Families of holomorphic maps into the projective space omitting some hyperplanes

By Hirotaka Fujimoto

(Received Jan. 10, 1972)

§ 1. Introduction.

In [1], as a contribution to the Picard-Borel-Nevanlinna theory of value distributions of holomorphic functions, H. Cartan gave some properties of systems of holomorphic functions which vanish nowhere and whose sum vanish identically. Afterwards, one of his results was improved and applied to the study of algebroid functions by J. Dufresnoy ([2]). Using this, the author showed in [4] that the N-dimensional complex projective space $P_{N}(\boldsymbol{C})$ omitting $2 N+1$ hyperplanes in general position is taut in the sense of H . Wu ([11]) and, as a consequence of it, hyperbolic in the sense of S. Kobayashi ([9]), which gives an affirmative answer to the conjecture in [12], p. 216. The main purpose of this paper is, in this connection, to study families of holomorphic maps into $P_{N}(\boldsymbol{C})$ omitting h hyperplanes in general position in the case $N+2 \leqq h \leqq 2 N$ and to give some function-theoretic properties of such spaces.

Let $\left\{H_{i} ; 0 \leqq i \leqq N+t\right\}(t \geqq 1)$ be $N+t+1$ hyperplanes in general position in $P_{N}(\boldsymbol{C})$. For the space $X_{t}:=P_{N}(\boldsymbol{C})-\bigcup_{i} H_{i}$, we shall show that there exists a special analytic set C_{t} of dimension $\leqq N-t$ in X_{t} called the critical set (cf., Definition 2.1) with the following properties:

Any sequence $\left\{f^{(\nu)}\right\}$ of holomorphic maps of a complex manifold ${ }^{1)} M$ into X_{t} has a compactly convergent subsequence if there are some compact sets K in M and L in $X_{t}-C_{t}$ such that $f^{(\nu)}(K) \cap L \neq \phi(\nu=1,2, \cdots)$ (cf., Theorem 4.2).

In the case $t \geqq N$, it will be proved that $C_{t}=\phi$, which implies that X_{N} is taut, namely, the result in the previous paper [4] stated above.

By virtue of the above main result, we can give some properties of families of holomorphic maps into X_{t}. For any complex manifolds M and N, we denote by $\operatorname{Hol}(M, N)$ the space of all holomorphic maps of M into N with compact-open topology. It will be shown that the set of all maps in

[^0]$\operatorname{Hol}\left(M, X_{t}\right)$ which are of rank $\geqq r$ somewhere is a locally compact subset of $\operatorname{Hol}\left(M, X_{t}\right)$ if $r \geqq N-t+1$. Moreover, we shall give generalizations of the classical Schottky's and Landau's theorems to the case of holomorphic maps. into X_{t}.

We shall study also the Kobayashi pseudo-distance $d_{X_{t}}$ on X_{t}. We shall prove that $d_{X_{t}}(p, q)>0$ for any $p \in X_{t}-C_{t}$ and $q \in X_{t}(p \neq q)$. By the use of this, it will be shown that the holomorphic automorphism group of an arbitrary subdomain of the space X_{1}, namely, $P_{N}(\boldsymbol{C})$ omitting $N+2$ hyperplanes in general position is a real Lie group. In this connection, we shall investigate the holomorphic automorphism group of X_{1} itself and show that it is isomorphic with the symmetric group S_{N+2} on $N+2$ elements in the last section.

§ 2. Preliminaries.

Let us consider $N+t+1$ hyperplanes $\left\{H_{i}: 0 \leqq i \leqq N+t\right\}$ ($t \geqq 1$) in general position in $P_{N}(\boldsymbol{C})$. Choosing homogeneous coordinates $w_{0}: w_{1}: \cdots: w_{N}$ suitably, we can write

$$
\begin{array}{ll}
H_{i}: w_{i}=0 & (0 \leqq i \leqq N) \\
H_{N+s}: \alpha_{s}^{0} w_{0}+\alpha_{s}^{1} w_{s}+\cdots+\alpha_{s}^{N} w_{N}=0 & (1 \leqq s \leqq t), \tag{*}
\end{array}
$$

where we may assume $\alpha_{1}^{0}=\alpha_{1}^{1}=\cdots=\alpha_{1}^{N}=1$. Put $X_{t}:=P_{N}(\boldsymbol{C})-\bigcup_{i=0}^{N+t} H_{i}$. In the following sections, we use always these notations unless stated to the contrary.

