©2009 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 61, No. 2 (2009) pp. 427–436 doi: 10.2969/jmsj/06120427

Commutators of C^{∞} -diffeomorphisms preserving a submanifold

By Kōjun Abe and Kazuhiko FUKUI

(Received May 15, 2008)

Abstract. We consider the group of C^{∞} -diffeomorphisms of M which is isotopic to the identity through C^{∞} -diffeomorphisms preserving N for a compact manifold pair (M, N) and prove that the group is perfect. Also we prove that it is uniformly perfect for a certain compact manifold with boundary.

1. Introduction and statement of results.

Let M be a connected C^{∞} -manifold without boundary and let $D_c^{\infty}(M)$ denote the group of all C^{∞} -diffeomorphisms of M which are isotopic to the identity through C^{∞} -diffeomorphisms with compact support. It is well known by the results of M. Herman [8] and W. Thurston [16] that $D_c^{\infty}(M)$ is perfect, that is, every element of $D_c^{\infty}(M)$ is represented by a product of commutators. There are many analogous results on the group of diffeomorphisms preserving a geometric structure of M.

In this paper we consider the relative case. Let M be an m-dimensional connected C^{∞} -manifold and N a proper n-dimensional C^{∞} -submanifold and let $D_c^{\infty}(M, N)$ denote the group of all C^{∞} -diffeomorphisms of M which are isotopic to the identity through C^{∞} -diffeomorphisms preserving N with compact support.

The first purpose of this paper is to prove the perfectness of $D_c^{\infty}(M, N)$. We have the following.

THEOREM 1.1. $D_c^{\infty}(M, N)$ is perfect for $n \ge 1$.

COROLLARY 1.2. Let M be an m-dimensional C^{∞} -manifold with boundary. Then $D_c^{\infty}(M, \partial M)$ is perfect for $m \geq 2$.

By the fragmentation argument, the proof of Theorem 1.1 is reduced to prove

²⁰⁰⁰ Mathematics Subject Classification. Primary 57R50; Secondary 58D05.

Key Words and Phrases. diffeomorphism group, commutator subgroup, compact manifold with boundary, uniformly perfect.

The second author is partially supported by Grant-in-Aid for Scientific Research (No. 20540098), Japan Society for the Promotion of Science.

the following.

THEOREM 1.3. $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ is perfect for $n \ge 1$.

In the case n = 0, the second author [6] proved that $H_1(D_c^{\infty}(M, N)) \cong \mathbf{R} \times \cdots \times \mathbf{R}$ (k times) for $N = \{p_1, \dots, p_k\}$. Here $H_1(D_c^{\infty}(M, N))$ is defined by the quotient group of $D_c^{\infty}(M, N)$ by its commutator subgroup. In [1], [2] we treated the case when M has a smooth action of a compact Lie group, and calculated the first homology group of the equivariant diffeomorphism group of M.

The second purpose of this paper is to study the uniform perfectness of $D_c^{\infty}(M, N)$. Since $D_c^{\infty}(M)$ is perfect by Thurston [16], each element f of $D_c^{\infty}(M)$ can be represented as a product $\prod_{i=1}^{k} [g_{2i-1}, g_{2i}]$, where $g_i \in D_c^{\infty}(M)$. If every element of $D_c^{\infty}(M)$ can be represented as a product of a bounded number k of commutators of its elements, then the group is said to be *uniformly perfect*. For example, it is known that $D^{\infty}(S^1)$ is uniformly perfect. In fact $D^{\infty}(S^1)$ is represented as a product of at most two commutators (M. Herman [9]).

Recently T. Tsuboi [18] has studied the uniform perfectness of $\text{Diff}_c^r(M)$ and proved that it is uniformly perfect if $1 \leq r \leq \infty$ and $r \neq \dim M + 1$ and M belongs to a certain wide class of manifolds. In [3] Burago, Ivanov and Polterovich, they obtained the remarkable results on the uniform perfectness of $\text{Diff}_c^r(M)$ achieved with excellent methods. On the other hand, if we consider the diffeomorphisms of M preserving a geometric structure of M, then there exist certain cases that the group is not uniformly perfect (c.f. J. Gambaudo-É. Ghys [7], M. Entov [4]).

From Corollary 1.2, each element f of $D_c^{\infty}(M, \partial M)$ can be represented as a product of commutators. Then we can prove the following uniform perfectness for $D_c^{\infty}(M, \partial M)$.

