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Transfinite large inductive dimensions modulo

absolute Borel classes
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Abstract. The following inequalities between transfinite large inductive

dimensions modulo absolutely additive (resp. multiplicative) Borel classes Að�Þ
(resp. Mð�Þ) hold in separable metrizable spaces:

(i) Að0Þ-trInd � Mð0Þ-trInd � maxfAð1Þ-trInd;Mð1Þ-trIndg, and
(ii) minfAð�Þ-trInd;Mð�Þ-trIndg � maxfAð�Þ-trInd;Mð�Þ-trIndg,

where 1 � � < � < !1.

We show that for any two functions a and m from the set of ordinals � ¼
f� : � < !1g to the set f�1g [ � [ f1g such that

(i) að0Þ � mð0Þ � maxfað1Þ;mð1Þg, and
(ii) minfað�Þ;mð�Þg � maxfað�Þ;mð�Þg, whenever 1 � � < � < !1,

there is a separable metrizable space X such that Að�Þ-trIndX ¼ að�Þ and

Mð�Þ-trIndX ¼ mð�Þ for each 0 � � < !1.

1. Introduction.

All topological spaces in this paper are assumed to be separable and

metrizable unless we mention something different. Our terminology mostly

follows [2] and [5].

In 1964 Lelek defined the small (large) inductive dimension modulo a class P

of topological spaces, P-ind (P-Ind). Recall that for a space X we have

P-indX ¼ �1 if and only if X 2 P; and P-indX � n, where n is an integer � 0,

if for every point x 2 X and every closed subset A of X with x =2 A there exists a

partition C in X between x and A such that P-indC < n. (If we replace the point

x by any closed set B disjoint from A we will obtain the definition of P-Ind).

Throughout the present paper, considered classes P are assumed to contain

the empty space ; and every space homeomorphic to a closed subspace of each

space which belongs to P.
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The functionsP-ind and P-Ind are natural generalizations of the well known

small (large) inductive dimension ind (Ind), i.e. the case of P ¼ f;g, and the small

(large) inductive compactness degree cmp (K 0-Ind) due to de Groot (cf. [2]), i.e.

the case of P being the class of compact spaces K 0. Note that P-ind and P-Ind

are monotone with respect to closed subsets, and the inequality P-ind � P-Ind

holds. Moreover, if X ¼ X1 �X2 is the topological sum of spaces X1 and X2 then

P-dX ¼ maxfP-dX1;P-dX2g, where d is either ind or Ind, provided that the

topological sum of any two elements of P is in P.

Recall ([2, Chapter II.9]) that every absolutely additive Borel class Að�Þ and
every absolutely multiplicative Borel class Mð�Þ, where 0 � � < !1, satisfy the

conditions mentioned above. Moreover, the following hierarchy of these classes

holds (a diagram in which a class P1 is contained in a class P2 iff P2 is to the

right of P1, and the arrows indicate inclusions):

(*)

Observe that if P2 � P1 then P1-d � P2-d, where d is either ind or Ind. Using

this fact and (*) we get the following inequalities concerning the inductive

dimensions modulo absolute Borel classes:

(1.1) Að0Þ-d � Mð0Þ-d � maxfAð1Þ-d;Mð1Þ-dg,
(1.2) minfAð�Þ-d;Mð�Þ-dg � maxfAð�Þ-d;Mð�Þ-dg, whenever 1 � � < � < !1.

Recall (cf. [2]) that Að0Þ ¼ f;g, Mð0Þ ¼ K 0, Að1Þ ¼ S 0, Mð1Þ ¼ C 0, where C 0

and S 0 are the classes of completely metrizable spaces and �-compact spaces,

respectively, and the following notations are used in the literature:

Að0Þ-ind ¼ ind, Að0Þ-Ind ¼ Ind, Mð0Þ-ind ¼ cmp, Mð0Þ-Ind ¼ K 0-Ind,

Að1Þ-ind ¼ S -ind, Að1Þ-Ind ¼ S -Ind, Mð1Þ-ind ¼ icd, Mð1Þ-Ind ¼ Icd.

Let us recall some facts about these functions. It is well known (see [2, Chapter

II.10]) that for every space X we have

. Að�Þ-ind X ¼ Að�Þ-Ind X for each � � 0,

. Mð�Þ-ind X ¼ Mð�Þ-Ind X for each � � 1,

. cmpRn ¼ 0, and

. K 0-Ind Rn ¼ n for each integer n � 1 ([2, Example II.6.12 (a)]).
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Moreover, for each integer n � 1 we have icd ðQ1 � InÞ ¼ n ([2, Example

I.7.12]) and S -ind ðP1 � InÞ ¼ n ([2, Example I.10.6]), where Q1 (resp. P1) is the

space of rational (resp. irrational) numbers in the closed interval I ¼ ½0; 1�. Hence

cmp ðQ1 � InÞ ¼ cmp ðP1 � InÞ ¼ n. In addition, for each integer n � 0 there is a

subset Xn of Inþ1 such that Að�Þ-ind Xn ¼ Mð�Þ-ind Xn ¼ n for each ordinal

0 � � < !1 ([2, Example II.10.5]). Notice that IndXn ¼ n. We adopt the following

notations: X�1 ¼ ; and D is the countable discrete space. For any space Z let Z0

be the one-point space and Z�1 ¼ ;. For arbitrary integers k � l � maxfm;ng �
minfm;ng � p � �1 we put

X ¼
I k �Rl � ðQ1 � ImÞ � ðP1 � I nÞ �Xp; if l � 1;

I k �D� ðQ1 � ImÞ � ðP1 � InÞ �Xp; if l ¼ 0;

I k; if l ¼ �1:

8><
>:

Taking into account all facts mentioned above it is easy to see that indX ¼ k,

K 0-IndX ¼ l, icdX ¼ m, S -indX ¼ n and P-indX ¼ p, where P is either Að�Þ
or Mð�Þ for each � � 2. Furthermore, if l � 1, then cmpX ¼ maxf0;m; ng, and if

l � 0, then cmpX ¼ l.

PROBLEM 1.1. Let d be either ind or Ind, and að�Þ; mð�Þ, where

0 � � < !1, either integers � �1 or 1 such that

(i) að0Þ � mð0Þ � maxfað1Þ;mð1Þg and

(ii) minfað�Þ;mð�Þg � maxfað�Þ;mð�Þg, if 1 � � < � < !1.

Does there exist a space X such that Að�Þ-dX ¼ að�Þ and Mð�Þ-dX ¼ mð�Þ for
each 0 � � < !1?

Observe that inequalities (1.1), (1.2) and Problem 1.1 for Ind and ind differ

only in the case of Mð0Þ. In [10] Smirnov introduced the large transfinite

inductive dimension trInd and presented for each ordinal � < !1, a compact space

S� such that trIndS� ¼ �. Some years later Levshenko [7] proved that

trIndS� � !0 � trindS�, where trind is a natural transfinite extension of ind due

to Hurewicz (cf. [5]). These results together with the inductive character of the

function trind implies, for each ordinal � < !1, the existence of a compact space

L� such that trindL� ¼ � � trIndL� 6¼ 1.