Let $J=\left(J_{1}, J_{2}, \cdots, J_{k}\right)$ be a partition of indices $I:=\{0,1, \cdots, N\}$ into k classes $(2 \leqq k \leqq N+1)$, which means that $I=J_{1} \cup J_{2} \cup \cdots \cup J_{k}, J_{l} \neq \phi(1 \leqq l \leqq k)$, and $J_{l} \cap J_{m}=\phi(l \neq m)$. Taking a map $\chi:\{1,2, \cdots, t\} \rightarrow\{1,2, \cdots, k\}$, we define the set

$$
C_{J, \chi}:=\left\{w_{0}: w_{1}: \cdots: w_{N} \in P_{N}(\boldsymbol{C}) ; \sum_{i \in J_{X(s)}} \alpha_{s}^{i} w_{i}=0,1 \leqq s \leqq t\right\}
$$

Definition 2.1. We shall call the union C_{t} of all sets $C_{J, \chi} \cap X_{t}$ constructed as above to be the critical set for X_{t}.

Lemma 2.2. The critical set C_{t} is an analytic set of dimension $\leqq N-t$ in: X_{t}. In the particular case $N=t$, it holds that $C_{N}=\phi$.

Proof. Take arbitrary J and χ as above and put $m_{l}:=\#\{s: \chi(s)=l\}$ for each $l(1 \leqq l \leqq k)$, where we denote the number of elements in a set A by \# A. Obviously, $m_{1}+m_{2}+\cdots+m_{k}=t$. Since any minor of the matrix $\left(\alpha_{s}^{i}\right)(0 \leqq i \leqq N$, $1 \leqq s \leqq t)$ does not vanish by the assumption, the space $\left\{\left(w_{i}\right)_{i \in J_{l}}: \sum_{i \in J_{\chi}(s)} \alpha_{s}^{i} w_{i}=0\right.$, $\chi(s)=l\}$ in $C^{N_{l}}$ is of dimension $\max \left(N_{l}-m_{l}, 0\right)$ for each $l(1 \leqq l \leqq k)$, where: $N_{l}=\# J_{l}$. If $N_{l} \leqq m_{l}$ for some l, we have $C_{J, \chi} \cap X_{t}=\phi$. In the case that.
$N_{l}>m_{l}$ for any l, the inverse image of $C_{J, \chi}$ by the canonical map of $\boldsymbol{C}^{N+1}-\{0\}$ onto $P_{N}(\boldsymbol{C})$ is of dimension

$$
d:=\sum_{l=1}^{\boldsymbol{k}}\left(N_{l}-m_{l}\right)=N+1-t .
$$

So, we have $\operatorname{dim} C_{J, \chi} \leqq d-1=N-t$. In the case $N=t$, we have $N_{l} \leqq m_{l}$ for some l and so $C_{J, \chi} \cap X_{t}=\phi$. Indeed, if not, $d=\sum_{l=1}^{k}\left(N_{l}-m_{l}\right) \geqq 2$ because $k \geqq 2$. This completes the proof.
q. e. d.

Now, we give
ThEOREM 2.3 (J. Dufresnoy). Let D be a domain in the complex plane \boldsymbol{C}. Any sequence $\left\{f^{(\nu)}\right\}$ in $\operatorname{Hol}\left(D, X_{t}\right)$ has a subsequence $\left\{f^{(\nu)}\right\}$ satisfying one of the following conditions:
(a) $\left\{f^{\left(\mathcal{L}^{\prime}\right)}\right\}$ converges in $\operatorname{Hol}\left(D, P_{N}(\boldsymbol{C})\right)$,
(b) it can be chosen suitable J and χ as stated in the above such that, for any compact subset K of D and any neighborhood U of $C_{J, \chi}$ in $P_{N}(\boldsymbol{C})$, there exists some λ_{0} with $f^{(\nu)}(K) \subset U\left(\lambda \geqq \lambda_{0}\right)$.

