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\S 0. Introduction.

Let $M^{n}$ be an n-dimensional manifold immersed in an $(n+p)$ -dimensional
Riemannian manifold $R^{n+p}$ . Let $h$ be the second fundamental form and $H$

the mean curvature vector of this immersion. If there exists a function $\lambda$

on $M^{n}$ such that

\langle 0.1) $\langle h(X, Y), H\rangle=\lambda\langle X, Y\rangle$

for all tangent vector fields $X,$ $Y$ on $M^{n}$ , then $M^{n}$ is called a pseudo-umbilical
submanifold of $R^{n+p}$ .

In this part of this series of papers, firstly, we obtained an integral
inequality on mean curvature for flat surfaces in higher dimensional euclidean
space and proved that the equality sign holds only when the surfaces are
pseudo-umbilical in the euclidean space. Secondly, we proved two charac-
terization theorems for pseudo-umbilical submanifolds in a higher dimensional
sphere. Lastly, we obtained a necessary and sufficient condition for a pro-
duct manifold to be a pseudo-umbilical submanifold.

\S 1. Preliminaries.

Let $M^{n}$ be an n-dimensional manifold immersed in an $(n+p)$ -dimensional
Riemannian manifold $R^{n+p}$ . We choose a local field of orthonormal frames
$e_{1},$ $\cdots$ , $e_{n+p}$ in $R^{n+p}$ such that, restricted to $M^{n}$ , the vectors $e_{1},$ $\cdots$ , $e_{n}$ are
tangent to $M^{n}$ (and consequently, $e_{n+1},$ $\cdots$ , $e_{n+p}$ are normal to $M^{n}$). We shall
make use of the following convention on the ranges of indices:

$1\leqq i,$ $j,$ $k,$ $\cdots\leqq n$ ; $n+1\leqq r,$ $s,$ $t,$ $\cdots\leqq n+p$ ;

$1\leqq A,$ $B,$ $C,$ $\cdots\leqq n+p$

unless otherwise stated. With respect to the frame field of $R^{n+p}$ chosen above,

1) This work was supported in part by National Science Foundation under Grant
GU-2648.
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let $\omega_{1},$
$\cdots$ , $\omega_{n+p}$ be the field of dual frames. Then the structure equations of

$R^{n+p}$ are given by

(1.1) $d\omega_{A}=\sum\omega_{AB}\wedge\omega_{B},$ $\omega_{AB}+\omega_{BA}=0$ ,

(1.2) $d\omega_{AB}=\sum\omega_{AC}\wedge\omega_{CB}+\Phi_{AB},$ $\Phi_{AB}=(1/2)\Sigma K_{ABCD}\omega_{C}\wedge\omega_{D}$ ,

(1.3) $K_{ABCD}+K_{4BDC}=0$ .
We restrict these forms to $M^{n}$ . Then $\omega_{r}=0$ . Since $0=d\omega_{r}=\sum\omega_{ri}\wedge\omega_{i}$ , by
Cartan’s lemma we may write

(1.4) $\omega_{ir}=\sum h_{tj}^{r}\omega_{j}$ , $h_{ij}^{r}=h_{j\ell}^{r}$ .

From these formulas, we obtain

(1.5) $d\omega_{i}=\sum\omega_{ij}\Lambda\omega_{j}$ ,

(1.6) $d\omega_{ij}=\sum\omega_{ik}\wedge\omega_{kj}+\Omega_{ij}$ , $\Omega_{ij}=(1/2)\sum R_{ijkl}\omega_{k}\wedge\omega_{l}$ ,

(1.7) $R_{ifkl}=K_{ijkl}-\sum(h_{ik}^{r}h_{jl}^{r}-h_{u}^{r}h_{jk}^{r})$ ,

(1.8) $d\omega_{rt}=\Sigma\omega_{rs}\wedge\omega_{st}+\Omega_{rl}$ , $\Omega_{rt}=(1/2)\sum R_{rtkl}\omega_{k}\wedge\omega_{l}$ ,

(1.9) $R_{rtkl}=K_{rtkl}-\sum(h_{lk}^{r}h_{u}^{t}-h_{u}^{r}h_{ik}^{t})$ .
We call $h=\sum h_{ij}^{r}\omega_{i}\omega_{j}e_{r}$ the second fundamental form and $K_{N}=\sum(R_{rtkl})^{2}$ the
scalar normal curvature [1]. The mean curvature vector $H$ is given by

