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In this paper we shall deal with the generation of not necessarily equi-
continuous semi-groups of operators in locally convex spaces in a simple
way which is different from that of T. K mura [2].

The theory of semi-groups has made progress after the fundamental
works of E. Hille and K. Yosida. H. Komatsu [1], L. Schwartz [3], K..
Yosida [5] and others extended the theory of semi-groups of operators in
Banach spaces to locally convex spaces. They discussed it under the con-
dition that semi-groups are equicontinuous. Their arguments are based on
the following fact which plays an essential role in their theory.

For an equicontinuous semi-group $\{T_{t} ; t\geqq 0\}$ in a locally convex space $E$,

the Laplace transform of $T_{t}$ exists, and it is connected with its infinitesimal:
generator $A$ in the following way:

(0.1) $\int_{0}^{\infty}e^{-\lambda t}T_{t}xdt=(\lambda-A)^{-1}x$ ,

for any $x\in E$ and ${\rm Re}\lambda>0$ .
Without assumption of equicontinuity of a semi-group $T_{t}$ , neither the $\cdot$

Laplace transform of $T_{t}$ nor the resolvents of its infinitesimal generator $A$

ever exist.
In T. Komura [2], she dealt with semi-groups which are not necessarily

equicontinuous but locally equicontinuous. To avoid the difficulty that the
relation (0.1) does not necessarily hold, she introduced the notion of gener-
alized resolvents. Generalized resolvents play an important role in her
theory. To define generalized resolvents and to get their properties she
used the theories of vector valued distributions and linear topological spaces
attached to them and their related Properties. Hence it seems for the author
that the notion of generalized resolvents is not simple.

In the following of this Paper we discuss the generation of semi-groups
without the notion of generalized resolvents. Instead of it, we introduce
the notion of asymptotic resolvents to complete our theory. Roughly speak-
ing, asymptotic resolvents are almost resolvents, or they are parametrix of
$(\lambda-A)$ , where $A$ is the infinitesimal generator of a semi-group $T_{t}$ , modulo
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linear operators decaying with the exponential order of $\lambda$ . Our notion of
asymptotic resolvents is different from that in L. Waelbroeck [4].

The notion of asymptotic resolvents in this paper is simpler than that
of generalized resolvents in T. Komura [2]. Our arguments are easy, and
in construction of semi-groups we do not make use of the Laplace inversion
transform.

In \S 1 we state several Properties of semi-groups in locally convex spaces.
In \S 2 we are concerned with the generation of semi-groups. The defini-

tion of asymptotic resolvents is given and we give elementary properties of
them. A complete characterization of locally equicontinuous semi-grouPs is
stated in our way. It is easy to see that our characterization is a generali-
zation of well-known Hille-Yosida’s theorem in the theory of semi-groups.

In \S 3 we give the exponential formula of semi-groups making use of
asymptotic resolvents.

\S 1. Semi-groups of operators.

Let $E$ be a locally convex sequentially complete linear topological space.
We denote by $L(E)$ all of continuous linear operators in $E$ . A family $\mathfrak{M}$ in
$L(E)$ is said to be equicontinuous, if for any continuous semi-norm $p$ there
is a continuous semi-norm $q$ such that $p(Tx)\leqq q(x)$ for any $T\in \mathfrak{M}$ and any
$x\in E$. A family $\mathfrak{N}=\{U_{\lambda}\in L(E);\lambda>\omega\}$ is denoted by $U_{\lambda}x=O(\varphi(\lambda))x$ , where
$\varphi(\lambda)$ is a positive continuous function defined for $\lambda>\omega$ , if for any continuous
semi-norm $p$ there is a continuous semi-norm $q$ such that $p(U_{\lambda}x)\leqq\varphi(\lambda)q(x)$

for $\lambda>\omega$ and any $x\in E$.
DEFINITION 1.1. A system $\{T_{t} ; t\geqq 0\}$ in $L(E)$ is called a semi-group, if

it satisfies the conditions:

(1.1) $T_{t}T_{s}=T_{t+s}$ for any $t,$ $s\geqq 0$ ,

(1.2) $T_{0}=I$ (the identity operator) ,

(1.3) $\lim_{\iota-s}T_{t}x=T_{s}x$ for any $s\geqq 0$ and any $x\in E$ .

In particular, a semi-group is said to be locally equicontinuous, if for
any fixed $s>0$ the subsystem $\{T_{t} ; 0\leqq t\leqq s\}$ is equicontinuous, and it is said
to be equicontinuous, if the system $\{T_{t} ; 0\leqq t<\infty\}$ is equicontinuous.

