear
diffusions.

REMARK 4.3.  We remark that (i) implies

(t— u)é_lu_édu
'l —1/a)T(1/a)

Py(ge € du) = (4.4)

for some constant C, which shows that (1/t)g; has the Beta(l — (1/a),(1/))
distribution. For further discussions, see [21].

PROOF OF THEOREM 4.1. Let us prove

t
By, = / RfdL,JQ o (n] ;. ), (4.5)

which is equivalent to (4.3). Let F(¢,w) be a non-negative continuous functional
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on [0,00) x D. For each ¢t > 0, we define a measurable functional F; on D([0,t]; R)
by F,(X®") = F(t, X;5.). Then we have

[e%s) R(SZ)
/ AF(xV) =3 / drF, ., (XW> . el). (4.6)
0 leDp /0

Now we appeal to Theorem 3.2 and we obtain

(o) o0 (o} -
/ %[E(X“))]dt:(ﬂ)@ﬁ)[ / dL / drl{ﬁ>r}ﬂ+r(x<t>-X‘”)} (4.7)
0 0 0

Since Py[f;° G(XM)dL,] = [;° R[dL,)Q™[G(X™)], we obtain

/0 " RIF(XOYdt = / " PyldLy) (Q<“> ® ﬁ) { /0 T an donFur (X<“> . )?Wﬂ L (4.8)

0

Changing variables to t = r + u and the order of integrations, we have
oo o0 t
| rimceOa = ["a [ RAL) QY el ) [1aen B (X)) @9)
0 0 0
Since the identity (4.9) holds with F; replaced by e"#F; for any ¢ > 0, we obtain
t
RIAX) = [ RALI(QY o (5, )) Lo X)) (@10
0

This completes the proof. ([

REMARK 4.4. In the above argument, we have proven the following
formulae:

/ Pldt = / PMdie / n(R > r)M"dr (4.11)
0 0 0
= / Py[dL,)Q™ e / n(R > r)M"dr. (4.12)
0 0

Here we adopt the notations Po(t> and PéT') which are found in [12], but we do not

go into details.
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4.2. Harmonicity of the function |z|* .

Set
) 1 [*°1—coszA
() = T {0,(0) — ()} =~ /0 SRR (4.13)
Then we have

h(z) = h(1)|z]* (4.14)

where h(1) is given as follows (see [21, Appendix]):

1

h(l)=—— (4.15)

2T (@) sin @ .

THEOREM 4.5.  The function h(z) = h(1)|z|*™" is harmonic for the killed
process, i.e.,

PUW(Xy)] = Po[M(X4); Tyoy > t] = h(z),  x€ R\ {0}, t>0. (4.16)

Equivalently, (h(Xinr,)) is a (P, Ft)-martingale.
We omit the proof, because Theorem 4.5 follows immediately from the

THEOREM 4.6 (Salminen-Yor [18]). For z € R, there exist a square-inte-
grable martingale N’ and some constant C' such that

|X,)“" = |2|* ' + NP + CL(t,x) under P,. (4.17)

THEOREM 4.7. It holds that
n[h(X;)] =1, t>0. (4.18)

PROOF OF THEOREM 4.7. Theorem 3.5 and the identity (2.7) imply that

/ " e talh(X,))dt = / h(z)Pyle"0]dz = / h(x) “qix; de.  (4.19)

0 uq(0
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Hence it suffices to prove that

/uq(x)h(x)dx = uq;O) ) r € R. (4.20)

Let r be such that 0 < r < g. By the resolvent equation U,U, = (U, — U,)/(q — 1),
we have

/uq(x —yur(y— z)dy = ! {ur(z — 2) — ug(z — 2)}. (4.21)

q—7T

Letting = z = 0 and using the symmetry u,(—y) = u,(y), we have

1
q—r

[ty = {u,0) - w0} (422)

Now we have

ug(0) — rur(0)

g—r qlg—r)

[ a0 0) = o)}ty = (423)

If we let r decrease to 0, then we see that

1 [*°1—-cosxzA

up(0) — up(z) = /0 Locoszd (4.24)

s r+ A\

increases to h(z), and that ru,(0) — 0. Hence we obtain (4.20) by the monotone
convergence theorem. O

REMARK 4.8. For generalisations of Theorems 4.5 and 4.7 for symmetric
Lévy processes, see [20].

4.3. Convergence of the stable meander to the h-path process.
Let us introduce the h-path process (P! : x € R) as

h(X;)
P, = - PY R\ {0 4.25
zLQt h(fl)) ;c|Jt7 T e \{ }7 ( )
Bl 7, =h(Xy) - n| 5, (4.26)

From Theorem 4.5 and the Markov properties of Pg and mn, it follows that such a
process exists uniquely. Remark that, when o = 2, the h-path process coincides up
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to some scale transform with the symmetrization of three-dimensional Bessel
process; consequently, the identity (4.26) is nothing but the Imhof relation (see,
e.g., [12, Exercise XII.4.18]).

The following result asserts that the meander converges to the h-path
process.

THEOREM 4.9. It holds that

t—00

M® % ph along (Fs). (4.27)

In order to prove Theorem 4.9, we need the

LEMMA 4.10. Fort >0 andz # 0, set

PI(T{O} > t)

Vo) = (RS 1)

(4.28)

Then it holds that Y(t,z) — 1 as t — oo for any fixred x # 0, and that Y(t,x) is
bounded in t > 0 and z # 0.

