©2009 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 61, No. 2 (2009) pp. 327–344 doi: 10.2969/jmsj/06120327

Transfinite large inductive dimensions modulo absolute Borel classes

By Vitalij A. CHATYRKO and Yasunao HATTORI

(Received Apr. 7, 2008)

Abstract. The following inequalities between transfinite large inductive dimensions modulo absolutely additive (resp. multiplicative) Borel classes $A(\alpha)$ (resp. $M(\alpha)$) hold in separable metrizable spaces:

- (i) A(0)-trInd $\geq M(0)$ -trInd $\geq \max\{A(1)$ -trInd, M(1)-trInd $\}$, and
- $\begin{array}{ll} \text{(ii)} & \min\{A(\alpha)\text{-trInd}, M(\alpha)\text{-trInd}\} \geq \max\{A(\beta)\text{-trInd}, M(\beta)\text{-trInd}\},\\ & \text{where } 1 \leq \alpha < \beta < \omega_1. \end{array}$

We show that for any two functions a and m from the set of ordinals $\Omega = \{\alpha : \alpha < \omega_1\}$ to the set $\{-1\} \cup \Omega \cup \{\infty\}$ such that

- (i) $a(0) \ge m(0) \ge \max\{a(1), m(1)\}$, and
- (ii) $\min\{a(\alpha), m(\alpha)\} \ge \max\{a(\beta), m(\beta)\}$, whenever $1 \le \alpha < \beta < \omega_1$,

there is a separable metrizable space X such that $A(\alpha)$ -trInd $X = a(\alpha)$ and $M(\alpha)$ -trInd $X = m(\alpha)$ for each $0 \le \alpha < \omega_1$.

1. Introduction.

All topological spaces in this paper are assumed to be separable and metrizable unless we mention something different. Our terminology mostly follows [2] and [5].

In 1964 Lelek defined the small (large) inductive dimension modulo a class \mathscr{P} of topological spaces, \mathscr{P} -ind (\mathscr{P} -Ind). Recall that for a space X we have \mathscr{P} -ind X = -1 if and only if $X \in \mathscr{P}$; and \mathscr{P} -ind $X \leq n$, where n is an integer ≥ 0 , if for every point $x \in X$ and every closed subset A of X with $x \notin A$ there exists a partition C in X between x and A such that \mathscr{P} -ind C < n. (If we replace the point x by any closed set B disjoint from A we will obtain the definition of \mathscr{P} -Ind).

Throughout the present paper, considered classes \mathscr{P} are assumed to contain the empty space \emptyset and every space homeomorphic to a closed subspace of each space which belongs to \mathscr{P} .

²⁰⁰⁰ Mathematics Subject Classification. Primary 54F45; Secondary 04A15, 54D35, 54H05. Key Words and Phrases. inductive dimensions modulo \mathscr{P} , absolute Borel class, absolutely multipricative Borel class, absolutely additive Borel class, separable metrizable space.

The second author was partially supported by Grant-in-Aid for Scientific Research (No. 19540086) from Japan Society for the Promotion of Science.

V. A. CHATYRKO and Y. HATTORI

The functions \mathscr{P} -ind and \mathscr{P} -Ind are natural generalizations of the well known small (large) inductive dimension ind (Ind), i.e. the case of $\mathscr{P} = \{\emptyset\}$, and the small (large) inductive compactness degree cmp (\mathscr{K}_0 -Ind) due to de Groot (cf. [2]), i.e. the case of \mathscr{P} being the class of compact spaces \mathscr{K}_0 . Note that \mathscr{P} -ind and \mathscr{P} -Ind are monotone with respect to closed subsets, and the inequality \mathscr{P} -ind $\leq \mathscr{P}$ -Ind holds. Moreover, if $X = X_1 \oplus X_2$ is the topological sum of spaces X_1 and X_2 then \mathscr{P} -d $X = \max{\{\mathscr{P}$ -d X_1, \mathscr{P} -d $X_2\}}$, where d is either ind or Ind, provided that the topological sum of any two elements of \mathscr{P} is in \mathscr{P} .

Recall ([2, Chapter II.9]) that every absolutely additive Borel class $A(\alpha)$ and every absolutely multiplicative Borel class $M(\alpha)$, where $0 \le \alpha < \omega_1$, satisfy the conditions mentioned above. Moreover, the following hierarchy of these classes holds (a diagram in which a class \mathscr{P}_1 is contained in a class \mathscr{P}_2 iff \mathscr{P}_2 is to the right of \mathscr{P}_1 , and the arrows indicate inclusions):

Observe that if $\mathscr{P}_2 \subset \mathscr{P}_1$ then $\mathscr{P}_1\text{-d} \leq \mathscr{P}_2\text{-d}$, where d is either ind or Ind. Using this fact and (*) we get the following inequalities concerning the inductive dimensions modulo absolute Borel classes:

(1.1) A(0)-d $\geq M(0)$ -d $\geq \max\{A(1)$ -d, M(1)-d},

$$(1.2) \min\{A(\alpha) - \mathrm{d}, M(\alpha) - \mathrm{d}\} \geq \max\{A(\beta) - \mathrm{d}, M(\beta) - \mathrm{d}\}, \text{ whenever } 1 \leq \alpha < \beta < \omega_1.$$

Recall (cf. [2]) that $A(0) = \{\emptyset\}$, $M(0) = \mathscr{K}_0$, $A(1) = \mathscr{S}_0$, $M(1) = \mathscr{C}_0$, where \mathscr{C}_0 and \mathscr{S}_0 are the classes of completely metrizable spaces and σ -compact spaces, respectively, and the following notations are used in the literature:

$$\begin{split} A(0)\text{-}\mathrm{ind} &= \mathrm{ind}, \ A(0)\text{-}\mathrm{Ind} = \mathrm{Ind}, \ M(0)\text{-}\mathrm{ind} = \mathrm{cmp}, \ M(0)\text{-}\mathrm{Ind} = \mathscr{K}_0\text{-}\mathrm{Ind}, \\ A(1)\text{-}\mathrm{ind} &= \mathscr{S}\text{-}\mathrm{ind}, \ A(1)\text{-}\mathrm{Ind} = \mathscr{S}\text{-}\mathrm{Ind}, \ M(1)\text{-}\mathrm{ind} = \mathrm{icd}, \ M(1)\text{-}\mathrm{Ind} = \mathrm{Icd}. \end{split}$$

Let us recall some facts about these functions. It is well known (see [2, Chapter II.10]) that for every space X we have

- $A(\alpha)$ -ind $X = A(\alpha)$ -Ind X for each $\alpha \ge 0$,
- $M(\alpha)$ -ind $X = M(\alpha)$ -Ind X for each $\alpha \ge 1$,
- cmp $\mathbf{R}^n = 0$, and
- \mathscr{K}_0 -Ind $\mathbb{R}^n = n$ for each integer $n \ge 1$ ([2, Example II.6.12 (a)]).

Moreover, for each integer $n \geq 1$ we have $\operatorname{icd}(Q_1 \times \mathbf{I}^n) = n$ ([2, Example I.7.12]) and \mathscr{S} -ind $(P_1 \times \mathbf{I}^n) = n$ ([2, Example I.10.6]), where Q_1 (resp. P_1) is the space of rational (resp. irrational) numbers in the closed interval $\mathbf{I} = [0, 1]$. Hence $\operatorname{cmp}(Q_1 \times \mathbf{I}^n) = \operatorname{cmp}(P_1 \times \mathbf{I}^n) = n$. In addition, for each integer $n \geq 0$ there is a subset X_n of \mathbf{I}^{n+1} such that $A(\alpha)$ -ind $X_n = M(\alpha)$ -ind $X_n = n$ for each ordinal $0 \leq \alpha < \omega_1$ ([2, Example II.10.5]). Notice that $\operatorname{Ind} X_n = n$. We adopt the following notations: $X_{-1} = \emptyset$ and D is the countable discrete space. For any space Z let Z^0 be the one-point space and $Z^{-1} = \emptyset$. For arbitrary integers $k \geq l \geq \max\{m, n\} \geq \min\{m, n\} \geq p \geq -1$ we put

$$X = \begin{cases} \boldsymbol{I}^{k} \oplus \boldsymbol{R}^{l} \oplus (Q_{1} \times \boldsymbol{I}^{m}) \oplus (P_{1} \times \boldsymbol{I}^{n}) \oplus X_{p}, \text{ if } l \geq 1; \\ \boldsymbol{I}^{k} \oplus D \oplus (Q_{1} \times \boldsymbol{I}^{m}) \oplus (P_{1} \times \boldsymbol{I}^{n}) \oplus X_{p}, \text{ if } l = 0; \\ \boldsymbol{I}^{k}, \text{ if } l = -1. \end{cases}$$

Taking into account all facts mentioned above it is easy to see that $\operatorname{ind} X = k$, \mathscr{K}_0 -Ind X = l, $\operatorname{icd} X = m$, \mathscr{S} -ind X = n and \mathscr{P} -ind X = p, where \mathscr{P} is either $A(\alpha)$ or $M(\alpha)$ for each $\alpha \geq 2$. Furthermore, if $l \geq 1$, then $\operatorname{cmp} X = \max\{0, m, n\}$, and if $l \leq 0$, then $\operatorname{cmp} X = l$.

PROBLEM 1.1. Let d be either ind or Ind, and $a(\alpha)$, $m(\alpha)$, where $0 \le \alpha < \omega_1$, either integers ≥ -1 or ∞ such that

- (i) $a(0) \ge m(0) \ge \max\{a(1), m(1)\}$ and
- (ii) $\min\{a(\alpha), m(\alpha)\} \ge \max\{a(\beta), m(\beta)\}, \text{ if } 1 \le \alpha < \beta < \omega_1.$

Does there exist a space X such that $A(\alpha)$ -d $X = a(\alpha)$ and $M(\alpha)$ -d $X = m(\alpha)$ for each $0 \le \alpha < \omega_1$?