THEOREM 1.4. Let M be an m-dimensional compact manifold with boundary such that both groups $D_c^{\infty}(intM)$ and $D^{\infty}(\partial M)$ are uniformly perfect. Then $D^{\infty}(M, \partial M)$ is a uniformly perfect group for $m \geq 2$.

2. Basic lemmas and the group of leaf preserving diffeomorphisms.

In this section, we prepare basic lemmas and a result which are necessary to prove Theorem 1.3.

Let $G: \mathbb{R}^n \to GL(m-n, \mathbb{R})$ be a C^{∞} -mapping satisfying that G is C^1 -close to the constant mapping $e: \mathbb{R}^n \to GL(m-n, \mathbb{R}), x \mapsto I_{m-n}$ and the support of Gis contained in the open ball $B^n_{\delta} = \{x \in \mathbb{R}^n \mid ||x|| < \delta\}$. Then we have the following by Lemma 4 of [1].

LEMMA 2.1. There exist C^{∞} -mappings $G_i: \mathbb{R}^n \to GL(m-n, \mathbb{R})$ and

428

 $\varphi_i \in D_c^{\infty}(\mathbf{R}^n) \ (i = 1, 2, \cdots, q = (m - n)^2)$ satisfying that

- (1) each φ_i is C¹-close to the identity and is supported in B_{δ} ,
- (2) each G_i is supported in $B^n_{2\sqrt{3}\delta}$ and is C^1 -close to e, and (3) $G = (G_1^{-1} \cdot (G_1 \circ \varphi_1)) \cdots (G_q^{-1} \cdot (G_q \circ \varphi_q)).$

Let \mathscr{F}_0 be the product foliation of \mathbb{R}^m with leaves of form $\{\mathbb{R}^n \times \{y\}\}$ where (x,y) is a coordinate of $\mathbf{R}^m = \mathbf{R}^n \times \mathbf{R}^{m-n}$. By $D^{\infty}_{L,c}(\mathbf{R}^m, \mathscr{F}_0)$ we denote the group of leaf preserving C^{∞} -diffeomorphisms of $(\mathbf{R}^m, \mathscr{F}_0)$ which are isotopic to the identity through leaf preserving C^{∞} -diffeomorphisms with compact support. Then we have the following splitting lemma.

LEMMA 2.2 (Splitting lemma). Suppose that $f \in D_c^{\infty}(\mathbb{R}^m, \mathbb{R}^n)$ is C^2 -close to $1_{\mathbf{R}^m}$ and the support of f is contained in B^m_{δ} . Then there are $g_1, g_2 \in D^{\infty}_c(\mathbf{R}^m, \mathbf{R}^n)$ such that

- (1) $f = q_2 \circ q_1$,
- (2) g_1 and g_2 are C^2 -close to $1_{\mathbf{R}^m}$ and their supports are contained in B^m_{δ} , and
- (3) $g_1 \in D_{L,c}^{\infty}(\mathbf{R}^m, \mathscr{F}_0), \ \hat{g}_2(x) \in D_c^{\infty}(\mathbf{R}^{m-n}, 0) \text{ for any } x \in \mathbf{R}^n, \text{ where } \hat{g}_2(x) : \mathbf{R}^{m-n} \to \mathbf{R}^{m-n} \text{ is defined by } \hat{g}_2(x)(y) = g_2(x, y) \text{ for } y \in \mathbf{R}^{m-n}.$