In [9] R. Pol showed that for each � < !1 there exists a completely metrizable

�-compact space C� such that � � trcmpC� � trIndC� 6¼ 1. From this result he

obtained that for each � < !1 there exists a completely metrizable �-compact

space R� such that trcmpR� ¼ � and trIndR� 6¼ 1 (here trcmp is a natural

transfinite extension of cmp). It is also easy to see that for each � < !1 there exists

a completely metrizable �-compact space X� such that K 0-trIndX� ¼ � and
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trIndX� 6¼ 1 (where K 0-trInd is a natural transfinite extension of K 0-Ind). In

addition, R. Pol observed that the reasoning of Aarts [1] in the proof of equality

cmp ðQ1 � InÞ ¼ n yields that for every compact space K� with trindK� ¼
� � !0, trcmp ðQ1 �K�Þ ¼ �, but trInd ðQ1 �K�Þ ¼ 1 and Q1 �K� is not

completely metrizable. Let us also note the reasoning in the proof of equality

icd ðQ1 � I nÞ ¼ n yields that tricd ðQ1 �K�Þ ¼ �, where tricd is a natural

transfinite extension of icd.

In ([3]) Charalambous considered the small and large transfinite inductive

dimensions modulo a class P, P-trind and P-trInd, which are natural transfinite

extensions of P-ind and P-Ind, respectively, such that f;g-trind ¼ trind,

K 0-trind ¼ trcmp, C 0-trind ¼ tricd and so on. Moreover he demonstrated for

each given ordinal � < !1 the existence of a space C�
T such that T -trindC�

T ¼ �

(but T -trIndC�
T ¼ 1 if � > !0), where the letter T denotes a class of spaces

which, like the classes Mð�Þ; Að�Þ are Borel sets of any space that contains them.

Note that inequalities ð1:1Þ and ð1:2Þ are also valid for d ¼ trInd and

d ¼ trind. In [4] we presented for each class P from the diagram ð	Þ a space XP

such that P-trindXP ¼ 1 and Q-trIndXP ¼ �1 for any other class Q from the

diagram ð	Þ which is not contained in P. (Recall that in [8] E. Pol constructed a

completely metrizable �-compact space P such that trcmpP ¼ 1.) Then the

following generalization of Problem 1.1 arises.

PROBLEM 1.2. Let d be either trind or trInd, and að�Þ; mð�Þ, where

0 � � < !1, either countable ordinals, �1 or 1 such that

(i) að0Þ � mð0Þ � maxfað1Þ;mð1Þg, and
(ii) minfað�Þ;mð�Þg � maxfað�Þ;mð�Þg, if 1 � � < � < !1.

Does there exist a space X such that Að�Þ-dX ¼ að�Þ and Mð�Þ-dX ¼ mð�Þ for
each 0 � � < !1?

Observe that inequalities (1.1), (1.2) and Problem 1.2 for d ¼ trInd and d ¼
trind differ even for Að0Þ because there are compact spaces X such that trindX <

trIndX ([5, Problem 7.1 G (e)]).

In this paper we solve Problem 1.1 for d ¼ Ind (see Corollary 4.2) and

Problem 1.2 for d ¼ trInd (see Theorem 4.1) as well. Our solutions are based on a

generalization of the Smirnov’s construction. In particular (see Theorem 3.1), for

each class P from the diagram (*) and each � < !1 we present a space S�
P such

that P-trIndS�
P ¼ trIndS�

P ¼ � and Q-trIndS�
P ¼ �1 for any other class Q from

the diagram (*) which is not contained in P. Moreover, S�
P is a subset of the cube

I�þ1 if � < !0, and S�
P is a subset of Smirnov’s space S� otherwise. Using the

results obtained here, the inductive character of the function P-trind and an
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analog of the Levshenko’s result for the pair P-trind and P-trInd due to

Charalambous ([3]) we show (see Corollary 3.3) for each class P from the

diagram (*) and each � < !1 the existence of a space X�
P such that � ¼

P-trindX�
P � trIndX�

P 6¼ 1 and Q� trIndX�
P ¼ �1 for any other class Q from

the diagram (*) which is not contained in P. Note that Problem 1.1 for d ¼ ind

and Problem 1.2 for d ¼ trind still remain open. In particular, we do not know if

there is a completely metrizable and �-compact space Cn such that cmpCn ¼
n ¼ indCn for some (each) integer n � 3.

2. Preliminaries.

Recall that a subset C of a space X is a partition between two disjoint sets A

and B in X if there are disjoint open subsets U and V of X such that A � U,

B � V and C ¼ X n ðU [ V Þ.
Let X be a space, P a class of spaces and � an ordinal number � 0. Then the

small transfinite dimension modulo a class P, P-trind, is defined as follows.

(i) P-trindX ¼ �1 if and only if X 2 P,
(ii) P-trindX � � ð� 0Þ if for every point x 2 X and every closed subset A of

X with x =2 A there exists a partition C in X between x and A such that

P-trindC < �.

(iii) P-trindX ¼ � if P-trindX � � and P-trindX > � for each ordinal

� < �,

(iv) P-trindX ¼ 1 if P-trindX > � for each ordinal �.

(If we replace the point x by any closed set B disjoint from A we obtain the

definition of the large transfinite dimension modulo a class P, P-trInd).

It is obvious that P-trindX ¼ �1 if and only if P-trIndX ¼ �1, and

P-trindX � P-trIndX. Moreover, the following easy statements hold, where

P-trd is either P-trind or P-trInd:

. P1-trd ¼ P2-trd if and only if P1 ¼ P2 (and hence trcmp 6¼ trind and

K 0-trInd 6¼ trInd).

. If P2 � P1, then P1-trd � P2-trd (in particular, trcmp � trind and

K 0-trInd � trInd).

. P-trd is monotone with respect to closed subsets, that is if A is a closed

subset of a space X then P-trdA � P-trdX.

. If X ¼ X1 �X2 is the topological sum of spaces X1 and X2, then

P-trdX ¼ maxfP-trdX1;P-trdX2g provided that the topological sum

of any two elements of P is in P. Note that trInd ð�1
n¼1I

nÞ ¼ 1.

We will denote by BðXÞ the family of Borel sets of a space X and by
Q0

�ðXÞ
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(resp.
P0

�ðXÞ) the multiplicative (resp. additive) Borel class � of X, where

0 � � < !1. The following statement is known.

PROPOSITION 2.1 ([11, Theorem 5.2.11]). Let X; Y be compact metric

spaces and f : X ! Y a continuous onto mapping. Suppose that A � Y and

0 � � < !1. Then A 2
Q0

�ðY Þ if and only if f�1ðAÞ 2
Q0

�ðXÞ.