The infinitesimal generator $A$ of a semi-group $\{T_{t} ; t\geqq 0\}$ is defined by

(1.4) $Ax=\lim_{h|0}\frac{1}{h}(T_{h}-I)x$ ,

when the limit exists. The domain of $A$ is denoted by $D(A)$ .
Now we put for $a>0$
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\langle 1.5) $R(\lambda)x=\int_{0}^{a}e^{-\lambda t}T_{t}xdt$ .

PROPOSITION 1.1. Let $E$ be a locally convex sequentially comPlete sPace and
let $\{T_{t} ; t\geqq 0\}$ be a locally equicontinuous semi-group in E. Then its infinitesimal
generator $A$ is a closed linear oPerator and the domain $D(A)$ is dense. $R(\lambda)$

defined by (1.5) maPs $E$ to $D(A)$ and we have

(1.6) $(\lambda-A)R(\lambda)x=x-e^{-a\lambda}T_{a}x$ ,

(1.7) $R(\lambda)R(\mu)x=R(\mu)R(\lambda)x$ for any $x\in E$ ,

$\downarrow(1.8)$ $R(\lambda)Ax=AR(\lambda)x$ for any $x\in D(A)$ .
The proof of Proposition 1.1 is omitted. We refer the reader to H.

Komatsu [1], T. Komura [2], L. Schwartz [3] and K. Yosida [5] for the
proof.

REMARK 1.1. Several properties of semi-groups can be shown without
the condition that the space $E$ is sequentially complete, or without the con-
dition that semi-groups are locally equicontinuous.

PROPOSITION 1.2. Let $\{T_{t} ; t\geqq 0\}$ be a locally equicontinuous semi-group in
a locally convex sequentially complete space E. Then $R(\lambda)x$ defined by (1.5) is
an E-valued holomorphic function of $\lambda$ for any $x\in E$. $R(\lambda)$ belongs to $L(E)$

for any $\lambda$ , and the family of operators

\langle 1.9) $\{\frac{\lambda^{n+1}}{n!}\frac{d^{n}}{d\lambda}n-R(\lambda);\lambda>0$ and $n=0,1,$ 2, $\}$

is equicontinuous.
PROOF. From (1.5) we have

\langle 1.10) $\frac{\lambda^{n+1}}{n!}R(\lambda)x\overline{d}\lambda^{\overline{n}}d^{n}=(-1)^{n}\lambda^{n+1}\int_{0}e^{-\lambda t}\frac{t}{n}-T_{t}xdt$ .

For any continuous semi-norm $p$ there exists a continuous semi-norm $q$ such
that $P(T_{t}x)\leqq q(x)$ for $0\leqq t\leqq a$ and $x\in E$. Hence, for real positive $\lambda$

$p(\lambda^{n+1}\int_{0}^{a}e^{-\lambda t}\frac{t^{n}}{n!}T_{t}xdt)\leqq q(x)\underline{\lambda}_{-,n!-\int_{0}^{a}e^{-\lambda t}i^{n}dt}^{n+1}\leqq q(x)$ ,

which shows by (1.10) that the family of operators (1.9) is equicontinuous.
Other statements of the proposition are obvious.

REMARK 1.2. Results similar to the statements of Propositions 1.1 and
1.2 hold, if we define $R(\lambda)$ suitably in the way different from (1.5). For
example, set

(1.11) $R(\lambda)x=\int_{0}^{\infty}e^{-\lambda t}\varphi(t)T_{t}xdt$ ,

where $\varphi(t)$ is smooth, $\varphi(t)=1(t\leqq a),$ $\varphi(t)=0(t\geqq 2a)$ . Then except (1.6) in
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Proposition 1.1 same results hold, and instead of (1.6) the relation

(1.12) $(\lambda-A)R(\lambda)x=x+S(\lambda)x$

holds, where $S(\lambda)x=\int_{0}^{\infty}e^{-\lambda t}\varphi^{\prime}(t)T_{t}xdt$ .

\S 2. Generation of semi-groups.

The purpose of this section is to construct a locally equicontinuous semi-
group $T_{t}$ with a given generator $A$ in a sequentially complete space $E$ .

DEFINITION 2.1. A family $\{R(\lambda);\lambda>\omega\}$ (co $>0$) in $L(E)$ is called an
asymptotic resolvent of a closed linear operator $A$ with the domain $D(A)$ , if
it satisPes conditions:

(2.1) $R(\lambda)x$ is an infinitely differentiable function of $\lambda$ in $\Sigma=\{\lambda;\lambda>\omega\}$

for any $x\in E$ and $R(\lambda)$ maps $E$ to $D(A)$ .
(2.2) $AR(\lambda)=R(\lambda)A$ on $D(A)$ and $R(\lambda)R(\mu)=R(\mu)R(\lambda)$ for $\lambda,$ $\mu\in\Sigma$ .