PROOF OF LEMMA 4.10. Using (2.7), we have

T e _wl0) —ugle) g
;P > 00 = ST )

asqg—0+. (4.29)

Hence we may apply a Tauberian theorem. By Proposition 3.4, we obtain
P.(Ty, > t) ~ h(z)n(R > t) as t — oo. (4.30)

This shows the first assertion.

Since the function ¢t — Y'(¢, 1) is continuous and Y'(¢,1) — 1 as t — oo, we see
that Y (¢,1) is bounded in ¢ > 0. By scaling property P,(Tjpy >t) = Pi(Tjoy >
|z|"“t), we have Y (t,z) = Y (|z| “t,1). This proves the second assertion. O

Now let us proceed to prove Theorem 4.9.

PROOF OF THEOREM 4.9. Let s> 0 be fixed and let Z; be a bounded
ZF ~~measurable functional. By the Markov property of n, we have

n[Z 1 (pory] = n[Zdiposy Px, (Tioy > t — s)]. (4.31)
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By the Imhof relation (4.26) and by (4.28), we have

Px, (T{O} >t—s)
h(Xs)
= PMZY(t—5X,)] - n(R>t—s). (4.33)

n[Z1poy] = P | Z,

(4.32)

Dividing both sides by n(R > t), using Proposition 3.4, and then applying the
bounded convergence theorem, we obtain

1,

a

MOz = rizye-sx) (1-3)" - Rzl (434)

as t — oo. This completes the proof. (I

4.4. Convergence of the meander weighed by a multiplicative
functional.
Let (& :t > 0) be an (F;)-adapted process which satisfies 0 < &, <1 and
enjoys the multiplicativity property:

(o@t+5 = éat . (éag o 9,) (435)

Such a process is called a multiplicative functional; see, e.g., [3]. Then it
necessarily follows that ¢ — & is non-increasing.

For later use, we need the following result which asserts that the convergence
of the meander to the h-path process is still valid with an extra weighing by a
multiplicative functional.

THEOREM 4.11.

&MY X g - P! along (Fy). (4.36)
To prove Theorem 4.11, we need the following two lemmas.
LEMMA 4.12.  For any x € R, it holds that

((Xt > 0),(NVOXy  t > 0)> under P!
(4.37)

law

— ((X,, t>0), (X, t> 0)) under Pf@ﬁ

as A — oo where
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P ifl<a<2orifz=0,
P=S PP ifa=2andz >0, (4.38)
PS’B’* if a=2and x <0.

PROOF. We prove the claim only in the case 1 < a < 2; in fact, almost the
same argument works in the other cases. Set X,Q) = \"/2X),. Let us apply the
convergence theorem of [11, Theorem VI.16].

First, let ¢t > 0 be fixed and let f: R — R be a continuous function such that
limy, | f(2z) = 0. Then we have

lim PY[f(X{")] = lim Py, [f(X0)] = Py1S(X0)]. (4.39)

A—00

In fact, the first identity follows from the scaling property and the second follows
from the Feller property of the h-path process, which is proved in [20]. Hence we
obtain

law

XIEA) under P;L —  X; under PS" (4.40)

as A — 0o. By a standard argument involving the Markov property, we see that
the convergence (4.37) holds in the sense of finite dimensional distributions.

Second, for any sequence {\,} with A, — oo, let us check the Aldous
condition: For a sequence of positive constants {6, } converging to zero and for a
bounded sequence of stopping times {p,},

X, 16, — X, |+ ‘Xﬁj;én — XM "X in Plprobability.  (4.41)

The convergence (4.41) is equivalent to
XM — x50 in Plprobability. (4.42)

To prove (4.42), it suffices to prove that
P”{ O ) /\1} "0, (4.43)

By the strong Markov property and by the scaling property, we have
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Pl

() An
Xp71+67‘l - X/()n )

A 1} = ph [Pf,l/,)Xp" (15, — Xo| A1]]. (4.44)

Hence we can easily obtain the convergence (4.43) by the Feller property of the
h-path process. O

LEMMA 4.13.  For any x # 0, it holds that

P&y Ty >t
PolbuiTin > — P& as t — o0. (4.45)
h(z)n(R > t)

PROOF OF LEMMA 4.13. Fort > s > 0, we have & < &, and hence we have

PJL[(g@t,T{()} > t] < PL[gévT{O} > t]

4.46
h(z)n(R>t) ~— h(x)n(R>1) (4.46)
Px (T >t —
=P |&, x, (T 5) (4.47)
* h(Xs)n(R > t)
1,
=PMEY(t —5,X,)]- <1 - ;) . (4.48)
By Lemma 4.10 and by the bounded convergence theorem, we have
Pl[éot,T{U} > t] L
li — = < P& 4.49
mSup S RS ) = el (4.49)
Since P!'&,] — P& as s — oo, we obtain the upper estimate:
Px[éaﬁT{O} >t] Y/
li rPH 0 7 o phie 1 4.50
i hz)n(R>1t) — (6] (4:50)
By Lemma 4.12, we have
((ft,rl/ﬂxt\) under P % (£..,|X1]) under P @ P!, (4.51)

Hence, by Fatou’s lemma, we have
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Py /M(Xy)] PYE/h(E X))

ligglf an(R = :ligio?f (B> 1) (4.52)
L T

Thus we obtain the lower estimate:
hgglf% = liggf% > P& (4.54)
Therefore the proof is now completed. ([

Now we prove Theorem 4.11.