Recall (cf. [2]) that a space X is said to be absolutely of the multiplicative

(resp. the additive) class �, in briefX 2 Mð�Þ (resp.X 2 Að�Þ), where 0 � � < !1,

if X is a member of the multiplicative (resp. additive) Borel class � in Y whenever

X is a subspace of a space Y (that is for any homeomorphic embedding h : X ! Y

of X into Y the image hðXÞ is an element of the multiplicative (resp. additive)

class � in Y ). Put AB ¼ [fAð�Þ : � < !1g ð¼ [fMð�Þ : � < !1gÞ. It is well

known that Að0Þ ¼ f;g, Mð0Þ ¼ K 0, Að1Þ ¼ S 0, Mð1Þ ¼ C 0, and for every 2 �
� < !1 we have X 2 Mð�Þ (resp. X 2 Að�Þ) if and only if there is a homeomorphic

embedding h : X ! Y of X in a space Y 2 C 0 such that the image hðXÞ is an

element of the multiplicative (resp. the additive) class � in Y . So if X 2 P, where

P is either an absolutely additive or multiplicative Borel class, then X �K 2 P

for every compact space K.

Let P0 be a one-point space, Q0 ¼ f1=n : n ¼ 1; 2; � � � g the subspace of I , P1

(resp. Q1) the space of irrational (resp. rational) numbers in I . Note that

P0 2 K 0, Q0 2 ðS 0 \ C 0Þ nK 0, P1 2 C 0 nS 0 and Q1 2 S 0 n C 0. Moreover (see

[4]) for every � with 2 � � < !1 there are subspaces P� and Q� of I such that

P� 2 Mð�Þ nAð�Þ and Q� 2 Að�Þ nMð�Þ. All spaces P� and Q�, where

0 � � < !1, can be assumed zero-dimensional. Recall [3] that a subset A of a

space X is a Bernstein set if jA \ Bj ¼ jðX nAÞ \Bj ¼ c for every uncountable

Borel set B of X. Let us denote by BrnðXÞ the family of all Berstein sets of a space

X. Note that BrnðXÞ 6¼ ; if X is uncountable and completely metrizable. From

Proposition 2.1 we get easily the following.

PROPOSITION 2.2. Let X be a compact metrizable space and f : X ! I a

continuous onto mapping. Then we have the following.

(i) f�1ðQ0Þ 2 ðC 0 \S 0Þ nK 0.

(ii) f�1ðP�Þ 2 Mð�Þ nAð�Þ and f�1ðQ�Þ 2 Að�Þ nMð�Þ, whenever 1 � � < !1.

(iii) f�1ðJÞ =2 BðXÞ, and hence f�1ðJÞ =2 AB if J 2 BrnðI Þ.

The following proposition is a natural generalization of [2, Corollory I. 4.7],

and this can be shown similarly.

PROPOSITION 2.3 ([2, Corollory I. 4.7] for P ¼ f;g). Suppose that X is a

hereditarily normal space and Y is a subspace of X with P-IndY � n, where n is
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an integer � 0. For each collection of nþ 1 pairs ðFi;GiÞ of disjoint closed subsets

of X, i ¼ 0; 1; � � � ; n, there are partitions Ti between Fi and Gi in X for every i such

that Y \ ð\n
i¼0TiÞ 2 P.

Let m be an integer � 1. For each positive integer i � m we put

Am
i ¼ fðx1; � � � ; xmÞ 2 Im : xi ¼ 0g; Bm

i ¼ fðx1; � � � ; xmÞ 2 Im : xi ¼ 1g;

A
m

i ¼ ðx1; � � � ; xmÞ 2 Im : 0 � xi �
1

3

� �
;

B
m

i ¼ ðx1; � � � ; xmÞ 2 Im :
2

3
� xi � 1

� �
:

Note that the set A
m

i (resp. B
m

i ) is a closed neighborhood of Am
i (resp.

Bm
i ) in Im.

PROPOSITION 2.4 ([12, Lemma 5.2]). Let Lij , j ¼ 1; � � � p, be partitions

between the opposite faces An
ij
and Bn

ij
in In, where 1 � i1 < i2 < � � � < ip � n and

1 � p < n. Then for each k 2 f1; � � �ng � fi1; � � � ipg, there is a continuum

C � \p
j¼1Lij meeting the faces An

k and Bn
k .

Let J be a subset of I . Put MJ ¼ J � In � I nþ1, where n � 0. Proposi-

tions 2.2 and 2.4 easily imply the following.

PROPOSITION 2.5 ([4, Proposition 4.5]). Let Li be a partition in Inþ1

between Anþ1
i and Bnþ1

i , where 2 � i � k and k � nþ 1. Then, we have the

following.

(i) MQ0
\ ð\k

i¼2LiÞ =2 K 0.

(ii) MQ�
\ ð\k

i¼2LiÞ =2 Mð�Þ and MP�
\ ð\k

i¼2LiÞ =2 Að�Þ for each � with

1 � � < !1.

(iii) MJ \ ð\k
i¼2LiÞ =2 AB, where J 2 BrnðI Þ.

Now we are ready to prove the following theorem.

THEOREM 2.1.

(i) K 0-IndMQ0
¼ n and MQ0

2 S 0 \ C 0 (i.e. S 0-IndMQ0
¼ C 0-IndMQ0

¼
�1).

(ii) Let 1 � � < !1. Then we have

(a) Mð�Þ-IndMQ�
¼ n and MQ�

2 Að�Þ (i.e. Að�Þ-IndMQ�
¼ �1),

(b) Að�Þ-IndMP�
¼ n and MP�

2 Mð�Þ (i.e. Mð�Þ-IndMP�
¼ �1).
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(iii) AB-IndMJ ¼ n if J 2 BrnðI Þ.

Furthermore, it follows that IndMJ ¼ n for all considered above cases.

PROOF. We show (i)-(iii) simultaneously. If n ¼ 0 then MJ ¼ J and the

theorem is evidently valid. Suppose that n � 1. It follows from Propositions 2.3

and 2.5 that P-IndMJ � n, where P is K 0 for (i), Mð�Þ for (ii a), Að�Þ for (ii b)
and AB for (iii). Observe that all sets J considered here are zero-dimensional.

Hence P-IndMJ � IndMJ ¼ n for each case (i)-(iii). �

REMARK 2.1. Observe that (i) of Theorem 2.1, (ii a) of the case of � ¼ 1

and (ii b) of the case of � ¼ 1 can be obtained from [2, Example II.4.11 (a)], [2,

Example II.4.11 (c)] and [2, Example II.4.11 (b)] respectively.

REMARK 2.2. Because of the monotonicity of dimensions modulo classes P

with respect to closed subsets the integer n in Theorem 2.1 can be substituted by

1.

REMARK 2.3. For any integers 0 � m � n there exists a space Xðm;nÞ such
that cmpXðm;nÞ ¼ m and K 0-IndXðm;nÞ ¼ n. Indeed, recall that K 0-Ind

Rn ¼ n ([2, Example II.6.12 (a)]) for each n � 1 and cmp ðQ1 � ImÞ ¼ m ([2,

Example I.7.12]) for each m � 0. Put Xðm;nÞ ¼ Rn � ðQ1 � ImÞ.