(2.3) $(\lambda-A)R(\lambda)=I+S(\lambda)$ , where $S(\lambda)\in L(E)$ and it satisfies the following
condition: For any $x\in ES(\lambda)x$ is infinitely differentiable in $\lambda$ ,

and for any continuous semi-norm $P$ there is a continuous semi-
norm $q$ such that for a constant $a$

$p((d^{k}/d\lambda^{k})S(\lambda)x)\leqq a^{k}e^{-a\lambda}q(x)$ , for any $x\in E,$ $\lambda>\omega$ ,

and $k=0,1,2,$ $\cdots$

We now attain to the following main theorem which is a generalizatiom
of the Hille-Yosida’s theorem that gives a criterion for generation of semi-
groups. In it the notion of asymptotic resolvents in Definition 2.1 is useful.

THEOREM 2.1. Let $E$ be a sequentially comPlete locally convex space. Then
a linear oPerator $A$ is the infinitesimal generator of a locally equicontinuous
semi-group, if and only if it satisfies the following conditions:

(2.4) $A$ is a closed linear operatOr with a dense domain $D(A)$ .
(2.5) There is an asymptOtic resolvent $R(\lambda)$ of $A$ such that the family of

operators

$\{\frac{\lambda^{n+1}}{n!}\frac{d^{n}}{d\lambda^{n}}R(\lambda);\lambda>\omega$ and $n=0,1,$ 2, $\}$

is equicontinuous.
The necessity part follows from Propositions 1.1 and 1.2. In the remainder

of this section we shall prove the sufficient condition of Theorem 2.1. In
the following we shall make use of the notations $R^{(n)}(\lambda)$ and $S^{(n)}(\lambda)$ which
denote $(d^{n}/d\lambda^{n})R(\lambda)$ and $(d^{n}/d\lambda^{n})S(\lambda)$ respectively.
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Let $A$ satisfy the conditions (2.4) and (2.5). Then we have
LEMMA 2.1. (i) For any $x\in E$, we have $\varliminf_{l\infty}\lambda R(\lambda)x=x$.
(ii) For any $x\in D(A)$ , set $A_{\lambda}x=\{-\lambda+\lambda^{2}R(\lambda)\}x$ . Then we have $\lim_{\lambda\rightarrow\infty}A_{\lambda}x=Ax$.
(iii) The family of operators

(2.6) $\{\frac{\lambda^{k+2}\exp(a\lambda)}{(a\lambda)^{k+1}+(k+1)!}(R^{(k+1)}(\lambda)+(k+1)R(\lambda)R^{(k)}(\lambda));\lambda>\omega,$ $k=0,1,$ 2, $\}$

is equicontinuous.
PROOF. (i) For $x\in D(A)$ , from (2.2) and (2.3) we have $\lambda R(\lambda)x=x+R(\lambda)Ax$

$+O(\exp(-a\lambda))x$ . Hence we have $\lim_{\lambda-\infty}\lambda R(\lambda)x=x$ for $x\in D(A)$ . Since the family

of operators $\{\lambda R(\lambda);\lambda>\omega\}$ is equicontinuous and $D(A)$ is dense, we get
$\lim_{\lambda-}\lambda R(\lambda)x=x$ for any $x\in E$ with the aid of the Banach-Steinhaus theorem.

(ii) From (2.2) and (2.3) we have for $x\in D(A)A_{\lambda}x=(-\lambda+\lambda^{2}R(\lambda))x=$

$\lambda R(\lambda)Ax+O(\lambda\exp(-a\lambda))x$. Thus we have $\lim_{2\rightarrow\infty}A_{\lambda}x=Ax$ by (i) of this lemma.
(iii) Differentiate (2.3) $k+1$ times in $\lambda$ . We have

$\uparrow(2.7)$ $(\lambda-A)R^{(k+1)}(\lambda)x+(k+1)R^{(k)}(\lambda)x=S^{(k+1)}(\lambda)x$ ,

(2.8) $R(\lambda)(\lambda-A)R^{(k+1)}(\lambda)x+(k+1)R(\lambda)R^{(k)}(\lambda)x=R(\lambda)S^{(k+1)}(\lambda)x$ .
From (2.3) we obtain

(2.9) $R^{(k+1)}(\lambda)x+(k+1)R(\lambda)R^{(k)}(\lambda)x=R(\lambda)S^{(k+1)}(\lambda)x-S(\lambda)R^{(k+1)}(\lambda)x$ .
Therefore, after simple calculations we can show the equicontinuity of the
family of operators (2.6) from (2.5) and the condition on $S(\lambda)$ in (2.3). $q$ . $e$ . $d$ .