PROOF OF THEOREM 4.11. For a bounded .% ;-measurable functional Z, and
for t > s > 0, we have

| »
\/
I
I
—

Px [&1—s; Tiy >t —
MW(Z,8,] = P! 2.6, w6 Ty A (h - (4.55)
X )n(R >t —s)
Note that
P&y Ty > P.(Tior >
GiTn > BT >n) _y (4.56)

hx)n(R>r) ~ h(z)n(R>r)
which is uniformly bounded in r» > 0 and = # 0 by Lemma 4.10. Note also that

Pz[éat,T{O} >7“] 720) h
h(z)n(R > r) el w70 o0

by Lemma 4.13. Hence we apply bounded convergence theorem and obtain

t—o0

MO(Z,6] =% P|2.6,P) 6] = PlZ,6) (4.58)

This completes the proof. [l
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5. General observations on the o-finite measure unifying our

penalisation problems and the martingale generator.

Following [9] and [10], we make general observations on the measure 2.

5.1. The o-finite measure unifying our penalisation problems.

Recall the definition of £2:
0

where

I'(l/a) du

am  ul/@

BydL,] =

and where PéL is defined by

Pylz, =hX0) nlz,  t>0.

Denote

g=sup{t >0:X, =0}

THEOREM 5.1.  The following statements hold:
(i) 2(g € du) = RAL,;
(ii) & is a o-finite measure on F ;
(iii) & is singular with respect to Py on F «;
(iv) For eacht > 0 and for A € %, one has

P(A)=0  if R(A)=0,
P(A) =0 if Py(A) > 0.

(5.1)

(5.2)

REMARK 5.2. Foreacht > 0, (5.5) asserts that & is equivalent to Py on %,
but (5.6) asserts that & is never o-finite on .%#;. We insist that, since & is not
o-finite on %4, (5.5) does not imply the existence of an .#;-measurable Radon-

Nikodym density.
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PROOF OF THEOREM 5.1.

(i) Since PP is locally equivalent to n, we see that PJ(X, # 0 for any s <
t) = 1 for any ¢ > 0. This shows that PJ'(X; # 0 for any ¢ > 0) = 1. Hence we see,
by the definition (5.1) of 2, that g = u under the measure Q") o Pl'. Thus we
obtain the desired result.

(ii) It is obvious by (i) that (g < w) is finite for each u > 0.

(iii) On one hand, we have #(g = co) = 0. On the other hand, since the origin
for (X, Py) is recurrent, we have Py(g < oo) = 0. This implies that & is singular
to Py on .

(iv) Let A € %, and suppose that Py(A) =0. For T > t, we have

/ "RAL) (@ o P (4) = / RUALI(Q ¢ P (4) + / ' RALIQW(4). (5.7)

For 0 < u < t, we have (Q™ e P/)(A) = (Q™ e n)[14h(X;)], and hence we obtain

[ miaz(Q « 7)) = Rincx) <o (53)

For t <u < T, we have

T
/ ByldL,]Q" (A) = Pu[La(Ly — L)] = 0. (5.9)

Letting T — oo, we obtain [;° Py[dL,]Q™ (A) = 0. Therefore we obtain 2(A) = 0.
Conversely, let A € .%; and suppose that Py(A) > 0. Then

Z) = [ RALIQYV(A) = BlLa(L ~ L) (5.10)
¢
Note that the last quantity is oo since Py(Lo, = c0) = 1. Hence we obtain &(A4) =

0. O

5.2. The martingale generator.

THEOREM 5.3. Foreachx € R,t > 0 and for each non-negative measurable
or P.-integrable functional F, there exists a unique .Fi-measurable functional
M, .(F) (possibly taking infinite values) such that

(F'- Zo)l 2, = Mio(F) - Prl 5, (5.11)
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In particular, if F is P,-integrable, then the process (M;,(F):t>0) is an
(%, P)-martingale such that

MO,J:(F) = '@T[F} (512)
and that

lim M, ,(F) =0 P,-almost surely. (5.13)

t—00

In the case z =0, we write M;(F') for M;(F). For each = € R, we call the
operator LY(,) 3 F — (M;,(F) : t > 0) the martingale generator.

PROOF. It is obvious that the uniqueness holds in the sense that, if FF =G
P-almost everywhere, then M, ,(F) = M, ,(G) Py-almost surely. Without loss of
generality, we may suppose that x = 0 and that F' is non-negative.

Let n be a positive integer and set F;, = F - 1{,.,,;. By (ii) and (iv) of Theorem
5.1, we see that (F, - &)| 7, is a finite measure and is absolutely continuous with
respect to P[)|‘¢1. Hence we may apply the Radon-Nikodym theorem to obtain the
desired functional M;(F,) as the Radon-Nikodym derivative. Hence the desired
functional M;(F') is obtained as the increasing limit lim,_,. M;(F,) by the
monotone convergence theorem.

Suppose that F is P-integrable. For s < ¢, we have

P[Z,My(F)] = P|Z,F] = Ry|Z,M,(F)]. (5.14)

Hence (M, (F) :t > 0) is a (%, Py)-martingale. It is obvious that My(F) = Z[F].