The proof is given by the same argument as in the proof of Critere Fondamental and Théorème VI in [2], pp. 18~21. Since the statements are slightly modified from the original, we describe the proof here. We use the following

Theorem 2.4 (H. Cartan). Let $\Phi^{(\nu)}:=\left(\phi_{1}^{(\nu)}, \phi_{2}^{(\nu)}, \cdots, \phi_{k}^{(\nu)}\right)(\nu=1,2, \cdots)$ be a sequence of systems of k holomorphic functions on a domain D in \boldsymbol{C} such that $\phi_{l}^{(\nu)}(z) \neq 0(1 \leqq l \leqq k)$ and $\phi_{1}^{(\nu)}+\cdots+\phi_{k}^{(\nu)} \neq 0$ everywhere on D. Then we can find a subsequence $\left\{\Phi^{(\nu \mu)}\right\}$ of $\left\{\Phi^{(\nu)}\right\}$ such that for suitable indices l and $m(1 \leqq l<$ $m \leqq k$) $\left\{\phi_{i}^{(\nu)} \phi_{m}^{(\nu)-1}\right\}$ converges compactly on D.

This is an immediate consequence of Théorème VII in [1], p. 312, because for each function $\phi_{k+1}^{(\nu)}:=-\left(\phi_{1}^{(\nu)}+\cdots+\phi_{k}^{(\nu)}\right)$ the system ($\left.\phi_{1}^{(\nu)}, \cdots, \phi_{k+1}^{(\nu)}\right)$ satisfies the conditions $\phi_{l}^{(\nu)}(z) \neq 0(1 \leqq l \leqq k+1)$ and $\phi_{1}^{(\nu)}(z)+\cdots+\phi_{k+1}^{(\nu)}(z) \equiv 0$ on D.

Proof of Theorem 2.3. Using the homogeneous coordinates with the property (*), we may write

$$
f^{(\nu)}=f_{0}^{(\nu)}: f_{1}^{(\nu)}: \cdots: f_{N}^{(\nu)} \quad(\nu=1,2, \cdots),
$$

where each $f_{i}^{(\nu)}$ is a nowhere zero holomorphic function on D and $\sum_{i=0}^{N} \alpha_{s}^{i} f_{i} \neq 0$ everywhere for any $s(1 \leqq s \leqq t)$. Let us consider a partition $J=\left(J_{1}, \cdots, J_{k}\right)$ of $\{0,1, \cdots, N\}$ such that, for a subsequence $\left\{f^{(\nu \mu}\right\}$ of $\left\{f^{(\nu)}\right\}$ and a suitable fixed $p(l) \in J_{l}$, each $\left\{f_{i}^{(\nu \mu)} / f_{p}^{(\nu)}(\nu)\right\}$ converges compactly to a holomorphic function $g_{i l}$ on $D\left(i \in J_{l}, 1 \leqq l \leqq k\right)$. For example, if we put $J_{l}:=\{l\}(1 \leqq l \leqq N)$, $J=\left(J_{1}, J_{2}, \cdots, J_{N}\right)$ is such a partition. Among partitions with the above properties, we choose here $J=\left(J_{1}, J_{2}, \cdots, J_{k}\right)$ so that the number k of classes of J is as small as possible. Then, for a suitable $\left\{\nu_{\mu}\right\}$ and $p(l)$ as above, each
$F_{s, l}^{(\nu)}:=\sum_{i \in J_{l}} \alpha_{s}^{i}\left(f_{i}^{(\nu \mu)} / f_{p(i)}^{(\nu)}\right)$ converges on D to a holomorphic function $F_{s, k}$ $:=\sum_{i \in J_{l}} \alpha_{s}^{i} g_{i l}$.