For an isolated ordinal number � we denote by �� the predecessor of �.

3. Counterparts of Smirnov’s compacta for inductive functions

P-trInd.

Let X ¼ �1
i¼1Xi be the topological sum of spaces Xi, i ¼ 1; 2� � � . The one-

point extension Xþ of the space X is the union fx1g [X of the set X and a point

x1 =2 X (we will call this point the extension point of Xþ) with the topology

defined as follows: A set U � Xþ is open if and only if either U is an open subset of

the space X or Xþ n U is a closed subset of X and there exists an integer n such

that �1
i¼nXi � U .

Henceforth, X,!Y denotes an embedding of a space X into a space Y .

PROPOSITION 3.1.

(i) The space Xþ is separable metrizable.

(ii) If Xi,!Yi for each i ¼ 1; 2; � � � , then Xþ,!Yþ.

(iii) If Xi is compact for each i, then Xþ is the Alexandroff compactification of

X ¼ �1
i¼1Xi.

(iv) Let � � 1 and P be either the absolutely multiplicative class Mð�Þ or the
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absolutely additive class Að�Þ. If Xi 2 P for each i ¼ 1; 2; � � � , then

Xþ 2 P.

PROOF. (i)-(iii) are evident. We show (iv). Choose for each i ¼ 1; 2; � � � a

compact space Yi such that Xi � Yi. Recall that Xþ,!Yþ, the class
P0

�ð�Þ is

countably additive and :
P0

�ð�Þ ¼
Q0

�ð�Þ. �

We will suggest a generalization of Smirnov’s construction.

DEFINITION 3.1. Let X be a space. For each 0 � � < !1 we define by

induction the space S�
X as follows.

(i) If � < !0, then S�
X ¼ X � I�.

(ii) If � is a limit number, then S�
X is the one-point extension of the topological

sum ��<�S
�
X.

(iii) If � � !0 and � is not limit, then S�
X ¼ S��1

X � I .

One can easily show the following elementary properties on S�
X.

PROPOSITION 3.2. Let � < !1. Then we have the following.

(i) If X is a singleton, then S�
X is the Smirnov’s compactum S�.

(ii) If X1,!X2 then S�
X1
,!S�

X2
.

(iii) If dimX < 1 and !0 � � then S�
X,!S�.

(iv) S�
Q0

2 C 0 \S 0, and for each � with 1 � � < !1 we have S�
Q�

2 Að�Þ and

S�
P�

2 Mð�Þ.

Let � ¼ �ð�Þ þ nð�Þ be the natural decomposition of an ordinal number � �
0 into the sum of the limit number �ð�Þ and the finite number nð�Þ (if � < !0 we

adopt �ð�Þ ¼ 0).

PROPOSITION 3.3. For every space X with dimX < 1, each countable

ordinal number � and every compactum K with dimK � nð�Þ we have

trInd ðS�ð�Þ
X �KÞ �

dimX þ �; if � < !0;

�; if !0 � � < !1:

(

PROOF. Observe that if � < !0, then S
�ð�Þ
X ¼ X and so S

�ð�Þ
X �K ¼ X �K.

Hence for such � we have trInd ðS�ð�Þ
X �KÞ � dimX þ �. We shall prove

trInd ðS�ð�Þ
X �KÞ � � for !0 � � < !1 by transfinite induction on �. Let

!0 � � < !1, and x1 the extension point of the space S
�ð�Þ
X . Note that for any

closed subset F of S
�ð�Þ
X �K which does not meet fx1g �K, there are finitely
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many ordinals �1; � � � ; �n < �ð�Þ such that F � �n
i¼1S

�i
X . Let � ¼ !0. Then

�ð�Þ ¼ !0, nð�Þ ¼ 0 and dimK � 0. Consider disjoint closed subsets A and B in

S!0

X �K. We can assume that A0 ¼ A \ ðfx1g �KÞ 6¼ ; and B0 ¼ B \ ðfx1g �
KÞ 6¼ ;. Since dimK ¼ 0, the empty set separates A0 and B0 in fx1g �K. Hence,

there exits a partition L between A and B in S!0

X �K which extends the empty

partition. It is clear that L is contained in the topological sum of finitely many

finite-dimensional sets. Hence IndL < !0 and trInd ðS!0

X �KÞ � !0. Hence the

statement is valid for � ¼ !0.

Let � > !0 and assume that the inequality holds for all � with !0 � � <

� < !1. If � is limit then the statement is valid by inductive assumption and a

similar argument as in the case of � ¼ !0. Then we suppose that � ¼ �� þ 1.

Consider disjoint closed subsets A and B in S
�ð�Þ
X �K. We can assume that A0 ¼

A \ ðfx1g �KÞ 6¼ ; and B0 ¼ B \ ðfx1g �KÞ 6¼ ;. Choose open subsets OA, OB

in K and a clopen neighborhood V of x1 in S
�ð�Þ
X such that

(i) A0 � OA, B
0 � OB and ClOA \ ClOB ¼ ;, and

(ii) A \ ðV �KÞ � V � ClOA and B \ ðV �KÞ � V � ClOB.

By our assumption, we can find a partition L0 between ClOA and ClOB in K such

that dimL0 � nð��Þ < nð�Þ. It is evident that the set L00 ¼ V � L0 is a partition

between A \ ðV �KÞ and B \ ðV �KÞ in V �K, and V �K is a clopen subset of

S
�ð�Þ
X �K. By the inductive assumption it follows that trIndL00 � �� < �. Extend

the partition L00 to a partition L between A and B in S
�ð�Þ
X �K. Evidently, the set

L000 ¼ L n L00 is the topological sum of finitely many sets with trInd < �ð�Þ. Note

also that the partition L ¼ L00 � L000 is the topological sum of L00 and L000. So

trIndL � �� < � and hence trInd ðS�ð�Þ
X �KÞ � �. �

PROPOSITION 3.4. Let J be a subspace of I . For each countable ordinal �,

each integer n � 1 and each partition L0
i in S�

J � In between S�
J �A

n

i and S�
J � B

n

i ,

i ¼ 1; � � � ; n, we have

� �

K 0-trInd ð\n
i¼1L

0
iÞ; if J ¼ Q0;

Mð�Þ-trInd ð\n
i¼1L

0
iÞ; if J ¼ Q� and 1 � � < !1;

Að�Þ-trInd ð\n
i¼1L

0
iÞ; if J ¼ P� and 1 � � < !1;

AB-trInd ð\n
i¼1L

0
iÞ; if J 2 BrnðI Þ:

8>>>><
>>>>:

