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Given a ring $R$ and an integer $n\geqq 1$ we have shown in [1] that there
exists a commutative ring $S$ and a homomorphism $\rho:R\rightarrow M_{n}(S)$ , the matrix
rings over $S$ , such that every other homomorphism $\sigma;R\rightarrow M_{n}(K)$ with $K$

commutative, is induced by a homomorphism $\eta:S\rightarrow K$. The category of
rings considered in [1] was the category of rings not necessarily containing
a unit, but $S$ was taken to be a ring with a unit. It seems that that was not
the natural assumption on $S$ and in fact this caused an incomplete proof in
the last section of [1]. In the present note, a different ring $S_{0}$ is obtained
with the aid of the preceding ring $S$ which is the natural universal object
in the category of rings (not necessarily containing a unit). This is applied
to give a characterization of ring whose irreducible representations are of
dim $\geqq n$ . Finally, the results obtained yield a universal splitting ring of
central separable algebras. A byresult is a criterion for a set of matrices
to generate the full matrix ring.

\S 1. Notations and remarks.

These will follow the notations of [1]: $k$ will denote a fixed commutative
ring with a unit. All rings considered here will be k-algebras and all homo-
morphism will be k-homomorphism.

$M_{n}(R)$ will denote the $n\times n$ matrix ring over a ring $R$ , and $M_{n}(\eta):M_{n}(R)$

$\rightarrow M_{n}(S)$ will denote the homomorphism of the matrix rings induced by a
homomorphism $\eta:R\rightarrow S$ .

$k[x]$ will denote the free ring generated over $k$ by a set $\{x_{i}\}$ of non-
commutative indeterminates. Denote by $S_{i}=(\xi_{\alpha\beta}^{t})\alpha,$ $\beta=1,2,$ $\cdots$ , $n$ generic
matrices of order $n$ over $k$ , where the $\xi_{\alpha\beta}^{i}$ are commutative indeterminates
over $k$ . $\Delta=k[\xi]$ will denote the ring of commutative polynomials in the
$\xi’ s$ ; and $k[X]$ will be the subring of $M_{n}(\Delta)$ generated by the generic matrices.

The notation $\Delta^{0}=k^{0}[\xi],$ $k^{0}[x],$ $k^{0}[X]$ will stand for the corresponding
rings of polynomial with zero as the free coefficient.
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\S 2. Generators of matrix rings.

It was shown in [1], p. 27 that there exists a maximal ideal $T$ in the
Polynomial ring $\Delta$ such that $k^{0}\Delta[X]\supseteqq \mathcal{M}_{n}(T)$ . This ideal $T$ can be used as a
tool to test if a set of matrices $\{A_{\lambda}\}$ in a matrix ring $\mathcal{M}_{n}(H)$ over a field
$H\supseteqq k$ generate the whole matrix ring $\mathcal{M}_{n}(H)$ . This is carried out as follows:

To the set of matrices $A_{\lambda}=(a_{ik}^{\lambda})$ we make correspond a homomorphism
$\varphi:\Delta\rightarrow H$ defined by $\varphi(\xi_{ik}^{\lambda})=a_{ik}^{\lambda}$ , and extend it to a homomorphism $\mathcal{M}_{n}\varphi$ :
$\mathcal{M}_{n}(\Delta)\rightarrow \mathcal{M}_{n}(H)$ , by which the generic matrices $X_{\lambda}$ correspond to the matrix
$A_{\lambda}$ . Then

THEOREM 1. The set $\{A_{\lambda}\}$ generates $\mathcal{M}_{n}(H)$ if and only if $\varphi(T)\neq 0$ .
PROOF. If $\varphi(T)\neq 0$ , then the algebra $H^{0}[A_{\lambda}]$ generated by the $A_{\lambda}’ s$ will

satisfy:
$H^{0}[A_{\lambda}]\supseteqq \mathcal{M}_{n}\varphi[k^{0}[X]\Delta]\supseteqq \mathcal{M}_{n}\varphi(\mathcal{M}_{n}(T))=\mathcal{M}_{n}(\varphi(T))$ .