We discuss first the case that, for each $s(1 \leqq s \leqq t)$, there is an index $\chi(s)$ such that $F_{s, \chi(s)} \equiv 0$. Consider the above partition $J=\left(J_{1}, J_{2}, \cdots, J_{k}\right)$ and the map $\chi: s \mapsto \chi(s)$. Then, we claim that $\left\{f^{(\nu \mu)}\right\}$ satisfies the condition (b) of Theorem 2.3 for the set $C_{J, \chi}$. Assume the contrary. We can take a sequence $\left\{z_{\lambda}\right\}$ in D such that $\lim _{\lambda \rightarrow \infty} z_{\lambda}=z_{0} \in D$ and $\lim _{\lambda \rightarrow \infty} f^{(\nu \lambda)}\left(z_{\lambda}\right)=w \in P_{N}(\boldsymbol{C})-C_{J, \chi}$ for a suitable sequence $\left\{f^{(\nu \lambda)}\right\}$ of $\left\{f^{(\nu \mu)}\right\}$. Let $f^{(\nu)}\left(z_{\lambda}\right)=w_{0}^{(\lambda)}: w_{1}^{(\lambda)}: \cdots: w_{N}^{(\lambda)}$ and $w=w_{0}: w_{1}: \cdots: w_{N}$. By the definition of $C_{J, \chi}, \sum_{i \in J_{\chi}(s)} \alpha_{s}^{i} w_{i} \neq 0$ for some s and so $w_{i_{0}} \neq 0$ for some $i_{0} \in J_{X(s)}$. Then, we have

$$
\begin{aligned}
\sum_{i \in J_{\chi}(s)} \alpha_{s}^{i} \frac{w_{i}}{w_{i 0}} & =\sum_{i \in J_{X(s)}} \alpha_{s}^{i} \cdot\left(\lim _{\lambda \rightarrow \infty} \frac{w_{i}^{(\lambda)}}{w_{i 0}^{(\lambda)}}\right) \\
& =\lim _{\lambda \rightarrow \infty} \sum_{i \in J_{X}(s)} \alpha_{s}^{i} \frac{f_{i}^{(\nu)}\left(z_{\lambda}\right)}{f_{i_{0}^{(i)}\left(z_{\lambda}\right)}^{\left(z_{\lambda}\right)}} \\
& =\lim _{\lambda \rightarrow \infty} \frac{f_{p(\lambda)(s))}^{(\nu \lambda)}\left(z_{\lambda}\right)}{f_{i 0}^{(i) \lambda}\left(z_{\lambda}\right)} F_{s, \chi(s)}^{(\nu)}\left(z_{\lambda}\right) \\
& =\frac{w_{p(\chi(s))}}{w_{i 0}} F_{s, \chi(s)}\left(z_{0}\right)=0
\end{aligned}
$$

and so $\sum_{i \in J_{X(s)}} \alpha_{s}^{i} w_{i}=0$. This is a contradiction.
It remains to discuss the case that $F_{s_{0}, l} \not \equiv 0(1 \leqq l \leqq k)$ for a suitable s_{0}. In this case, we shall prove $k=1$, which means that $\left\{f^{(\nu \mu)}\right\}$ satisfies the condition (a) of Theorem 2.3. Assume that $k \geqq 2$. We take an arbitrary domain \tilde{D} with $\tilde{D} \Subset D^{\prime}:=D-\bigcup_{l=1}^{k}\left\{z \in D ; F_{s o, l}(z)=0\right\}$. Then, we may assume that, for the functions $\phi_{l}^{(\nu \mu)}:=f_{p(\nu)}^{(\nu)} F_{s_{0}, i}^{(\nu)}, \phi_{l}^{(\nu \mu)} \neq 0$ and $\sum_{i=1}^{k} \phi_{l}^{\nu \mu)} \neq 0$ on \tilde{D}. By Theorem $2.4\left\{\phi_{l}^{(\nu)} / \phi_{m}^{(\nu)}\right\}$ converges on \tilde{D} for a subsequence $\left\{\nu_{\lambda}\right\}$ of $\left\{\nu_{\mu}\right\}$ and suitable l, m. Then, $\left\{f_{p(l)}^{(\nu)} / f_{p(m)}^{(\nu)}\right\}$ is also convergent on \tilde{D} because $f_{p(\lambda)}^{(\nu)} / f_{p(m)}^{(\nu \lambda)}$ $=\left(\phi_{l}^{(\lambda)} / \phi_{m}^{(\nu \lambda)}\right)\left(F_{s_{0}, m}^{(\nu \lambda)} / F_{s_{0}, l}^{(\nu \lambda)}\right)$. Using the diagonal argument and changing indices if necessary, we may assume that $\left\{f_{p(\lambda)}^{(\nu)} / f_{p(m)}^{(\nu)}\right\}$ converges on D^{\prime}. Moreover, it is easily shown by the maximum principle for holomorphic functions that $\left\{f_{p(l)}^{(\nu)} / f_{p(m)}^{(\nu)}\right\}$ converges on D. This contradicts the property of the number k. Thus we conclude $k=1$.
q. e.d.