Now set for $x\in E,$ $\lambda>\omega$ and $0\leqq t\leqq a/4$

\langle 2.10) $T_{t}(\lambda)x=\exp(-\lambda t)\{I+\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}(k1\overline{)!}$

Under the condition (2.5) the power series of (2.10) converges and the family
of operators

$\mathfrak{l}(2.11)$ { $ T_{t}(\lambda);\lambda>\omega$ and $0\leqq t\leqq a/4$}

is equicontinuous.
LEMMA 2.2. $T_{t}(\lambda)x$ defined by (2.10) converges uniformly on $[0, a/4]$ when

$i$ tends to infinity.
PROOF. $T_{t}(\lambda)x$ is differentiable in $t$ :

(2.12) $\frac{d}{dt}T_{t}(\lambda)x=-\lambda T_{t}(\lambda)x+\lambda^{2}\exp(-\lambda t)\sum_{k=0}^{\infty}\frac{(-1)^{k}(\lambda^{2}t)^{k}}{k!k!}R^{(k)}(\lambda)x$

$=-\lambda T_{t}(\lambda)x+\lambda^{2}$ exp $(-\lambda t)\{R(\lambda)$

$+\sum_{k=0}^{\infty}\frac{(-\lambda^{2}t)^{k+1}}{(k+1)!(k+1)!}R^{(k+1)}(\lambda)\}x$ .
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On writing $S_{k}(\lambda)x=\{R^{(k+1)}(\lambda)+(k+1)R(\lambda)R^{(k)}(\lambda)\}x$ , we have

(2.13) $\overline{d}\overline{t}dT_{t}(\lambda)=-\lambda T_{t}(\lambda)x+\lambda^{2}$ exp $(-\lambda t)\{R(\lambda)$

$+\sum_{k=0}^{\infty}\frac{(-1)^{k}(\lambda^{2}t)^{k+1}}{k!(k+1)!}R(\lambda)R^{(k)}(\lambda)\}x$

$+\lambda^{2}$ exp $(-\lambda t)\sum_{k=0}^{\infty}\frac{(-\lambda^{2}t)^{k+1}}{(k+1)!(k+1)!}S_{k}(\lambda)x$ .

We shall estimate the last term of (2.13). Let $p$ be an arbitrary continuous
semi-norm. Then there is a continuous semi-norm $q$ such that

(2.14) $p(\lambda^{2}$ exp $(-\lambda t)\sum_{k=0}^{\infty}\frac{(-\lambda^{2}t)^{k+1}}{(k+1)!(k+1)!}S_{k}(\lambda)x)$

$\leqq\lambda^{2}$ exp $(-\lambda t)\sum_{k=0}^{\infty}\frac{(\lambda^{2}t)^{k+1}}{(k+1)!(k+1)!}p(S_{k}(\lambda)x)$

$\leqq\lambda$ exp $(-\lambda(t+a))\{\sum_{k=0}^{\infty}\frac{(\lambda^{2}at)^{k+1}}{(k+1)!(k+1)!}+\sum_{k=0}^{\infty}\frac{(\lambda t)^{k+1}}{(k+1)!}\}q(x)$

(by Lemma 2.1 (iii))

$\leqq\lambda\{\exp(-\lambda(\sqrt{t}-\sqrt{a})^{2})+\exp(-\lambda a)\}q(x)$

$\leqq 2\lambda$ exp $(-\lambda(\sqrt{t}-\sqrt{a})^{2})q(x)$ .
Thus we conclude that the last term of (2.13) decays rapidly.

Set $A_{\lambda}x=\{-\lambda+\lambda^{2}R(\lambda)\}x$ . We have, from (2.13) and (2.14),

(2.15) $(d/dt)T_{t}(\lambda)x=A_{\lambda}T_{t}(\lambda)x+O$( $\lambda$ exp $(-\lambda(a/4))$) $x$

for $0\leqq t\leqq a/4$ .
Now let us note $T_{0}(\lambda)x=x$ . For $0\leqq t\leqq a/4$ and $x\in D(A)$ we have

(2.16) $T_{t}(\lambda)x-T_{t}(\mu)x=\int_{0}^{t}(d/ds)T_{s}(\lambda)T_{t-s}(\mu)xds$