Hence, for each pair $(i, k)$ there exists $0\neq t\in\varphi(T)$ such that $tc_{ik}\in H^{0}[A_{\lambda}]$

where $c_{ik}$ are the standard matrix units of $\mathcal{M}_{n}(H)$ . Since $t\neq 0$ in the field
$H$, it follows that also $c_{ik}=t^{-1}(tc_{ik})\in H^{0}[A_{\lambda}]$ and consequently, $H^{0}[A_{\lambda}]\supseteqq \mathcal{M}_{n}(H)$

which clearly implies that $H^{0}[A_{\lambda}]=\mathcal{M}_{n}(H)$ since $H^{0}[A_{\lambda}]\subseteqq M_{n}(H)$ .
Conversely, let $H^{0}[A_{\lambda}]=\mathcal{M}_{n}(H)$ , which is equivalent to the fact that

$Hk^{0}[A_{\lambda}]=\mathcal{M}_{n}(H)$ . Hence, there exist $n^{2}$ polynomials $\{f_{i}[X]\}$ in $k^{0}[X]$ such
that the set $\{f_{i}[A_{\lambda}]\}$ is a base of $\mathcal{M}_{n}(H)$ . We follow now the proof of Theo-
rem 5 of [1]: If tr $(\cdot)$ denotes the reduced trace, then since $\{f_{i}[A_{\lambda}]\}$ is a
base it follows that $ 0\neq\delta=\det$ (tr $[f_{i}(A_{\lambda})f_{j}(A_{\lambda})]$ ). Now note that the reduced
trace commutes with $\varphi$ ; hence,

$\delta=\det$ (tr $[\varphi(f_{i}[A_{\lambda}]f_{j}[A_{\lambda}])]$ ) $=\varphi$ det (tr $f_{t}[X]f_{j}[X]$ )

and if $ d=\det$ (tr $f_{i}[X]f_{j}[X]$ ) $=0$ then $\varphi(d)=\delta\neq 0$ . It remains now to show
that $d\in T$ .

Indeed, $d$ being the determinant of traces and non zero implies that the
set $\{f_{l}[X]\}$ is a base in $\mathcal{M}_{n}(\Omega)(\supseteqq \mathcal{M}_{n}(\Delta))$ where $\Omega$ is the ring of quotients
of $\Delta$ . Thus in particular we have: $c_{ik}=\sum f_{\lambda}[X]u_{\lambda,ik}$ with $ u_{\lambda,ik}\in\Omega$ . Multi-
plying this equality by $f_{\mu}[x]$ and taking the trace we get $\sum$ tr $(f_{\mu}[X]f_{\lambda}[x])u_{\lambda,ik}$

$=h_{\mu,ik}=\sum$ tr $(f_{\mu}[X]c_{ik})\in\Delta$ . Eliminating these equations by Cramer’s rule,
it follows that $ du_{\lambda,ik}=g_{\lambda,ik}\in\Delta$ . Hence, $ dc_{ik}=\sum f_{\lambda}[X]du_{\lambda,ik}\in k^{0}[X]\Delta$ , which
means that $d\in T$ . $q$ . $e$ . $d$ .

\S 3. The universal embedding.

In [1] we have defined a universal embedding $\rho:R\rightarrow \mathcal{M}_{n}(S)$ for an arbi-
trary ring $R$ , and where $S=S(n;R)$ is a commutative ring with a unit. In
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$andthisWhichismorenatura1inthecategoryofringSWsecti1aceSbasubriS_{0}whicha1so_{f_{ichdonotnecessari1y}^{suniversa1properties}}$

contain a unit.
THEOREM 2. There exists a commutative ring $S_{0}a\eta d$ a homomorphism $\rho_{0}$ :

$R\rightarrow \mathcal{M}_{n}(S_{0})$ such that:
(i) (a) $S_{0}$ is generated by the entries $\{\rho_{0}(r)_{ik} ; r\in R\}$ . $|$

(b) For any $\sigma:R\rightarrow M_{n}(K),$ $K$ a commutative ring (not necessarily with a
$unit)-there$ exists a homomorphism $\eta:S_{0}\rightarrow K$ such that the induced
maP $\mathcal{M}_{n}(\eta):\mathcal{M}_{n}(S_{0})\rightarrow \mathcal{M}_{n}(K)$ satisfies the relatip $ n\mathcal{M}_{n}(\eta)\rho_{0}=\sigma$ .