Since (M;(F):t>0) is a non-negative martingale, M;(F) converges Py-al-
most surely to a non-negative .%,-measurable functional My (F). For 0 <
s<t<oo, set A(s,t) ={g: > s} € F:. Note that Py(A(s,00)) = Po(g>s)=1.
Applying Fatou’s lemma and then applying the dominated convergence theorem,
we obtain

Po[Mec(F)] = Po{Laguey Mec (F)] < limin Po[Lao ) My(F) (5.15)

:lifrninf@[lA(s’t)F] = g[lfus,o@)F]. (516)
Since P(g=00) =0, we have lim, ..c P[lyx)F]=0. Hence we obtain
Py[My(F)] =0, which implies that Py(M(F)=0) = 1. Therefore the proof is
completed. O
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6. Convergence lemmas.

Let 0 <y < 1. For integrable functions ;(u) such that t;(u) — F(u) as
t — 0o, we may expect that

/Ut(l - %)7_1wt(U)du [ Yu)du — ast— occ. (6.1)

0

We need this convergence for several functions ; in order to solve our
penalisation problems, as we have seen roughly in (1.11). In fact, we shall see
that we must be careful in dealing with the convergence (6.1). In this section we
give some sufficient conditions for the convergence (6.1) as well as a counter-

example.
If ¢;’s satisfy

t 00
/ P (u)du — / (u)du as t — oo, (6.2)
0 0
then the convergence (6.1) is equivalent to
I(¢y,t) — 0 as t — 0o (6.3)

where

1(),t) = /0 t{ <1 - %)W_l—l}z/)(u)du. (6.4)

First, we present the following counterexample.

EXAMPLE 6.1. The convergence (6.1) fails if

n=1 =7 n

i) = () = 3 ni1 (o) (u). (65)

PROOF. 1 is integrable since fooo P(u)du =3 07 n~% < co. But limsup,
I(¢,t) = 0o because
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m n
I(¢p,n) >nT= - nl’v/ ey (n—w) My — 2 (6.6)
n—n 1=7
249 A=)y
=n1 -7 AT T -2 (6.7)
=y ¥ -0 - oo as n — oo. (6.8)

This prevents the convergence (6.1).

On the other hand, we give three sufficient conditions for the convergence
(6.1); the first one is rather theoretical, but the second and third ones can be
readily applied. O

LEMMA 6.2 (Dominated convergence). Suppose that i’s are integrable
functions such that fooo Y (u)du —>~ng Y(u)du for some integrable Junction 1.
Suppose, in addition, that || < for some integrable function ¥ such that
limy oo I(¢y,t) = 0. Then

~

/O t (1 - %) " pwau - /0 Tpdu ast— oo (6.9)

holds.
PROOF.  This is obvious by [I(¢;,t)| < I(|¢],t) < I(4h;,t) — 0 as t — oco. [

LEMMA 6.3. Suppose that ¥ is a non-negative integrable function and
satisfies

lim {tsup 1/J(u)} = 0. (6.10)

u>t
Then limy_,o I(1),t) = 0.

PROOF. Let 0 < e < 1 be fixed. We split (2, t) into a sum I(v1,t) + I(19,t)

where 1111 = /(/}1(&,00) and ¢2 = 1bl(O,a‘,)'
By the definition of I(v¢4,t) and changing variables to v = ut, we have

I(¢1, 1) :/E:{ (1 - %)Afl—l}w(u)du (6.11)
<tsupy(u) /g:{ (1 - %)H—l} dTU (6.12)

2 {6tsupw(u)} [{(1 —oy =1, (6.13)

9 u>et £
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By the assumption (6.10), we obtain limy_., I(¢1,t) = 0 for any fixed € > 0.
By the definition of I(1s,t), we have

I(3a,t) < {ﬁ — 1} /OOO Y(u)du. (6.14)

Hence we have limsup, . I(¢9,t) vanishes as & — 0+. Now the proof is
completed. (I

LEMMA 6.4.  Suppose that 1¥(u) = 11 (u)ha(t — u) where 1y is integrable and
Yy is bounded measurable with lim, . 12(u) = 12(00) > 0. Suppose, in addition,
that the function tw— fg(t — )" "y (u)du is ultimately non-increasing as t
increases. Then limy_,o I(14,t) = 0.

PrOOF. Taking the Laplace transform, we have

/0 dte’qt/o (t—u)"" wt(u)du:/o e’quz/q(u)du/o e M7 ey (t)dt (6.15)
NF(V)q_'ng(oo)/o Pr(u)du asqg—0+. (6.16)

Hence we may apply the Tauberian theorem. By the monotonicity assumption, we
obtain

t o0
/ (t —u)" ey (u)du ~ t771¢2(00)/ P (u)du as t — oo. (6.17)
0 0
On the other hand, we have

/0 Y (u)du = /0 1 (u)ha(t — w)du — Pa(00) /0 1 (u)du ast—oo. (6.18)

Therefore we obtain lim; .o I(¢y,t) = 0. O

7. Penalisation with a function of the local time at the origin.

7.1. Results.
THEOREM 7.1.  Let f be a non-negative function on [0,00). Then it holds that

[o.¢]

Mi(f(Loc)) = h(X) f(Lt) + i fhdi, =0 (7.1)
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Consequently, it holds that
AL = ML) = [ rDaL (72)

REMARK 7.2. As an outcome of (7.1), we have established that its right
hand side is a (P, %#;)-martingale, a well-known fact for a =2 (see [12,
Proposition VI.4.5]).

