On rational points of the generic elliptic curve with level N structure over the field of modular functions of level \boldsymbol{N}^{*}

By Tetsuji ShiodA

(Received April 10, 1972)

Introduction.

For a natural number $N \geqq 3$, let E denote the generic elliptic curve with level N structure in characteristic $p(p \ngtr N)$, cf. $\S 1 . E$ is an elliptic curve defined over the field, K, of elliptic modular functions of level N in characteristic p (cf. Igusa [4]). We are interested in the group, $E(K)$, of K-rational points of E, which is finitely generated by Mordell-Weil theorem. By the definition of $E, E(K)$ contains the group, E_{N}, of points of E of order (dividing) N, and it can be shown that

$$
E(K)_{\mathrm{tor}}=E_{N} .
$$

Moreover we proved in our previous work [12] (cited as [EMS]) that, if the characteristic p is zero, then $E(K)$ itself is finite and therefore

$$
E(K)=E_{N} \cong(\boldsymbol{Z} / N \boldsymbol{Z})^{2} .
$$

One might expect that the same would hold in the case $p>0$, which is known to be true for $N=3$. However this is not true in general as we explain below for $N=4$.

We recall that, as to the rank of the group of rational points of an elliptic curve defined over a global field, there is a famous conjecture of Birch, Swinnerton-Dyer and Tate relating the rank with the zeta function of the elliptic curve (cf. Tate [13]). In our case, assuming that the constant field k of K is a finite field containing a primitive N-th root of unity, we see that the zeta function of E over K is essentially equal to the Hecke polynomial of level N and of weight 3, cf. [EMS], Appendix. In particular, we get an upper bound for the rank of $E(K)$:

[^0]$$
\operatorname{rank} E(K) \leqq \frac{(N-3)}{3 N} \mu(N), \quad \mu(N)=\frac{1}{2} N^{3} \prod_{\substack{l \mid \\ \text { prime }}}\left(1-\frac{1}{l^{2}}\right)
$$

The purpose of this paper is to study the first non-trivial case $N=4$ more closely. We have (cf. [EMS] p. 56-57):

THEOREM. Assume $N=4$. Then
i) $E(K)_{\text {tor }}=E_{4}$ and rank $E(K) \leqq 2$.
ii) If $p \equiv 1 \bmod 4$, then $E(K)=E_{4}$.

The conjecture of Birch, Swinnerton-Dyer and Tate suggests:
CONJECTURE. If $p \equiv 3 \bmod 4$, then rank $E(K)=2$.
We shall prove a special case of this conjecture:
Theorem. If $p=3$, then rank $E(K)=2$.
We can also state these results as follows. Let B_{p} denote the elliptic modular surface of level 4 in characteristic $p \neq 2$; it is the Kodaira-Néron model of E over K [EMS]. The surface B_{0} is a $K 3$ surface with Picard number $\rho\left(B_{0}\right)=20$ (and Betti number $b_{2}=22$), and B_{p} is a reduction of B_{0} $\bmod p$. Then we have

$$
\rho\left(B_{p}\right)= \begin{cases}20 & \text { for } p \equiv 1 \bmod 4 \\ 22 & \text { for } p=3\end{cases}
$$

and, conjecturally, $\rho\left(B_{p}\right)=22$ for all $p \equiv 3 \bmod 4$.
The contents of this paper are as follows. In $\S 1$, we recall the definition of elliptic curves with level N structure, and in $\S 2$ and $\S 3$, we consider the special cases $N=2$ and 4 . In particular, we shall explicitly construct the universal family of elliptic curves with level 4 structure in $\S 3$. The generic elliptic curve E in this case is given by the Legendre cubic

$$
Y^{2}=X(X-1)(X-\lambda), \quad \lambda=\frac{1}{4}\left(\sigma+\frac{1}{\sigma}\right)^{2}
$$

or by the Jacobi quartic

$$
y^{2}=\left(1-\sigma^{2} x^{2}\right)\left(1-x^{2} / \sigma^{2}\right)
$$

both defined over $K=k(\sigma), \sigma$ being a variable over a field k. After discussing the relation of our problem to the theory of surfaces in $\S 4$, we prove the above theorems in $\S 5$. Our proof of the second theorem (for $p=3$) is rather computational, and we think that there should be a theoretical proof which clarifies the meaning of the appearance of rational points of infinite order on the generic elliptic curve with level N structure in certain characteristic p.

§ 1. Elliptic curves with level N structure.

Let E be an elliptic curve, i. e. an abelian variety of dimension one, defined over a field k. For each natural number N relatively prime to the characteristic of k, the group, E_{N}, of points of order N of E is a product of 2 cyclic groups of order N. There is a natural skew-symmetric pairing e_{N} of E_{N} with itself (Weil [14]). It follows that, if all points of order N are k rational, then k contains a primitive N-th root of unity.