Remark 2.5. As is easily seen, in the case (a) of Theorem 2.3, the limit of $\left\{f^{(\nu \mu)}\right\}$ has the image included either in X_{t} or in some H_{i}. In case of $t=N$, Theorem 2.3 means that X_{N} is taut in the sense of $\mathrm{H} . \mathrm{Wu}$ because of Lemma 2.2 (cf., [4], Theorem 5.1).

§ 3. The Kobayashi pseudo-distance on X_{t}.

In [9], S. Kobayashi defined an intrinsic pseudo-distance d_{M} on M for every complex manifold M, which is uniquely determined by the conditions that (a) we have

$$
\tanh \frac{1}{2} d_{D_{1}}\left(z, z^{\prime}\right)=\frac{\left|z-z^{\prime}\right|}{\left|1-z \bar{z}^{\prime}\right|}
$$

for the unit disc $D_{1}:=\{|z|<1\}$ in \boldsymbol{C}, (b) $d_{N}(f(p), f(q)) \leqq d_{M}(p, q)(p, q \in M)$ for any holomorphic map $f: M \rightarrow N$ and (c) $d^{\prime}(p, q) \leqq d_{M}(p, q)$ for any $p, q \in M$ if d^{\prime} is a pseudo-distance on M with the property $d^{\prime}\left(f(z), f\left(z^{\prime}\right)\right) \leqq d_{D_{1}}\left(z, z^{\prime}\right)$ ($z, z^{\prime} \in D_{1}$) for any holomorphic map $f: D_{1} \rightarrow M$.

By the condition (b) we see easily
(3.1). (i) For any submanifold M in N, we have $d_{M}(p, q) \geqq d_{N}(p, q)(p, q \in M)$.
(ii) If f is a holomorphic automorphism of M, then $d_{M}(f(p), f(q))=d_{M}(p, q)$ for any $p, q \in M$.

The Kobayashi pseudo-distance $d_{X_{t}}$ on the space X_{t} stated in the previous section has the following property.

Theorem 3.2. It holds that $d_{X_{t}}(p, q)>0$ if $p \in X_{t}-C_{t}$ and $q \in X_{t}(p \neq q)$, where C_{t} is the critical set for X_{t}.

Proof. On X_{t}, we can consider a system of global coordinates z_{1}, \cdots, z_{N}. It may be assumed that, for the unit ball $B:=\left\{\left(z_{1}, \cdots, z_{N}\right) ; \sum_{i=1}^{N}\left|z_{i}-a_{i}\right|^{2}<1\right\}$ with center at $p=\left(a_{1}, \cdots, a_{N}\right)$, we have $B \cap C_{t}=\phi$ and $q \notin B$. In view of Lemma in [8], p. 50, it suffices to show the existence of a pair (r, δ) with $0<r, \delta<1$ such that any holomorphic map $f: D_{1}:=\{|z|<1\} \rightarrow X_{t}$ with $f(0)$ $\in B_{r}:=\left\{\left(z_{1}, \cdots, z_{N}\right) ; \sum_{i=1}^{N}\left|z_{i}-a_{i}\right|^{2}<r^{2}\right\}$ satisfies the condition $f(\{|z|<\delta\}) \subset B$. Assume the contrary. As in the proof of Proposition 2 in [8], p. 51, we can take a holomorphic map f_{ν} of D_{1} into X_{t} with $f_{\nu}(0) \in B_{1 / 2}$ and $f_{\nu}(\{|z|$ $\langle 1 / \nu\}) \nsubseteq B$ for any $\nu=1,2, \cdots$. Obviously, $\left\{f_{\nu}\right\}$ has no subsequence which satisfies the condition either (a) or (b) of Theorem 2.3, This is a contradiction. Thus we have Theorem 3, 2.
q.e.d.