Observe that inequalities (1.1), (1.2) and Problem 1.1 for Ind and ind differ only in the case of M(0). In [10] Smirnov introduced the large transfinite inductive dimension trInd and presented for each ordinal $\alpha < \omega_1$, a compact space S^{α} such that trInd $S^{\alpha} = \alpha$. Some years later Levshenko [7] proved that trInd $S^{\alpha} \leq \omega_0 \cdot \text{trind } S^{\alpha}$, where trind is a natural transfinite extension of ind due to Hurewicz (cf. [5]). These results together with the inductive character of the function trind implies, for each ordinal $\alpha < \omega_1$, the existence of a compact space L_{α} such that trind $L_{\alpha} = \alpha \leq \text{trInd } L_{\alpha} \neq \infty$.

In [9] R. Pol showed that for each $\alpha < \omega_1$ there exists a completely metrizable σ -compact space C_{α} such that $\alpha \leq \operatorname{trcmp} C_{\alpha} \leq \operatorname{trInd} C_{\alpha} \neq \infty$. From this result he obtained that for each $\alpha < \omega_1$ there exists a completely metrizable σ -compact space R_{α} such that $\operatorname{trcmp} R_{\alpha} = \alpha$ and $\operatorname{trInd} R_{\alpha} \neq \infty$ (here trcmp is a natural transfinite extension of cmp). It is also easy to see that for each $\alpha < \omega_1$ there exists a completely metrizable σ -compact space X_{α} such that \mathscr{K}_0 -trInd $X_{\alpha} = \alpha$ and

trInd $X_{\alpha} \neq \infty$ (where \mathscr{K}_0 -trInd is a natural transfinite extension of \mathscr{K}_0 -Ind). In addition, R. Pol observed that the reasoning of Aarts [1] in the proof of equality $\operatorname{cmp}(Q_1 \times \mathbf{I}^n) = n$ yields that for every compact space K_{α} with trind $K_{\alpha} = \alpha \geq \omega_0$, trcmp $(Q_1 \times K_{\alpha}) = \alpha$, but trInd $(Q_1 \times K_{\alpha}) = \infty$ and $Q_1 \times K_{\alpha}$ is not completely metrizable. Let us also note the reasoning in the proof of equality icd $(Q_1 \times \mathbf{I}^n) = n$ yields that tricd $(Q_1 \times K_{\alpha}) = \alpha$, where tricd is a natural transfinite extension of icd.

In ([3]) Charalambous considered the small and large transfinite inductive dimensions modulo a class \mathscr{P} , \mathscr{P} -trind and \mathscr{P} -trInd, which are natural transfinite extensions of \mathscr{P} -ind and \mathscr{P} -Ind, respectively, such that $\{\emptyset\}$ -trind = trind, \mathscr{K}_0 -trind = trcmp, \mathscr{C}_0 -trind = tricd and so on. Moreover he demonstrated for each given ordinal $\alpha < \omega_1$ the existence of a space $C^{\alpha}_{\mathscr{T}}$ such that \mathscr{T} -trind $C^{\alpha}_{\mathscr{T}} = \alpha$ (but \mathscr{T} -trInd $C^{\alpha}_{\mathscr{T}} = \infty$ if $\alpha > \omega_0$), where the letter \mathscr{T} denotes a class of spaces which, like the classes $M(\beta), A(\beta)$ are Borel sets of any space that contains them.

Note that inequalities (1.1) and (1.2) are also valid for d = trInd and d = trind. In [4] we presented for each class \mathscr{P} from the diagram (*) a space $X_{\mathscr{P}}$ such that \mathscr{P} -trind $X_{\mathscr{P}} = \infty$ and \mathscr{Q} -trInd $X_{\mathscr{P}} = -1$ for any other class \mathscr{Q} from the diagram (*) which is not contained in \mathscr{P} . (Recall that in [8] E. Pol constructed a completely metrizable σ -compact space P such that $\text{trcmp } P = \infty$.) Then the following generalization of Problem 1.1 arises.

PROBLEM 1.2. Let d be either trind or trInd, and $a(\alpha)$, $m(\alpha)$, where $0 \leq \alpha < \omega_1$, either countable ordinals, -1 or ∞ such that

- (i) $a(0) \ge m(0) \ge \max\{a(1), m(1)\}, \text{ and }$
- (ii) $\min\{a(\alpha), m(\alpha)\} \ge \max\{a(\beta), m(\beta)\}, \text{ if } 1 \le \alpha < \beta < \omega_1.$

Does there exist a space X such that $A(\alpha)$ -d $X = a(\alpha)$ and $M(\alpha)$ -d $X = m(\alpha)$ for each $0 \le \alpha < \omega_1$?

Observe that inequalities (1.1), (1.2) and Problem 1.2 for d = trInd and d = trind differ even for <math>A(0) because there are compact spaces X such that trind X < trInd X ([5, Problem 7.1 G (e)]).

In this paper we solve Problem 1.1 for d = Ind (see Corollary 4.2) and Problem 1.2 for d = trInd (see Theorem 4.1) as well. Our solutions are based on a generalization of the Smirnov's construction. In particular (see Theorem 3.1), for each class \mathscr{P} from the diagram (*) and each $\alpha < \omega_1$ we present a space $S^{\alpha}_{\mathscr{P}}$ such that \mathscr{P} -trInd $S^{\alpha}_{\mathscr{P}} = trInd S^{\alpha}_{\mathscr{P}} = \alpha$ and \mathscr{Q} -trInd $S^{\alpha}_{\mathscr{P}} = -1$ for any other class \mathscr{Q} from the diagram (*) which is not contained in \mathscr{P} . Moreover, $S^{\alpha}_{\mathscr{P}}$ is a subset of the cube $I^{\alpha+1}$ if $\alpha < \omega_0$, and $S^{\alpha}_{\mathscr{P}}$ is a subset of Smirnov's space S^{α} otherwise. Using the results obtained here, the inductive character of the function \mathscr{P} -trind and an analog of the Levshenko's result for the pair \mathscr{P} -trind and \mathscr{P} -trInd due to Charalambous ([3]) we show (see Corollary 3.3) for each class \mathscr{P} from the diagram (*) and each $\alpha < \omega_1$ the existence of a space $X^{\alpha}_{\mathscr{P}}$ such that $\alpha =$ \mathscr{P} -trind $X^{\alpha}_{\mathscr{P}} \leq \operatorname{trInd} X^{\alpha}_{\mathscr{P}} \neq \infty$ and $\mathscr{Q} - \operatorname{trInd} X^{\alpha}_{\mathscr{P}} = -1$ for any other class \mathscr{Q} from the diagram (*) which is not contained in \mathscr{P} . Note that Problem 1.1 for d = ind and Problem 1.2 for d = trind still remain open. In particular, we do not know if there is a completely metrizable and σ -compact space C_n such that $\operatorname{cmp} C_n =$ $n = \operatorname{ind} C_n$ for some (each) integer $n \geq 3$.

2. Preliminaries.

Recall that a subset C of a space X is a partition between two disjoint sets A and B in X if there are disjoint open subsets U and V of X such that $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$.

Let X be a space, \mathscr{P} a class of spaces and α an ordinal number ≥ 0 . Then the small transfinite dimension modulo a class \mathscr{P} , \mathscr{P} -trind, is defined as follows.

- (i) \mathscr{P} -trind X = -1 if and only if $X \in \mathscr{P}$,
- (ii) \mathscr{P} -trind $X \leq \alpha \ (\geq 0)$ if for every point $x \in X$ and every closed subset A of X with $x \notin A$ there exists a partition C in X between x and A such that \mathscr{P} -trind $C < \alpha$.
- (iii) \mathscr{P} -trind $X = \alpha$ if \mathscr{P} -trind $X \leq \alpha$ and \mathscr{P} -trind $X > \beta$ for each ordinal $\beta < \alpha$,
- (iv) \mathscr{P} -trind $X = \infty$ if \mathscr{P} -trind $X > \alpha$ for each ordinal α .

(If we replace the point x by any closed set B disjoint from A we obtain the definition of the large transfinite dimension modulo a class \mathscr{P} , \mathscr{P} -trInd).

It is obvious that \mathscr{P} -trind X = -1 if and only if \mathscr{P} -trInd X = -1, and \mathscr{P} -trind $X \leq \mathscr{P}$ -trInd X. Moreover, the following easy statements hold, where \mathscr{P} -trd is either \mathscr{P} -trind or \mathscr{P} -trInd:

- \mathscr{P}_1 -trd = \mathscr{P}_2 -trd if and only if $\mathscr{P}_1 = \mathscr{P}_2$ (and hence trcmp \neq trind and \mathscr{K}_0 -trInd \neq trInd).
- If $\mathscr{P}_2 \subset \mathscr{P}_1$, then \mathscr{P}_1 -trd $\leq \mathscr{P}_2$ -trd (in particular, trcmp \leq trind and \mathscr{K}_0 -trInd \leq trInd).
- \mathscr{P} -trd is monotone with respect to closed subsets, that is if A is a closed subset of a space X then \mathscr{P} -trd $A \leq \mathscr{P}$ -trd X.
- If $X = X_1 \oplus X_2$ is the topological sum of spaces X_1 and X_2 , then \mathscr{P} -trd $X = \max{\mathscr{P}$ -trd X_1, \mathscr{P} -trd X_2} provided that the topological sum of any two elements of \mathscr{P} is in \mathscr{P} . Note that trInd $(\bigoplus_{n=1}^{\infty} \mathbf{I}^n) = \infty$.