In the following, we fix once for all a primitive N-th root of unity, ζ, in $k ;(k, \zeta)$ can be called a level N structure on k. An elliptic curve with level N structure is, by definition, a triple (E, r, s) consisting of an elliptic curve E together with an ordered basis r, s of E_{N} such that $e_{N}(r, s)=\zeta$. We say that (E, r, s) is defined over k if E, r, s are all defined over k. Two such triples (E, r, s) and ($E^{\prime}, r^{\prime}, s^{\prime}$) are called isomorphic if there is an isomorphism of E onto E^{\prime} mapping r, s to r^{\prime}, s^{\prime}. An elliptic curve with level N structure has no non-trivial automorphism if $N \geqq 3$. Therefore, given an elliptic curve E and $N \geqq 3$, there exist

$$
\mu(N)=\frac{1}{2} N_{\substack{3 \\ \text { prime }}}\left(1-\frac{1}{l^{2}}\right) \quad(N \geqq 3)
$$

distinct level N structures on E up to isomorphism.
Finally it is known that, for $N \geqq 3$, there exists a universal family of elliptic curves with level N structure parametrized by an affine curve, whose function field K is the field of elliptic modular functions of level N in the sense of Igusa [4] (cf. Igusa [5], Deligne [1], Mumford [9]). We call the generic member of this universal family the generic elliptic curve with level N structure, which is an elliptic curve defined over K. For the case $N=4$, we shall explicitly construct the universal family in $\S 3$.

§ 2. Level 2 structures.

Let k be a field of characteristic $\neq 2$ and let E be an elliptic curve with origin o. We denote by $[u$] the divisor corresponding to a point u of E. Then a divisor $\Sigma m_{i}\left[u_{i}\right]$ is a principal divisor if and only if $\Sigma m_{i}=0$ and $\Sigma m_{i} u_{i}=0$ (Abel's theorem). Moreover if a principal divisor is k-rational, it is the divisor of a function defined over k.

Now let (E, v, w) be a level 2 structure on E, defined over k (cf. Igusa [4] p. 454-455). Then there exists a unique function X on E (defined over k) such that

$$
\begin{equation*}
(X)=2[v]-2[0], \quad X(w)=1 . \tag{2.1}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\lambda=\lambda(E, v, w)=X(v+w), \tag{2.2}
\end{equation*}
$$

then $\lambda \neq 0,1, \infty$ and we have

$$
\begin{equation*}
(X-1)=2[w]-2[o], \quad(X-\lambda)=2[v+w]-2[o] . \tag{2.3}
\end{equation*}
$$

On the other hand, there is a function Y on E (defined over k) such that

$$
\begin{equation*}
(Y)=[v]+[w]+[v+w]-3[o] . \tag{2.4}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
c Y^{2}=X(X-1)(X-\lambda), \tag{2.5}
\end{equation*}
$$

with some constant $c \in k, c \neq 0$. (Note that c may not be a square in k.) The map

$$
u \longmapsto(X(u), Y(u), 1)
$$

defines an imbedding of E into P^{2}, the image being the non-singular cubic curve (2.5) considered in \boldsymbol{P}^{2}. The origin 0 is mapped to the (unique) point at infinity ($0,1,0$), and the points of order $2 v, w$ and $v+w$ of E are mapped respectively to the points with coordinates

$$
(X, Y)=(0,0),(1,0),(\lambda, 0) .
$$

The inversion and translations by points of order 2 of E are represented as follows in the coordinates X, Y :

$$
\begin{gather*}
X(-u)=X(u), \quad Y(-u)=-Y(u) ; \tag{2.6}\\
\left\{\begin{array}{l}
X(u+v)=\lambda / X(u), \quad Y(u+v)=-\lambda Y(u) / X(u)^{2} ; \\
X(u+w)=(X(u)-\lambda) /(X(u)-1), \quad Y(u+w)=(\lambda-1) Y(u) /(X(u)-1)^{2} ; \\
X(u+v+w)=\lambda(X(u)-1) /(X(u)-\lambda), \quad Y(u+v+w)=-\lambda(\lambda-1) Y(u) /(X(u)-\lambda)^{2} .
\end{array}\right. \tag{2.7}
\end{gather*}
$$

We can prove these formulas simply by checking that both sides have the same divisor considered as functions of $u \in E$ and that they have the same value at a suitable point.

§ 3. Level 4 structures.

Now we consider a level 4 structure (E, r, s) defined over k. (We implicitly assume that k is a field of characteristic $\neq 2$, given with a fixed primitive 4 -th root of unity $i=\sqrt{-1} \in k$ and that $e_{4}(r, s)=i$, cf. § 1.) The "underlying" level 2 structure ($E, 2 r, 2 s$) of (E, r, s) determines a unique function X on E and some function Y, unique up to constants, satisfying (2.1), \cdots, (2.7) (with $y=2 r$ and $w=2 s$). We claim that Y can be uniquely normalized so that we
have $c=1$ in (2.5). In fact, putting $u=r$ in (2.6) and (2.7) ${ }_{1}$, we get $X(-r)=$ $X(r), X(r)^{2}=\lambda$. Hence, by (2.5), we have

$$
\begin{aligned}
c Y(r)^{2} & =X(r)(X(r)-1)(X(r)-\lambda) \\
& =\{i X(r)(X(r)-1)\}^{2} .
\end{aligned}
$$

Since; by assumption, $X(r)$ and $Y(r)$ are (non-zero) elements in k, it follows. that c is a square in k. Therefore, replacing Y by $\sqrt{c} Y$, we can take $c=1$ in (2.5), i. e. we get the Legendre normal form of E :

$$
\begin{equation*}
Y^{2}=X(X-1)(X-\lambda) . \tag{3.1}
\end{equation*}
$$

The function Y on E is unique up to sign and we can uniquely normalize it by the condition:

$$
\begin{equation*}
Y(r)=i X(r)(X(r)-1) . \tag{3.2}
\end{equation*}
$$

Summarizing, we have proved
Proposition 1. Let. (E, r, s) be an elliptic curve with level 4 structure defined over a field k. Then there exists a unique pair of functions X, Y on E, defined over k, giving an isomorphism of E onto the non-singular cubic (3.1). and satisfying (2.1), $\cdots,(2.7)$ and (3.2) with $v=2 r, w=2 s$ and $\lambda=X(2 r+2 s)$.