THEOREM 7.3. Let f be a non-negative function on [0,00) such that
I(f) ::/0 f(Hdl € (0, 00). (7.3)

Then it holds that

f(Lt)P[] t—00 a
Loy 5 )2 ong (7). (74)

Consequently, the penalisation with the weight functional Ty = f(L;) is given as

f(Ly) - Py — f(Ly) -2
Byl f(Lt)] I(f)

along (Fs). (7.5)

7.2. Proofs.
PROOF OF THEOREM 7.1. Let t>0 be fixed and Z; a non-negative
Z-measurable functional. On the one hand, since Lo, = L; on {g < t}, we have

P21 f(Loo)lg<ry] =212 f(Lt) 1<y (7.6)
- A PldLy] (Q(“) oPé‘) (Z,f(Ly)] (7.7)
= [ RIAL(QY o n) Zif(LORCX) (7.8)

= / n(R >t~ u)R{dL,] (@ e M) (Zf(L)R(X)]  (79)
0

=R[Z f(L)h(Xy)]. (7.10)

On the other hand, we have
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P L] = [ PILI(QV < B) 2L (1)
- [ RlaLjevzL) (1.12)
-p, {Zf, [ h f(Lu)dLu] (7.13)
—P, [Zt /L oc f(l)dl]. (7.14)

Hence we obtain

PZif(L)] = P [Zt{f(Lt)h(Xt) + N f(l)dl}]. (7.15)

Lt

Therefore we have completed the proof. O

PROOF OF THEOREM 7.3. We need only to prove the first assertion that

m ey f(Ly) - & along (). (7.16)

Set (u) = p,(0)QM™[f(L,)]. We will prove in Lemma 7.4 below that
satisfies the assumption of Lemma 6.3. Now we apply Lemma 6.3 for the function
1 and we obtain

w\ o

_u O () N (w)
/O (1 t) PALJQW [f(L)] /U PALIQUf(L)]  (7.17)

as t — oo. Let s > 0 be fixed and let Z, be a bounded .% ,-measurable functional.
Then

/0 " RdL) (@ o M) Zo (L))~ /0 " RdLy] (@V e R) 2L (7.8)

as t — oo by Lebesgue’s convergence theorem. Hence we can apply Lemma 6.2,
and we obtain
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WAL o) e
~ [ RELI(QV e P2 AL (st o)
0
= P12, (L)

as t — oo. This completes the proof.

LEMMA 7.4. Set

P(u) = pu(0)Q™[f(Ly))-

(7.19)

(7.20)

(7.21)

(7.22)

Then the function ¥(u) is continuous and u)(u) — 0 as u — oo. In particular, the

function ¢ satisfies the assumption (6.10) of Lemma 6.3.

PROOF. For any non-negative Borel function ¢, we have

/OOC d(u)(u)du =Py {/ o(u) f(Ly dL“}

:A Bylo(n)]f(s)ds
:Am%ww“mV@®

where 3 =1 — 1/a. If we denote p'¥)(v) = Py(r; € dv)/dv, we have

/ dsf(s / 6(54/7) ) (1) dv

— [ s~1B 500 (5159 £(s)ds.
—A dw)A o (57 Y0u) f(s)d

Hence we obtain

Mw=Ax§WNWfWMﬂWH

(7.23)
(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Since the function p!¥(v) is unimodal (see, e.g., Sato [19]), we see that vp!”) (v) is
bounded in v > 0 and that vp!? (v) — 0 as v — oo. Therefore, by the assumption



Penalising symmetric stable Lévy paths 785

that [ f(s)ds < oo, we obtain the desired result. O

REMARK 7.5. In the Brownian case oo = 2, the corresponding § equals 1/2
and

1
p1/2) () = — (7.29)

2V o3

8. Feynman-Kac penalisations.

8.1. Results.
Recall that our Feynman-Kac penalisation is the penalisation with the
weight functional

& =exp{ — [ L(t,z)V(dz) p, t>0 (8.1)
([ revien)

for a non-negative measure V(dz) on R.

THEOREM 8.1. Let V be a non-negative measure on R such that
0< /(1 + [y* HV(dy) < . (8.2)

Let x € R. Then it holds that

0< 2,[60] <0 (8.3)
and that
(& Vzyot) - Pr i
tn(;g+t) — (X lgy—x)) - Px along (F,), (8.4)
(& Lzy<t) - Pr tooe
% - (@@Zol{T{o}<oo}) Py along (F) (8.5)
and

v
(g)t . Pr t—o0 Vv
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COROLLARY 8.2. Let V be a non-negative measure on R such that (8.2)
holds. Then the penalisation with the weight functional T'y = é‘)y s given as

&Py oo EY - P,

Vi v

B[] ZulE5]

along (Fs). (8.7)

THEOREM 8.3. LetV be a non-negative measure on R such that (8.2) holds.
Set
Cy = 2[6Y). (8.8)
Let x € R. Then it holds that

PT[@@Y,T{O} > t] .

P = Jim =SS < 2060 Ty = o] = @ LKL (89)
P&); Ty < 1]
2 NERT z|@y s 4{0} = o V. . v
QDV(I) = tllglorrl(R—>t) = yx[goo,T{o} < OO} = CVP:,;[(?T(O}] (810)
and
oy (r) == lim RGN = P,V ) = h(z)P'[EY ] + Oy P&, ] (8.11)
Fampes n(R > t) C1™ 00 z I oo cL Ty
=0l (@) + &} (@). (8.12)
Moreover, fort > 0, it holds that
v 1 v
My (8 oLt =oc}) =Pv (Xe) Lz 51367 (8.13)
Mo (€217 <o0)) :{(p%/(Xt)l{T(o}St} + @%/(Xt)}é":/7 (8.14)
and
Mo (6) = pv(X)&/ . (8.15)

We divide the proofs of Theorems 8.1 and 8.3 into several steps in the
following subsections.