We will denote by $\mathscr{B}(X)$ the family of Borel sets of a space X and by $\prod_{\alpha}^{0}(X)$

(resp. $\sum_{\alpha}^{0}(X)$) the multiplicative (resp. additive) Borel class α of X, where $0 \leq \alpha < \omega_1$. The following statement is known.

PROPOSITION 2.1 ([11, Theorem 5.2.11]). Let X, Y be compact metric spaces and $f: X \to Y$ a continuous onto mapping. Suppose that $A \subset Y$ and $0 \le \alpha < \omega_1$. Then $A \in \prod_{\alpha}^0(Y)$ if and only if $f^{-1}(A) \in \prod_{\alpha}^0(X)$.

Recall (cf. [2]) that a space X is said to be absolutely of the multiplicative (resp. the additive) class α , in brief $X \in M(\alpha)$ (resp. $X \in A(\alpha)$), where $0 \leq \alpha < \omega_1$, if X is a member of the multiplicative (resp. additive) Borel class α in Y whenever X is a subspace of a space Y (that is for any homeomorphic embedding $h : X \to Y$ of X into Y the image h(X) is an element of the multiplicative (resp. additive) class α in Y). Put $\mathscr{AB} = \bigcup \{A(\alpha) : \alpha < \omega_1\} (= \bigcup \{M(\alpha) : \alpha < \omega_1\})$. It is well known that $A(0) = \{\emptyset\}, M(0) = \mathscr{K}_0, A(1) = \mathscr{S}_0, M(1) = \mathscr{C}_0$, and for every $2 \leq \alpha < \omega_1$ we have $X \in M(\alpha)$ (resp. $X \in A(\alpha)$) if and only if there is a homeomorphic embedding $h : X \to Y$ of X in a space $Y \in \mathscr{C}_0$ such that the image h(X) is an element of the multiplicative (resp. the additive) class α in Y. So if $X \in \mathscr{P}$, where \mathscr{P} is either an absolutely additive or multiplicative Borel class, then $X \times K \in \mathscr{P}$ for every compact space K.

Let P_0 be a one-point space, $Q_0 = \{1/n : n = 1, 2, ...\}$ the subspace of I, P_1 (resp. Q_1) the space of irrational (resp. rational) numbers in I. Note that $P_0 \in \mathscr{K}_0, Q_0 \in (\mathscr{S}_0 \cap \mathscr{C}_0) \setminus \mathscr{K}_0, P_1 \in \mathscr{C}_0 \setminus \mathscr{S}_0$ and $Q_1 \in \mathscr{S}_0 \setminus \mathscr{C}_0$. Moreover (see [4]) for every α with $2 \leq \alpha < \omega_1$ there are subspaces P_α and Q_α of I such that $P_\alpha \in M(\alpha) \setminus A(\alpha)$ and $Q_\alpha \in A(\alpha) \setminus M(\alpha)$. All spaces P_α and Q_α , where $0 \leq \alpha < \omega_1$, can be assumed zero-dimensional. Recall [3] that a subset A of a space X is a *Bernstein set* if $|A \cap B| = |(X \setminus A) \cap B| = c$ for every uncountable Borel set B of X. Let us denote by Brn(X) the family of all Berstein sets of a space X. Note that $Brn(X) \neq \emptyset$ if X is uncountable and completely metrizable. From Proposition 2.1 we get easily the following.

PROPOSITION 2.2. Let X be a compact metrizable space and $f: X \to I$ a continuous onto mapping. Then we have the following.

(i) $f^{-1}(Q_0) \in (\mathscr{C}_0 \cap \mathscr{S}_0) \setminus \mathscr{K}_0.$

(ii) $f^{-1}(P_{\alpha}) \in M(\alpha) \setminus A(\alpha)$ and $f^{-1}(Q_{\alpha}) \in A(\alpha) \setminus M(\alpha)$, whenever $1 \le \alpha < \omega_1$. (iii) $f^{-1}(J) \notin \mathscr{B}(X)$, and hence $f^{-1}(J) \notin \mathscr{AB}$ if $J \in Brn(\mathbf{I})$.

The following proposition is a natural generalization of [2, Corollory I. 4.7], and this can be shown similarly.

PROPOSITION 2.3 ([2, Corollory I. 4.7] for $\mathscr{P} = \{\emptyset\}$). Suppose that X is a hereditarily normal space and Y is a subspace of X with \mathscr{P} -Ind $Y \leq n$, where n is

an integer ≥ 0 . For each collection of n + 1 pairs (F_i, G_i) of disjoint closed subsets of X, i = 0, 1, ..., n, there are partitions T_i between F_i and G_i in X for every i such that $Y \cap (\bigcap_{i=0}^{n} T_i) \in \mathscr{P}$.

Let m be an integer ≥ 1 . For each positive integer $i \leq m$ we put

$$A_{i}^{m} = \{(x_{1}, \dots, x_{m}) \in \mathbf{I}^{m} : x_{i} = 0\}, \quad B_{i}^{m} = \{(x_{1}, \dots, x_{m}) \in \mathbf{I}^{m} : x_{i} = 1\},$$
$$\overline{A}_{i}^{m} = \left\{(x_{1}, \dots, x_{m}) \in \mathbf{I}^{m} : 0 \le x_{i} \le \frac{1}{3}\right\},$$
$$\overline{B}_{i}^{m} = \left\{(x_{1}, \dots, x_{m}) \in \mathbf{I}^{m} : \frac{2}{3} \le x_{i} \le 1\right\}.$$

Note that the set \overline{A}_i^m (resp. \overline{B}_i^m) is a closed neighborhood of A_i^m (resp. B_i^m) in I^m .

PROPOSITION 2.4 ([12, Lemma 5.2]). Let L_{i_j} , j = 1, ..., p, be partitions between the opposite faces $A_{i_j}^n$ and $B_{i_j}^n$ in \mathbf{I}^n , where $1 \le i_1 < i_2 < ... < i_p \le n$ and $1 \le p < n$. Then for each $k \in \{1, ..., n\} - \{i_1, ..., i_p\}$, there is a continuum $C \subset \bigcap_{j=1}^p L_{i_j}$ meeting the faces A_k^n and B_k^n .

Let J be a subset of I. Put $M_J = J \times I^n \subset I^{n+1}$, where $n \ge 0$. Propositions 2.2 and 2.4 easily imply the following.

PROPOSITION 2.5 ([4, Proposition 4.5]). Let L_i be a partition in \mathbf{I}^{n+1} between A_i^{n+1} and B_i^{n+1} , where $2 \leq i \leq k$ and $k \leq n+1$. Then, we have the following.

- (i) $M_{Q_0} \cap (\bigcap_{i=2}^k L_i) \notin \mathscr{K}_0.$
- (ii) $M_{Q_{\alpha}} \cap (\bigcap_{i=2}^{k} L_{i}) \notin M(\alpha)$ and $M_{P_{\alpha}} \cap (\bigcap_{i=2}^{k} L_{i}) \notin A(\alpha)$ for each α with $1 \leq \alpha < \omega_{1}$.
- (iii) $M_J \cap (\cap_{i=2}^k L_i) \notin \mathscr{AB}$, where $J \in Brn(I)$.

Now we are ready to prove the following theorem.

THEOREM 2.1.

- (i) \mathscr{K}_0 -Ind $M_{Q_0} = n$ and $M_{Q_0} \in \mathscr{S}_0 \cap \mathscr{C}_0$ (i.e. \mathscr{S}_0 -Ind $M_{Q_0} = \mathscr{C}_0$ -Ind $M_{Q_0} = -1$).
- (ii) Let $1 \leq \alpha < \omega_1$. Then we have
 - (a) $M(\alpha)$ -Ind $M_{Q_{\alpha}} = n$ and $M_{Q_{\alpha}} \in A(\alpha)$ (i.e. $A(\alpha)$ -Ind $M_{Q_{\alpha}} = -1$),
 - (b) $A(\alpha)$ -Ind $M_{P_{\alpha}} = n$ and $M_{P_{\alpha}} \in M(\alpha)$ (i.e. $M(\alpha)$ -Ind $M_{P_{\alpha}} = -1$).

(iii) \mathscr{AB} -Ind $M_J = n$ if $J \in Brn(\mathbf{I})$.

Furthermore, it follows that $\operatorname{Ind} M_J = n$ for all considered above cases.

PROOF. We show (i)-(iii) simultaneously. If n = 0 then $M_J = J$ and the theorem is evidently valid. Suppose that $n \ge 1$. It follows from Propositions 2.3 and 2.5 that \mathscr{P} -Ind $M_J \ge n$, where \mathscr{P} is \mathscr{K}_0 for (i), $M(\alpha)$ for (ii a), $A(\alpha)$ for (ii b) and \mathscr{AB} for (iii). Observe that all sets J considered here are zero-dimensional. Hence \mathscr{P} -Ind $M_J \le \operatorname{Ind} M_J = n$ for each case (i)-(iii).

REMARK 2.1. Observe that (i) of Theorem 2.1, (ii a) of the case of $\alpha = 1$ and (ii b) of the case of $\alpha = 1$ can be obtained from [2, Example II.4.11 (a)], [2, Example II.4.11 (c)] and [2, Example II.4.11 (b)] respectively.

REMARK 2.2. Because of the monotonicity of dimensions modulo classes \mathscr{P} with respect to closed subsets the integer n in Theorem 2.1 can be substituted by ∞ .