PROOF. Take $f \in D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$. We have $\|f - \mathbf{1}_{\mathbf{R}^m}\|_2 < \varepsilon$ for a sufficiently small $\varepsilon > 0$, where $\|\cdot\|_2$ denotes the C^2 norm. We put $f(x,y) = (f_1(x,y), f_2(x,y))$ $f_2(x,y) \in \mathbf{R}^m = \mathbf{R}^n \times \mathbf{R}^{m-n}$. Note that $f_2(x,0) = 0$. Put $g_1(x,y) = (f_1(x,y),y)$. Then we have $g_1 \in D^{\infty}_{L,c}(\mathbb{R}^m, \mathscr{F}_0)$ and g_1 is C^2 -close to $1_{\mathbb{R}^m}$ since $\|g_1 - 1_{\mathbb{R}^m}\|_2 \leq$ $\|f - \mathbf{1}_{\mathbf{R}^m}\|_2 < \varepsilon$. We define a map $\hat{f}_1 : \mathbf{R}^{m-n} \to D_c^{\infty}(\mathbf{R}^n)$ by $\hat{f}_1(y)(x) = f_1(x,y)$ for $y \in \mathbf{R}^{m-n}$ and $x \in \mathbf{R}^n$. Then \hat{f}_1 satisfies $\hat{f}_1(y) = 1_{\mathbf{R}^n}$ for $||y|| \ge \delta$. Then we have by easy calculations that $g_1^{-1}(x,y) = (\hat{f}_1(y)^{-1}(x),y)$ for $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^{m-n}$. We put $g_2 = f \circ g_1^{-1}$. Then we have $g_2(x,y) = f \circ g_1^{-1}(x,y) = (x, f_2(\hat{f}_1(y)^{-1}(x), y))$ for $(x,y) \in \mathbf{R}^m = \mathbf{R}^n \times \mathbf{R}^{m-n}$. Note that $g_2 \in D^{\infty}_{L,c}(\mathbf{R}^m, \mathscr{F}_1)$, where \mathscr{F}_1 is the product foliation of \mathbf{R}^m with leaves of form $\{\{x\} \times \mathbf{R}^{m-n}\}$. By putting $\hat{g}_2(x)(y) =$ $f_2(\hat{f}_1(y)^{-1}(x), y)$, we have a map $\hat{g}_2: \mathbb{R}^n \to D_c^{\infty}(\mathbb{R}^{m-n}, 0)$ satisfying that $\hat{g}_2(x) =$ $1_{\mathbf{R}^{m-n}}$ for $||x|| \geq \delta$. For, take any $x \in \mathbf{R}^n$. Then the Jacobian of $\hat{g}_2(x)$ at y = 0satisfies the following:

$$\frac{\partial \hat{g}_2(x)_i}{\partial y_j} = \sum_{k=1}^n \frac{\partial f_{2,i}}{\partial x_k} (\hat{f}_1(y)^{-1}(x), y) \cdot \frac{\partial (\hat{f}_1(y)_k^{-1})(x)}{\partial y_j} + \frac{\partial f_{2,i}}{\partial y_j} (\hat{f}_1(y)^{-1}(x), y)$$

thus,

K. ABE and K. FUKUI

$$\begin{split} \left| \left(\frac{\partial \hat{g}_2(x)_i}{\partial y_j} \right) - I_{m-n} \right| \\ &\leq \sum_{i,j=1}^{m-n} \sum_{k=1}^n \left| \frac{\partial f_{2,i}}{\partial x_k} \left(\hat{f}_1(y)^{-1}(x), y \right) \cdot \frac{\partial (\hat{f}_1(y)_k^{-1})(x)}{\partial y_j} \right| \\ &+ \sum_{i \neq j} \left| \frac{\partial f_{2,i}}{\partial y_j} \left(\hat{f}_1(y)^{-1}(x), y \right) \right| + \sum_{i=1}^{m-n} \left| \frac{\partial f_{2,i}}{\partial y_i} \left(\hat{f}_1(y)^{-1}(x), y \right) - 1 \right| \\ &\leq (m-n)^2 (n\varepsilon + 1)\varepsilon. \end{split}$$

Hence we have $\hat{g}_2(x) \in D_c^{\infty}(\mathbb{R}^{m-n}, 0)$ for $x \in \mathbb{R}^n$. This completes the proof of Lemma 2.2.

Let \mathscr{F} be a C^{∞} -foliation of a C^{∞} -manifold M. By $D^{\infty}_{L,c}(M, \mathscr{F})$ we denote the group of leaf preserving C^{∞} -diffeomorphisms of (M, \mathscr{F}) which are isotopic to the identity through leaf preserving C^{∞} -diffeomorphisms with compact support.

Then T. Tsuboi (and T. Rybicki [11] independently) proved the following by looking at the proofs in [8] and [16].

THEOREM 2.3 (Theorem 1.1 of [17]). $D_{L_c}^{\infty}(M, \mathscr{F})$ is perfect.