REMARK 8.4. “For the Feynman-Kac penalisations (Theorems 8.1 and 8.3)

*Tildes in this remark have nothing to do with our previous notation’s for independence.
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in the Brownian case, Roynette-Vallois-Yor ([15], [14], [13]) have given more
characterisations of the limit measure than the contents of Theorem 8.3. For

convenience, we consider the Wiener measures (W, : © € R) normalized with the
weight functional

&l = exp{—%/L(t,x)V(dx)}. (8.16)

For each z € R, let #, denote the law of (x4 X;:t > 0) under #. Then the
function

Br(x) = lim VIW,[E)] = 7. [6%] (8.17)

is the unique solution of the Sturm-Liouville differential equation
dgy(z) = ey (x)V(dx) (8.18)
subject to the boundary conditions

2 2
lim @y, (z) =1/—  and lim @ (z) =—/— (8.19)

LT—00 s T——00 s

Moreover, the limit measure WY (instead of PY) is the law of the unique solution
of the stochastic differential equation

Py (X)

dX;, =dB; + =
' T ov(X)

dt, Xo=x. (8.20)
We do not know how to develop these arguments in the stable Lévy case, for

which it would be interesting to obtain counterparts of (8.18) and (8.20).

8.2. Penalisation weighed by a general multiplicative functional.

In this subsection, we make a general study. Let & = (& :t>0) be an
(%;)-adapted process which satisfies 0 < &; <1, ¢ >0 and is a multiplicative
functional:

(g]H-S = gt . ((g]., o et)a t, s> 0. (821)

Note that the process t+— &; is necessarily non-increasing; in fact, &5 =
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& (E500;) < & for any t,s > 0.

THEOREM 8.5.  Suppose that

/ PydL,])Q™M[&,] < oo. (8.22)
0
Then it holds that
- P tooo
—_— — £ P l F). 8.23
e along (F,) (5.23)

PROOF. By the multiplicativity property, we have

26 = [ RALI(QV e Bl (324
:{ /0 ” Py[dL,JQW[&,] }P({I' (o). (8.25)

Set
pi(u) = pu(0)(Q™ o MU=)[£,]. (8.26)

Then we have ¢ (u) = ¢1(u)ts(t —u) where ¢1(u) = p,(0)Q™[&,] and ¢ (t) =
MW[&,]. Let us check that all the assumptions of Lemma 6.4 are satisfied for
¥ (u). Note that

/ooo r(u)du = /OOO By[dL, Q™6 ] (8.27)

and it is finite by the assumption (8.22). Note also that 1, is bounded and that
limy o0 Y2(t) = P[] by Theorem 4.11. Recall the following identity:

P& = /0 t n(R > t — u)PydL,] (QW . M(t*“)) £,]. (8.28)

Since the left-hand side is non-increasing as ¢ increases, we see that the function
t— fg(t — )2 "y (u)du is non-increasing as ¢ increases. Hence we have verified
all the assumptions of Lemma 6.4, and we obtain lim;_. I(¢),t) = 0. The
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remainder of the proof follows from Lemma 6.2. U

8.3. Non-degeneracy condition.
Now we return to the case where &; = &) . By the multiplicativity of (&} ), we

have
Oy = 26V = /O " RdLy) CRRYAI0E (8.29)

_ /O " RALJQW VP EY ] (8.30)

:{/Ooo PU[@@Z]ds}Pé‘[szo]. (8.31)

THEOREM 8.6. The following assertions hold:
(i) If V #0, then [;° Py[&Y]ds < oo;
(ii) If V((—e,€)) < oo for some e > 0, then [* PO[cQZ}ds > 0;
(i) If [ h(z)V(dz) < oo, then P}[EY] > 0;
(iv) If 0 < [{1 + h(z)}V(dz) < oo, then 0 < Cy < co.

For the proof of Theorem 8.6, we need the following

LEMMA 8.7.  The following statements hold:
(i) n[L(R,z)] =1 for any x € R\ {0};
(ii) PY[L(t,z)] = h(z)Py(Tyoy < t) for any t > 0 and any x € R;
(iii) PML(co,z)] = h(x) for any x € R.

Remark that n[L(R,0)] = 0; in fact, L(R,0) = 0 n-almost everywhere.

PROOF.
(i) For a non-negative Borel function f, we have

/ def(z)n[L(R, 2)] = /0 " nlf(X)]dt = / dz f(z) /0 ()t = / dzf(z). (3.32)

Hence we obtain n[L(R,z)] =1 for almost every z € R. By the scaling property,
we obtain the desired conclusion.
(ii) Let ¢t > 0 be fixed. For a non-negative Borel function f, we have
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Jass@riLea) = [ R = [ o 639
— [ def(@)h() /O o(s, z)ds (8.34)
:/dxf(z)h(:r)Pm(T{o} <t). (8.35)

Hence we see that PY[L(t,x)] = h(z)P,(Tjo) < t) for almost every x € R. Since
t +— PI[L(t,1)] is continuous by the monotone convergence theorem, we see, by
the scaling property, that R\ {0} — P}L(t,z)] is continuous. Noting that
L(t,0) = 0 Pl-almost surely, we complete the proof.