REMARK 2.3. For any integers $0 \le m \le n$ there exists a space X(m, n) such that cmp X(m, n) = m and \mathscr{K}_0 -Ind X(m, n) = n. Indeed, recall that \mathscr{K}_0 -Ind $\mathbf{R}^n = n$ ([2, Example II.6.12 (a)]) for each $n \ge 1$ and cmp $(Q_1 \times \mathbf{I}^m) = m$ ([2, Example I.7.12]) for each $m \ge 0$. Put $X(m, n) = \mathbf{R}^n \oplus (Q_1 \times \mathbf{I}^m)$.

For an isolated ordinal number α we denote by α^- the predecessor of α .

3. Counterparts of Smirnov's compacta for inductive functions \mathscr{P} -trInd.

Let $X = \bigoplus_{i=1}^{\infty} X_i$ be the topological sum of spaces X_i , i = 1, 2, ... The onepoint extension X_+ of the space X is the union $\{x_{\infty}\} \cup X$ of the set X and a point $x_{\infty} \notin X$ (we will call this point the extension point of X_+) with the topology defined as follows: A set $U \subset X_+$ is open if and only if either U is an open subset of the space X or $X_+ \setminus U$ is a closed subset of X and there exists an integer n such that $\bigoplus_{i=n}^{\infty} X_i \subset U$.

Henceforth, $X \hookrightarrow Y$ denotes an embedding of a space X into a space Y.

PROPOSITION 3.1.

- (i) The space X_+ is separable metrizable.
- (ii) If $X_i \hookrightarrow Y_i$ for each $i = 1, 2, \ldots$, then $X_+ \hookrightarrow Y_+$.
- (iii) If X_i is compact for each *i*, then X_+ is the Alexandroff compactification of $X = \bigoplus_{i=1}^{\infty} X_i$.
- (iv) Let $\alpha \geq 1$ and \mathscr{P} be either the absolutely multiplicative class $M(\alpha)$ or the

absolutely additive class $A(\alpha)$. If $X_i \in \mathscr{P}$ for each i = 1, 2, ..., then $X_+ \in \mathscr{P}$.

PROOF. (i)-(iii) are evident. We show (iv). Choose for each i = 1, 2, ... a compact space Y_i such that $X_i \subset Y_i$. Recall that $X_+ \hookrightarrow Y_+$, the class $\sum_{\alpha}^{0}(\cdot)$ is countably additive and $\neg \sum_{\alpha}^{0}(\cdot) = \prod_{\alpha}^{0}(\cdot)$.

We will suggest a generalization of Smirnov's construction.

DEFINITION 3.1. Let X be a space. For each $0 \le \alpha < \omega_1$ we define by induction the space S_X^{α} as follows.

- (i) If $\alpha < \omega_0$, then $S_X^{\alpha} = X \times I^{\alpha}$.
- (ii) If α is a limit number, then S_X^{α} is the one-point extension of the topological sum $\bigoplus_{\beta < \alpha} S_X^{\beta}$.
- (iii) If $\alpha \geq \omega_0$ and α is not limit, then $S_X^{\alpha} = S_X^{\alpha-1} \times I$.

One can easily show the following elementary properties on S_X^{α} .

PROPOSITION 3.2. Let $\alpha < \omega_1$. Then we have the following.

- (i) If X is a singleton, then S_X^{α} is the Smirnov's compactum S^{α} .
- (ii) If $X_1 \hookrightarrow X_2$ then $S_{X_1}^{\alpha} \hookrightarrow S_{X_2}^{\alpha}$.
- (iii) If dim $X < \infty$ and $\omega_0 \leq \alpha$ then $S_X^{\alpha} \hookrightarrow S^{\alpha}$.
- (iv) $S_{Q_0}^{\alpha} \in \mathscr{C}_0 \cap \mathscr{S}_0$, and for each β with $1 \leq \beta < \omega_1$ we have $S_{Q_\beta}^{\alpha} \in A(\beta)$ and $S_{P_2}^{\alpha} \in M(\beta)$.

Let $\alpha = \lambda(\alpha) + n(\alpha)$ be the natural decomposition of an ordinal number $\alpha \ge 0$ into the sum of the limit number $\lambda(\alpha)$ and the finite number $n(\alpha)$ (if $\alpha < \omega_0$ we adopt $\lambda(\alpha) = 0$).

PROPOSITION 3.3. For every space X with dim $X < \infty$, each countable ordinal number α and every compactum K with dim $K \leq n(\alpha)$ we have

$$\operatorname{trInd}\left(S_X^{\lambda(\alpha)} \times K\right) \leq \begin{cases} \dim X + \alpha, & \text{if } \alpha < \omega_0, \\ \alpha, & \text{if } \omega_0 \le \alpha < \omega_1. \end{cases}$$

PROOF. Observe that if $\alpha < \omega_0$, then $S_X^{\lambda(\alpha)} = X$ and so $S_X^{\lambda(\alpha)} \times K = X \times K$. Hence for such α we have trInd $(S_X^{\lambda(\alpha)} \times K) \leq \dim X + \alpha$. We shall prove trInd $(S_X^{\lambda(\alpha)} \times K) \leq \alpha$ for $\omega_0 \leq \alpha < \omega_1$ by transfinite induction on α . Let $\omega_0 \leq \alpha < \omega_1$, and x_∞ the extension point of the space $S_X^{\lambda(\alpha)}$. Note that for any closed subset F of $S_X^{\lambda(\alpha)} \times K$ which does not meet $\{x_\infty\} \times K$, there are finitely many ordinals $\beta_1, \ldots, \beta_n < \lambda(\alpha)$ such that $F \subset \bigoplus_{i=1}^n S_X^{\beta_i}$. Let $\alpha = \omega_0$. Then $\lambda(\alpha) = \omega_0, n(\alpha) = 0$ and dim $K \leq 0$. Consider disjoint closed subsets A and B in $S_X^{\omega_0} \times K$. We can assume that $A' = A \cap (\{x_\infty\} \times K) \neq \emptyset$ and $B' = B \cap (\{x_\infty\} \times K) \neq \emptyset$. Since dim K = 0, the empty set separates A' and B' in $\{x_\infty\} \times K$. Hence, there exits a partition L between A and B in $S_X^{\omega_0} \times K$ which extends the empty partition. It is clear that L is contained in the topological sum of finitely many finite-dimensional sets. Hence $\operatorname{Ind} L < \omega_0$ and $\operatorname{trInd}(S_X^{\omega_0} \times K) \leq \omega_0$. Hence the statement is valid for $\alpha = \omega_0$.

Let $\beta > \omega_0$ and assume that the inequality holds for all α with $\omega_0 \leq \alpha < \beta < \omega_1$. If β is limit then the statement is valid by inductive assumption and a similar argument as in the case of $\alpha = \omega_0$. Then we suppose that $\beta = \beta^- + 1$. Consider disjoint closed subsets A and B in $S_X^{\lambda(\beta)} \times K$. We can assume that $A' = A \cap (\{x_\infty\} \times K) \neq \emptyset$ and $B' = B \cap (\{x_\infty\} \times K) \neq \emptyset$. Choose open subsets O_A , O_B in K and a clopen neighborhood V of x_∞ in $S_X^{\lambda(\beta)}$ such that

- (i) $A' \subset O_A, B' \subset O_B$ and $\operatorname{Cl} O_A \cap \operatorname{Cl} O_B = \emptyset$, and
- (ii) $A \cap (V \times K) \subset V \times \operatorname{Cl} O_A$ and $B \cap (V \times K) \subset V \times \operatorname{Cl} O_B$.

By our assumption, we can find a partition L' between $\operatorname{Cl} O_A$ and $\operatorname{Cl} O_B$ in K such that dim $L' \leq n(\beta^-) < n(\beta)$. It is evident that the set $L'' = V \times L'$ is a partition between $A \cap (V \times K)$ and $B \cap (V \times K)$ in $V \times K$, and $V \times K$ is a clopen subset of $S_X^{\lambda(\beta)} \times K$. By the inductive assumption it follows that $\operatorname{trInd} L'' \leq \beta^- < \beta$. Extend the partition L'' to a partition L between A and B in $S_X^{\lambda(\beta)} \times K$. Evidently, the set $L''' = L \setminus L''$ is the topological sum of finitely many sets with $\operatorname{trInd} < \lambda(\beta)$. Note also that the partition $L = L'' \oplus L'''$ is the topological sum of L'' and L'''. So $\operatorname{trInd} L \leq \beta^- < \beta$ and hence $\operatorname{trInd} (S_X^{\lambda(\beta)} \times K) \leq \beta$.