3. Proof of Theorem 1.3.

Take $f \in D_c^{\infty}(\mathbb{R}^m, \mathbb{R}^n)$. We may assume that f is C^2 -close to $1_{\mathbb{R}^m}$ and is supported in B_{δ}^m . From Lemma 2.2, there are $g_1, g_2 \in D_c^{\infty}(\mathbb{R}^m, \mathbb{R}^n)$ such that (1) $f = g_2 \circ g_1$, (2) g_1 and g_2 are C^2 -close to $1_{\mathbb{R}^m}$ and are supported in B_{δ}^m , and (3) $g_1 \in D_{L,c}^{\infty}(\mathbb{R}^m, \mathscr{F}_0), \quad \hat{g}_2(x) \in D_c^{\infty}(\mathbb{R}^{m-n}, 0)$ for any $x \in \mathbb{R}^n$, where $\hat{g}_2(x)(y) = f_2(\hat{f}_1(y)^{-1}(x), y)$.

By Theorem 2.3, g_1 is represented as a product of commutators of elements in $D_{Lc}^{\infty}(\mathbf{R}^m, \mathscr{F}_0)$.

Thus we shall prove that g_2 can be represented as a product of commutators of elements in $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$. Let $d\hat{g}_2(x)(0)$ be the differential of $\hat{g}_2(x)$ at y = 0 for each $x \in \mathbf{R}^n$. Since g_2 is C^2 -close to $\mathbf{1}_{\mathbf{R}^m}$, $d\hat{g}_2(\cdot)(0)$ is C^1 -close to the constant mapping $e(e(x) = I_{m-n})$ and is supported in B_{δ}^n . Then we have by Lemma 2.1 that there exist C^{∞} -mappings $G_i: \mathbf{R}^n \to GL(m-n, \mathbf{R})$ and $\varphi_i \in D_c^{\infty}(\mathbf{R}^n)$ $(i = 1, 2, \cdots,$ $q = (m-n)^2)$ satisfying that (1) each φ_i is C^1 -close to the identity and is supported in B_{δ}^n , (2) each G_i is supported in $B_{2\sqrt{3}\delta}^n$ and is C^1 -close to e, and (3) $d\hat{g}_2(\cdot)(0) = (G_1^{-1} \cdot (G_1 \circ \varphi_1)) \cdots (G_q^{-1} \cdot (G_q \circ \varphi_q)).$

Let $\lambda : [0, \infty) \to [0, 1]$ be a C^{∞} -monotone decreasing function satisfying that $\lambda(t) = 1$ for $t \leq (1/2)\delta$ and $\lambda(t) = 0$ for $t \geq \delta$ and put a C^{∞} function $\mu : \mathbf{R}^{m-n} \to [0, 1]$ by $\mu(y) = \lambda(||y||)$. For G_i , we define a C^{∞} -mapping $h_{G_i} : \mathbf{R}^m \to \mathbf{R}^m$ by

430

$$h_{G_i}(x,y) = (x, (\mu(y) \cdot G_i(x) + (1 - \mu(y)) \cdot I_{m-n})y).$$

We see that h_{G_i} is a C^{∞} -diffeomorphism of \mathbf{R}^m since G_i is C^1 -close to e. Note that $h_{G_i}(x,y) = (x, G_i(x)y)$ for $||y|| \leq (1/2)\delta$. For $\varphi_i \in D_c^{\infty}(\mathbf{R}^n)$, we put

$$F_{\varphi_i}(x,y) = (\mu(y)\varphi_i(x) + (1-\mu(y))x, y).$$

We see that F_{φ_i} is a C^{∞} -diffeomorphism of \mathbf{R}^m since each φ_i is sufficiently C^1 -close to the identity. Then, since $F_{\varphi_i}^{-1}(x, y) = (\varphi_i^{-1}(x), y)$ for $||y|| \leq (1/2)\delta$, we have that

$$h_{G_i}^{-1} \circ F_{\varphi_i}^{-1} \circ h_{G_i} \circ F_{\varphi_i}(x, y) = (x, G_i(x)^{-1} \cdot G_i(\varphi_i(x)) \cdot y)$$

for $||y|| \le (1/2)\delta$.

LEMMA 3.1. $h_{\mathrm{d}\hat{g}_2}(\cdot)(0) = \prod_{i=1}^q [h_{G_i}^{-1}, F_{\varphi_i}^{-1}]$ on a small neighborhood of $\mathbf{R}^n \times \{0\}$, furthermore $h_{\mathrm{d}\hat{g}_2}(\cdot)(0) \in [D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n), D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)]$.