(ii) $S_{0}$ is uniquely determined (up to an isomorphism) by the existence of a
map $\rho_{0}$ : $R\rightarrow \mathcal{M}_{n}(S_{0})$ satisfying (a) and (b). Furthermore, $\rho_{0}$ is determined
up to a multiple of an isomorphism of $S_{0}$ ; and $9ivenS_{0},$ $\rho_{0}$ and $\sigma$ then
$\eta$ and $\mathcal{M}_{n}(\eta)$ are uniquely determined.

(iii) If $\rho:R\rightarrow \mathcal{M}_{n}(S)$ is the universal embedding of $R$ (as given in [1] Theo-
rem 1), then $S_{0}$ can be chosen to be an ideal in $S$ , such that $S/S_{0}\cong k$ and
$\rho_{0}$ is the map $\rho$ restricted to $S_{0}$ . Furthermore $\rho(\mathfrak{q})S\subseteqq \mathcal{M}_{n}(S_{0})\subseteqq \mathcal{M}_{n}(S)$ .

PROOF. The proof of (ii) is the same as that of (it) of Theorem 1 of [1]

with the observation that no unit is required here. $1$

The proof of (i) can be obtained by following siIrilar lines to the proof
of the same theorem, but we rather prove (iii) from $\eta_{\gamma hich}(i)$ will follow.

To this end we recall the definition of $S$ of [1]: Let $\{r_{i}\}$ be a set of
generators of $R$ , then $k^{0}[x]/\mathfrak{p}\cong R$ by the mapping $x_{i}\rightarrow t_{i}$ . We also considered
the homomorphism: $k^{0}[x]/\mathfrak{p}\rightarrow k^{0}[X]/P$ induced by the $\phi apx_{i}\rightarrow X_{i}$ , and where
$P$ is the image of $\mathfrak{p}$ . Finally $P$ generates an ideal $\{P\}\models \mathcal{M}_{n}(I)$ in $\mathcal{M}_{n}(\Delta)$ with
$I$ an ideal in $\Delta=k[\xi]$ (in which a unit exists). The universal ring $S$ was
shown to be $\Delta/I$ and $\rho$ was the composite map:

$R\rightarrow k^{0}[x]/\mathfrak{p}\rightarrow k^{0}[X]/P\rightarrow \mathcal{M}_{n}(\Delta)/\{P\}\rightarrow \mathcal{M}_{n}(\Delta/f)=\mathcal{M}_{n}(S)$ .

in
$the\xi’ swithzerofreecoefficient.ClearlyS_{0}isant^{edbyallpolynomials}idea1inS.Notealsow_{enowsetS_{0}=\Delta^{0}/I,i.e.theidealmod Igenera}$