$(1/n)\sum_{r}(\sum_{i}h_{ti}^{r})e_{r}$ . If the mean curvature vector $H=0$ identically, then $M^{n}$ is

called a minimal submanifold.
We take exterior differentiation of (1.4) and dePne $h_{ijk}^{r}$ by

(1.10) $\sum h_{ijk}^{r}\omega_{k}=dh_{lj}^{r}-\sum h_{il}^{r}\omega_{lj}-\sum h_{lj}^{r}\omega_{il}+\sum h_{ij}^{f}\omega_{tr}$ .
Then $h_{ijk}^{r}$ is the covariant derivative of $h_{ij}^{r}$ and we have

(1.11) $h_{ijk}^{r}-h_{ikj}^{r}=K_{irkj}=-K_{irjk}$ .

For any unit normal vector $e$ at $x$ in $M^{n}$ , there corresponds a symmetric
transformation $A(e)$ of the tangent space $T_{x}$ at $x$ into itself which is given
by $\langle A(e)(X), Y\rangle=\langle e, h(X, Y)\rangle$ , for all tangent vectors $X,$ $Y$ at $x$ . We call
$A(e)$ the second fundamental form at $e$ .

\S 2. Flat surfaces in $E^{2+p}$ .
Let $M$ be a surface immersed in a euclidean $(2+p)$ -space $E^{2+p}$ , and let

$T_{x}^{\perp}$ denote the normal space of $M$ in $E^{2+p}$ at $x$ . We define a linear mapping
$\gamma$ from $T_{x}^{\perp}$ into the space of all symmetric matrices of order 2 by

$\gamma(\sum_{r=3}^{2+p}v_{r}e_{r})=\sum_{\tau=3}^{2+p}v_{r}A(e_{r})$ .
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Let $O_{x}$ denote the kernel of $\gamma$ . Then we have dim $0_{x}\geqq p-3$ . We define the
N-index of $M$ at $x$ by

$N- index_{x}=p-$dim $O_{x}$ .

In general, for a surface in $E^{2+p}$ , we have N-index $\leqq 3$ . A surface in $E^{2+p}$

with N-index $\leqq 2$ everywhere is not necessarily contained in a 4-dimensional
linear subspace of $E^{2+p}$ .

The following theorems are the main results of this section.
THEOREM 2.1. Let $M$ be a comPact flat surface immersed in $a$ euclidean

$(2+P)$ -sPace $E^{2+p}$ . If the N-index of $M$ $is\leqq 2$ everywhere, then we have

(2.1) $\int_{K}\langle H, H\rangle dV\geqq 2\pi^{2}$

where $dV$ denotes the area element of M. The equality sign of (2.1) holds only
when $M$ is a pseudo-umbilical surface in $E^{2\vdash p}$ with zero scalar normal curva-
ture.

PROOF. Let $S_{x}$ denote the $(p-1)$ -sphere of all unit normal vectors of $M$

in $E^{2+p}$ at $x$. For any unit normal vector $e$ at $x$, the Lipschitz-Killing cur-
vature, $K(x, e)$ , is defined as the determinant of the second fundamental form
at $e$ , that is, $K(x, e)=\det A(e)$ . Put $U=\{x\in M:N- index_{x}\geqq 1\}$ . It is easy to
see that $U$ is an open subset of $M$. If $N- index_{x}<1$ , then we have $K(x, e)=0$

for all $e$ in $S_{x}$ . In the following, we choose the local frame fields in such a
way that $e_{3},$ $e_{4}$ in $N_{x}$ if $N- index_{x}=2$ and $e_{3}$ in $N_{x}$ if $N- index_{x}=1$ , where $N_{x}$

denotes the subspace of the normal space given by

$T_{x}^{\perp}=N_{x}\oplus O_{x}$ , $N_{x}\perp O_{x}$ .
Then we have

(2.2) $h_{ij}^{r}=0$ , for $r>4$ .
Thus, by (2.2), the Lipschitz-Killing curvature $K(x, e)$ with $e=\sum_{r=3}^{2+p}$ cos $\theta_{r}e_{r}$ is
given by

$K(x, e)=\{(\cos\theta_{3})h_{11}^{3}+(\cos\theta_{4})h_{11}^{4}\}\{(\cos\theta_{3})h_{22}^{3}+(\cos\theta_{4})h_{22}^{4}\}$

$-\{(\cos\theta_{3})h_{12}^{8}+(\cos\theta_{4})h_{12}^{4}\}^{2}$ .