PROOF. We note that $h_{d\hat{g}_2(\cdot)(0)}(x,y) = (x, d\hat{g}_2(x)(0) \cdot y)$ for $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^{m-n}(||y|| \le (1/2)\delta)$. Then the equality $h_{d\hat{g}_2(\cdot)(0)} = \prod_{i=1}^q [h_{G_i}^{-1}, F_{\varphi_i}^{-1}]$ on the small neighborhood $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^{m-n} \mid ||y|| \le (1/2)\delta\}$ of $\mathbb{R}^n \times \{0\}$ follows from a simple calculation. Since $h_{d\hat{g}_2(\cdot)(0)} \circ (\prod_{i=1}^q [h_{G_i}^{-1}, F_{\varphi_i}^{-1}])^{-1}$ is supported in a compact subset of $\mathbb{R}^m - \mathbb{R}^n$, the proof of the rest follows from the perfectness of $D_c^{\infty}(\mathbb{R}^m - \mathbb{R}^n)$ (Thurston [16]).

PROOF OF THEOREM 1.3 continued. We put $g_3 = h_{\mathrm{d}\hat{g}_2(\cdot)(0)}^{-1} \circ g_2$. Then we have $g_3(x,y) = (x,\mathrm{d}\hat{g}_2(x)(0)^{-1} \cdot f_2(\hat{f}_1(y)^{-1}(x),y))$ for $\|y\| \leq (1/2)\delta$. We remark that the Jacobian of $\hat{g}_3(x)$ at y = 0, $(\partial \hat{g}_3(x)_i/\partial y_i) = I_{m-n}$ for any $x \in \mathbb{R}^n$.

The rest is proved by considering a parameter version of Sternberg [15] (cf. [2]) in the following. We may assume that the support of g_3 is contained in B^m_{δ} for a small $\delta > 0$. We put $\psi(x, y) = (x, cy)$ for 0 < c < 1. Then the eigenvalues of the Jacobian $J(g_3 \circ \psi(\cdot, y))$ at y = 0 are all c. This satisfies the condition of Theorem 1 of [15]. By the parameter version of Theorem 1 of [15], there exists a C^{∞} -diffeomorphism R of $\mathbf{R}^n \times \mathbf{R}^{m-n}$ of the form $R(x, y) = (x, R_1(x, y))$ with $R_1(x, 0) = 0$ satisfying that $R^{-1} \circ (g_3 \circ \psi) \circ R = \psi$ on B^m_{δ} .

Put a C^{∞} -function $\nu : \mathbb{R}^m \to [0,1]$ by $\nu(x,y) = \lambda(||(x,y)||)$ for $(x,y) \in \mathbb{R}^m$. Note that the support of ν is contained in B^m_{δ} . We define a C^{∞} -diffeomorphism $\tilde{\psi}$ of $\mathbb{R}^n \times \mathbb{R}^{m-n}$ by $\tilde{\psi}(x,y) = (x, (\nu(x,y)c+1-\nu(x,y)) \cdot y)$. Then we have $\tilde{\psi} = \psi$ on $B^m_{(1/2)\delta}$. By replacing ψ to $\tilde{\psi}$ and considering R to be the identity outside of B^m_{δ} , g_3 is written as a commutator of elements in $D^{\infty}_c(\mathbb{R}^m,\mathbb{R}^n)$ on $B^m_{(1/2)\delta}$. Outside of $B^m_{(1/2)\delta}, g_3 \circ ([R, \tilde{\psi}])^{-1}$ is also represented by a product of commutators of elements in $D^{\infty}_c(\mathbf{R}^m, \mathbf{R}^n)$, by the perfectness of $D^{\infty}_c(\mathbf{R}^m - \mathbf{R}^n)$ (Thurston [16]). Thus we have that g_3 is contained in $[D^{\infty}_c(\mathbf{R}^m, \mathbf{R}^n), D^{\infty}_c(\mathbf{R}^m, \mathbf{R}^n)]$, hence g_2 is so. This completes the proof.

REMARK 3.2. Theorem 1.1 was proved by T. Rybicki in [12], [13]. The proof was given by following the Mather'rolling up method [10] and using some estimate in Epstein [5]. But it is not easy to check whether the proof is complete. We have prove it by the another method.

4. The uniform perfectness.

Let M be an *m*-dimensional compact connected C^{∞} -manifold with boundary ∂M . In this section we study the uniform perfectness of $D^{\infty}(M, \partial M)$.

DEFINITION 4.1. The group $D^{\infty}(M, \partial M)$ is uniformly perfect if any element of the group can be represented as a product of a bounded number of commutators of its elements.