$=\int_{0}^{t}T_{s}(\lambda)(A_{\lambda}-A_{\mu})T_{t-s}(\mu)xds$

$+O$( $\lambda$ exp $(-\lambda(a/4))$)$x+O$ ( $\mu$ exp $(-\mu(a/4))$) $x$ .
Since $A_{\lambda}T_{t}(\mu)=T_{t}(\mu)A_{\lambda}$ obviously in view of the construction of $T_{t}(\mu)$ and
(2.2), we obtain

(2.17) $T_{t}(\lambda)x-T_{t}(\mu)x=\int_{0}^{\iota}T_{s}(\lambda)T_{t-s}(\mu)(A_{\lambda}-A_{\mu})xds+S(\lambda, \mu)x$ ,

where $S(\lambda, \mu)x\rightarrow 0$ when $\lambda$ and $\mu\rightarrow\infty$ . Hence for an arbitrary continuous
semi-norm $p$ we have a continuous semi-norm $q$ such that

(2.18) $p(T_{t}(\lambda)x-T_{t}(\mu)x)\leqq q(A_{\lambda}x-A_{\mu}x)+q(S(\lambda, \mu)x)$ .
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The above inequality follows from the equicontinuity of the family of opera-
tors (2.11). For $x\in D(A)A_{\lambda}x\rightarrow Ax$ because of Lemma 2.1 (ii). Therefore
$T_{t}(\lambda)x$ converges when $\lambda\rightarrow\infty$ . Convergence of $T_{t}(\lambda)x$ for an arbitrary $x\in E$

is shown easily by the Banach-Steinhaus theorem, for the family of operators
(2.11) is equicontinuous. $q$ . $e$ . $d$ .

Define

(2.19) $T_{t}x=\varliminf_{\lambda}T_{t}(\lambda)x$ , for $x\in E$ and $0\leqq t\leqq a/4$ .

It follows easily from the proof of Lemma 2.2 that $T_{t}x$ is continuous and
$T_{0}x=x$. We shall show in the following that $T_{t}$ defined by (2.19) can be
extended to the interval $[0, \infty$), and it is the desired locally equicontinuous
semi-group with the infinitesimal generator $A$ .

LEMMA 2.3. Let $T_{t}$ be the operator defined by (2.19).
(i) For $x\in D(A),$ $T_{t}x$ is continuously diff’erentiable in $t$ and

(2.20) $(d/dt)T_{t}x=AT_{t}x=T_{t}Ax$

holds in $t\in[0, a/4]$ .
(ii) For $t\geqq 0,$ $s\geqq 0$ and $t+s\leqq a/4$ , we have the semi-group ProPerty of $T_{t}$ :

(2.21) $T_{t}T_{s}=T_{t+s}$ .
PROOF. In order to prove (i) we note the relation

(2.22) $AT_{t}(\lambda)x=T_{t}(\lambda)Ax$ for $x\in D(A)$ .
This relation is easily proved with the aid of the commutative relation (2.2)
and closedness of $A$ . Letting $\lambda\rightarrow\infty$ in (2.22), since $A$ is closed, we obtain

(2.23) $AT_{t}x=T_{t}Ax$ .

On the other hand $T_{t}(\lambda)A_{\lambda}x=A_{\lambda}T_{t}(\lambda)x$ converges to $T_{t}Ax$ for $x\in D(A)$ when
$\lambda$ tends to infinity. Therefore, from (2.15) $(d/dt)T_{t}(\lambda)x$ converges to $(d/dt)T_{t}x$

and (2.20) is true.
Next we show that $\{T_{t} ; 0\leqq t\leqq a/4\}$ has the semi-group property. Under

the condition (ii) for $t$ and $s$ , for any $x\in D(A)T_{t-u}T_{s+u}x$ is continuously
differentiable in $u$ , for $\{T_{t} ; 0\leqq t\leqq a/4\}$ is equicontinuous and $T_{t}x$ is con-
tinuously differentiable for $x\in D(A)$ . So we have

(2.24) $T_{t+s}x-T_{\ell}T_{s}x=\int_{0}^{t}\overline{d}\overline{u}d(T_{t-u}T_{s+u}x)du=\int_{0}^{t}T_{t- u}T_{s+u}(A-A)xdu=0$ .