The right hand side is a quadratic form on cos $\theta_{r}$ . Hence, by choosing a
suitable cross-section with $e_{3},$ $e_{4}$ in $N_{x}$ for points $x$ with $N- index_{x}=2$ , we
may write

(2.3) $K(x, e)=\lambda(x)$ cos2 $\theta_{3}+\mu(x)$ cos2 $\theta_{4}$ , $\lambda=-\mu\geqq 0$ .

Thus by (2.3) we see that the total curvature $K^{*}(x)$ satisfies
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\langle 2.4) $ K^{*}(x)d=ef\int_{s_{x}}|K(x, e)|d\sigma$

$=\lambda\int_{s_{x}}|\cos^{2}\theta_{3}-\cos^{2}\theta_{4}|d\sigma$ ,

where $ d\sigma$ denotes the volume element of $S_{x}$ . On the other hand, by a formula
of spherical integration, we have

\langle 2.5) $\int_{s_{x}}|\cos^{2}\theta_{3}-\cos^{2}\theta_{4}|d\sigma=2c_{p+1}/\pi^{2}$

where $c_{p+1}$ denotes the area of unit $(P+1)$ -sphere. Hence by substituting
(2.5) into (2.4), we see that

(2.6) $\lambda(x)=K^{*}(x)\pi^{2}/2c_{p+1}$ .
Since $M$ is flat and compact, by a well-known inequality of Chern-Lashof [3],

we have

$\langle 2.\eta$ $\int_{M}K^{*}(x)dV\geqq 4c_{p+1}$ .

Combining (2.6) and (2.7) we obtain

(2.8) $\int_{M}\lambda(x)dV\geqq 2\pi^{2}$

On the other hand, if we choose $e_{1},$ $e_{2}$ in the principal directions of $e_{4}$ ,

then we have $h_{12}^{4}=0$ . Hence, by the flatness of $M$, we obtain

\langle 2.9) $4\langle H, H\rangle=(h_{11}^{3}+h_{22}^{3})^{2}+(h_{11}^{4}+h_{22}^{4})^{2}$

$=(h_{11}^{3})^{2}+(h_{22}^{3})^{2}+2(h_{12}^{3})^{2}+(h_{11}^{4})^{2}+(h_{22}^{4})^{2}$

$\geqq 4\lambda+4(h1_{2})^{2}$

$\geqq 4\lambda$ .
Substituting (2.9) into (2.8) we obtain (2.1). Now, suppose that the inequality
of (2.1) is actually an equality, then the inequalities of (2.9) are actually
equalities. Hence, we have

$h_{11}^{3}=h_{22}^{3}$ , $h_{11}^{4}=-h_{22}^{4}$ , $h_{12}^{8}=h_{12}^{4}=0$ .

This shows that $M$ is a pseudo-umbilical surface of $E^{2\cdot\vdash p}$ and the scalar normal
curvature vanishes. This completes the proof of the theorem.

COROLLARY 2.2. Let $M$ be a compact flat surface immersed in $a$ euclidean
4-space. Then we have

$\int_{M}\langle H, H\rangle dV\geqq 2\pi^{2}$

This corollary follows immediately from Theorem 2.1. If $M$ is orientable,
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then it has been proved in [2].

THEOREM 2.3. Let $M$ be a compact flat surface immersed in $a$ euclidean
$(2+p)$ -space $E^{2+p}$ with zero scalar normal curvature. Then we have

$\int_{M}\langle H, H\rangle dV\geqq 2\pi^{2}$ .

PROOF. If the scalar normal curvature $K_{N}$ vanishes, then the N-index of
$M$ is $<3$ everywhere. This implies the theorem.

\S 3. Pseudo-umbilical submanifolds in space forms.

Let $u$ be a normal vector field on $M^{n}$ and we choose our local frame
fields in such a way that $e=e_{n+1}$ is given by

(3.1) $u=|u|e$ , $u=\langle u, u\rangle^{1/2}$ ,

where $\langle$ , $\rangle$ denotes the scalar product in $R^{n+p}$ . We define a normal vector
field $a(u)$ by

(3.2) $a(u)=\frac{1}{n}|u|\sum_{r=n+2}^{n+p}Tr(A(e)A(e_{r}))e_{\tau}$ .