First we investigate the uniform perfectness of $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ $(n \ge 1)$.

THEOREM 4.2. $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ is uniformly perfect for $n \ge 1$. In fact, any $f \in D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ can be represented as a product of two commutators of elements in $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$.

PROOF. We prove Theorem 4.2 by the parallel way to Tsuboi [18]. Take $f \in D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$. By Theorem 1.3, f can be represented by a product of commutators as

$$f = \prod_{i=1}^k [a_i, b_i], \quad ext{where} \quad a_i, b_i \in D^\infty_c({oldsymbol R}^m, {oldsymbol R}^n).$$

Let U be an bounded open set of \mathbf{R}^m containing the supports of a_i 's and b_i 's. Take $\phi \in D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$ such that $\{\phi^i(U)\}_{i=1}^k$ are disjoint. This is possible because $n \ge 1$. We put $F = \prod_{j=1}^k \phi^j(\prod_{i=j}^k [a_i, b_i])\phi^{-j}$ which defines an element in $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$. Then we have

$$\phi^{-1} \circ F \circ \phi \circ F^{-1} = f \circ (\prod_{j=1}^k \phi^j [a_j, b_j]^{-1} \phi^{-j}) = f \circ [\prod_{j=1}^k \phi^j b_j \phi^{-j}, \prod_{j=1}^k \phi^j a_j \phi^{-j}].$$

Thus $f = [\phi^{-1}, F] \circ [\prod_{j=1}^k \phi^j a_j \phi^{-j}, \prod_{j=1}^k \phi^j b_j \phi^{-j}]$. Therefore, f can be represented

as a product of two commutators of elements in $D_c^{\infty}(\mathbf{R}^m, \mathbf{R}^n)$. This completes the proof.

REMARK 4.3. Put $\mathbf{H}^m = \{(x_1, x_2, \dots, x_m) \in \mathbf{R}^m \mid x_m \ge 0\}$. By the same way as the proof of Theorem 4.2, we can prove that each element of $D_c^{\infty}(\mathbf{H}^m, \mathbf{R}^{m-1})$ can be represented as a product of two commutators of its elements.

From Theorem 4.2 we can prove Theorem 1.4.

PROOF OF THEOREM 1.4. Let $\pi: D^{\infty}(M, \partial M) \to D^{\infty}(\partial M)$ be the map which is defined by the restriction. By the isotopy extension theorem, π is epimorphic. Take an element $f \in D^{\infty}(M, \partial M)$ and put $\overline{f} = \pi(f)$. Since $D^{\infty}(\partial M)$ is a uniformly perfect group, there exists a bounded number k such that each element of the group is represented as a product of k commutators of its elements. Then \overline{f} is written as $\overline{f} = \prod_{j=1}^{k} [\overline{g}_j, \overline{h}_j]$ for $\overline{g}_j, \overline{h}_j \in D^{\infty}(\partial M)$. We take g_j and h_j in $D^{\infty}(M, \partial M)$ satisfying $\pi(g_j) = \overline{g}_j$ and $\pi(h_j) = \overline{h}_j$. Let $\widehat{f} = (\prod_{j=1}^{k} [g_j, h_j])^{-1} \circ f$. Then $\widehat{f} \in \ker \pi$.

Let W be a collar neighborhood of ∂M . Then W can be identified with $[0,1) \times \partial M$. For a positive number ε put $W_{\varepsilon} = [0,\varepsilon) \times \partial M$. If we take ε sufficiently small, then $\hat{f}(W_{\varepsilon}) \subset W$. Thus \hat{f} is represented on W_{ε} as $\hat{f}(t,x) = (\hat{f}_1(t,x), \hat{f}_2(t,x))$ for $(t,x) \in W_{\varepsilon}$ with $\hat{f}_1(t,x) \in [0,1), \ \hat{f}_2(t,x) \in \partial M$. By the Taylor expansion formula, for $(t,x) \in W_{\varepsilon}$

$$\hat{f}_1(t,x) = t \; \frac{\partial \hat{f}_1}{\partial t}(0,x) + t^2 \int_0^1 (1-r) \frac{\partial^2 \hat{f}_1}{\partial t^2}(tr,x) dr.$$