(3.1)�

PROOF. Apply induction on �. If � ¼ 0 then S�
J � I n ¼ J � I n ¼ MJ �

Inþ1 and S�
J � A

n

k ¼ MJ \ A
nþ1

kþ1 , S
�
J � B

n

k ¼ MJ \ B
nþ1

kþ1 for every k. For each i with

2 � i � nþ 1, there is a partition Li in Inþ1 between Anþ1
i and Bnþ1

i such that

Li \MJ ¼ L0
i�1. Since ð\nþ1

i¼2 LiÞ \MJ ¼ \n
i¼1L

0
i, by Proposition 2.5, we have the
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inequality ð3:1Þ0. Let � > 0 be a countable ordinal and assume that ð3:1Þ� holds

for all � with � < �. Let P be either K 0 if J ¼ Q0, Mð�Þ if J ¼ Q�, Að�Þ if

J ¼ P�, or AB if J 2 BrnðI Þ. Consider an integer n � 1 and suppose that for each

i ¼ 1; 2; � � � ; n, there exists a partition L0
i in S�

J � In between S�
J � A

n

i and S�
J � B

n

i

such that P-trIndð\n
i¼1L

0
iÞ ¼ � < �. If � is a limit number, then � þ 1 < �. Note

that for each i ¼ 1; 2; � � � ; n, the set L00
i ¼ L0

i \ ðS�þ1
J � InÞ is a partition between

S�þ1
J � A

n

i and S�þ1
J � B

n

i in the clopen subset S�þ1
J � In of S�

J � In. On the other

hand, P-trInd ð\n
i¼1L

00
i Þ � P-trInd ð\n

i¼1L
0
iÞ ¼ � < � þ 1. This is a contradiction

with the inductive assumption. If � ¼ �� þ 1, then we have S�
J � I n ¼ S��

J � Inþ1

and � � ��. We put F ¼ \n
i¼1L

0
i. By our assumption, P-trIndF ¼ � < �. Hence,

there exists a partition L00
0 between F \ A and F \ B in F , where A ¼

S
��

J � ½0; 1=3� � In and B ¼ S
��

J � ½2=3; 1� � In, such that P-trIndL00
0 < � � ��.

There exists a partition L0
0 between A and B in S�

J � In ¼ S��

J � Inþ1 such that

F \ L0
0 � L00

0 (see [5, Lemma 1.2.9 and Remark 1.2.10]). Hence we have

P-trInd ð\n
i¼0L

0
iÞ � P-trIndL00

0 < � � ��, which also contradicts the inductive

assumption. �

Now we are ready to extend Theorem 2.1 to transfinite dimensions.

THEOREM 3.1. For every countable ordinal � and every J � I with

dim J ¼ 0 we have trIndS�
J ¼ �. Moreover, we have the following.

(i) K 0-trIndS
�
J ¼ � and C 0-trIndS

�
J ¼ S 0-trIndS

�
J ¼ �1 if J ¼ Q0.

(ii) If 1 � � < !1, then

(a) Mð�Þ-trIndS�
J ¼ � and Að�Þ-trIndS�

J ¼ �1 if J ¼ Q�,

(b) Að�Þ-trIndS�
J ¼ � and Mð�Þ-trIndS�

J ¼ �1 if J ¼ P�.

(iii) AB-trIndS�
J ¼ � if J 2 BrnðI Þ.

PROOF. It follows from Proposition 3.3 that trIndS�
J � �. Let P be either

K 0 if J ¼ Q0, Mð�Þ if J ¼ Q�, Að�Þ if J ¼ P� or AB if J 2 BrnðI Þ. It suffices to

show that P-trIndS�
J � �, because � � trIndS�

J � P-trIndS�
J . We notice that,

by Proposition 3.4, for every ordinal � and any partition L0 in S
�
J � I ¼ S

�þ1
J

between S�
J � ½0; 1=3� and S�

J � ½2=3; 1� we have P-trIndL0 � �, hence

P-trIndS�þ1
J > �. Thus if � ¼ � þ 1 we have P-trIndS�

J � � and if � is a limit

number then for every � < � we have P-trIndS�
J � P-trIndS�þ1

J > �, because

S�þ1
J is a clopen subspace of S�

J . Hence also in this case P-trInd S�
J � �. �

COROLLARY 3.1. Let � be a countable limit ordinal, f�jg1j¼1 a sequence of

ordinals such that �j < �jþ1, for j � 1, and sup�j ¼ �. Let � be a countable ordinal

number and X ¼ ð�1
j¼1S

�
P�j

Þþ. Then Að�Þ-trIndX ¼ Mð�Þ-trIndX ¼ � for each

� < �, and Að�Þ-trIndX ¼ Mð�Þ-trIndX ¼ �1 for each � � �.
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PROOF. Let � < �. Then there is �j such that � < �j < �. By Theorem 3.1,

we have Mð�Þ-trIndS�
P�j

¼ Að�Þ-trIndS�
P�j

¼ Að�jÞ-trIndS�
P�j

¼ �. Hence Að�Þ-
trIndX � � and Mð�Þ-trIndX � � by the monotonicity of the inductive dimen-

sions modulo classes. In order to show that Að�Þ-trIndX � � let us consider

disjoint closed sets F and G of X. It is easy to see that there is a partition L in X

between F and G such that L is the topological sum of finitely many sets with

Að�Þ-trInd < �. Hence Að�Þ-trIndL < � and Að�Þ-trIndX � �. Similarly we get

Mð�Þ-trIndX � �. The equalities Að�Þ-trIndX ¼ Mð�Þ-trIndX ¼ �1 for each

� � � is a direct consequence of Proposition 3.1 (iv). �

REMARK 3.1. Note that K 0-trindS
!0

Q0
¼ 0 and K 0-trindS

!0þ1
Q0

¼ 1. The

first equality and the inequality K 0-trindS
!0þ1
Q0

� 1 are evident. The inequality

K 0-trindS
!0þ1
Q0

� 1 can be proved with the help of Proposition 3.5 below due to

Charalambous. Indeed, S!0þ1
Q0

is contained in the class � of spaces in Proposi-

tion 3.5 below, because every space X with trIndX 6¼ 1 has a compact subspace

SðXÞ such that for each closed subset F � X disjoint from SðXÞ we have

dimF < 1 ([5, Theorem 7.1.23]).

PROPOSITION 3.5 ([3]). Let � be the class of all spaces X that contain a

compact subspace X1 such that every closed set of X disjoint from X1 has

arbitrary small neighborhoods V with dimBdV < 1. Then for each X in � we

have P-trIndX � !0 � ðP-trindX þ 1Þ, where P is a class of spaces such that if

X ¼ Y [ Z, where Y and Z are closed in X and Y ; Z 2 P, then X 2 P.

Theorem 3.1 and Proposition 3.5 easily imply the following.

COROLLARY 3.2 (cf. [5, Example 7.2.12] for trind). For each � with 0 �
� < !1 and each J 2 BrnðI Þ, we have

sup
�<!1

Mð�Þ-trindS�
Q�

¼ sup
�<!1

Að�Þ-trindS�
P�

¼ sup
�<!1

AB-trindS�
J ¼ !1:

Furthermore, by the inductive character of the function P-trind, we get the

following statement which answers [4, Problem 4.1].