(iii) Letting ¢t — oo in (ii), we obtain PJ[L(oco,x)] = h(z) by the monotone
convergence theorem. O

Now we prove Theorem 8.6.

PROOF OF THEOREM 8.6. Note that
£ = exp{—sV({O}) = / L(R, a:)[el]V(dx)} (8.36)
‘ leD, I<s / {x#0}

where L(R, z)[e;] is the local time at x of the excursion e; up to its lifetime. Hence
we have Po[é”;/s] = exp{—sKy} where

l—exp{— / L(R,x)V(dx)H. (8.37)
{a#0}

KV = V({O}) +n

Consequently we have

o 1
Byl&,]ds = — . 8.38
| nls = (8.39)

(i) If fow Po[éog]ds = 00, then we have Ky =0, which implies that V = 0.
Hence the assertion is proved by contraposition.
(i) Suppose that V((—e¢,€)) < oo for € > 0. Then, by Lemma 8.7, we have

n [ /( | HRo)V(d)

€)

_ /( LRIV = V(-0) <o (339

Now we obtain
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n _1 - exp{ / L(R, I)V(dx)},stg(})) | X(t)] < 5] (8.40)

=n|l- exp{—/ L(R, x)V(dx)};sup|X(t)| < €‘| (8.41)
L (—e€) >0

n L(R,z)V(dz Q. 8.42

<n| [ MRavVn) < (8.42)

Since n(sup;so|X(t)] > ¢€) < 0o, we obtain Ky < co. Hence the assertion is
proved.
(iii) By Lemma 8.7, we obtain

P! [ / L(oo,x)V(dx)} = / h(z)V(dz) < occ. (8.43)
This implies that
Ph (/ L(oo, )V (dz) < oo) =PEL >0)=1, (8.44)

which proves P}[&Y.] > 0.
(iv) Suppose that 0 < [{1+ h(z)}V(dz) < co. Then the assumptions of (i)—
(iii) are all satisfied. Noting that &2, < 1, we obtain 0 < Cy < co. O

8.4. Proof of Theorems.

PROOF OF THEOREM 8.1. Note that (&) and (é"yl{TmN}) are multi-
plicative functionals which take values in [0, 1]. By Theorem 8.6, we may apply
Theorem 8.5 (after translating = to the origin) to obtain (8.6) and (8.4).
Subtracting both sides of (8.4) from (8.6), we obtain (8.5). O

PROOF OF THEOREM 8.3. The second equalities of (8.9), (8.10) and (8.12)
are obvious by Theorem 8.1. The last equality of (8.9) is obvious by Lemma 4.13.
The last equality of (8.10) is obtained as follows:

Pf[éayl{T{o}St}] :/tP [(ngT c dS] Po[gyfs]
n(R > t) 0 w50 2{0) n(R > t)
== PV Ty € ds)2[EY] = Oy P, [€7,)  (8:46)

0

(8.45)
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Now we obtain the last equality of (8.12) by adding (8.9) and (8.10).

Let 0 < s < t. By the Markov property of (P,) and by Theorem 8.1, we have

PX.;[(g)Ks;T{U} >t — S] _Pz[oml/;T{O} > t]

P& 1p, < =
T17s HTo>s) n(R>t) n(R>t)

t—o00

=% 2,161 1=
—h(x)P[£)].

By the Markov property of (P"), we have
h(z) By 65] = h(z) Py [6] Py [EX]] = Pal &) Ly ey 00 (X0)].
Hence, by Scheffé’s lemma, we obtain

PXS[G@Y,S;T{O} >t—8] t—oo |
n(R >t)

Therefore, for any bounded % ;-measurable functional Z4, we have

P26 Tyoy > 1]
n(R > 1)

Px_;[éaKS;T{U} >t — S]
n(R >t)

Vv
=P, Zscg()s I{T(0}>s}

t—o00

P2, Ly >sp00 (X)),
Combining this with (8.4), we obtain
@m[zsgovol{T{o):w}] = P:c[ngl/l{T{ops}‘P%/(XS)]-

This implies the identity (8.13).
By similar arguments, we have

Po[Z.6) 1y <]
n(R >t)

Py 61
n(R > t)

v
=P, Zeéag 1{T{U}§s}

t—00

Hf)ac {Zséagl{T(U) <s} (pV(Xs)i|

and

_HPV(Xé) in Ll(éogl{T(g}>s} : Pab)

(8.50)

(8.51)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)
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P:(: [ngl/l{5<T(0)§t}]
n(R > t)

Py [6) i Ty <t — ]
n(R >t)

v
=F, Zsé()g 1{T{U)>s}

] (8.57)

t—o0

— P, [Zséi/l{Tm)>s}<p%/(Xs):|. (858)

Combining these two limits together with (8.5), we obtain (8.14).
The remainder of the proof is now obvious. O

9. Characterisation of non-negative martingales.

For a non-negative Z-integrable functional G such that Z[G] > 0, we define
the probability measure PY on .% ., as

G-»
G:m. (9.1)

We say that a statement holds Z-almost surely if it holds P%-almost surely for
some P-integrable functional G such that G > 0 Z-almost everywhere. By the
Radon-Nikodym theorem, Z?-almost sure statement does not depend on the
particular choice of such a functional G.