PROPOSITION 3.4. Let J be a subspace of I. For each countable ordinal α , each integer $n \geq 1$ and each partition L'_i in $S^{\alpha}_J \times I^n$ between $S^{\alpha}_J \times \overline{A}^n_i$ and $S^{\alpha}_J \times \overline{B}^n_i$, $i = 1, \ldots, n$, we have

$$\alpha \leq \begin{cases} \mathscr{K}_{0}\text{-trInd}\left(\bigcap_{i=1}^{n}L_{i}^{\prime}\right), \text{ if } J = Q_{0}, \\ M(\beta)\text{-trInd}\left(\bigcap_{i=1}^{n}L_{i}^{\prime}\right), \text{ if } J = Q_{\beta} \text{ and } 1 \leq \beta < \omega_{1}, \\ A(\beta)\text{-trInd}\left(\bigcap_{i=1}^{n}L_{i}^{\prime}\right), \text{ if } J = P_{\beta} \text{ and } 1 \leq \beta < \omega_{1}, \\ \mathscr{AB}\text{-trInd}\left(\bigcap_{i=1}^{n}L_{i}^{\prime}\right), \text{ if } J \in Brn(\mathbf{I}). \end{cases}$$
(3.1)

PROOF. Apply induction on α . If $\alpha = 0$ then $S_J^{\alpha} \times \mathbf{I}^n = J \times \mathbf{I}^n = M_J \subset \mathbf{I}^{n+1}$ and $S_J^{\alpha} \times \overline{A}_k^n = M_J \cap \overline{A}_{k+1}^{n+1}$, $S_J^{\alpha} \times \overline{B}_k^n = M_J \cap \overline{B}_{k+1}^{n+1}$ for every k. For each *i* with $2 \leq i \leq n+1$, there is a partition L_i in \mathbf{I}^{n+1} between A_i^{n+1} and B_i^{n+1} such that $L_i \cap M_J = L'_{i-1}$. Since $(\bigcap_{i=2}^{n+1} L_i) \cap M_J = \bigcap_{i=1}^n L'_i$, by Proposition 2.5, we have the

inequality $(3.1)_0$. Let $\mu > 0$ be a countable ordinal and assume that $(3.1)_{\alpha}$ holds for all α with $\alpha < \mu$. Let \mathscr{P} be either \mathscr{K}_0 if $J = Q_0$, $M(\beta)$ if $J = Q_\beta$, $A(\beta)$ if $J = P_\beta$, or \mathscr{AB} if $J \in Brn(I)$. Consider an integer $n \ge 1$ and suppose that for each $i = 1, 2, \ldots, n$, there exists a partition L'_i in $S^{\mu}_J \times I^n$ between $S^{\mu}_J \times \overline{A}^n_i$ and $S^{\mu}_J \times \overline{B}^n_i$ such that \mathscr{P} -trInd $(\bigcap_{i=1}^n L'_i) = \gamma < \mu$. If μ is a limit number, then $\gamma + 1 < \mu$. Note that for each $i = 1, 2, \ldots, n$, the set $L''_i = L'_i \cap (S^{\gamma+1}_J \times I^n)$ is a partition between $S^{\gamma+1}_J \times \overline{A}^n_i$ and $S^{\gamma+1}_J \times \overline{B}^n_i$ in the clopen subset $S^{\gamma+1}_J \times I^n$ of $S^{\mu}_J \times I^n$. On the other hand, \mathscr{P} -trInd $(\bigcap_{i=1}^n L''_i) \le \mathscr{P}$ -trInd $(\bigcap_{i=1}^n L'_i) = \gamma < \gamma + 1$. This is a contradiction with the inductive assumption. If $\mu = \mu^- + 1$, then we have $S^{\mu}_J \times I^n = S^{\mu^-}_J \times I^{n+1}$ and $\gamma \le \mu^-$. We put $F = \bigcap_{i=1}^n L'_i$. By our assumption, \mathscr{P} -trInd $F = \gamma < \mu$. Hence, there exists a partition L''_0 between $F \cap A$ and $F \cap B$ in F, where A = $S^{\mu^-}_J \times [0, 1/3] \times I^n$ and $B = S^{\mu^-}_J \times [2/3, 1] \times I^n$, such that \mathscr{P} -trInd $L''_0 < \gamma \le \mu^-$. There exists a partition L'_0 between A and B in $S^{\mu}_J \times I^n = S^{\mu^-}_J \times I^{n+1}$ such that $F \cap L'_0 \subset L''_0$ (see [5, Lemma 1.2.9 and Remark 1.2.10]). Hence we have \mathscr{P} -trInd $(\bigcap_{i=0}^n L'_i) \le \mathscr{P}$ -trInd $L''_0 < \gamma \le \mu^-$, which also contradicts the inductive assumption.

Now we are ready to extend Theorem 2.1 to transfinite dimensions.

THEOREM 3.1. For every countable ordinal α and every $J \subset \mathbf{I}$ with dim J = 0 we have trInd $S_J^{\alpha} = \alpha$. Moreover, we have the following.

- (i) \mathscr{K}_0 -trInd $S_I^{\alpha} = \alpha$ and \mathscr{C}_0 -trInd $S_I^{\alpha} = \mathscr{S}_0$ -trInd $S_I^{\alpha} = -1$ if $J = Q_0$.
- (ii) If $1 \leq \beta < \omega_1$, then (a) $M(\beta)$ -trInd $S_J^{\alpha} = \alpha$ and $A(\beta)$ -trInd $S_J^{\alpha} = -1$ if $J = Q_{\beta}$, (b) $A(\beta)$ -trInd $S_J^{\alpha} = \alpha$ and $M(\beta)$ -trInd $S_J^{\alpha} = -1$ if $J = P_{\beta}$. (iii) \mathscr{AB} -trInd $S_I^{\alpha} = \alpha$ if $J \in Brn(\mathbf{I})$.

PROOF. It follows from Proposition 3.3 that $\operatorname{trInd} S_J^{\alpha} \leq \alpha$. Let \mathscr{P} be either \mathscr{K}_0 if $J = Q_0$, $M(\beta)$ if $J = Q_\beta$, $A(\beta)$ if $J = P_\beta$ or \mathscr{AB} if $J \in Brn(\mathbf{I})$. It suffices to show that \mathscr{P} -trInd $S_J^{\alpha} \geq \alpha$, because $\alpha \geq \operatorname{trInd} S_J^{\alpha} \geq \mathscr{P}$ -trInd S_J^{α} . We notice that, by Proposition 3.4, for every ordinal γ and any partition L' in $S_J^{\gamma} \times \mathbf{I} = S_J^{\gamma+1}$ between $S_J^{\gamma} \times [0, 1/3]$ and $S_J^{\gamma} \times [2/3, 1]$ we have \mathscr{P} -trInd $L' \geq \gamma$, hence \mathscr{P} -trInd $S_J^{\gamma+1} > \gamma$. Thus if $\alpha = \gamma + 1$ we have \mathscr{P} -trInd $S_J^{\gamma+1} > \gamma$, because $S_J^{\gamma+1}$ is a clopen subspace of S_J^{α} . Hence also in this case \mathscr{P} -trInd $S_J^{\alpha} \geq \alpha$.

COROLLARY 3.1. Let α be a countable limit ordinal, $\{\beta_j\}_{j=1}^{\infty}$ a sequence of ordinals such that $\beta_j < \beta_{j+1}$, for $j \ge 1$, and $\sup \beta_j = \alpha$. Let μ be a countable ordinal number and $X = (\bigoplus_{j=1}^{\infty} S_{P_{\beta_j}}^{\mu})_+$. Then $A(\gamma)$ -trInd $X = M(\gamma)$ -trInd $X = \mu$ for each $\gamma < \alpha$, and $A(\nu)$ -trInd $X = M(\nu)$ -trInd X = -1 for each $\nu \ge \alpha$.

V. A. CHATYRKO and Y. HATTORI

PROOF. Let $\gamma < \alpha$. Then there is β_j such that $\gamma < \beta_j < \alpha$. By Theorem 3.1, we have $M(\gamma)$ -trInd $S_{P_{\beta_j}}^{\mu} = A(\gamma)$ -trInd $S_{P_{\beta_j}}^{\mu} = A(\beta_j)$ -trInd $S_{P_{\beta_j}}^{\mu} = \mu$. Hence $A(\gamma)$ trInd $X \ge \mu$ and $M(\gamma)$ -trInd $X \ge \mu$ by the monotonicity of the inductive dimensions modulo classes. In order to show that $A(\gamma)$ -trInd $X \le \mu$ let us consider disjoint closed sets F and G of X. It is easy to see that there is a partition L in Xbetween F and G such that L is the topological sum of finitely many sets with $A(\gamma)$ -trInd $< \mu$. Hence $A(\gamma)$ -trInd $L < \mu$ and $A(\gamma)$ -trInd $X \le \mu$. Similarly we get $M(\gamma)$ -trInd $X \le \mu$. The equalities $A(\nu)$ -trInd $X = M(\nu)$ -trInd X = -1 for each $\nu \ge \alpha$ is a direct consequence of Proposition 3.1 (iv). \Box

REMARK 3.1. Note that \mathscr{K}_0 -trind $S_{Q_0}^{\omega_0} = 0$ and \mathscr{K}_0 -trind $S_{Q_0}^{\omega_0+1} = 1$. The first equality and the inequality \mathscr{K}_0 -trind $S_{Q_0}^{\omega_0+1} \leq 1$ are evident. The inequality \mathscr{K}_0 -trind $S_{Q_0}^{\omega_0+1} \geq 1$ can be proved with the help of Proposition 3.5 below due to Charalambous. Indeed, $S_{Q_0}^{\omega_0+1}$ is contained in the class Δ of spaces in Proposition 3.5 below, because every space X with trInd $X \neq \infty$ has a compact subspace S(X) such that for each closed subset $F \subset X$ disjoint from S(X) we have dim $F < \infty$ ([5, Theorem 7.1.23]).

PROPOSITION 3.5 ([3]). Let Δ be the class of all spaces X that contain a compact subspace X_{∞} such that every closed set of X disjoint from X_{∞} has arbitrary small neighborhoods V with dim Bd $V < \infty$. Then for each X in Δ we have \mathscr{P} -trInd $X \leq \omega_0 \cdot (\mathscr{P}$ -trind X + 1), where \mathscr{P} is a class of spaces such that if $X = Y \cup Z$, where Y and Z are closed in X and $Y, Z \in \mathscr{P}$, then $X \in \mathscr{P}$.

Theorem 3.1 and Proposition 3.5 easily imply the following.