We shall define the "level 4 invariant" or the "modulus" of a level 4 structure (E, r, s) by

$$
\begin{equation*}
\sigma=\sigma(E, r, s)=X(r)+i(X(s)-1) . \tag{3.3}
\end{equation*}
$$

Proposition 2. Given a level 2 structure (E, v, w), there exist exactly four level 4 structures which have (E, v, w) as the underlying level 2 structure; if (E, r, s) is one of them, the other are given by

$$
(E, r, s+2 r), \quad(E, r+2 s, s), \quad(E, r+2 s, s+2 r) .
$$

Moreover, if we put $\sigma=\sigma(E, r, s)$, then we have

$$
\begin{align*}
& \sigma(E, r, s+2 r)=1 / \sigma, \quad \sigma(E, r+2 s, s)=-1 / \sigma, \tag{3.4}\\
& \sigma(E, r+2 s, s+2 r)=-\sigma .
\end{align*}
$$

Proof. For a given (v, w), there are 16 pairs (r, s) of points of order 4 such that $2 r=v$ and $2 s=w$, and half of them satisfy the condition $e_{4}(r, s)=i$. Clearly, if (r, s) is a solution with $e_{4}(r, s)=i$, other solutions are given by $(r, s+2 r) ;(r+2 s, s),(r+2 s, s+2 r)$, and their "inverse" $(-r,-s)$, etc. Since (E, r, s) and ($E,-r,-s$) are isomorphic level 4 structures, this proves the first assertion. To prove the second assertion, note that we can use the same function X on E to define σ. Putting $\alpha=X(r)$ and $\beta=X(s)$, we see from (2.7) (with $v=2 r, w=2 s$) that

$$
\begin{align*}
& \alpha^{2}=\lambda, \quad(\beta-1)^{2}=1-\lambda ; \tag{3.5}\\
& X(r+2 s)=(\alpha-\lambda) /(\alpha-1)=-\alpha \\
& X(s+2 r)-1=\lambda / \beta-1=-(\beta-1) .
\end{align*}
$$

Now (3.4) follows from the definition (3.3), q.e.d.
Proposition 3. The invariants $\sigma=\sigma(E, r, s)$ and $\lambda=\lambda(E, 2 r, 2 s)$ are related by the formula:

$$
\begin{equation*}
\lambda=\frac{1}{4}\left(\sigma+\frac{1}{\sigma}\right)^{2} . \tag{3.6}
\end{equation*}
$$

In particular, σ is different from $0, \pm 1, \pm i, \infty$.
Proof. With the notations in the above proof, we have $\lambda=\alpha^{2}$ and

$$
\begin{equation*}
\sigma=\alpha+i(\beta-1), \quad \frac{1}{\sigma}=\alpha-i(\beta-1) \tag{3.7}
\end{equation*}
$$

hence the formula. The last assertion follows from $\lambda \neq 0,1, \infty$, q.e.d.
Proposition 4. Let (E, r, s) be an elliptic curve with level 4 structure defined over k, and set $\sigma=\sigma(E, r, s)$. Then the coordinates of r, s are given by

$$
\left\{\begin{array}{l}
r=\left(\left(\sigma^{2}+1\right) / 2 \sigma, i\left(\sigma^{2}+1\right)(\sigma-1)^{2} / 4 \sigma^{2}\right), \tag{3.8}\\
s=\left((\sigma+i)^{2} / 2 i \sigma, \varepsilon\left(\sigma^{2}-1\right)(\sigma+i)^{2} / 4 \sigma^{2}\right),
\end{array}\right.
$$

the $\operatorname{sign} \varepsilon= \pm 1$ being determined by the condition $e_{4}(r, s)=i$.
Proof. Putting $\alpha=X(r)$ and $\beta=X(s)$ as before, we get

$$
\alpha=\frac{1}{2}\left(\sigma+\frac{1}{\sigma}\right) \quad \text { and } \quad \beta-1=\frac{1}{2 i}\left(\sigma-\frac{1}{\sigma}\right),
$$

from (3.7). Then $Y(r)$ is given by (3.2), while we have from (3.1) and (3.5):

$$
Y(s)^{2}=\beta(\beta-1)(\beta-\lambda)=\{\beta(\beta-1)\}^{2},
$$

hence $Y(s)= \pm \beta(\beta-1)$, in which the sign \pm is determined by the condition $e_{4}(r, s)=i$, q. e.d.