Then $a(u)$ is a well-dePned normal vector at each point and it is continuous
on $M^{n}$ . We call $a(u)$ the allied vector field of $u$ . For example, if $M^{n}$ is con-
tained in a hypersphere $S^{m-1}$ of a euclidean m-space $E^{m}$ and $u$ is the unit
outer hypersphere normal in $E^{m}$ along $M^{n}$ , then the allied vector field $ a(u\rangle$

of $u$ is nothing but the mean curvature vector of $M^{n}$ in $S^{m-1}$ .
The allied vector field of the mean curvature vector $H$ is a well-defined

normal vector field perpendicular to $H$. We call it the allied mean curvature
vector. If the allied mean curvature vector $a(H)=0$ identically, then $M^{n}$ is
called an .,4-submanifold of $R^{n+p}$ . It is easy to see that minimal submanifolds,
$pseudo\cdot umbilical$ submanifolds and hypersurfaces are UZ-submanifolds. There
are u4-submanifo1ds which are not one of the submanifolds we just mentioned
(see \S 4).

THEOREM 3.1. Let $M^{n}$ be an $\mathcal{A}$ -submanifold of $a$ euclidean hyPersphere
$S^{m-1}$ in $E^{m}$ . Then $M^{n}$ is a Pseudo-umbilical submanifold of $S^{m-1}$ if and only

if $M^{n}$ is an $d$-submanifold of $E^{m}$ .
PROOF. Let $M^{n}$ be an $d$-submanifold of $S^{m-1}$ . Then the allied mean

curvature vector $a(H)$ vanishes, $i$ . $e$ .

(3.3) $a(H)=\frac{1}{n}|H|\sum_{r=n+2}^{m-1}Tr(A(e_{n+1})A(e_{\gamma}))e_{r}=0$ ,

where we have chosen $H=|H|e_{n+1}$ . If $H=0$ at a point $x$ in $M^{n}$ , then $M^{n}$ is
pseudo-umbilical at $x$ in $S^{m-1}$ and the allied mean curvature vector of $M^{n}$ in
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$E^{m}$ vanishes at $x$ . Therefore, it suffices to show the theorem for the points
in $M$ “ where the mean curvature vector $H$ of $M^{n}$ in $S^{m-1}$ is nonzero. In
the latter case, we have

\langle 3.4) Tr $(A(e_{n+1})A(e_{r}))=0$ , for $r=n+2,$ $\cdots$ , $m-1$ .
Now, suppose that $M^{n}$ is an $d$ -submanifold of $E^{m}$ and $\overline{H}$ is the mean cur-
vature vector of $M^{n}$ in $E^{m}$ . Then, without loss of generality, we may assume
that $S^{m-1}$ is the unit hypersphere of $E^{m}$ centered at the origin and $X$ is its
position vector field. Then we have $\overline{B}=H-X$. Hence, if we put

$\overline{e}_{n+1}=\overline{H}/|\overline{H}|$ , $\overline{e}_{n+2}=e_{n+2},$ $\cdots$ , $\overline{e}_{m- 1}=e_{m- 1}$ ,

$\overline{e}_{m}=b(H+\langle H, H\rangle X)$ ,

with $b=(\langle H, H\rangle+\langle H, H\rangle^{2})^{-1/2}$ . Then the second fundamental form $(\overline{h}_{ij}^{r})$ of
$M^{n}$ in $E^{m}$ are given by

$\overline{h}_{ij}^{n+1}=\{|H|h_{tj}^{n+1}+\delta_{ij}\}/|\overline{H}|$ ,

\langle 3.5) $\overline{h}_{ij}^{r}=h_{ij}^{r}$ , $r=n+2,$ $\cdots$ $m-1$ ,

$\overline{h}_{ij}^{m}=b\{|H|h_{ij}^{n+1}-\langle H, H\rangle\delta_{ij}\}$ ,

where $\delta_{ij}$ are the Kronecker deltas. The condition of UZ-submanifold for $M^{n}$

in $E^{m}$ implies

(3.6) $\Sigma\overline{h}_{ij}^{n+1}\overline{h}_{ij}^{r}=0$ , for $r=n+2,$ $\cdots$ , $m$ .
From (3.4), (3.5) and (3.6) we obtain

(3.7) $n\langle H, H\rangle=\sum(h_{ij}^{n+1})^{2}$ .
From this we can easily verify that $M^{n}$ is a pseudo-umbilical submanifold
of $S^{m-1}$ . The converse is trivial. This completes the proof of the theorem.