By definition, a hyperbolic manifold is a complex manifold on which the Kobayashi pseudo-distance is a true distance. As an immediate consequence, we see

Corollary 3.3. The space $X_{t}-C_{t}$ is hyperbolic.
Remark 3.4. For any $k \geqq N-t+1$, the space X_{t} is of type $M H_{k}$ in the sense of A. Eisenman [3], p. 54. Indeed, for any k-dimensional real analytic submanifold N of X_{t} and non-empty subdomain N^{\prime} of $N, N^{\prime}-N^{\prime} \cap C_{t}$ is also of dimension k because of Lemma 2.2. By Theorem 3.2 the k-dimensional Hausdorff measure $d_{X_{t}}^{k}$ with respect to $d_{x_{t}}$ is a Borel measure on N (cf.,
[3], Propositions 1.24 and 1.28 etc.).
Now, we apply Theorem 3.2 to the study of holomorphic automorphism groups. Let D be an arbitrary subdomain of the space X_{1}, namely, $P_{N}(\boldsymbol{C})$ omitting $N+2$ hyperplanes in general position. By $\operatorname{Aut}(D)$, we denote the space of all holomorphic automorphisms of D with compact-open topology. Let us consider the domain $D^{\prime}:=\underset{f \equiv \operatorname{Aut}(D)}{\bigcup} f\left(D-C_{t}\right)$. Obviously, $D-C_{t} \subset D^{\prime} \subset D$.

Lemma 3.5. The domain D^{\prime} is hyperbolic and hence $\operatorname{Aut}\left(D^{\prime}\right)$ is a real Lie group.

Proof. Take two distinct points p and q in D^{\prime}. We may describe $p=f_{0}\left(p_{0}\right)$ with a suitable $p_{0} \in D-C_{t}$ and $f_{0} \in \operatorname{Aut}(D)$. By (3.1), we have

$$
\begin{aligned}
d_{D^{\prime}}(p, q) & \geqq d_{D}\left(f_{0}\left(p_{0}\right), f_{0}\left(f_{0}^{-1}(q)\right)\right)=d_{D}\left(p_{0}, f_{0}^{-1}(q)\right) \\
& \geqq d_{X_{1}}\left(p_{0}, f_{0}^{-1}(q)\right) .
\end{aligned}
$$

On the other hand, since $p_{0} \neq f_{0}^{-1}(q)$ and $p_{0} \in D-C_{t}$, we see $d_{X_{1}}\left(p_{0}, f_{0}^{-1}(q)\right)>0$ by Theorem 3.2. So, D^{\prime} is hyperbolic. The last assertion is a direct result of S. Kobayashi [9], Theorem 6.2.
q. e. d.

Theorem 3.6. For the above domains D and $D^{\prime}, \operatorname{Aut}(D)$ is topologically isomorphic with a closed subgroup of Aut (D^{\prime}) by the canonical restriction map $\rho: f \in \operatorname{Aut}(D) \mapsto \rho(f):=f \mid D^{\prime} \in \operatorname{Aut}\left(D^{\prime}\right)$.

Proof. According to Lemma in [7], since D is certainly K-complete and $D-D^{\prime}$ is a thin analytic subset of $D, \rho: \operatorname{Aut}(D) \mapsto \operatorname{Aut}\left(D^{\prime}\right)$ is a homeomorphism onto a subgroup of $\operatorname{Aut}\left(D^{\prime}\right)$ and, moreover, the image of ρ is closed because $\operatorname{Aut}(D)$ is complete (cf., the proof of Theorem 3 in [7]). q.e.d.