that $I\subseteqq\Delta^{0}$ , since the correspondence: $r_{i}\rightarrow 0$ induceb the homomorphism:
$R\rightarrow 0$ , which implies the ideal $\mathfrak{p}$ defined by the representation $R=k^{0}[x]/\mathfrak{p}$ is
in $k^{0}[x]$ . Therefore, the image $P$ will contain in it4 matrices entries with
zero as constant coefficients, $i$ . $e$ . $P\subseteqq \mathcal{M}_{n}(\Delta^{0})$ and hbnce $I\subseteqq\Delta^{0}$ . This, in
particular, implies that $S/S_{0}\cong(\Delta/I)/(\Delta^{0}/I)=\Delta/\Delta^{0}=kt$ Furthermore, since
$\mathcal{M}_{n}(S_{0})\supseteqq the$ image of $k^{0}[X]/\mathfrak{p}$ , it follows that $\rho(R)\subseteqq \mathcal{M}_{n}(S_{0})$ and in fact even
$\rho(R)S\subseteqq \mathcal{M}_{n}(S_{0})$ . Thus $\rho$ induces a homomorphism $\rho_{0}$ : $R\rightarrow \mathcal{M}_{n}(S_{0})$ which will
satisfy (i). Indeed: For any $r_{i}\in R,$ $\rho_{0}(r_{\lambda})_{ik}=\xi_{lk}^{\lambda}+I$, and $S_{0}=\Delta^{0}/I$ is generated
by $\xi_{ik}^{\lambda}+Ii$ . $e$ . by $\{\rho_{0}(r)_{ik} ; r\in R\}$ . If $\sigma;R\rightarrow \mathcal{M}_{n}(K);$ thbn if $K$ does not con-
tain a unit, extend $K$ to $K^{*}$ by adding a unit and $c\phi nsider$ the composite
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$\sigma^{*};$ $R\rightarrow \mathcal{M}_{n}(K)\rightarrow \mathcal{M}_{n}(K^{*})$ . It follows now by Theorem 1 of [1] that there
exists a homomorphism $\eta:S\rightarrow K^{*}$ such that $(\mathcal{M}_{n}\eta)\rho=\sigma^{*}$ . Note that $\sigma^{*}(R)$

$=\sigma(R)$ and $\rho(R)=\rho_{0}(R)$ in $\mathcal{M}_{n}(S_{0})$ ; hence, if $\eta_{0}$ is $\eta$ reduced to $S_{0}$ we get
$(\mathcal{M}_{n}\eta_{0})\rho_{0}(r)=\sigma(r)$ for every $r\in R$ and consequently $(\mathcal{M}_{n}\eta_{0})\rho_{0}=\sigma$ as required
in (b). This completes the proof.

\S 4. Representations.

We are now able to obtain the correct set-up for the statement of Theo-
rem 5 of [1]:

Recall that an irreducible representation of $R$ of dimension $n$ is a homo-
morphism $\varphi:R\rightarrow \mathcal{M}_{n}(F),$ $F_{a}$ commutative field and such that $\varphi(R)F=\mathcal{M}_{n}(F)$ .

THEOREM 3. Let $R$ be either a ring with a unit, or a finitely generated
k-algebra such that $R^{2}=R$ then: all irreducible representati0ns of $R$ are of
dimension $\geqq n$ if and only if $\rho(R)S=\mathcal{M}_{n}(S_{0})i$ . $e$ . the subring generated by $S_{\theta}$

and $\rho(R)$ is $\mathcal{M}_{n}(S_{0})$ .
If this holds, $R$ has no representati0n of lower degree, and then $S_{0}\neq 0$ if

and only if $R$ has a non-zero representati0n (not necessarily irreducible) of
dimension $n$ , and then furthermore, all its representati0ns of dim $n$ are irre-
ducible.

PROOF. Consider the ideal $ T\subseteqq\Delta$ of Theorem 1 and note that its defini-
tion implies that $T\subseteqq\Delta^{0}$ . Let $T_{0}=T+I/I\subseteqq\Delta^{0}/I=S_{0}$ .

Assume that every irreducible representation of $R$ is of dim $\geqq n$ . Let $q$

be any prime ideal in $S_{0}$ containing $T_{0}$ , then we have a representation $\sigma$

of $R$ :
$R\rightarrow \mathcal{M}_{n}(S_{0})\rightarrow \mathcal{M}_{n}(S_{0}/q)\rightarrow \mathcal{M}_{n}(H)$

where $H$ is the field of quotients of the domain $S_{0}/q$ . This representation
cannot be irreducible since the corresponding $\varphi$ of Theorem 1 is in our case
given by: $\varphi:r\rightarrow\rho_{0}(r)+\mathcal{M}_{n}(q)$ in $\mathcal{M}_{n}(H)$ , but then since $T_{0}\subseteqq q$ it follows that
$\varphi(T)=0$ . Thus, the images of the generators $\{r_{\lambda}\}$ do not contain a base of
$\mathcal{M}_{n}(H)$ .