Let $u$ be a normal vector field of $M^{n}$ in $R^{m}$ and $\overline{\nabla}$ denote the covariant
differentiation of $R^{m}$ . Then we may decompose $\tilde{\nabla}u$ into two components $\nabla u$

and $\lrcorner Du$ , where $\nabla u$ is the tangential component and $Du$ the normal compo-
nent. Then $D$ defines a connection in the normal bundle. If $Du=0$ , then $u$

is said to be Parallel.
THEOREM 3.2. Let $M^{n}$ be a compact, non-minimal, .d-submanifold of a

euclidean $(m-1)- sPhereS^{m-1}$ . If the mean curvature vector $H$ of $M^{n}$ in $S^{m-1}$

is Parallel, then $M^{n}$ is Pseudo-umbilical in $S^{m-1}$ when and only when the Gauss
image of $H/|H|$ lies in an open hemisPhere of $S^{m-1}$ .

PROOF. Since $M^{n}$ is non-minimal and the mean curvature vector $H$ is
parallel, then mean curvature, $|H|$ , is a nonzero constant. Let $e=e_{n+1}$ be
the unit normal vector Peld given by $H=|H|e$ . Then $e$ is parallel. Without
loss of generality, we may assume that $S^{m-1}$ is the unit hypersphere of $E^{m}$
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centered at the origin with the position vector field $X$ By (1.4), we may
write

\langle 3.8) $de=de_{n\dashv- 1}=\Sigma\omega_{n+1i}e_{i}=-\sum h_{ij}^{n+1}\omega_{j}e_{i}$ .
Applying the Hodge star operator *on both sides of (3.8), we obtain

\langle 3.9) $*de=\sum(-1)^{j}h_{ij}^{n+1}\omega_{1}\Lambda\ldots\wedge\omega_{j-1}\wedge\omega_{j+1}\wedge\cdots\wedge\omega_{n}e_{t}$ .
Taking exterior differentiation of (3.9) we obtain

(3.10) $-d^{*}de=\{\sum h_{ijj}^{n+1}e_{i}-\sum h_{ii}^{n+1}X+\sum_{r=n+1}^{m-1}h_{ij}^{n+1}h_{ij}^{r}e_{r}\}dV$ .

Since $e=e_{n+1}$ is parallel and $S^{m-1}$ is of constant curvature 1, we obtain from
(1.10) and (1.11) that

(3.11) $\sum h_{ijk}^{n+1}\omega_{k}=\sum h_{ijik}^{n+1}\omega_{k}-\sum h_{u}^{n+1}\omega_{jl}-\sum h_{lj}^{n+1}\omega_{il}$ ,

(3.12) $h_{ijk}^{n+1}=h_{lkj}^{n+1}$ ,

where $h_{tJ:k}^{n+1}$ are given by $dh_{tj}^{n+1}=\sum h_{ij:k}^{n+1}\omega_{k}$ . Therefore, by the assumption that
$M^{n}$ is an $d$-submanifold, and $H=|H|e$ , we see that the Laplacian $\Delta e$ of $e$

is given by

(3.13) $\Delta e=X$ Tr $A(e)-e$ Tr $((A(e))^{2})$ .
Similarly, by a $direct^{-}computation$ , we have

(3.14) $\Delta X=eTrA(e)-nX$ .
Combining (3.13) and (3.14) we obtain

(3.15) $\Delta$ ($ne+X$Tr $A(e)$) $=-$ { $n$ Tr $((A(e))^{2})-(TrA(e))^{2}$} $e$

$=-\sum_{i<j}(k_{i}(e)-k_{j}(e))^{2}e$ ,

where $k_{1}(e),$ $\cdots$ , $k_{n}(e)$ are the eigenvalues of $A(e)$ . Therefore, if the Gauss
image of $e$ lies in an open hemisphere of $S^{m-1}$ , then there exists a constant
vector $c$ such that $\langle e, c\rangle>0$ . Hence, by taking scalar product of $c$ with both
sides of (3.15), we obtain