Let $\mu : [0,1) \to [0,1]$ be a C^{∞} -function such that $\mu(t) = 1$ for $t \in [0,2/3]$ and $\mu(t) = 0$ for $t \in [3/4,1)$. Take a positive number $\delta \leq \varepsilon$ and put $\lambda_{\delta}(t) = \mu(t/\delta)$ $(0 \leq t < \delta)$. For $(t,x) \in W_{\delta}$, let

$$g_1(t,x) = t \frac{\partial \hat{f}_1}{\partial t} (0,x) + (1-\lambda_\delta(t))t^2 \int_0^1 (1-r) \frac{\partial^2 \hat{f}_1}{\partial t^2} (tr,x) dr.$$

Define $g: M \to M$ such that $g = (g_1, \hat{f}_2)$ on W_{δ} and $g = \hat{f}$ outside of W_{δ} .

There exist positive numbers K, L such that

$$|\mu'(t)| \le K, \quad \left|\frac{\partial^i \hat{f}_1}{\partial t^i}(t,x)\right| \le L \quad (i=2,3) \quad \text{for } (t,x) \in W_{\delta}.$$

Then

K. ABE and K. FUKUI

$$\left| g_1(t,x) - \frac{\partial \hat{f}_1}{\partial t}(0,x)t \right| \le \frac{\delta^2}{2}L,$$
$$\left| \frac{\partial g_1}{\partial t}(t,x) - \frac{\partial \hat{f}_1}{\partial t}(0,x) \right| \le \frac{\delta}{2}(K+2)L + \frac{\delta^2}{6}L.$$

Note that $\hat{f}_2(0, x) = (0, x)$ for $x \in \partial M$. Then, if we take δ sufficiently small, we see that g is a diffeomorphism of M.

If we define $\tilde{g}_s \ (0 \le s \le 1)$ by

$$\tilde{g}_s(t,x) = \left(t \frac{\partial \hat{f}_1}{\partial t}(0,x) + (1-s\lambda_\delta(t))t^2 \int_0^1 (1-r) \frac{\partial^2 \hat{f}_1}{\partial t^2}(tr,x)dr, \ \hat{f}_2(t,x)\right)$$

for $(t,x) \in W_{\delta}$ and $\tilde{g}_s = \hat{f}$ outside of W_{δ} , then we see that $\{\tilde{g}_s\}$ is an isotopy of M such that $\tilde{g}_0 = \hat{f}, \tilde{g}_1 = g$. By the definition $g(t,x) = ((\partial \hat{f}_1/\partial t)(0,x) \cdot t, \hat{f}_2(t,x))$ on $W_{(2/3)\delta}$. Then it is easy to see that g is isotopic to a diffeomorphism \hat{g} which is equal to the identity on $W_{(1/2)\delta}$ and is equal to \hat{f} on $[(3/4)\delta, \delta) \times \partial M$. Thus we have an isotopy \tilde{f}_s $(0 \leq s \leq 1)$ of M such that $\hat{f}_s = \hat{f}$ on $[(4/5)\delta, \delta) \times \partial M$ for any s and $\tilde{f}_0 = \hat{f}, \tilde{f}_1 = \hat{g}$.

Let ℓ be the category number of ∂M and $\mathscr{V} = \{V_i\}_{i=1}^{\ell+1}$ be a covering of ∂M such that each V_i is diffeomorphic to a disjoint union of open balls in ∂M . Let $\{\mu_i\}_{i=1}^{\ell+1}$ be a partition of unity subordinate to the covering \mathscr{V} . Define $h_i \in D_c^{\infty}(M)$ $(i = 1, 2, \dots, \ell + 1)$ supported in W_{δ} such that for $(t, x) \in W_{\delta}$

$$h_1(t,x) = \left(\hat{f} \circ \tilde{f}_{\mu_1(x)}^{-1}\right)(t,x),$$

$$h_i(t,x) = \left((h_1 \circ \dots \circ h_{i-1})^{-1} \circ \hat{f} \circ \tilde{f}_{\mu_1(x)+\dots+\mu_i(x)}^{-1}\right)(t,x) \quad (i=2,\dots,\ell+1).$$

Then $\hat{f} \circ \hat{g}^{-1} = h_1 \circ h_2 \circ \cdots \circ h_{\ell+1}$ and the support of h_i is contained in $[0, \delta) \times V_i$. We can assume that each h_i is contained in $D_c^{\infty}(\boldsymbol{H}^m, \boldsymbol{R}^{m-1})$. Hence from Remark 4.3, each h_i is represented as a product of two commutators of elements in $D_c^{\infty}(\boldsymbol{H}^m, \boldsymbol{R}^{m-1})$.