Note that points of E of exact order 4 other than $\pm r$ and $\pm s$ are easily computed by the addition theorem on E (or by (2.6), (2.7)), and their coordinates are as follows:

$$
\begin{align*}
& \left(-\left(\sigma^{2}+1\right) / 2 \sigma, \pm i\left(\sigma^{2}+1\right)(\sigma+1)^{2} / 4 \sigma^{2}\right) \\
& \left(-(\sigma-i)^{2} / 2 i \sigma, \pm\left(\sigma^{2}-1\right)(\sigma-i)^{2} / 4 \sigma^{2}\right) \tag{3.9}\\
& \left(\left(\sigma^{2}+1\right) / 2, \pm\left(\sigma^{4}-1\right) / 4 \sigma\right),\left(\left(\sigma^{2}+1\right) / 2 \sigma^{2}, \pm\left(\sigma^{4}-1\right) / 4 \sigma^{3}\right)
\end{align*}
$$

Therefore we see that the smallest field of definition of an elliptic curve with level 4 structure (E, r, s) is given by $F(\sqrt{-1}, \sigma(E, r, s))$ where F is the prime field in a field of definition of E.

Following Igusa's treatment of the absolute invariant [4], we can state
Proposition 5. Let (E, r, s) and ($E^{\prime}, r^{\prime}, s^{\prime}$) be two elliptic curves with level' 4 structure. Then
i) (E, r, s) and ($\left.E^{\prime}, r^{\prime}, s^{\prime}\right)$ are isomorphic if and only if $\sigma(E, r, s)=\sigma\left(E^{\prime}, r^{\prime}, s^{\prime}\right)$.
ii) If $\left(E^{\prime}, r^{\prime}, s^{\prime}\right)$ is a specialization of ($\left.E, r, s\right), \sigma\left(E^{\prime}, r^{\prime}, s^{\prime}\right)$ is the unique specialization of $\sigma(E, r, s)$ over this specialization. ${ }^{1)}$
Proof. i) Since the only if part is clear, we prove the if part. Assume $\sigma(E, r, s)=\sigma\left(E^{\prime}, r^{\prime}, s^{\prime}\right)$. Then two structures have the same λ by (3.6); hence both E and E^{\prime} are isomorphic to the same cubic (3.1) with the origin ($0,1,0$). If we identify E, E^{\prime} with the cubic, then Proposition 4 implies that

$$
r=r^{\prime} \quad \text { and } \quad s= \pm s^{\prime}
$$

Since $e_{4}(r, s)=i=e_{4}\left(r^{\prime}, s^{\prime}\right)$, we must have $s=s^{\prime}$, proving i).
ii) By the uniqueness of the function X on E, determined by a level 2 structure ($E, 2 r, 2 s$), it follows that the similar function X^{\prime} on E^{\prime} is the uniquespecialization of X over the given specialization. Therefore

$$
\sigma(E, r, s)=X(r)+i(X(s)-1)
$$

is uniquely specialized to $\sigma\left(E^{\prime}, r^{\prime}, s^{\prime}\right)$, q.e.d.
Corollary. The sign ε of $Y(s)$ in Proposition 4 (3.8) is independent of individual level 4 structure.

Now we are ready to write down the universal family of elliptic curves with level 4 structure over k. We take a variable, $\tilde{\sigma}$, over k and consider the affine curve Δ^{\prime} :

$$
\begin{equation*}
\Delta^{\prime}=\boldsymbol{P}^{1}-\{0, \pm 1, \pm i, \infty\} . \tag{3.10}
\end{equation*}
$$

Let B^{\prime} denote the subvariety of $\boldsymbol{P}^{2} \times \Delta^{\prime}$ defined by the equation:

$$
\begin{equation*}
Y^{2} Z=X(X-Z)(X-\tilde{\lambda} Z), \tag{3.11}
\end{equation*}
$$

where (X, Y, Z) is the homogeneous coordinates of P^{2} and $\tilde{\lambda}=(1 / 4)\left(\tilde{\sigma}+\tilde{\sigma}^{-1}\right)^{2}$. Let Φ^{\prime} denote the restriction to B^{\prime} of the projection $P^{2} \times \Delta^{\prime} \rightarrow \Delta^{\prime}$. Define the sections \tilde{o}, \tilde{r}, and \tilde{s} of $\Phi^{\prime}: B^{\prime} \rightarrow \Delta^{\prime}$ by $\tilde{o}=(0,1,0)$ and by the formulas (3.8), with σ replaced by $\tilde{\sigma}$. Summarizing the above arguments and noting that a level 4 structure admits no non-trivial automorphism, we have proved

Theorem 1. The fibre system $\Phi^{\prime}: B^{\prime} \rightarrow \Delta^{\prime}$, together with sections $\tilde{\boldsymbol{r}}$, s of order 4, is the universal family of elliptic curves with level 4 structure.

Remark. 1) Note that B^{\prime} is a non-singular quasi-projective surface and that both B^{\prime} and Δ^{\prime} can be defined over $F(i)$, the prime field F adjoined by

1) As in [4], we can allow unequal characteristic specialization in ii), provided that we fix $i=\sqrt{-1}$ in a compatible way in the fields under consideration.

$i=\sqrt{-1}$.