$\Delta$ \langle $ne+X$Tr $A(e),$ $ c\rangle$ $\leqq 0$ .
Therefore, Hopf’s lemma implies that $k_{1}(e)=\ldots=k_{n}(e)$ . This shows that $M^{n}$

is a pseudo-umbilical submanifold of $S^{m-1}$ . Conversely, if $M^{n}$ is pseudo-
umbilical in $S^{m-1}$ , then by the parallelism of the mean curvature vector $H$,

we see that $M^{n}$ is a minimal submanifold of a small $(m-2)$ -sphere of $S^{m-1}$ .
This implies that the Gauss image of $e=H/|H|$ lies in an open hemisphere
of $S^{m-1}$ . This completes the proof of the theorem.

REMARK 3.1. For the hypersurfaces of an $m$ -sphere, see de Giorgi [4]
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and Nomizu-Smyth [5].

\S 4. Product submanifolds.

Let $M^{n_{i}}(i=1,2)$ be $n_{i}$ -dimensional submanifolds of $m_{i}$ -dimensional Rie-
mannian manifolds $R^{m_{i}}$ with nowhere zero mean curvature vector $H_{i}$ . The
main purpose of this section is to derive a necessary and sufficient condition
for the product manifold $M^{n_{1}}\times M^{n_{2}}$ to be a pseudo-umbilical submanifold of
$R^{m_{1}}\times R^{m_{2}}$ . In fact we have the following more general result:

PROPOSITION 4.1. The product manifold $M^{n_{1}}\times M^{n_{2}}$ is an $\mathcal{A}$ -submanifold
of $R^{m_{1}}\times R^{m_{2}}$ when and only when $M^{n_{1}}$ and $M^{n_{2}}$ $are\leftrightarrow q$-submanifolds of $R^{m_{1}}$

and $R^{m_{2}}$ respectively, and the second fundamental forms at $\eta_{l}=H_{i}/|H_{i}|$ of
$M^{n_{i}}$ in $R^{m_{i}}$ satisfy Tr $((A(\eta_{1}))^{2})=Tr((A(\eta_{2}))^{2})$ .

PROOF. We choose the local frame fields $e_{1},$
$\cdots$ , $e_{m1+m_{2}}$ in $R^{m_{1}}\times R^{m_{2}}$ such

that, restricted to $M^{n_{1}}\times M^{n_{2}},$ $e_{1},$
$\cdots$ , $e_{n_{1}}$ are tangent to $M^{n_{1}},$ $e_{n_{1+1}},$

$\cdots$ , $e_{n1+n_{2}}$

are tangent to $M^{n_{2}},$
$e_{n_{1}+n_{2+1}},$

$\cdots$ , $e_{m_{1}+n_{2}}$ are normal to $M^{n_{1}}$ in $R^{m_{1}}$ , and $e_{m1+n_{2+1}}$ ,

$e_{m_{1}+m_{2}}$ are normal to $M^{n_{2}}$ in $R^{m_{2}}$ . Moreover, we assume that $e_{n1+n_{21}}+=\eta_{1}$

and $e_{m1n_{2}+1}+=\eta_{2}$ . Then, by a straightforward computation, we see that the

mean curvature vector $\overline{H}$ of the product manifold $M^{n_{1}}\times M^{n_{2}}$ is given by

(4.1) $\overline{H}=(1/n)(n_{1}H_{1}+n_{2}H_{2})$ , $n=n_{1}+n_{2}$ .
In the following, we put

(4.2) $\left\{\begin{array}{ll}\overline{e}_{i}=e_{i}, & i=1, \cdots n,\\\overline{e}_{n+1}=\overline{H}/| & \overline|,\\\overline{e}_{m_{1}+n_{2+1}}= & /|Y|, Y=n_{2}\langle H_{2}, H_{2}\rangle H_{1}-n_{1}\langle H_{1}, H_{1}\rangle H_{2},\\\overline{e}_{r}=e_{r} , & r\neq n+1, m_{1}+n_{2}+1 , r>n.\end{array}\right.$

Then the second fundamental forms, $A(e_{r});r=n+1,$ $\cdots$ , $m_{1}+m_{2}$ , of the product

manifold are given by

$A(\overline{e}_{n+1})=c_{1}\left(\begin{array}{ll}n_{1}|H_{1}|A(e_{n+1}) & 0\\0 & n_{2}|H_{2}|A(e_{m1+n_{2+1}})\end{array}\right)$