As $D(A)$ is dense, we have $T_{t+s}x=T_{t}T_{s}x$ for all $x\in E$. $q$ . $e$ . $d$ .
Making use of the semi-group property shown above, we can extend $T_{t}$

for $t\geqq a/4$ . This extension is again denoted by $T_{t}$ . Thus we get a locally
equicontinuous semi-group $\{T_{t} ; t\geqq 0\}$ .
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Next we show that the inPnitesimal generator of $\{T_{t} ; t\geqq 0\}$ constructed
above is precisely $A$ . Let $A_{1}$ be the infinitesimal generator of $T_{t}$ . Then, by
Lemma 2.3, we have $A\subset A_{1}$ , that is, if $x\in D(A)$ , then we have $x\in D(A_{1})$ and
$Ax=A_{1}x$ . We shall show $A\supset A_{1}$ . Since $R(\lambda)$ maps $E$ to $D(A)$ , we see

(2.25) $A_{1}R(\lambda)x=AR(\lambda)x$ for any $x\in E$ .
Since

$((T_{h}-I)/h)R(\lambda)x=R(\lambda)((T_{h}-I)/h)x$ ,

letting $h\rightarrow+0$ , we have for $x\in D(A_{1})$

$’(2.26)$ $A_{1}R(\lambda)x=R(\lambda)A_{1}x$ .
Therefore, for $x\in D(A_{1})$ we obtain

\langle 2.27) $\lambda R(\lambda)A_{1}x=A_{1}\lambda R(\lambda)x=A\lambda R(\lambda)x$ .
Letting $\lambda\rightarrow\infty$ in (2.27), the left side of (2.27) converges to $A_{1}x$ and the right
converges to $Ax$ because of closedness of $A$ and the convergence of $\lambda R(\lambda)x$

to $x$ . Thus we get $A=A_{1}$ .
Finally we shall show that the locally equicontinuous semi-group $T_{t}$ is

uniquely determined by $A$ . Let $\{S_{\ell} ; t\geqq 0\}$ be a locally equicontinuous semi-
grouP and $A$ be its generator. Then for $x\in D(A)$

$T_{t}x-S_{t}x=\int_{\overline{d}s}^{{}^{t}d}0-S_{t-S}T_{s}xds=\int_{0}^{t}S_{t-s}T_{s}(A-A)xds=0$ .

Hence $S_{t}=T_{t}$ .
Thus the proof of Theorem 2.1 is complete.
REMARK 2.1. For an equicontinuous semi-group $T_{t}$ with the infinitesimal

generator $A$ , the resolvent of $A$ $R(\lambda)$ exists and it is represented by the
formula

(2.28) $R(\lambda)x=\int_{0}^{\infty}e^{-\lambda t}T_{t}xdt$ for ${\rm Re}\lambda>0$ .

Obviously the resolvent $R(\lambda)$ is an asymptotic resolvent of $A$ and $S(\lambda)$ in
Definition 2.1 is identically zero.

REMARK 2.2. In Definition 2.1 we can relax the condition on the estimate
of derivatives of $S(\lambda)$ in the following way:

For any continuous semi-norm $p$ there is a continuous semi-norm $q$ such
that for any $x\in E,$ $\lambda>\omega$ and $k=0,1,2,$ $\cdots$

(2.29) $p((d^{k}/d\lambda^{k})S(\lambda)x)\leqq b^{k}e^{-a\lambda}q(x)$ ,

where $b\geqq a>0$ .
For example, $S(\lambda)$ which corresponds to $R(\lambda)$ defined by (1.11) in Remark

1.2 satisfies this condition. It is easy to check that semi-groups can be con-
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structed under this condition (2.29) analogously.
REMARK 2.3. From the proof of Theorem 2.1 we find that a semi-group

can be constructed, if an asymptotic resolvent exists on a positive unbounded
set.

DEFINITION 2.2. A family $\{R(\lambda);\lambda\in\Sigma\}$ in $L(E)$ is called a sequentially
asymptotic resolvent of a closed linear operator $A$ with the domain $D(A)$ , if
it satisfies conditions:

(2.30) For any $x\in ER(\lambda)x$ is an infinitely differentiable function of
$\lambda$ in an open set $\Sigma$ in $R^{1}$ , and $R(\lambda)$ maps $E$ to $D(A)$ .

\langle 2.31) $AR(\lambda)=R(\lambda)A$ on $D(A)$ and $R(\lambda)R(\mu)=R(\mu)R(\lambda)$

for $\lambda,$ $\mu\in\Sigma$ .
(2.32) $(\lambda-A)R(\lambda)=I+S(\lambda)$ for $\lambda\in\Sigma$ ,

where $S(\lambda)\in L(E)$ and is inPnitely differentiable in $\lambda$ .
(2.33) There is a sequence $\Lambda=\{\lambda_{i}\}_{i=1}^{\infty}\subset\Sigma$ such that $\varliminf_{i}\lambda_{i}=\infty$ , and

for any continuous semi-norm $p$ there exists a semi-norm $q$

such that for $\lambda_{t}\in\Lambda$ , any $x\in E$ and $k=0,1,2,$ $\cdots$

$p((d^{k}/d\lambda^{k})S(\lambda)x)|_{\lambda=\lambda_{i}}\leqq b^{k}e^{-a\lambda_{i}}q(x)$ , where $b\geqq a>0$ .
Making use of DePnition 2.2 we have
THEOREM 2.2. Let $E$ be a sequentially complete locally convex space. Then

a linear operatOrA is the infinitesimal generator of a locally equicontinuous
semi-group, if and only if it satisfies the conditions:

\langle 2.34) $A$ is a closed linear oPerator with a dense domain $D(A)$ .
(2.35) There is a sequentially asymptOtic resolvent $\{R(\lambda);\lambda\in\Sigma\}$ of $A$

such that the family of operatOrs

{ $[(\lambda^{n+1}/n!)(d^{n}/d\lambda^{n})R(\lambda)]_{\lambda=\lambda_{i}}$ ; $\lambda_{i}\in\Lambda$ and $n=0,1,$ 2, }

is equicontinuous, where $\Lambda$ is that in Definition 2.2.

\S 3. Exponential formula of semi-groups.

In this section we shall show the exponential formula of semi-groups.
This formula is rePresented by means of asymptotic resolvents. Before we
state the exponential formula, we give a lemma.

LEMMA 3.1. $SuPlose$ that a linear oPerator $A$ satisfies the conditions (2.4)
and (2.5). Then for $n=0,1,2,$ $\cdots$ we have

(3.1) $\lim_{\lambda\rightarrow\infty}\frac{(-1)^{n}\lambda^{n+1}}{n!}R^{(n)}(\lambda)x=x$ for any $x\in E$ .
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PROOF. We prove (3.1) by induction of $n$ . In the case of $n=0$ , by Lemma
2.1 (i), we have (3.1). Assume that (3.1) is true for $n\leqq k$ . Lemma 2.1 (iii)
implies that

(3.2) $\frac{(-1)^{k+1}\lambda^{k+2}}{(k+1)!}R^{(k+1)}(\lambda)x=(-1)^{k}\frac{\lambda^{k+1}}{k!}R^{(k)}(\lambda)\lambda R(\lambda)x$

$+O$ ( $\lambda^{k+1}$ exp $(-a\lambda)$) $x$ .
Noting the condition (2.5) of the equicontinuity, we can conclude that (3.1)

is true from the assumption. $q$ . $e$ . $d$ .
Let $A$ satisfy the conditions (2.4) and (2.5). Now we set for $x\in E$

(3.3) $S_{n}(t)x=\frac{(-1)^{n-1}}{(n-1)!}(n/t)^{n}R^{(n-1)}(n/t)x$ for $0<t<a$ ,

$S_{n}(0)x=x$ .
$S_{n}(i)x$ is a continuous function of $t$ in $0\leqq t<a$ , because of Lemma 3.1. Since
the linear operator $A$ satisfies the conditions (2.4) and (2.5), the family of
operators $\{S_{n}(t);0\leqq t<a, n>a\omega\}$ is equicontinuous.

THEOREM 3.1. SuppOse that a linear operatorA in a locally convex sequen-
tially complete space $E$ satisfies the conditions (2.4) and (2.5). Then we have
the following formula, so called the exponential formula, of the semi-group
$\{T_{t} ; t\geqq 0\}$ which is uniquely determined by $A$ ,

(3.4) $T_{t}x=\varliminf S_{n}(t)x$ for any $x\in E$ and $0\leqq t<a$ .

This convergence is uniform with respect to $t$ on any comPact interval in $[0, a$).

To prove this theorem, we show a lemma which gives the estimate of
the derivative of $S_{n}(t)x$.

LEMMA 3.2. For $x\in E$, we have

(3.5) $(d/dt)S_{n}(t)x=\{-(n/i)+(n/t)^{2}R(n/t)\}S_{n}(t)x+V_{n}(t)x$ ,

where $V_{n}(t)x$ converges to zero uniformly in $f$ on any comPact interval in [ $0,$ $ a\rangle$

when $ n\rightarrow\infty$ .
PROOF. The derivative of $S_{n}(t)x$ is given by

(3.6) $\frac{d}{dt}S_{n}(t)x=-\frac{n}{t}S_{n}(t)x+\frac{(-1)^{n}}{(n-1)!}(\frac{n}{t})^{n}\frac{n}{t^{2}}R^{(n)}(\frac{n}{t})x$ .