If it were $\sigma(R)\neq 0$ , then since $R^{2}=R$ it follows that $\sigma(R)$ is not nilpotent.
Since $\sigma(R)H\subset \mathcal{M}_{n}(H),$ $\sigma(R)H$ and therefore, also $\sigma(R)$ will have a homomor-
phic image $\mathfrak{U}$ which is central simple algebra of dim $<n^{2}$ and by passing to
a splitting field of $\mathfrak{A}$ we will obtain an irreducible representation of $R$ of
lower dimension which contradicts our assumption. Hence, $\sigma(R)=0$ . This
in turn implies that all $\sigma(r)_{ik}\in q$ , but then $S_{0}\subseteqq q$ since $S_{0}$ is generated by
$\{\sigma(r)_{ik} ; r\in R\}$ . Thus we have shown that $S_{0}/T_{0}$ contains no proper prime
ideals from which we conclude that $S_{0}/T_{0}$ is a nil ring and in fact locally
nilpotent as the lower radical which is the intersection of all prime ideals
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is in our case the whole ring. Consequently, also the matrix ring $\mathcal{M}_{n}(S_{0}/T_{0})$

is locally nilpotent. On the other hand, we also have $\rho_{0}(R)S\supseteqq$ the image of
$ k^{0}[X]\Delta$ mod $P$ and, therefore $\rho_{0}(R)S\supseteqq \mathcal{M}_{n}(T_{0})$ since $k^{0}[X]\Delta\supseteqq \mathcal{M}_{n}(T)$ .

Consider now first the case that $1\in R$ . Then $\rho_{0}(1)$ is an idempotent and
therefore its image in $\mathcal{M}_{n}(S_{0}/T_{0})$ , which is nil, must be zero, $i$ . $e$ . $\rho_{0}(1)\in$

$\mathcal{M}_{n}(T_{0})$ . This implies that $\rho_{0}(R)=\rho_{0}(R)\rho_{0}(1)\subseteqq \mathcal{M}_{n}(T_{0})$ since $\mathcal{M}_{n}(T_{0})$ is an ideal.
In the second case, $R$ is finitely generated and, therefore, $\rho_{0}(R)/\mathcal{M}_{n}(T_{0})$

is also finitely generated in $\mathcal{M}_{n}(S_{0}/T_{0})$ and therefore, it is nilpotent. This is
possible in view of the fact that $R^{2}=R$ only if $\rho_{0}(R)\subseteqq \mathcal{M}_{n}(T_{0})$ .

Thus, in both cases $\rho_{0}(R)\subseteqq \mathcal{M}_{n}(T_{0})$ and as the entries of $\rho_{0}(R)$ generates
$S_{0}$ we must have $S_{0}\subseteqq T_{0}$ , and so $S_{0}=T_{0}$ . Finally, we have shown that $\rho_{0}(R)S$

$\supseteqq \mathcal{M}_{n}(T_{0})$ which proves now that $\rho_{0}(R)S=\mathcal{M}_{n}(S_{0})$ .
Note that as $S=k+S_{0}$ , the last result stated with $S_{0}$ , only says that the

algebra generated by $\rho_{0}(R)$ and $S_{0}$ is $\mathcal{M}_{n}(S_{0})$ .
Conversely, assume that $\rho_{0}(R)S=\mathcal{M}_{n}(S_{0})$ and let $\alpha:R\rightarrow \mathcal{M}_{m}(K)$ , for some

field $K$, be a representation of $R$ of dim $m<n$ . Embed $\mathcal{M}_{m}(K)\subseteqq \mathcal{M}_{n}(K)$ by
putting the $m\times m$ matrices of $\mathcal{M}_{m}(K)$ in the upper corner of $\mathcal{M}_{n}(K)$ and we
get an $n$ dimensional representation $\alpha_{0}$ ; $R\rightarrow \mathcal{M}_{n}(K)$ . Theorem 1 implies that
$(\mathcal{M}_{n}\eta)\rho_{0}=\alpha_{0}$ for some $\eta:S_{0}\rightarrow K$, but then $\alpha_{0}(R)=(\mathcal{M}_{n}\eta)\rho_{0}(R)$ . Since $\rho_{0}(R)S$