The following theorem is the stable Lévy version of [9, Corollary 1.2.6].

THEOREM 9.1.  Let (Ny) be a non-negative (F, By)-martingale. Then (Ny) is
represented as Ny = M;(F) for some F € L'(2) if and only if it holds that

Nt t—o00
—_— F ZP-almost l d P[F] = Ny. 9.2
T3 h(X) — almost surely an [F] 0 (9.2)

Although it is completely parallel to that of [9], we give the proof for
completeness of the paper.

LEMMA 9.2. Let F and G be a non-negative P-integrable functional and
suppose that G > 0 P-almost everywhere. Then it holds that

- [t o]

Consequently, it holds that
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My(F) t-oc F

() iy e PC_almost surely. (9.4)

PROOF. Let Z; be a non-negative .%;-measurable functional. On the one
hand, we have

|25 | = 2 = nizonE), (9.5)

On the other hand, we have

o[ MV _ g 2D

My(G) MG G} = D[Z:Mi(F)). (9.6)

Hence we obtain PY[Z,F/G] = PY[Z.M,(F)/M;(G)], which completes the
proof. O

LEMMA 9.3. Let F' be a non-negative P-integrable functional. Then

M(F) -0
—_— F P-almost ly. 9.7
T (X)) — almost surely (9.7)

PROOF. We apply Theorem 7.1 with f(I) = e~ to see that G = e~ is a
positive -integrable functional such that

Mi(G) = (1+h(X;)e . (98)
Hence we obtain
M(G) -0
L e PC_almost surely. (9.9)
1+ h(Xy)

Hence, by Lemma 9.2, we obtain

My(F)  M(G) M(F) o

1+ h(Xt) 1+ h(Xt) Mt(G) - almost surely ( )

F
G

This completes the proof. (Il
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The following proposition states an interesting representation of any non-
negative (Pp,.%;)-supermartingale, a component of which is a certain (M;(F'))
martingale.

PROPOSITION 9.4.  Let (N;) a non-negative (F, Py)-supermartingale.
(i) There exists a non-negative P-integrable functional F such that

N —00
=X p P-almost surely; (9.11)
1+ h(Xy)

(ii) Denote the Py-almost sure limit of (N;) as t — 00 by N. Then (N;)
decomposes uniquely in the following form:

N = My(F) + Py[Noo|F 4] + & (9.12)

where:
(iia) (My(F)) is a non-negative (F, Py)-martingale such that

Mi(F) o0 }
m — F (P-a.s.); (9.13)

t—o00

M(F) — 0 (Py-a.s.) and

(iib) (Po[Nwo|-#4]) is a non-negative uniformly-integrable (%, Py)-martingale
with Py-integrable terminal value Ny, such that

L—00 PO[Noo|jz‘] t—00
Py[Noo|Z\] =3 N (Pp-a.s. d P UTN 0 (Peas); (9.14
0[Noo|Z1] — N (Po-a.s.)  an LX) (Z-a.5.);  (9.14)

(iic) (&) is a non-negative (F;, By)-supermartingale such that

t—o0 gt t—00

& — 0 (Py-a.s.) and TTh(X) — 0 (L-a.s.). (9.15)

PROOF.
i) Let G = e ~. For any non-negative .%,-measurable functional Z,, we see
y
that

pC {ZS : Mi\(fta)] - 32[25 : J\/.fi\([fG) : G] = Py[Z,N)] < Py[Z,NJ].  (9.16)

Hence we conclude that (N;/M;(G)) is a non-negative (.%;, P%)-supermartingale.
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Thus there exists a non-negative %, -measurable functional ( such that
N;/M;(G) — ¢ PS-almost surely. By Lemma 9.3, we see that

Nt Nt Mf(G) t—o0 G
= . — (G = F P*-almost surely. 9.17
TEh(X) - MG Th(X) ° - (017)

(ii) For any non-negative .#;-measurable functional Z;, we have

P[Z:M(F)] = P|ZiF) = PC[Z(]. (9.18)

By Fatou’s lemma, the last expectation is dominated by

N,
lim inf pe {Zt i (G)] = liminf Ry[ZN,] < Po[ZiN;)- (9.19)

This proves that M;(F) < N; Py-almost surely. Now we see that (N, := N; —
M,(F)) is a non-negative (%, Py)-supermartingale. Since M;(G) — 0 Py-almost
surely as t — 0o, we see that

lim N, = tlim N; = N Py-almost surely. (9.20)

t—00
For any non-negative .#;-measurable functional Z;, we have

uU—00

we see that Py[Ny] < oo and that (& := N; — Py[Nw|-#;]) is still a non-negative
(%, Py)-supermartingale. Now the proof is completed by (i) and by Lemma
9.3. O

Finally, we proceed to prove Theorem 9.1.

PROOF OF THEOREM 9.1. The necessity is immediate from Lemma 9.3. Let
us prove the sufficiency.

Let (N;) be a non-negative (%, Py)-martingale. Then, by Proposition 9.4, we
have the decomposition (9.12). Letting ¢t = 0, we have

Ny = My(F) + Po[Nao] + &. (9.22)

Since Ny = My(F) = &[F] by the assumption, we have
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Py[Nx] = & = 0. (9.23)

This proves that N; = M;(F) Pyp-almost surely, which completes the proof. ([l
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