COROLLARY 3.3. For every countable ordinal number � there exist spaces

H� and T� such that

(i) trcmpH� ¼ � � trIndH� 6¼ 1 and C 0-trIndH� ¼ S 0-trIndH� ¼ �1, and

(ii) AB-trindT� ¼ � � trIndT� 6¼ 1.

Moreover, for each � with 1 � � < !1 there exist spaces Y�ð�Þ and Z�ð�Þ such
that
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(iii) Mð�Þ-trindY�ð�Þ ¼ � � trIndY�ð�Þ 6¼ 1 and Að�Þ-trIndY�ð�Þ ¼ �1,

(iv) Að�Þ-trindZ�ð�Þ ¼ � � trIndZ�ð�Þ 6¼ 1 and Mð�Þ-trIndZ�ð�Þ ¼ �1.

REMARK 3.2. Observe that a similar result as in Corollary 3.3 (i) can be

found in [9]. In [3, Example 17] Charalambous demonstrated the existence of a

space C�
T such that T -trindC�

T ¼ � for each � with !0 < � < !1 and each class T

consisting of spaces which are Borel sets of any space that contains them. Note

that the space C�
T , unlike to the spaces T� from Corollary 3.1, has T -trInd

C�
T ¼ 1 for each � > !0. Indeed, each space C�

T is a Bernstein set of a space by

the construction. Recall [3, Proposition 13] that if A is a Bernstein set of a space

X with !0 � T -trIndA < 1 then T -trIndA ¼ trIndX ¼ !0.

A complement to Theorem 3.1 is the following.

PROPOSITION 3.6 ([4]). For every ordinal number with 1 � � < !1 there

exist spaces X� and Y� such that

(i) Að�Þ-trindX� ¼ 1 and Mð�Þ-trindX� ¼ �1,

(ii) Að�Þ-trindY� ¼ �1 and Mð�Þ-trindY� ¼ 1.

We notice that Að�Þ-trIndX� ¼ 1, Mð�Þ-trIndX� ¼ �1 and Að�Þ-trInd
Y� ¼ �1, Mð�Þ-trIndY� ¼ 1 for spaces X� and Y� in Proposition 3.6.

4. Main results.

Let � ¼ f� : � < !1g and F be the set of functions f : � ! f�1g [ � [ f1g
such that fð�Þ � fð�Þ whenever 0 � � < � < !1. Note that if f 2 F then for each

countable limit ordinal � there exists an ordinal � < � such that fð�Þ ¼ fð�Þ for
each � � � < �. Put fLð�Þ ¼ fð�Þ. An ordinal �, 1 � � < !1, is said to be a

lowered point of f 2 F if fð�Þ < minffð�Þ : � < �g. Denote by LowðfÞ the set of

all lowered points of f . It is evident that the cardinality of LowðfÞ is finite for each
f 2 F . An ordered pair ðf1; f2Þ of functions from F is said to be admissible if

(i) f1ð0Þ � f2ð0Þ � maxff1ð1Þ; f2ð1Þg, and
(ii) minff1ð�Þ; f2ð�Þg � maxff1ð�Þ; f2ð�Þg, if 1 � � < � < !1.

For every admissible pair ðf1; f2Þ put Lowðf1; f2Þ ¼ Lowðf1Þ [ Lowðf2Þ.

PROPOSITION 4.1. Let ðf1; f2Þ be admissible and 0 � � < � < !1. If fið�Þ ¼
fið�Þ ¼ �i � �1 for each i ¼ 1; 2, then �1 ¼ �2 ¼ � and for each ordinal � with

� � � � � we have f1ð�Þ ¼ f2ð�Þ ¼ �.

PROOF. Note that minff1ð�Þ; f2ð�Þg ¼ minf�1; �2g � maxff1ð�Þ; f2ð�Þg ¼
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maxf�1; �2g and fið�Þ � fið�Þ � fið�Þ for each ordinal � with � � � � �. The rest

is evident. �

The following is a direct consequence of Proposition 4.1.

COROLLARY 4.1. Let ðf1; f2Þ be an admissible pair. Then we have the

following.

(i) If Lowðf1; f2Þ ¼ ;, then f1 and f2 are constant maps and f1 ¼ f2.

(ii) Let Lowðf1; f2Þ ¼ f�1; � � � ; �kg 6¼ ;, where �i < �j if i < j, �0 ¼ 0,

�kþ1 ¼ !1 and 1 � p � kþ 1. Then the following is valid.

(a) If �p is limit, then there is �p 2 f�1g [ � [ f1g such that

f1ð�Þ ¼ f2ð�Þ ¼ �p for each � with �p�1 � � < �p and hence,

�p ¼ ðf1ÞLð�pÞ ¼ ðf2ÞLð�pÞ.
(b) If �p ¼ ��

p þ 1 and �p�1 < ��
p , then there is �p 2 f�1g [ � [ f1g such

that f1ð�Þ ¼ f2ð�Þ ¼ �p for each � with �p�1 � � � ��
p , moreover

�p ¼
f2ð�pÞ if �p 2 Lowðf1Þ n Lowðf2Þ;
f1ð�pÞ if �p 2 Lowðf2Þ n Lowðf1Þ:

(

We are ready for our main result.

THEOREM 4.1. Let ðf1; f2Þ be admissible. Then there exists a space X such

that Að�Þ-trIndX ¼ f1ð�Þ and Mð�Þ-trIndX ¼ f2ð�Þ for each � with 0 � � < !1.

Moreover, we have AB-trIndX ¼ ðf1ÞLð!1Þ ¼ ðf2ÞLð!1Þ.

PROOF. Let Lowðf1; f2Þ ¼ f�1; � � � ; �kg, where �i < �j if i < j, �0 ¼ 0,

�kþ1 ¼ !1 and 1 � p � kþ 1 (if Lowðf1; f2Þ ¼ ; we put k ¼ 0). If �p is a limit

ordinal, then we fix a sequence f�p
jg

1
j¼1 of ordinals such that �p�1 < �p

j < �p
jþ1 for

each j and sup�p
j ¼ �p. For each i ¼ 1; � � � ; kþ 1, we put

Xi ¼

S
f1ð��

i Þ
P��

i

; if �i ¼ ��
i þ 1 and �i 2 Lowðf1Þ n Lowðf2Þ;

S
f2ð��

i Þ
Q��

i

; if �i ¼ ��
i þ 1 and �i 2 Lowðf2Þ n Lowðf1Þ;

S
f2ð��

i Þ
Q��

i

� S
f1ð��

i Þ
P��

i

; if �i ¼ ��
i þ 1 and �i 2 Lowðf1Þ \ Lowðf2Þ;

ð�1
j¼1S

ðf1ÞLð�iÞ
P�i

j

Þþ; if �i is a limit ordinal;

S
ðf1ÞLð!1Þ
J ; where J 2 BrnðI Þ; if i ¼ kþ 1;

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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where S�
J is the space defined in the previous section. Furthermore, we put

X ¼ �kþ1
i¼1Xi. Then it follows from Theorem 3.1 and Corollary 3.1 that for each

i ¼ 1; � � � ; kþ 1 we have the values of Að�Þ-trIndXi and Mð�Þ-trIndXi as follows.