$=\mathcal{M}_{n}(S_{0})$ it follows that $(\mathcal{M}_{n}\eta)[\rho_{0}(R)S]$ , which is $\alpha_{0}(R)$ , will contain $n^{2}$ basis
elements of $\mathcal{M}_{n}(K)$ unless $\eta(S_{0})=0$ . This must be the case, since $\alpha_{0}(R)\subseteqq$

$\mathcal{M}_{m}(K)$ contains at most $m^{2}<n^{2}$ independent elements. This leads us to the
conclusion that $\alpha(R)=0$ , which means thatR has no representation of dim $<n$ .

If $R$ has a non zero representation $\alpha:R\rightarrow \mathcal{M}_{n}(K)$ with $\alpha\neq 0$ , then pre-
ceding relations $\alpha(R)=(\mathcal{M}_{n}\eta)\rho_{0}(R)$ and $\rho_{0}(R)S=\mathcal{M}_{n}(S_{0})$ imply that $S_{0}\neq 0$ .
Furthermore, the image $\alpha(R)$ over $K$ will generate over $K$ an algebra con-
taining the ring $\mathcal{M}_{n}(\eta(S_{0}))$ which has a base of $\mathcal{M}_{n}(K)$ since $\eta(S_{0})\neq 0$ which
proves that $\alpha$ is irreducible.

Finally, if $S_{0}\neq 0$ , then the ring $S_{0}$ must contain a prime ideal, otherwise
$S_{0}$ is a locally nilpotent ring which as before will imply in the cases of our
theorem that $\rho_{0}(R)=0$ . Since either $\rho_{0}(1)\in\rho_{0}(R)$ is an idempotent and so
$\rho_{0}(1)=0$ which proves that $\rho_{0}(R)=\rho_{0}(R)\rho_{0}(1)=0$ , or in the second case $R^{2}=R$ ,

and $\rho_{0}(R)$ Pnitely generated in a locally nilpotent ring will imply that $\rho_{0}(R)$

$=0$ . Now $\rho_{0}(R)=0$ implies by (a) of Theorem 1 that $S_{0}=0$ , which is a con-
tradiction. So we have shown that $S_{0}$ contains a prime ideal $q$ . Let $\alpha$ be
the composite map $R\rightarrow \mathcal{M}_{n}(S_{0})\rightarrow \mathcal{M}_{n}(S_{0}/q)\rightarrow \mathcal{M}_{n}(K)$ , where $K$ is the ring of
quotients of $S_{0}/q$ . Then that $\alpha$ is an irreducible representation follows from
the facts that $\rho_{0}(R)S=\mathcal{M}_{n}(S_{0})$ and $\mathcal{M}_{n}(S_{0}/q)K=\mathcal{M}_{n}(K)$ .

COROLLARY 4. Let $R\neq 0$ be a ring of the $tyPe$ given in Theorem 3 and
which satisfies a Polynomial identity of degree $\leqq 2n$ , then all irreducible repre-



On universal embeddings in matrix rings 327

sentations of $R$ are of dimension $n$ if and only if $\rho_{0}(R)S=\mathcal{M}_{n}(S_{0})$ .
PROOF. First we observe that in this case $R$ has a non-zero irreducible

representation: for if $1\in R$ or $R^{2}=R$ and finitely generated $R$ must contain
a prime ideal $q\neq R$ . Now $R/q$ is a prime ring satisfying a polynomial identity
of degree $\leqq 2n$ , and hence its ring of quotient is a central simple algebra $D$

of dim $\leqq n^{2}$ over its center. By extending the embedding of the ring of
quotient to a complete matrix ring $\mathcal{M}_{n}(K)$ , where $K$ is a splitting field of $D$

we get a non-zero representation $R\rightarrow R/q\rightarrow \mathcal{M}_{n}(K)$ . The rest follows from
the preceding theorem.