Now we apply Lemma 2.1 (iii) to (3.6), then we obtain

(3.7) $\overline{d}\overline{t}dS_{n}(t)x=-\frac{n}{t}S_{n}(t)x+\frac{(-1)^{n-1}}{(n-1)!}(\frac{n}{t})^{n+2}R(\frac{n}{t})R^{(n-1)}(\frac{n}{t})x$

$+\frac{1}{n}\ulcorner(\frac{n}{t})^{n+2}G_{n}(t)x=\{-\frac{n}{t}+(\frac{n}{t})^{2}R(\frac{n}{t})\}S_{n}(t)x+\frac{1}{n!}(\frac{n}{t})^{n+2}G_{n}(t)x$ ,

where $G_{n}(t)$ has the property:



Semi-groups of operators in locally convex spaces 275

For any continuous semi-norm $p$ there is a continuous semi-norm $q$ such
that

(3.8) $P(G_{n}(t)x)\leqq\exp(-a\frac{n}{t})(\frac{t}{n}a^{n}+(\frac{t}{n})^{n+1}nt)q(x)$ .
Set

(3.9) $V_{n}(t)x=\frac{1}{n!}(\frac{n}{t})^{n+2}G_{n}(t)x$ .

We shall prove that $V_{n}(t)$ defined by (3.9) has the desired property stated in
the lemma. Let $p$ be any continuous semi-norm. Then there is a continuous
semi-norm $q$ such that the following estimate holds:

(3.10) $p(V_{n}(t)x)\leqq\frac{1}{n!}(\frac{n}{t})^{n+2}\{(\frac{t}{n})^{n+1}n!+\frac{a^{n}t}{n}\}$ exp $(-a\frac{n}{t}$) $q(x)$

$\leqq K\{\frac{n}{t}+\frac{1}{n!}(\frac{na}{t})^{n+1}\}$ exp $(-a\frac{n}{t})q(x)$ .

Noting the Stirling’s formula $n!\sim n^{n}e^{-n}\sqrt{2\pi n}$ , we have

(3.11) $p(V_{n}(t)x)\leqq K^{\prime}(\frac{n}{t}+e^{n}\sqrt{n}(\frac{a}{t})^{n+1})$ exp $(-a\frac{n}{t}$) $q(x)$

$=K^{\prime}$ ($\frac{n}{t}$ exp $(-a\frac{n}{t})+\sqrt{n}(\frac{a}{t})^{n+1}\exp(n(1-\frac{a}{t}))$) $q(x)$ .

Let us note that the function $f(x)=x^{n+1}e^{-nx}$ decreases on $[1+1/n, \infty$).

If $0\leqq t\leqq t_{0}<a$ , here $t_{0}$ is a fixed positive number, then we have

(3.12) $(\frac{a}{t})^{n+1}\exp(-n\frac{a}{t})\leqq(\frac{a}{t_{0}})^{n+1}\exp(-n\frac{a}{t_{0}})$

for $n$ satisfying $a/t_{0}\geqq 1+1/n$ , because $a/t\geqq a/t_{0}\geqq 1+1/n$ . Set $a=a/t_{0}>1$ ,
from (3.11) we have for large $n$

(3.13) $P(V_{n}(t)x)\leqq K^{r}(\sqrt{n}\alpha^{n+1}e^{(1-\alpha)n}+n\alpha e^{-\alpha n})q(x)$ .
Since $\alpha e^{1-\alpha}<1,$ $(3.13)$ implies that $V_{n}(t)x$ converges to zero uniformly in $t$ on
any compact interval in $[0, a$), when $ n\rightarrow\infty$ . $q$ . $e$ . $d$ .

PROOF OF THEOREM 3.1. For $\chi\in D(A)$ , we have

(3.14) $S_{n}(t)x-T_{\ell}x=\int_{0}^{t}\frac{d}{ds}$ $S_{n}(s)T_{\ell}$ xds

$=\int_{0}^{t}S_{n}(s)T_{\ell-s}\{-(\frac{n}{s})+(\frac{n}{s})^{2}R(\frac{n}{s})-A\}xds+U_{n}(t)x$ ,

where $U_{n}(t)x$ tends to zero when $ n\rightarrow\infty$ , by Lemma 3.2. If $0\leqq s\leqq t<a$ , then
$n/s\geqq n/t>n/a$ . Hence $\lim_{n\rightarrow\infty}(-(n/s)+(n/s)^{2}R(n/s))x=Ax$ uniformly in $0\leqq s\leqq t$

by Lemma 2.1 (ii). Letting $ n\rightarrow\infty$ in (3.14), $S_{n}(t)x$ converges to $T_{t}x$. For any
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$x\in E$ convergence of $S_{n}(t)x$ to $T_{t}x$ is proved by means of equicontinuity of
the family of operators $\{S_{n}(t);0\leqq t<a, n>a\omega\}$ .
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