(a) If 1 � i � k, �i is not a limit ordinal and �i 2 Lowðf1Þ n Lowðf2Þ, then

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ f1ð��
i Þ; if 0 � � < ��

i ;

Að��
i Þ-trIndXi ¼ f1ð��

i Þ;
Mð��

i Þ-trIndXi ¼ �1;

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ �1; if �i � � < !1:

8>>>><
>>>>:

(b) If 1 � i � k, �i is not a limit ordinal and �i 2 Lowðf2Þ n Lowðf1Þ, then

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ f2ð��
i Þ; if 0 � � < ��

i ;

Að��
i Þ-trIndXi ¼ �1;

Mð��
i Þ-trIndXi ¼ f2ð��

i Þ;
Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ �1 if �i � � < !1:

8>>>><
>>>>:

(c) If 1 � i � k, �i is not a limit ordinal and �i 2 Lowðf1Þ \ Lowðf2Þ, then

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ maxff1ð��
i Þ; f2ð��

i Þg; if 0 � � < ��
i ;

Að��
i Þ-trIndXi ¼ f1ð��

i Þ;
Mð��

i Þ-trIndXi ¼ f2ð��
i Þ;

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ �1; if �i � � < !1:

8>>>><
>>>>:

(d) If 1 � i � k and �i is a limit ordinal, then

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ ðf1ÞLð�iÞ ¼ ðf2ÞLð�iÞ; if 0 � � < �i;

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ �1 if �i � � < !1:

(

(e) If i ¼ kþ 1, then

Að�Þ-trIndXi ¼ Mð�Þ-trIndXi ¼ ðf1ÞLð!1Þ ¼ ðf2ÞLð!1Þ; if 0 � � < !1:

Furthermore, we have the following.

(4.1) If 0 � i � k and �i � � < !1, then Að�Þ-trIndX ¼ Að�Þ-trInd ð[kþ1
p¼iþ1XpÞ

and Mð�Þ-trIndX ¼ Mð�Þ-trInd ð[kþ1
p¼iþ1XpÞ.
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(4.2) If 0 < i � k, p � iþ 1 and 0 � � < �i, then

maxfAð�Þ-trIndXp;Mð�Þ-trIndXpg � maxff1ð�iÞ; f2ð�iÞg.

Indeed, let 0 � i � k, �i � � < !1 and P either Að�Þ or Mð�Þ. Then it follows

from the above estimations (a), (b), (c) and (d) that

P-trIndX ¼ maxfP-trIndX1; � � � ;P-trIndXi;P-trInd ð[kþ1
p¼iþ1XpÞg

¼ maxf�1;P-trInd ð[kþ1
p¼iþ1XpÞg

¼ P-trInd ð[kþ1
p¼iþ1XpÞ:

This implies (4.1). Next, we shall show (4.2). Let 0 < i � k, p � iþ 1 and

0 � � < �i. If i ¼ k we have maxff1ð�kÞ; f2ð�kÞg � ðf1ÞLð!1Þ ¼ ðf2ÞLð!1Þ ¼
P-trIndXkþ1. If 0 < i < k, then we have

maxff1ð�iÞ; f2ð�iÞg �
maxff1ð��

p Þ; f2ð��
p Þg; if �p is not limit

ðf1ÞLð�pÞ ¼ ðf2ÞLð�pÞ; if �p is limit

( )
�P-trIndXp:

Let us continue the proof of the theorem. Assume first that Lowðf1; f2Þ ¼ ;
(the case of k ¼ 0). Then, by Corollary 4.1 (i), f1 and f2 are constant maps and

f1 ¼ f2. It follows from Theorem 3.1 (iii) that f1ð�Þ ¼ f2ð�Þ ¼ ðf1ÞLð!1Þ ¼
P-trIndXkþ1 ¼ P-trIndX for each ordinal � and each class P from (*).

Assume now that Lowðf1; f2Þ 6¼ ; (the case of k � 1). We consider the

following condition ð#Þi for each i with 0 � i � k.

ð#Þi For each ordinal � with �i � � < !1, Að�Þ-trIndX ¼ f1ð�Þ and
Mð�Þ-trIndX ¼ f2ð�Þ.

It suffices to show that ð#Þ0 holds and we shall show inductively ð#Þi for every i.

At first, we consider ð#Þk. By Corollary 4.1 (ii) (a), there is an ordinal �kþ1 � �1

such that for each �k � � < !1 we have f1ð�Þ ¼ f2ð�Þ ¼ �kþ1. Note that

�kþ1 ¼ ðf1ÞLð!1Þ. Let � be an ordinal such that �k � � < !1 and P be either

Að�Þ or Mð�Þ. It follows from (4.1) and (e) that P-trIndX ¼ P-trIndXkþ1 ¼
ðf1ÞLð!1Þ ¼ f1ð�Þ ¼ f2ð�Þ. Hence ð#Þk holds.

Assume that ð#Þi holds for some i � k. We will show ð#Þi�1. If �i is limit,

then, by Corollary 4.1 (ii) (a), there is �i 2 f�1g [ � [ f1g such that f1ð�Þ ¼
f2ð�Þ ¼ �i for each � with �i�1 � � < �i. Let �i�1 � � < �i and P be either Að�Þ
or Mð�Þ. Note that �i ¼ ðf1ÞLð�iÞ ¼ ðf2ÞLð�iÞ ¼ P-trIndXi by (d). Moreover, by

(4.2), we have P-trIndXp � maxff1ð�iÞ; f2ð�iÞg � �i for each p with iþ 1 � p �
kþ 1. Hence, by (4.1), we get P-trIndX ¼ P-trInd ð[kþ1

p¼i XpÞ ¼ maxfP-trInd
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Xp : i � p � kþ 1g ¼ maxf�i;maxfP-trIndXp : iþ 1 � p � kþ 1gg ¼ �i that pre-

cisely as we needed.

If �i is not limit, then we consider three cases separately.

CASE (1). Suppose that �i 2 Lowðf1Þ n Lowðf2Þ. Then, f1ð��
i Þ > f1ð�iÞ and

f2ð��
i Þ ¼ f2ð�iÞ. Since ðf1; f2Þ is admissible, it follows that f2ð��

i Þ � minff1ð��
i Þ;

f2ð��
i Þg � maxff1ð�iÞ; f2ð�iÞg � f2ð�iÞ, and hence f2ð��

i Þ ¼ minff1ð��
i Þ; f2ð��

i Þg
¼ maxff1ð�iÞ; f2ð�iÞg ¼ f2ð�iÞ. By (a), we notice that Að��

i Þ-trIndXi ¼ f1ð��
i Þ

and Mð��
i Þ-trIndXi ¼ �1. It follows from (4.2) that if P ¼ Að��

i Þ or Mð��
i Þ and

iþ 1 � p � kþ 1, then we have P-trIndXp � maxff1ð�iÞ; f2ð�iÞg ¼ f2ð�iÞ ¼
f2ð��

i Þ � f1ð��
i Þ. Hence, by (4.1), it follows that Að��

i Þ-trIndX ¼ Að��
i Þ-trInd

ð[kþ1
p¼i XpÞ ¼ maxfAð��

i Þ-trIndXp : i � p � kþ 1g ¼ f1ð��
i Þ, and Mð��

i Þ-trIndX ¼
Mð��

i Þ-trInd ð[kþ1
p¼i XpÞ ¼ maxfMð��

i Þ-trIndXp : i � p � kþ 1g ¼ maxf�1;

maxfMð��
i Þ-trIndXp : iþ 1 � p � kþ 1gg � f2ð�iÞ. On the other hand, by the

inductive assumption ð#Þi, we have Mð��
i Þ-trIndX � Mð�iÞ-trIndX ¼ f2ð�iÞ.