2) We also remark that the function field of the base curve $\Delta^{\prime}, k(\tilde{\sigma})$, is the field of elliptic modular functions of level 4 as defined by Igusa [4], cf. p. 467-468.
3) Actually we can see that the fine moduli scheme of elliptic curves with level 4 structure exists and is given by the affine scheme:

$$
M=\operatorname{Spec} Z\left[\sqrt{-1}, \tilde{\sigma}, 1 / 2 \tilde{\sigma}\left(\tilde{\sigma}^{4}-1\right)\right],
$$

cf. Igusa [5], Deligne [1], Mumford [9] Ch. 7. For each field k with a primitive 4-th root of unity, our curve Δ^{\prime} is obtained as $M \underset{Z[i]}{ } k$.

§ 4. Elliptic modular surface of level 4.

Let k be a field of characteristic $p \neq 2$ containing a primitive 4 -th root of unity $i=\sqrt{-1}$, and let σ be a variable over k (instead of $\tilde{\sigma}$ of $\S 3$). We put $K=k(\sigma)$. Consider the elliptic curve

$$
\begin{equation*}
E: Y^{2}=X(X-1)(X-\lambda), \quad \lambda=(1 / 4)(\sigma+1 / \sigma)^{2}, \tag{4.1}
\end{equation*}
$$

over K; E is nothing but the generic fibre of the universal family $\Phi^{\prime}: B^{\prime} \rightarrow$ Δ^{\prime} of elliptic curves with level 4 structure, discussed in $\S 3$. We denote by $E(K)$ the group of K-rational points of E. Then it is clear that we have

$$
\begin{equation*}
E(K) \supset E_{4}=\text { the group of points of } E \text { of order } 4 \tag{4.2}
\end{equation*}
$$

cf. Proposition 4 of §3.
We mention here another normal form of E known as Jacobi quartic (cf. [3]) :

$$
\begin{equation*}
C: y^{2}=\left(1-\sigma^{2} x^{2}\right)\left(1-x^{2} / \sigma^{2}\right) . \tag{4.3}
\end{equation*}
$$

Actually the curve C has a singular point at infinity and it is transformed to the non-singular cubic E by the birational transformation (over K):

$$
\begin{equation*}
X=\frac{\sigma^{2}+1}{2 \sigma^{2}} \cdot \frac{x-\sigma}{x-1 / \sigma}, \quad Y=\frac{\sigma^{4}-1}{4 \sigma^{3}} \cdot \frac{y}{(x-1 / \sigma)^{2}} . \tag{4.4}
\end{equation*}
$$

On Jacobi quartic C, the points of order 4 have simple coordinates; their x coordinates are just

$$
\pm \sigma, \pm 1 / \sigma, 0, \pm 1, \pm i, \infty, \quad \text { (cf. (3.8), (3.9)) }
$$

Sometimes it is easier to find K-rational points of C than that of E; in fact, this was how we first found K-rational points of infinite order in the case $p=3$ (cf. §5).

Now we consider the Kodaira-Néron model of the elliptic curve E over
the function field $K=k(\sigma)$, cf. [7], [10]. It is a non-singular projective surface, B, defined over k obtained as a compactification of the quasi-projective surface B^{\prime}. Moreover B has a natural projection $\Phi: B \rightarrow \boldsymbol{P}^{1}$, which is an extension of $\Phi^{\prime}: B^{\prime} \rightarrow \Delta^{\prime}$. Putting $\Sigma=\boldsymbol{P}^{1}-\Delta^{\prime}=\{0, \pm 1, \pm i, \infty\}$ (cf. (3.10)), we consider the singular fibre $C_{v}=\Phi^{-1}(v)$ over $v \in \Sigma$:

$$
\begin{equation*}
B=B^{\prime} \cup\left(\cup_{v \in \Sigma} C_{v}\right) . \tag{4.5}
\end{equation*}
$$

Proposition 6. Each singular fibre $C_{v}(v \in \Sigma)$ is composed of 4 non-singular rational curves $\Theta_{v, i}(i=0,1,2,3)$ intersecting like \#, i.e. it is of type I_{4} in Kodaira's notation [7] p. 604 (or of type b_{4} in Néron's notation [10] p. 124). Moreover each curve $\Theta_{v, i}$ in B is defined over K.

Proof. The absolute invariant j of our elliptic curve E is given as follows (cf. [4] p. 455):

$$
\begin{equation*}
j=2^{8}\left(\lambda^{2}-\lambda+1\right)^{3} / \lambda^{2}(\lambda-1)^{2}=2^{4}\left(1+14 \sigma^{4}+\sigma^{8}\right)^{3} / \sigma^{4}\left(\sigma^{4}-1\right)^{4} . \tag{4.6}
\end{equation*}
$$

Therefore each point v of Σ is a pole of order 4 of j, and the singular fibre C_{v} is either of type I_{4} or $I_{4}^{*}\left(=c 5_{4}\right.$ in [10]). On the other hand, the torsion subgroup of $E(K)$ contains the group E_{4} of points of order 4 (4.2), which excludes the possibility of I_{4}^{*} (cf. [EMS], Remark 1.10). Of course, we could prove this directly without using (4.2), but our proof applies also for general level N case ([EMS] Appendix). The last assertion follows from the explicit construction of C_{v} (cf. [10], III-10), q. e. d.