COROLLARY 3.2 (cf. [5, Example 7.2.12] for trind). For each β with $0 \leq \beta < \omega_1$ and each $J \in Brn(\mathbf{I})$, we have

$$\sup_{\alpha < \omega_1} M(\beta) \operatorname{-trind} S^{\alpha}_{Q_{\beta}} = \sup_{\alpha < \omega_1} A(\beta) \operatorname{-trind} S^{\alpha}_{P_{\beta}} = \sup_{\alpha < \omega_1} \mathscr{A} \mathscr{B} \operatorname{-trind} S^{\alpha}_J = \omega_1 \operatorname{-trind} S^{\alpha}_{P_{\beta}} = \omega_1 \operatorname{-trind} S^{\alpha}_{P_{\beta}$$

Furthermore, by the inductive character of the function \mathscr{P} -trind, we get the following statement which answers [4, Problem 4.1].

COROLLARY 3.3. For every countable ordinal number α there exist spaces H_{α} and T_{α} such that

- (i) trcmp $H_{\alpha} = \alpha \leq \operatorname{trInd} H_{\alpha} \neq \infty$ and \mathscr{C}_0 -trInd $H_{\alpha} = \mathscr{S}_0$ -trInd $H_{\alpha} = -1$, and
- (ii) \mathscr{AB} -trind $T_{\alpha} = \alpha \leq \operatorname{trInd} T_{\alpha} \neq \infty$.

Moreover, for each β with $1 \leq \beta < \omega_1$ there exist spaces $Y_{\alpha}(\beta)$ and $Z_{\alpha}(\beta)$ such that

(iii) $M(\beta)$ -trind $Y_{\alpha}(\beta) = \alpha \leq \operatorname{trInd} Y_{\alpha}(\beta) \neq \infty$ and $A(\beta)$ -trInd $Y_{\alpha}(\beta) = -1$, (iv) $A(\beta)$ -trind $Z_{\alpha}(\beta) = \alpha \leq \operatorname{trInd} Z_{\alpha}(\beta) \neq \infty$ and $M(\beta)$ -trInd $Z_{\alpha}(\beta) = -1$.

REMARK 3.2. Observe that a similar result as in Corollary 3.3 (i) can be found in [9]. In [3, Example 17] Charalambous demonstrated the existence of a space $C^{\alpha}_{\mathscr{T}}$ such that \mathscr{T} -trind $C^{\alpha}_{\mathscr{T}} = \alpha$ for each α with $\omega_0 < \alpha < \omega_1$ and each class \mathscr{T} consisting of spaces which are Borel sets of any space that contains them. Note that the space $C^{\alpha}_{\mathscr{T}}$, unlike to the spaces T_{α} from Corollary 3.1, has \mathscr{T} -trInd $C^{\alpha}_{\mathscr{T}} = \infty$ for each $\alpha > \omega_0$. Indeed, each space $C^{\alpha}_{\mathscr{T}}$ is a Bernstein set of a space by the construction. Recall [3, Proposition 13] that if A is a Bernstein set of a space X with $\omega_0 \leq \mathscr{T}$ -trInd $A < \infty$ then \mathscr{T} -trInd $A = \text{trInd } X = \omega_0$.

A complement to Theorem 3.1 is the following.

PROPOSITION 3.6 ([4]). For every ordinal number with $1 \le \alpha < \omega_1$ there exist spaces X_{α} and Y_{α} such that

- (i) $A(\alpha)$ -trind $X_{\alpha} = \infty$ and $M(\alpha)$ -trind $X_{\alpha} = -1$,
- (ii) $A(\alpha)$ -trind $Y_{\alpha} = -1$ and $M(\alpha)$ -trind $Y_{\alpha} = \infty$.

We notice that $A(\alpha)$ -trInd $X_{\alpha} = \infty$, $M(\alpha)$ -trInd $X_{\alpha} = -1$ and $A(\alpha)$ -trInd $Y_{\alpha} = -1$, $M(\alpha)$ -trInd $Y_{\alpha} = \infty$ for spaces X_{α} and Y_{α} in Proposition 3.6.

4. Main results.

Let $\Omega = \{\alpha : \alpha < \omega_1\}$ and \mathscr{F} be the set of functions $f : \Omega \to \{-1\} \cup \Omega \cup \{\infty\}$ such that $f(\alpha) \ge f(\beta)$ whenever $0 \le \alpha < \beta < \omega_1$. Note that if $f \in \mathscr{F}$ then for each countable limit ordinal α there exists an ordinal $\beta < \alpha$ such that $f(\gamma) = f(\beta)$ for each $\beta \le \gamma < \alpha$. Put $f_L(\alpha) = f(\beta)$. An ordinal α , $1 \le \alpha < \omega_1$, is said to be *a lowered point* of $f \in \mathscr{F}$ if $f(\alpha) < \min\{f(\gamma) : \gamma < \alpha\}$. Denote by Low(f) the set of all lowered points of f. It is evident that the cardinality of Low(f) is finite for each $f \in \mathscr{F}$. An ordered pair (f_1, f_2) of functions from \mathscr{F} is said to be *admissible* if

- (i) $f_1(0) \ge f_2(0) \ge \max\{f_1(1), f_2(1)\},$ and
- (ii) $\min\{f_1(\alpha), f_2(\alpha)\} \ge \max\{f_1(\beta), f_2(\beta)\}, \text{ if } 1 \le \alpha < \beta < \omega_1.$

For every admissible pair (f_1, f_2) put $Low(f_1, f_2) = Low(f_1) \cup Low(f_2)$.

PROPOSITION 4.1. Let (f_1, f_2) be admissible and $0 \le \alpha < \beta < \omega_1$. If $f_i(\alpha) = f_i(\beta) = \mu_i \ge -1$ for each i = 1, 2, then $\mu_1 = \mu_2 = \mu$ and for each ordinal γ with $\alpha \le \gamma \le \beta$ we have $f_1(\gamma) = f_2(\gamma) = \mu$.

PROOF. Note that $\min\{f_1(\alpha), f_2(\alpha)\} = \min\{\mu_1, \mu_2\} \ge \max\{f_1(\beta), f_2(\beta)\} =$

 $\max\{\mu_1, \mu_2\}$ and $f_i(\alpha) \ge f_i(\gamma) \ge f_i(\beta)$ for each ordinal γ with $\alpha \le \gamma \le \beta$. The rest is evident.

The following is a direct consequence of Proposition 4.1.

COROLLARY 4.1. Let (f_1, f_2) be an admissible pair. Then we have the following.

- (i) If $Low(f_1, f_2) = \emptyset$, then f_1 and f_2 are constant maps and $f_1 = f_2$.
- (ii) Let $Low(f_1, f_2) = \{\alpha_1, \dots, \alpha_k\} \neq \emptyset$, where $\alpha_i < \alpha_j$ if i < j, $\alpha_0 = 0$, $\alpha_{k+1} = \omega_1$ and $1 \le p \le k+1$. Then the following is valid.
 - (a) If α_p is limit, then there is $\mu_p \in \{-1\} \cup \Omega \cup \{\infty\}$ such that $f_1(\gamma) = f_2(\gamma) = \mu_p$ for each γ with $\alpha_{p-1} \leq \gamma < \alpha_p$ and hence, $\mu_p = (f_1)_L(\alpha_p) = (f_2)_L(\alpha_p).$
 - (b) If $\alpha_p = \alpha_p^- + 1$ and $\alpha_{p-1} < \alpha_p^-$, then there is $\mu_p \in \{-1\} \cup \Omega \cup \{\infty\}$ such that $f_1(\gamma) = f_2(\gamma) = \mu_p$ for each γ with $\alpha_{p-1} \le \gamma \le \alpha_p^-$, moreover

$$\mu_p = \begin{cases} f_2(\alpha_p) \text{ if } \alpha_p \in Low(f_1) \setminus Low(f_2), \\ f_1(\alpha_p) \text{ if } \alpha_p \in Low(f_2) \setminus Low(f_1). \end{cases}$$

We are ready for our main result.

THEOREM 4.1. Let (f_1, f_2) be admissible. Then there exists a space X such that $A(\alpha)$ -trInd $X = f_1(\alpha)$ and $M(\alpha)$ -trInd $X = f_2(\alpha)$ for each α with $0 \le \alpha < \omega_1$. Moreover, we have \mathscr{AB} -trInd $X = (f_1)_L(\omega_1) = (f_2)_L(\omega_1)$.