Note that \hat{g} is isotopic to the identity being supported in intM. By the assumption of Theorem 1.4, there exists a bounded number s such that \hat{g} is represented as a product of s commutators of elements in $D_c^{\infty}(\text{int}M)$. Hence f is represented as a product of $k + 2(\ell + 1) + s$ commutators of elements in $D^{\infty}(M, \partial M)$. Since k, ℓ, s are bounded numbers, this completes the proof of Theorem 1.4.

434

REMARK 4.4. T. Tsuboi [18] studied the uniform perfectness of $\text{Diff}_c^r(M)$. He has proved that it is uniformly perfect if $1 \le r \le \infty$ $(r \ne \dim M + 1)$ and M is one of the following cases

(1) an odd dimensional compact manifold without boundary,

(2) an even dimensional compact manifold without boundary which has a handle decomposition without handles of the middle index,

(3) the interior of an odd dimensional compact manifold W and

(4) the interior of an even dimensional compact manifold W which has a handle decomposition only with handles of indices not greater than $(\dim W - 1)/2$.

The following is an immediate consequence of Theorem 1.4 and Remark 4.4.

COROLLARY 4.5. Let M be a compact manifold with boundary ∂M such that intM and ∂M are manifolds in the cases of Remark 4.4. Then $D^{\infty}(M, \partial M)$ is a uniformly perfect group.

EXAMPLE 4.6. Since $\operatorname{int} D^m$ and $S^{m-1}(m \ge 2)$ satisfy the condition in Corollary 4.5, $D^{\infty}(D^m, S^{m-1})$ is a uniformly perfect group.

References

- K. Abe and K. Fukui, On commutators of equivariant diffeomorphisms, Proc. Japan Acad. Ser. A Math. Sci., 54 (1978), 52–54.
- [2] K. Abe and K. Fukui, The first homology of the group equivariant diffeomorphisms and its applications, J. of Topology, 1 (2008), 461–476.
- [3] D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, 2008, pp. 221–250.
- [4] M. Entov, Commutator length of symplectomorphisms, Comment. Math. Helv., 79 (2004), 58– 104.
- [5] D. B. A. Epstein, Commutators of C[∞]-diffeomorphisms, Comment. Math. Helv., 59 (1984), 111–122.
- [6] K. Fukui, Homologies of the group $\text{Diff}^{\infty}(\mathbf{R}^n, 0)$ and its subgroups, J. Math. Kyoto Univ., **20** (1980), 475–487.
- [7] J. M. Gambaudo and É. Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems, 24 (1980), 1591–1617.
- [8] M. Herman, Simplicité du groupe des difféomorphismes de classe C[∞], isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris, **273** (1971), 232–234.
- [9] M. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–233.
- J. Mather, Commutators of diffeomorphisms, Comment. Math. Helv., 49 (1974), 512–518; II 50 (1975), 33–40; III 60 (1985), 122–124.
- T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect, Monatsh. Math., 120 (1995), 289–305.
- T. Rybicki, Commutators of diffeomorphisms of a manifold with boundary, Ann. Polon. Math., 68 (1998), 199–210.

K. ABE and K. FUKUI

- T. Rybicki, On the group of diffeomorphisms preserving a submanifold, Demonstratio Math., 31 (1998), 103–110.
- [14] S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math., 79 (1957), 809– 823.
- [15] S. Sternberg, The structure of local homeomorphisms, II, Amer. J. Math., 80 (1958), 623–632.
- [16] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc., 80 (1974), 304–307.
- [17] T. Tsuboi, On the group of foliation preserving diffeomorphisms, (ed. P. Walczak et al.) Foliations 2005, World scientific, Singapore, 2006, pp. 411–430.
- [18] T. Tsuboi, On the uniform perfectness of diffeomorphism groups, Groups of Diffeomorphisms, Adv. Stud. Pure Math., 52, Math. Soc. Japan, 2008, pp. 505–524.

Kōjun ABE Department of Mathematical Sciences Shinshu University Matsumoto 390-8621 Japan E-mail: kojnabe@gipac.shinshu-u.ac.jp

Kazuhiko FUKUI

Department of Mathematics Kyoto Sangyo University Kyoto 603-8555 Japan E-mail: fukui@cc.kyoto-su.ac.jp