Corollary. The torsion subgroup of $E(K)$ is equal to E_{4}.
Theorem 2. Assume $k=\boldsymbol{C}$. Then the algebraic surface B is a K3 surface, biholomorphic (over \boldsymbol{P}^{1}) to the elliptic modular surface of level $4, B(4)$, in the sense of $[E M S]$ (see p. 38 and p. 50). In particular, the first and second Betti numbers of B are given by

$$
\begin{equation*}
b_{1}=0, \quad b_{2}=22 . \tag{4.7}
\end{equation*}
$$

Proof. We denote by c_{2}, p_{g} and q respectively the Euler number, the geometric genus and the irregularity of B. Then, applying theorems of Kodaira [7] § 12, we have

$$
c_{2}=12\left(p_{g}-q+1\right)=24 \quad \text { and } \quad q=0 .
$$

This implies $p_{g}=1, b_{1}=2 q=0, b_{2}=c_{2}+2 b_{1}-2=22$ and also the triviality of the canonical bundle of B. Therefore B is a $K 3$ surface. On the other hand, let E^{\prime} denote the generic fibre of $B(4)$ over $\boldsymbol{P}^{1} . E^{\prime}$ is an elliptic curve defined over the field, K^{\prime}, of elliptic modular functions of level 4 and we have $E^{\prime}\left(K^{\prime}\right)=E_{4}^{\prime}$ by [EMS] Theorem 5.5. Then there is an isomorphism of $K=\boldsymbol{C}(\boldsymbol{\sigma})$ onto K^{\prime} (over C), sending the element $j \in K$ of (4.6) to 12^{3}-times ordinary elliptic modular function (of level 1) $j(z)$. When we identify K with K^{\prime}, both
E and E^{\prime} have the same absolute invariant j, and hence they are isomorphic over some extension of K. Since we know that both $E(K)$ and $E^{\prime}(K)$ contain all points of order 4, the isomorphism of E onto E^{\prime} is unique and defined over K, cf. §3. By the uniqueness of Kodaira-Néron model, the elliptic surfaces B and $B(4)$ are biholomorphic over \boldsymbol{P}^{1}, q.e.d.

Corollary. If k is a field of characteristic 0 , then

$$
E(K)=E_{4} .
$$

Going back to general case, we shall call the surface B in characteristic $p \neq 2$ the elliptic modular surface of level 4 in characteristic p (defined over k), and write $B=B_{p}$ if necessary. Now, for a non-singular algebraic surface V in an arbitrary characteristic, Igusa [6] defined its Betti numbers $b_{\nu}(V)$ and proved the inequality:

$$
\begin{equation*}
\rho(V) \leqq b_{2}(V), \tag{4.8}
\end{equation*}
$$

$\rho(V)$ being the Picard number of V. In our case, by a similar argument to the proof of Theorem 2, we have (cf. [11] p. 20)

$$
\begin{equation*}
b_{1}\left(B_{p}\right)=0, \quad b_{2}\left(B_{p}\right)=22 . \tag{4.9}
\end{equation*}
$$

Another way to prove (4.9) is to reduce it to (4.7) by observing first that the surface B_{p} is obtained as reduction $\bmod p$ of the corresponding surface B_{0} in characteristic 0 and that Igusa's Betti numbers are the same as those defined by means of l-adic cohomology (cf. [2] 3.8).

On the other hand, the Picard number of B_{p} is given by the formula (cf. [EMS] Corollary 1.5):

$$
\begin{equation*}
\rho\left(B_{p}\right)=\operatorname{rank} E(K)+20, \tag{4.10}
\end{equation*}
$$

since there are 6 singular fibres of type I_{4}. Combining (4.10) with (4.8) and (4.9), we get

Proposition 7. The rank of $E(K)$ is at most 2 .
We note that, if $p=0$, we can use the stronger inequality $\rho \leqq b_{2}-2 p_{g}$ instead of (4.8), implying the finiteness of the group $E(K)$. Note also that the above argument can be applied to the case of any level $N \geqq 3$, giving the upper bound of the rank of $E(K)$ stated in the introduction.
\S 5. The group $E(K)$ in the case $p>0$.
We use the same notations as in $\S 4$, except that we now assume k is the finite field \boldsymbol{F}_{q}, where

$$
\begin{equation*}
q=p \quad \text { or } \quad p^{2} \tag{5.1}
\end{equation*}
$$

according as $\mathrm{p} \equiv 1 \bmod 4$ (case a) or $p \equiv 3 \bmod 4$ (case b). In this case, $B=B_{p}$
is a non-singular projective surface defined over \boldsymbol{F}_{q} and its zeta function is given by

$$
\begin{equation*}
\zeta(B, T)=1 /(1-T) \cdot(1-q T)^{20} H_{3, q}(T) \cdot\left(1-q^{2} T\right), \tag{5.2}
\end{equation*}
$$

where $H_{3, q}(T)$ is the polynomial

$$
H_{3, q}(T)= \begin{cases}\left(1-\pi^{2} T\right)\left(1-\pi^{\prime 2} T\right) & (\text { case a) }, \tag{5.3}\\ (1-q T)^{2} & (\text { case b) },\end{cases}
$$

associated with the Hecke polynomial of level 4 and of weight 3. (Here π, π^{\prime} are integers of $Z[i]$ such that $p=\pi \pi^{\prime}, \pi \equiv 1 \bmod 2 i$.) We proved this result in [EMS], Appendix (esp. p. 56-57), where we made use of some results. explained in the previous section. We note that the zeta function $Z_{E}(s)$ of the elliptic curve E defined over the function field $K=\boldsymbol{F}_{q}(\sigma)$, as defined in [15], p. 142, is equal to the main part of the zeta function of B :

$$
\begin{equation*}
Z_{E}(s)=H_{3, q}\left(q^{-s}\right) . \tag{5.4}
\end{equation*}
$$

We recall here the conjecture of Birch and Swinnerton-Dyer on the rank of the group of rational points of an elliptic curve defined over a global field, and the conjecture of Tate on the Picard number of a surface defined over a finite field, cf. [13]. In our notations, their conjectures are:
(5.5)*2) \quad rank $E(K)=$ order of zero of $Z_{E}(s)$ at $s=1$,
(5.6)* $\quad \rho(B)=$ order of pole of $\zeta(B, T)$ at $T=q^{-1}$.