PROOF. Let $Low(f_1, f_2) = \{\alpha_1, \ldots, \alpha_k\}$, where $\alpha_i < \alpha_j$ if i < j, $\alpha_0 = 0$, $\alpha_{k+1} = \omega_1$ and $1 \le p \le k+1$ (if $Low(f_1, f_2) = \emptyset$ we put k = 0). If α_p is a limit ordinal, then we fix a sequence $\{\beta_j^p\}_{j=1}^\infty$ of ordinals such that $\alpha_{p-1} < \beta_j^p < \beta_{j+1}^p$ for each j and $\sup \beta_j^p = \alpha_p$. For each $i = 1, \ldots, k+1$, we put

$$X_{i} = \begin{cases} S_{P_{\alpha_{i}^{-}}}^{f_{1}(\alpha_{i}^{-})}, \text{ if } \alpha_{i} = \alpha_{i}^{-} + 1 \text{ and } \alpha_{i} \in Low(f_{1}) \setminus Low(f_{2}), \\ S_{Q_{\alpha_{i}^{-}}}^{f_{2}(\alpha_{i}^{-})}, \text{ if } \alpha_{i} = \alpha_{i}^{-} + 1 \text{ and } \alpha_{i} \in Low(f_{2}) \setminus Low(f_{1}), \\ S_{Q_{\alpha_{i}^{-}}}^{f_{2}(\alpha_{i}^{-})} \oplus S_{P_{\alpha_{i}^{-}}}^{f_{1}(\alpha_{i}^{-})}, \text{ if } \alpha_{i} = \alpha_{i}^{-} + 1 \text{ and } \alpha_{i} \in Low(f_{1}) \cap Low(f_{2}), \\ (\oplus_{j=1}^{\infty} S_{P_{\beta_{j}^{-}}}^{(f_{1})_{L}(\alpha_{i})})_{+}, \text{ if } \alpha_{i} \text{ is a limit ordinal}, \\ S_{J}^{(f_{1})_{L}(\omega_{1})}, \text{ where } J \in Brn(\mathbf{I}), \text{ if } i = k + 1, \end{cases}$$

where $S_{i=1}^{\alpha}$ is the space defined in the previous section. Furthermore, we put $X = \bigoplus_{i=1}^{k+1} X_i$. Then it follows from Theorem 3.1 and Corollary 3.1 that for each $i = 1, \ldots, k+1$ we have the values of $A(\alpha)$ -trInd X_i and $M(\alpha)$ -trInd X_i as follows. (a) If $1 \le i \le k$, α_i is not a limit ordinal and $\alpha_i \in Low(f_1) \setminus Low(f_2)$, then

$$\begin{cases} A(\gamma)\operatorname{-trInd} X_i = M(\gamma)\operatorname{-trInd} X_i = f_1(\alpha_i^-), \text{ if } 0 \leq \gamma < \alpha_i^-, \\ A(\alpha_i^-)\operatorname{-trInd} X_i = f_1(\alpha_i^-), \\ M(\alpha_i^-)\operatorname{-trInd} X_i = -1, \\ A(\gamma)\operatorname{-trInd} X_i = M(\gamma)\operatorname{-trInd} X_i = -1, \text{ if } \alpha_i \leq \gamma < \omega_1. \end{cases}$$

(b) If $1 \leq i \leq k$, α_i is not a limit ordinal and $\alpha_i \in Low(f_2) \setminus Low(f_1)$, then

$$\begin{array}{l} \left(\begin{array}{l} A(\gamma) \operatorname{-trInd} X_i = M(\gamma) \operatorname{-trInd} X_i = f_2(\alpha_i^-), \text{ if } 0 \leq \gamma < \alpha_i^-, \\ A(\alpha_i^-) \operatorname{-trInd} X_i = -1, \\ M(\alpha_i^-) \operatorname{-trInd} X_i = f_2(\alpha_i^-), \\ A(\gamma) \operatorname{-trInd} X_i = M(\gamma) \operatorname{-trInd} X_i = -1 \text{ if } \alpha_i \leq \gamma < \omega_1. \end{array} \right) \end{array}$$

(c) If $1 \leq i \leq k$, α_i is not a limit ordinal and $\alpha_i \in Low(f_1) \cap Low(f_2)$, then

$$\begin{aligned} A(\gamma)-\operatorname{trInd} X_i &= M(\gamma)-\operatorname{trInd} X_i = \max\{f_1(\alpha_i^-), f_2(\alpha_i^-)\}, \text{ if } 0 \leq \gamma < \alpha_i^- \\ A(\alpha_i^-)-\operatorname{trInd} X_i &= f_1(\alpha_i^-), \\ M(\alpha_i^-)-\operatorname{trInd} X_i &= f_2(\alpha_i^-), \\ A(\gamma)-\operatorname{trInd} X_i &= M(\gamma)-\operatorname{trInd} X_i = -1, \text{ if } \alpha_i \leq \gamma < \omega_1. \end{aligned}$$

(d) If $1 \leq i \leq k$ and α_i is a limit ordinal, then

$$\begin{aligned} A(\gamma) - \operatorname{trInd} X_i &= M(\gamma) - \operatorname{trInd} X_i = (f_1)_L(\alpha_i) = (f_2)_L(\alpha_i), \text{ if } 0 \leq \gamma < \alpha_i, \\ A(\gamma) - \operatorname{trInd} X_i &= M(\gamma) - \operatorname{trInd} X_i = -1 \text{ if } \alpha_i \leq \gamma < \omega_1. \end{aligned}$$

(e) If i = k + 1, then

$$A(\gamma)$$
-trInd $X_i = M(\gamma)$ -trInd $X_i = (f_1)_L(\omega_1) = (f_2)_L(\omega_1)$, if $0 \le \gamma < \omega_1$.

Furthermore, we have the following.

(4.1) If $0 \le i \le k$ and $\alpha_i \le \gamma < \omega_1$, then $A(\gamma)$ -trInd $X = A(\gamma)$ -trInd $(\bigcup_{p=i+1}^{k+1} X_p)$ and $M(\gamma)$ -trInd $X = M(\gamma)$ -trInd $(\bigcup_{p=i+1}^{k+1} X_p)$.

(4.2) If
$$0 < i \le k, p \ge i+1$$
 and $0 \le \gamma < \alpha_i$, then

$$\max\{A(\gamma) \operatorname{-trInd} X_p, M(\gamma) \operatorname{-trInd} X_p\} \le \max\{f_1(\alpha_i), f_2(\alpha_i)\}.$$

Indeed, let $0 \le i \le k$, $\alpha_i \le \gamma < \omega_1$ and \mathscr{P} either $A(\gamma)$ or $M(\gamma)$. Then it follows from the above estimations (a), (b), (c) and (d) that

$$\mathcal{P}\text{-trInd} X = \max\{\mathcal{P}\text{-trInd} X_1, \dots, \mathcal{P}\text{-trInd} X_i, \mathcal{P}\text{-trInd} (\cup_{p=i+1}^{k+1} X_p)\}$$
$$= \max\{-1, \mathcal{P}\text{-trInd} (\cup_{p=i+1}^{k+1} X_p)\}$$
$$= \mathcal{P}\text{-trInd} (\cup_{p=i+1}^{k+1} X_p).$$

This implies (4.1). Next, we shall show (4.2). Let $0 < i \le k$, $p \ge i+1$ and $0 \le \gamma < \alpha_i$. If i = k we have $\max\{f_1(\alpha_k), f_2(\alpha_k)\} \ge (f_1)_L(\omega_1) = (f_2)_L(\omega_1) = \mathscr{P}$ -trInd X_{k+1} . If 0 < i < k, then we have

$$\max\{f_1(\alpha_i), f_2(\alpha_i)\} \ge \begin{cases} \max\{f_1(\alpha_p^-), f_2(\alpha_p^-)\}, \text{ if } \alpha_p \text{ is not limit} \\ (f_1)_L(\alpha_p) = (f_2)_L(\alpha_p), \text{ if } \alpha_p \text{ is limit} \end{cases} \ge \mathscr{P}\text{-trInd } X_p.$$

Let us continue the proof of the theorem. Assume first that $Low(f_1, f_2) = \emptyset$ (the case of k = 0). Then, by Corollary 4.1 (i), f_1 and f_2 are constant maps and $f_1 = f_2$. It follows from Theorem 3.1 (iii) that $f_1(\alpha) = f_2(\alpha) = (f_1)_L(\omega_1) = \mathscr{P}$ -trInd $X_{k+1} = \mathscr{P}$ -trInd X for each ordinal α and each class \mathscr{P} from (*).

Assume now that $Low(f_1, f_2) \neq \emptyset$ (the case of $k \ge 1$). We consider the following condition $(\#)_i$ for each i with $0 \le i \le k$.

 $(\#)_i$ For each ordinal γ with $\alpha_i \leq \gamma < \omega_1$, $A(\gamma)$ -trInd $X = f_1(\gamma)$ and $M(\gamma)$ -trInd $X = f_2(\gamma)$.

It suffices to show that $(\#)_0$ holds and we shall show inductively $(\#)_i$ for every *i*. At first, we consider $(\#)_k$. By Corollary 4.1 (ii) (a), there is an ordinal $\mu_{k+1} \ge -1$ such that for each $\alpha_k \le \gamma < \omega_1$ we have $f_1(\gamma) = f_2(\gamma) = \mu_{k+1}$. Note that $\mu_{k+1} = (f_1)_L(\omega_1)$. Let γ be an ordinal such that $\alpha_k \le \gamma < \omega_1$ and \mathscr{P} be either $A(\gamma)$ or $M(\gamma)$. It follows from (4.1) and (e) that \mathscr{P} -trInd $X = \mathscr{P}$ -trInd $X_{k+1} = (f_1)_L(\omega_1) = f_1(\gamma) = f_2(\gamma)$. Hence $(\#)_k$ holds.

Assume that $(\#)_i$ holds for some $i \leq k$. We will show $(\#)_{i-1}$. If α_i is limit, then, by Corollary 4.1 (ii) (a), there is $\mu_i \in \{-1\} \cup \Omega \cup \{\infty\}$ such that $f_1(\gamma) = f_2(\gamma) = \mu_i$ for each γ with $\alpha_{i-1} \leq \gamma < \alpha_i$. Let $\alpha_{i-1} \leq \gamma < \alpha_i$ and \mathscr{P} be either $A(\gamma)$ or $M(\gamma)$. Note that $\mu_i = (f_1)_L(\alpha_i) = (f_2)_L(\alpha_i) = \mathscr{P}$ -trInd X_i by (d). Moreover, by (4.2), we have \mathscr{P} -trInd $X_p \leq \max\{f_1(\alpha_i), f_2(\alpha_i)\} \leq \mu_i$ for each p with $i+1 \leq p \leq k+1$. Hence, by (4.1), we get \mathscr{P} -trInd $X = \mathscr{P}$ -trInd $(\bigcup_{p=i}^{k+1} X_p) = \max\{\mathscr{P}$ -trInd

 $X_p: i \leq p \leq k+1 \} = \max\{\mu_i, \max\{\mathscr{P}\text{-trInd } X_p: i+1 \leq p \leq k+1\}\} = \mu_i \text{ that precisely as we needed.}$

If α_i is not limit, then we consider three cases separately.