$A(\overline{e}_{r})=\left(\begin{array}{ll}A(e_{r}) & 0\\0 & 0\end{array}\right)$ , $r=n+2,$ $\cdots$ , $m_{1}+n_{2}$ ,

(4.3)

$A(\overline{e}_{m_{1}+n2+1})=c_{2}\left(\begin{array}{llll}n_{2}\langle H_{2}, & H_{2}\rangle|H_{1}|A(e_{n+1}) & & 0\\ & 0 & -n_{1}\langle H_{1}, & H_{1}\rangle|H_{2}|A(e_{m_{1}+n_{2+1}})\end{array}\right)$

$A(\overline{e}_{t})=\left(\begin{array}{ll}0 & 0\\0 & A(e_{t})\end{array}\right)$ , $t=m_{1}+n_{2}+2,$ $m_{1}+m_{2}$ ,

where $c_{1}$ , and $c_{2}$ are nonzero, $A(e_{r});r=n+1,$ $\cdots$ , $m_{1}+n_{2}$ are second funda-
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mental forms at $e_{r}$ for $M^{n_{1}}$ in $R^{m_{1}}$ and $A(e_{t}),$ $t=m_{1}+n_{2}+1,$ $\cdots$ , $m_{1}+m_{2}$ , are
the corresponding matrices for $M^{n_{2}}$ in $R^{m_{2}}$ . From these formulas we see
that the product manifold is an $A$-submanifold when and only when

Tr $((A(e_{n+1}))^{2})=Tr((A(e_{m1+n2+1}))^{2})$ ,

Tr $(A(e_{n+1})A(e_{r}))=0$ , $r=n+2,$ $\cdots$ , $m_{1}+n_{2}$ ,

Tr $(A(e_{m1+n_{2+1}})(A(e_{t})))=0$ , $t=m_{1}+n_{2}+2,$ $\cdots$ , $m_{1}+m_{2}$ .
These formulas show that the product submanifold is an d-submanifold
when and only when $M^{n_{1}}$ and $M^{n_{2}}$ are $\mathcal{A}$-submanifolds of $R^{m_{1}}$ and $R^{m_{2}}$

respectively and Tr $((A(\eta_{1}))^{2})=Tr((A(\eta_{2}))^{2})$ . This proves the proposition.
$THL^{\backslash }OREM4.2$ . The product manifold $M^{n_{1}}\times M^{n_{2}}$ is a pseudo-umbilical sub-

manifold of $R^{m_{1}}\times R^{m_{2}}$ when and only when $M^{n_{1}}$ and $M^{n_{2}}$ are pseudo-umbilical
submanifolds of $R^{m_{1}}$ and $R^{m_{2}}$ respectively and $ n_{1}\langle H_{1}, H_{1}\rangle=n_{2}\langle H_{2}, H_{2}\rangle$ .

This theorem follows immediately from (4.3).

From Proposition 4.1, we may construct some non-trivial examples of $\mathcal{A}-$

submanifolds. For examples, we have
EXAMPLE 4.1. Let $M^{4}$ be a 4-dimensional submanifold of the euclidean

7-sphere $S^{7}(\sqrt{2})$ with radius $\sqrt{2}$ given by
(acosu, asin u, bcosv, bsin v, ccosw, csin w, dcosy, dsiny),

$a^{2}+b^{2}=c^{2}+d^{2}=1$ , $(\frac{a}{b})^{2}+(\frac{b}{a})^{2}=(\frac{c}{d})^{2}+(\frac{d}{c})^{2}$ .

Then $M^{4}$ is an .,IZ-submanifold of $S^{7}(\sqrt{2})$ such that the mean curvature vec-
tor is parallel in the normal bundle. It is easy to verify that $M^{4}$ is not a
pseudo-umbilical submanifold of $S^{7}(\sqrt{2})$ . This example is interesting in view
of Theorem 3.2.

EXAMPLE 4.2. Let $M^{n}$ be a hypersurface of a Riemannian manifold such
that 1) the mean curvature vector is nowhere zero and 2) the length of the
second fundamental form is constant. Then $M^{n}\times M^{n}$ is an UZ-submanifold.
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