Hence Mð��
i Þ-trIndX ¼ f2ð�iÞ ¼ f2ð��

i Þ. Thus if ��
i ¼ �i�1, we get ð#Þi�1.

Now, we assume that �i�1 < ��
i . Then, by Corollary 4.1 (ii) (b), there is

�i 2 f�1g [ � [ f1g such that f1ð�Þ ¼ f2ð�Þ ¼ �i for each � with �i�1 � � � ��
i .

Let �i�1 � � < ��
i and P be either Að�Þ or Mð�Þ. By (a) again, it follows that

P-trIndXi ¼ f1ð��
i Þ ¼ �i. Note that, by (4.2), we have P-trIndXp � maxff1ð�iÞ;

f2ð�iÞg ¼ f2ð�iÞ ¼ f2ð��
i Þ ¼ �i. Hence, by (4.1), we get P-trIndX ¼ P-trInd

ð[kþ1
p¼i XpÞ ¼ maxfP-trIndXp : i � p � kþ 1g ¼ �i ¼ f1ð�Þ ¼ f2ð�Þ precisely as we

needed.

CASE (2). If �i 2 Lowðf2Þ n Lowðf1Þ, then we can prove ð#Þi�1 similar to the

case (1).

CASE (3). Suppose that �i 2 Lowðf1Þ \ Lowðf2Þ. It follows from (c) that

Að��
i Þ-trIndXi ¼ f1ð��

i Þ and Mð��
i Þ-trIndXi ¼ f2ð��

i Þ. Note that by (4.2)

for P is either Að��
i Þ or Mð��

i Þ we have P-trIndXp � maxff1ð�iÞ; f2ð�iÞg �
minff1ð��

i Þ; f2ð��
i Þg for each p with iþ 1 � p � kþ 1. Hence, by (4.1),

Að��
i Þ-trIndX ¼ Að��

i Þ-trInd ð[kþ1
p¼i XpÞ ¼ maxfAð��

i Þ-trIndXp : i � p � kþ 1g ¼
f1ð��

i Þ, and Mð��
i Þ-trInd X ¼ Mð��

i Þ-trInd ð[kþ1
p¼i XpÞ ¼ maxfMð��

i Þ-trInd Xp :

i � p � kþ 1g ¼ f2ð��
i Þ. Hence, we get ð#Þi�1 if �i�1 ¼ ��

i . Now, we assume that

�i�1 < ��
i . Then, by Corollary 4.1 (ii) (b), there is �i 2 f�1g [ � [ f1g such that

f1ð�Þ ¼ f2ð�Þ ¼ �i for each � with �i�1 � � � ��
i . Let �i�1 � � < ��

i and P is

either Að�Þ or Mð�Þ. Then, by (c) again, it follows that P-trIndXi ¼ �i. Note

that by (4.2) we have P-trIndXp � maxff1ð�iÞ; f2ð�iÞg � minff1ð��
i Þ; f2ð��

i Þg ¼
�i. Hence, we get P-trIndX ¼ P-trInd ð[kþ1

p¼i XpÞ ¼ maxfP-trIndXp : i � p �
kþ 1g ¼ �i, and hence ð#Þi�1 holds. �
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QUESTION 4.1. Is the counterpart of Theorem 4.1 for the small transfinite

inductive dimensions modulo P valid ?

Let F 1 ¼ ff 2 F : fð�Þ � f�1g [ f� : � < !0g [ f1gg.

COROLLARY 4.2. Let ðf1; f2Þ 2 F1 �F1 be admissible. Then there exists a

space X such that Að�Þ-IndX ¼ f1ð�Þ, Mð�Þ-IndX ¼ f2ð�Þ for each � with

0 � � < !1 and AB-IndX ¼ ðf1ÞLð!1Þ ¼ ðf2ÞLð!1Þ.

QUESTION 4.2. Is Corollary 4.2 valid for the small inductive dimensions

modulo P?

ACKNOWLEDGMENTS. The authors would like to thank the referee for

valuable comments.

References

[ 1 ] J. M. Aarts, Completeness degree, A generalization of dimension, Fund. Math., 63 (1968), 27–

41.

[ 2 ] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.

[ 3 ] M. G. Charalambous, On transfinite inductive dimension and deficiency modulo a classP, Top.

Appl., 81 (1997), 123–135.

[ 4 ] V. Chatyrko and Y. Hattori, Infinite-dimensionality modulo absolute Borel classes, Bull. Polish

Acad. Sci. Math., 56 (2008), 163–176.

[ 5 ] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.

[ 6 ] A. Lelek, Dimension and mappings of spaces with finite deficiency, Colloq. Math., 12 (1964),

221–227.

[ 7 ] B. T. Levshenko, Spaces of transfinite dimension (Russian), Mat. Sb., 67 (1965), 225–266,

English translation: Amer. Math. Soc. Transl. Ser. 2, 73 (1968), 135–148.

[ 8 ] E. Pol, The Baire category method in some compact extension problems, Pacific J. Math., 122

(1986), 197–210.

[ 9 ] R. Pol, On transfinite inductive compactness degree, Colloq. Math., 53 (1987), 57–61.

[10] Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Izvest.

Akad. Nauk SSSR Ser. Mat., 23 (1959), 185–196, English translation: Amer. Math. Soc. Transl.

Ser. 2, 21 (1962), 35–50.

[11] S. M. Srivastava, A Course on Borel Sets, Springer Verlag, New York, 1998.

[12] L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for constructing

infinite-dimensional examples, General Topology Appl., 10 (1979), 93–102.

Vitalij A. CHATYRKO

Department of Mathematics

Link€oping University

581 83 Link€oping, Sweden

E-mail: vitja@mai.liu.se

Yasunao HATTORI

Department of Mathematics

Shimane University

Matsue, Shimane, 690-8504 Japan

E-mail: hattori@riko.shimane-u.ac.jp

344 V. A. CHATYRKO and Y. HATTORI

http://dx.doi.org/10.1016/S0166-8641(97)00028-X
http://dx.doi.org/10.1016/S0166-8641(97)00028-X
http://dx.doi.org/10.4064/ba56-2-7
http://dx.doi.org/10.4064/ba56-2-7
NOLINK
NOLINK
NOLINK