CASE (1). Suppose that $\alpha_i \in Low(f_1) \setminus Low(f_2)$. Then, $f_1(\alpha_i^-) > f_1(\alpha_i)$ and $f_2(\alpha_i^-) = f_2(\alpha_i)$. Since (f_1, f_2) is admissible, it follows that $f_2(\alpha_i^-) \ge \min\{f_1(\alpha_i^-), f_2(\alpha_i^-)\} \ge \max\{f_1(\alpha_i), f_2(\alpha_i)\} \ge f_2(\alpha_i)$, and hence $f_2(\alpha_i^-) = \min\{f_1(\alpha_i^-), f_2(\alpha_i^-)\} = \max\{f_1(\alpha_i), f_2(\alpha_i)\} = f_2(\alpha_i)$. By (a), we notice that $A(\alpha_i^-)$ -trInd $X_i = f_1(\alpha_i^-)$ and $M(\alpha_i^-)$ -trInd $X_i = -1$. It follows from (4.2) that if $\mathscr{P} = A(\alpha_i^-)$ or $M(\alpha_i^-)$ and $i+1 \le p \le k+1$, then we have \mathscr{P} -trInd $X_p \le \max\{f_1(\alpha_i), f_2(\alpha_i)\} = f_2(\alpha_i) = f_2(\alpha_i^-) \le f_1(\alpha_i^-)$. Hence, by (4.1), it follows that $A(\alpha_i^-)$ -trInd $X = A(\alpha_i^-)$ -trInd $X = M(\alpha_i^-)$ -trInd $X_p : i \le p \le k+1\} = f_1(\alpha_i^-)$, and $M(\alpha_i^-)$ -trInd $X = M(\alpha_i^-)$ -trInd $X_p : i \le p \le k+1\} = \max\{M(\alpha_i^-)$ -trInd $X_p : i \le p \le k+1\} = \max\{M(\alpha_i^-)$ -trInd $X = f_2(\alpha_i)$. Hence $M(\alpha_i^-)$ -trInd $X_p : i \le p \le k+1\} \le f_2(\alpha_i)$. On the other hand, by the inductive assumption $(\#)_i$, we have $M(\alpha_i^-)$ -trInd $X \ge M(\alpha_i)$ -trInd $X = f_2(\alpha_i)$.

Now, we assume that $\alpha_{i-1} < \alpha_i^-$. Then, by Corollary 4.1 (ii) (b), there is $\mu_i \in \{-1\} \cup \Omega \cup \{\infty\}$ such that $f_1(\gamma) = f_2(\gamma) = \mu_i$ for each γ with $\alpha_{i-1} \leq \gamma \leq \alpha_i^-$. Let $\alpha_{i-1} \leq \gamma < \alpha_i^-$ and \mathscr{P} be either $A(\gamma)$ or $M(\gamma)$. By (a) again, it follows that \mathscr{P} -trInd $X_i = f_1(\alpha_i^-) = \mu_i$. Note that, by (4.2), we have \mathscr{P} -trInd $X_p \leq \max\{f_1(\alpha_i), f_2(\alpha_i)\} = f_2(\alpha_i) = f_2(\alpha_i^-) = \mu_i$. Hence, by (4.1), we get \mathscr{P} -trInd $X = \mathscr{P}$ -trInd $(\bigcup_{p=i}^{k+1} X_p) = \max\{\mathscr{P}$ -trInd $X_p : i \leq p \leq k+1\} = \mu_i = f_1(\gamma) = f_2(\gamma)$ precisely as we needed.

CASE (2). If $\alpha_i \in Low(f_2) \setminus Low(f_1)$, then we can prove $(\#)_{i-1}$ similar to the case (1).

CASE (3). Suppose that $\alpha_i \in Low(f_1) \cap Low(f_2)$. It follows from (c) that $A(\alpha_i^-)$ -trInd $X_i = f_1(\alpha_i^-)$ and $M(\alpha_i^-)$ -trInd $X_i = f_2(\alpha_i^-)$. Note that by (4.2) for \mathscr{P} is either $A(\alpha_i^-)$ or $M(\alpha_i^-)$ we have \mathscr{P} -trInd $X_p \leq \max\{f_1(\alpha_i), f_2(\alpha_i)\} \leq \min\{f_1(\alpha_i^-), f_2(\alpha_i^-)\}$ for each p with $i+1 \leq p \leq k+1$. Hence, by (4.1), $A(\alpha_i^-)$ -trInd $X = A(\alpha_i^-)$ -trInd $(\bigcup_{p=i}^{k+1}X_p) = \max\{A(\alpha_i^-)$ -trInd $X_p: i \leq p \leq k+1\} = f_1(\alpha_i^-)$, and $M(\alpha_i^-)$ -trInd $X = M(\alpha_i^-)$ -trInd $(\bigcup_{p=i}^{k+1}X_p) = \max\{M(\alpha_i^-)$ -trInd $X_p: i \leq p \leq k+1\} = f_2(\alpha_i^-)$. Hence, we get $(\#)_{i-1}$ if $\alpha_{i-1} = \alpha_i^-$. Now, we assume that $\alpha_{i-1} < \alpha_i^-$. Then, by Corollary 4.1 (ii) (b), there is $\mu_i \in \{-1\} \cup \Omega \cup \{\infty\}$ such that $f_1(\gamma) = f_2(\gamma) = \mu_i$ for each γ with $\alpha_{i-1} \leq \gamma \leq \alpha_i^-$. Let $\alpha_{i-1} \leq \gamma < \alpha_i^-$ and \mathscr{P} is either $A(\gamma)$ or $M(\gamma)$. Then, by (c) again, it follows that \mathscr{P} -trInd $X_i = \mu_i$. Note that by (4.2) we have \mathscr{P} -trInd $X_p \leq \max\{f_1(\alpha_i), f_2(\alpha_i)\} \leq \min\{f_1(\alpha_i^-), f_2(\alpha_i^-)\} = \mu_i$. Hence, we get \mathscr{P} -trInd $X_p \leq \max\{f_1(\alpha_i), f_2(\alpha_i)\} \leq \min\{f_1(\alpha_i^-), f_2(\alpha_i^-)\} = \mu_i$. Hence, we get \mathscr{P} -trInd $X = \mathscr{P}$ -trInd $(\bigcup_{p=i}^{k+1}X_p) = \max\{\mathscr{P}$ -trInd $X_p: i \leq p \leq k+1\} = \mu_i$, and hence $(\#)_{i-1}$ holds.

QUESTION 4.1. Is the counterpart of Theorem 4.1 for the small transfinite inductive dimensions modulo \mathcal{P} valid ?

Let $\mathscr{F}_1 = \{ f \in \mathscr{F} : f(\Omega) \subset \{-1\} \cup \{ \alpha : \alpha < \omega_0 \} \cup \{\infty\} \}.$

COROLLARY 4.2. Let $(f_1, f_2) \in \mathscr{F}_1 \times \mathscr{F}_1$ be admissible. Then there exists a space X such that $A(\alpha)$ -Ind $X = f_1(\alpha)$, $M(\alpha)$ -Ind $X = f_2(\alpha)$ for each α with $0 \leq \alpha < \omega_1$ and \mathscr{AB} -Ind $X = (f_1)_L(\omega_1) = (f_2)_L(\omega_1)$.

QUESTION 4.2. Is Corollary 4.2 valid for the small inductive dimensions modulo \mathscr{P} ?

ACKNOWLEDGMENTS. The authors would like to thank the referee for valuable comments.

References

- J. M. Aarts, Completeness degree, A generalization of dimension, Fund. Math., 63 (1968), 27– 41.
- [2] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
- M. G. Charalambous, On transfinite inductive dimension and deficiency modulo a class *P*, Top. Appl., 81 (1997), 123–135.
- [4] V. Chatyrko and Y. Hattori, Infinite-dimensionality modulo absolute Borel classes, Bull. Polish Acad. Sci. Math., 56 (2008), 163–176.
- [5] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
- [6] A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloq. Math., 12 (1964), 221–227.
- B. T. Levshenko, Spaces of transfinite dimension (Russian), Mat. Sb., 67 (1965), 225–266, English translation: Amer. Math. Soc. Transl. Ser. 2, 73 (1968), 135–148.
- [8] E. Pol, The Baire category method in some compact extension problems, Pacific J. Math., 122 (1986), 197–210.
- [9] R. Pol, On transfinite inductive compactness degree, Colloq. Math., 53 (1987), 57-61.
- [10] Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Izvest. Akad. Nauk SSSR Ser. Mat., 23 (1959), 185–196, English translation: Amer. Math. Soc. Transl. Ser. 2, 21 (1962), 35–50.
- [11] S. M. Srivastava, A Course on Borel Sets, Springer Verlag, New York, 1998.
- [12] L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl., 10 (1979), 93–102.

Vitalij A. CHATYRKO

Yasunao HATTORI

Department of Mathematics Linköping University 581 83 Linköping, Sweden E-mail: vitja@mai.liu.se Department of Mathematics Shimane University Matsue, Shimane, 690-8504 Japan E-mail: hattori@riko.shimane-u.ac.jp