\S 5. The unitary representations and Azumaya-algebras.

Considering the category of ring with identity we obtained a universal
embedding of [1], $\rho:R\rightarrow \mathcal{M}_{n}(S_{u})$ . For this embedding we have:

THEOREM 5. If all unitary representati0ns of $R$ are of dim $\geqq n$ then
$\rho(R)S_{u}=\mathcal{M}_{n}(S_{u})$ and in this case if $S_{u}\neq 0$ all unitary representati0ns of $R$ of
dim $n$ are irreducible.

The proof of this theorem is the proof of Theorem 5 of [1] whose state-
ment there is incorrect as the last part of that proof of embedding unitarily
$\mathcal{M}_{m}(K)\subseteqq \mathcal{M}_{n}(H)$ for $m<n$ can be carried out only for $m|n$ . The corrected
statement and its proof are the proof given in [1] to Theorem 5 with replacing
$k^{0}[X]$ by $k[X]$ .

In the special case $R$ is a central separable*) (an Azumaya) algebra of
rank $n^{2}$ , all representations of $R$ are of the form $R/\mathfrak{m}R$ where $\mathfrak{m}$ ranges over
the maximal ideals of the center of $R$ . Each $R/\mathfrak{m}R$ is a central simple of
dim $n^{2}$ . By assumption there are no representation of lower dimension, hence
our theorem implies that $\rho(R)S_{u}=\mathcal{M}_{n}(S_{u})$ . The algebra $R$ can be embedded
in $n\times n$ matrix ring over a commutative ring and hence $\rho$ is a monomorphism.
Finally, $\rho(R)$ is also an Azumaya algebra and, therefore, $\rho(R)\otimes S_{u}\cong\rho(R)S_{u}$

$=\mathcal{M}_{n}(S_{u})$ where the tensor product is taken with respect to the center. Thus
we have shown:

COROLLARY 6. If $R$ is an Azumaya algebra of rank $n^{2}$ then $S_{u}$ is a splitt-
ing ring of $R$ , and a commutative ring $K$ satisfies $R\otimes K\cong \mathcal{M}_{n}(K)$ if and only

if $K$ contains a homomorphic image $K_{0}$ of $S_{u}$ .
The first part of the corollary has just been shown. The second part

follows from the universal property of $S_{u}$ ; since if $R\otimes K\cong \mathcal{M}_{n}(K)$ then we
have the embedding $R\rightarrow R\otimes 1\subseteqq \mathcal{M}_{n}(K)$ which yields a homomorphism $\eta:S_{u}$

$\rightarrow K$, and thus $\eta(S_{u})=K_{0}\subseteqq K$. Conversely, since $\rho(R)S_{u}=\mathcal{M}_{n}(S_{u})$ then any
homomorphism $\eta:S_{u}\rightarrow K$ induces $\mathcal{M}_{n}(\eta):\mathcal{M}_{n}(S_{u})\rightarrow \mathcal{M}_{n}(K)$ . The composite

$*)$ For results on Azumaya algebras see [2] and [3].
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map $\sigma:R\rightarrow \mathcal{M}_{n}(S_{u})\rightarrow \mathcal{M}_{n}(K)$ yields an Azumaya algebra $\sigma(R)\subseteqq \mathcal{M}_{n}(K)$ with
the center $\sigma(z)$ where $Z$ is the center of $R$ . Hence, $\mathcal{M}_{n}(K)=\sigma(R)\bigotimes_{\sigma(z)}K\cong R\bigotimes_{z}K$

by considering $K$ as a Z-module by setting $z\cdot k=\sigma(z)k$ for every $k\in K,$ $z\in Z$.
$q$ . $e$ . $d$ .

Hebrew University
Jerusalem, Israel
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