Hence, in our case, these two conjectures are equivalent by (4.10), (5.2) and (5.4) and they claim :
$(5.7)^{*} \quad$ rank $E(K)=\left\{\begin{array}{ll}0, \\ 2,\end{array} \quad \rho(B)= \begin{cases}20 & \text { (case a), } \\ 22 & \text { (case b). }\end{cases}\right.$
Moreover, the formula (4.10) implies the validity of these conjectures in (case a). In view of Corollary to Proposition 6, we have

Theorem 3. Assume $p \equiv 1 \bmod 4$. Then
i) The group $E(K)$ of K-rational points of the generic elliptic curve E with level 4 structure in characteristic p consists exactly of points of order 4 of E.
ii) The Picard number of the elliptic modular surface of level 4 in characteristic p is equal to 20.
(Note that in the above theorem we may replace the constant field \boldsymbol{F}_{p} by an arbitrary field k of the same characteristic, as we can see by a standard argument.)

For the remaining (case b), we restate (5.7):

[^1]Conjecture. If $p \equiv 3 \bmod 4$, then

$$
\begin{equation*}
\operatorname{rank} E(K)=2 \quad \text { and } \quad \rho(B)=22 . \tag{5.8}
\end{equation*}
$$

The rest of this section is devoted to the proof of this conjecture in the special case $p=3$. First the quotient group $E(K) / 2 E(K)$ is a finite group of type ($2, \cdots, 2$), i. e. a vector space over $\boldsymbol{F}_{2}=\boldsymbol{Z} / 2 \boldsymbol{Z}$, whose dimension is $2+\mathrm{rank}$ $E(K)$, because $E(K)$ contains the group E_{2} of points of order 2. Therefore (5.8) is equivalent to

$$
\begin{equation*}
\operatorname{dim}_{\boldsymbol{F}_{2}} E(K) / 2 E(K)=4, \tag{5.9}
\end{equation*}
$$

the inequality \leqq being true by Proposition 7. Next, for any element α of the multiplicative group K^{\times}of the field K, we denote by $\mathrm{cl}(\alpha)$ the class of α modulo the subgroup $\left(K^{\times}\right)^{2}$ of squares in K^{\times}. The following lemma is a crucial point in the proof of the so-called weak Mordell-Weil theorem (cf. [8] Chapter 16):

Lemma. Let φ denote the map of $E(K)$ into the group $K^{\times} /\left(K^{\times}\right)^{2} \oplus K^{\times} /\left(K^{\times}\right)^{2}$ defined by

$$
\left.\varphi(u)=(\operatorname{cl}(X(u)), \operatorname{cl}(X(u)-1)), \quad u=(X(u), Y(u)) \in E(K) .^{3}\right)
$$

Then the map φ induces an injective homomorphism:

$$
\begin{equation*}
E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \oplus K^{\times} /\left(K^{\times}\right)^{2} \tag{5.10}
\end{equation*}
$$

Proposition 8. Assume $p=3$. Then the following points u and v are K rational points of E :

$$
\begin{align*}
& u=\left(\sigma^{2}, \sigma^{2}-1\right), \tag{5.11}\\
& v=((1-i)(\sigma-i),(1+i)(\sigma+1)(\sigma-i)(\sigma-1+i) / \sigma) .
\end{align*}
$$

Letting r, s denote the points of order 4 of E given by (3.8), the four points u, v, r and s induce a basis of $E(K) / 2 E(K)$ over $\boldsymbol{F}_{2}=\boldsymbol{Z} / 2 \boldsymbol{Z}$.

Proof. The first assertion can be verified by computation. To prove the second assertion, we form the table:

	$X(u)$	$X(u)-1$
u	σ^{2}	$\sigma^{2}-1$
v	$(1-i)(\sigma-i)$	$(1-i)(\sigma+1)$
r	$\left(\sigma^{2}+1\right) / 2 \sigma$	$(\sigma-1)^{2} / 2 \sigma$
s	$(\sigma+i)^{2} / 2 i \sigma$	$\left(\sigma^{2}-1\right) / 2 i \sigma$

Suppose there is $\mathrm{a}_{\mathbf{i}}^{\mathrm{T}}$ relation:

[^2]$$
n_{1} u+n_{2} v+n_{3} r+n_{4} s \equiv 0 \bmod 2 E(K) .
$$

By the above lemma (5.10), this is equivalent to

$$
\left\{\begin{array}{l}
\left(\sigma^{2}\right)^{n_{1}}\{(1-i)(\sigma-i)\}^{n_{2}}\left\{\left(\sigma^{2}+1\right) / 2 \sigma\right\}^{n_{3}}\left\{(\sigma+i)^{2} / 2 i \sigma\right\}^{n_{4}} \in\left(K^{\times}\right)^{2}, \tag{5.12}\\
\left(\sigma^{2}-1\right)^{n_{1}}\{(1-i)(\sigma+1)\}^{n_{2}}\left\{(\sigma-1)^{2} / 2 \sigma\right\}^{n_{3}}\left\{\left(\sigma^{2}-1\right) / 2 i \sigma\right\}^{n_{4}} \in\left(K^{\times}\right)^{2} .
\end{array}\right.
$$

Since $K=k(\sigma)$ is the quotient field of the polynomial ring $k[\sigma]$ (a UFD), it follows from (5.12) that

$$
n_{1} \equiv n_{2} \equiv n_{3} \equiv n_{4} \equiv 0 \quad \bmod 2 .
$$

This completes the proof (cf. (5.9)), q. e.d.
Actually the hardest part was to find K-rational points u, v. It is likely that these u, v, r and s generate the whole group $E(K)$. At any rate, we obtain

Theorem 4. Assume $p=3$. Then the group $E(K)$ of K-rational points of the generic elliptic curve E with level 4 structure in characteristic 3 is an infinite group of rank 2, whose torsion subgroup consists of points of order 4, i.e.

$$
E(K) \cong \boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \boldsymbol{Z} / 4 \boldsymbol{Z} \oplus \boldsymbol{Z} / 4 \boldsymbol{Z}
$$

Remark. Let N be a natural number divisible by 4 and let K_{N} denote the field of elliptic modular functions of level N in characteristic $p(p \nsim N)$, cf. [4]. We have

$$
K_{N} \supset K_{4}=K=k(\sigma) \supset K_{2}=k(\lambda) .
$$

It follows from the results of $\S 3$ that the generic elliptic curve with level N structure is again given by the Legendre cubic

$$
E: Y^{2}=X(X-1)(X-\lambda),
$$

considered now over the field K_{N}. We have

$$
E\left(K_{N}\right) \supset E\left(K_{4}\right) \supset E\left(K_{2}\right)=E_{2},
$$

the last equality being a result of Igusa [4] p. 463. (It can also be proved by the method used in §4.) Therefore Theorem 4 implies the following partial result for higher level case:

Corollary. Let N be a natural number divisible by 4 and not divisible by 3. Then the group of K_{N}-rational points of the generic elliptic curve with level N structure in characteristic 3 is an infinite group of rank $\geqq 2$.

We close this paper by raising a question. What is the true meaning of rational points of infinite order on the generic elliptic curve with level N structure in certain characteristic p ?

Department of Mathematics
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan

References

[1] P. Deligne, Formes modulaires et représentations l-adiques, Sém. Bourbaki, 1968/69, exp. 355, 1-33.
[2] A. Grothendieck, Le groupe de Brauer II, Sém. Bourbaki, 1965/66, exp. 297, 1-21.
[3] J. Igusa, On the transformation theory of elliptic modular functions, Amer. J. Math., 81 (1959), 436-452.
[4] J. Igusa, Fibre systems of Jacobian varieties (III. Fibre systems of elliptic curves), Amer. J. Math., 81 (1959), 453-476.
[5] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math., 81 (1959), 561-577.
[6] J. Igusa, Betti and Picard numbers of abstract algebraic surfaces, Proc. Nat. Acad. Sci., 46 (1960), 724-726.
[7] K. Kodaira, On compact analytic surfaces II-III, Ann. of Math., 77 (1963), 563626 ; 78 (1963), 1-40.
[8]. L. J. Mordell, Diophantine equations, Academic Press, London and New York, 1969.
[9] D. Mumford, Geometric invariant theory, Springer-Verlag, Berlin-HeidelbergNew York, 1965.
[10] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. I.H.E.S., No. 21, 1964.
[11] A.P. Ogg, Elliptic curves and wild ramification, Amer. J. Math., 89 (1967), 1-21.
[12] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59 (cited as [EMS]).
[13] J. Tate, On the conjecture of Birch and Swinnerton-Dyer and a geometric analog, Sém. Bourbaki, 1966, exp. 306, 1-26.
[14] A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948.
[15] A. Weil, Dirichlet series and automorphic forms, Lecture notes No. 189, Springer, 1970.

Added in proof. Recently we have proved the conjecture in $\S 5$ (5.8) for all prime number p such that $p \equiv 3 \bmod 4$. The method of the proof is different from that of $\S 5$, and depends on the fact that our surface B (elliptic modular surface of level 4) is a Kummer surface. This result will be published in "Algebraic cycles on certain $K 3$ surfaces in characteristic p " (in preparation).

[^0]: * Some results in this paper were reported at "U.S.-Japan Seminar on Modern Methods in Number Theory", Tokyo, Aug. 30-Sept. 5, 1971, under the title "Rational points of Jacobi's quartic curve $y^{2}=\left(1-\sigma^{2} x^{2}\right)\left(1-x^{2} / \sigma^{2}\right)$ over $k(\sigma)$ ".

[^1]: 2) * marked to indicate that these are conjectures!
[^2]: 3) When $X(u)=0,1$ or ∞, the definition of $\varphi(u)$ must be suitably modified.