Corollary 3.7. For any domain D in X_{1}, $\operatorname{Aut}(D)$ is a real Lie group.
REMARK 3.8. The space $X_{0}:=P_{N}(\boldsymbol{C})-\bigcup_{i=0}^{N} H_{i}$ defined by $N+1$ hyperplanes $\left\{H_{i}\right\}$ in general position is biholomorphically isomorphic with $(\boldsymbol{C}-\{0\})^{N}$. As is easily seen, $\operatorname{Aut}\left(X_{0}\right)$ is not a real Lie group if $N \geqq 2$.

§4. A generalization of J. Dufresnoy's theorem.

Lemma 4.1. Consider polydiscs $D:=\left\{\left|z_{i}\right|<r_{i}, 1 \leqq i \leqq n\right\}$ and $G:=\left\{\left|z_{i}\right|\right.$ $\left.<r_{i}^{\prime}, 1 \leqq i \leqq n\right\}$ in \boldsymbol{C}^{n}, where $0<r_{i}^{\prime} \leqq r_{i}$. If a sequence $\left\{f^{(\nu)}\right\}$ in $\operatorname{Hol}\left(D, X_{t}\right)$ converges compactly on G to a map $g \in \operatorname{Hol}\left(G, X_{t}\right)$ with $g(G) \nsubseteq C_{t}$, then it converges in $\operatorname{Hol}\left(D, X_{t}\right)$.

For the proof, we need the following T. Nishino's result [10], Lemma I.
Theorem. Let $\left\{f_{\nu}(z)\right\}$ be a sequence of holomorphic functions on $D:=$ $\left\{\left|z_{i}\right|<r_{i}, 1 \leqq i \leqq n\right\}$ which converges compactly on $\left\{\left|z_{1}\right|<r_{1}^{\prime}\right\} \cap D\left(0<r_{1}^{\prime}<r_{1}\right)$ and, moreover, on $\left\{\left|z_{1}\right|<r_{1}\right\}$ as functions of z_{1} for any fixed $z^{\prime}=\left(z_{2}, \cdots, z_{n}\right)$ ($\left|z_{i}\right|<r_{i}, 2 \leqq i \leqq n$. Then, it converges compactly on D.

Proof of Lemma 4.1. It suffices to prove Lemma 4.1 in the case that $r_{1}^{\prime}<r_{1}, r_{2}^{\prime}=r_{2}, \cdots, r_{n}^{\prime}=r_{n}$. Indeed, if it is shown, $\left\{f^{(\nu)}\right\}$ converges compactly on $\left\{\left|z_{1}\right|<r_{1},\left|z_{i}\right|<r_{i}^{\prime}, 2 \leqq i \leqq n\right\}$ and then by the same argument we see that it converges compactly on $\left\{\left|z_{1}\right|<r_{1},\left|z_{2}\right|<r_{2},\left|z_{i}\right|<r_{i}^{\prime}, 3 \leqq i \leqq n\right\}$, hence, on $\left\{\left|z_{i}\right|<r_{i},\left|z_{j}\right|<r_{j}^{\prime}, 1 \leqq i \leqq 3,4 \leqq j \leqq n\right\}$ and so on. Let $f^{(\nu)}=f_{0}^{(\nu)}: f_{1}^{(\nu)}: \cdots: f_{N}^{(\nu)}$ and $g=g_{0}: g_{1}: \cdots: g_{N}$ with holomorphic functions $f_{i}^{(\nu)}$ and g_{i}, where we may choose $f_{0}^{(\nu)} \equiv 1$ and $g_{0} \equiv 1$. For any partition $J=\left(J_{1}, \cdots, J_{k}\right)$ of $I:=\{0,1, \cdots$, $N\}$, we can take an index $s(J)$ with the property that

$$
g_{s(J), l}(z):=\sum_{i=J_{l}} \alpha_{s(J)}^{i} g_{i}(z) \not \equiv 0
$$

for any $l(1 \leqq l \leqq k)$. Because, if not, there is a map $\chi:\{1,2, \cdots, t\} \rightarrow\{1,2$, $\cdots, k\}$ with $g_{s, \chi(s)}(z) \equiv 0$ for any s, i. e., $g(G) \subset C_{J, \chi}$. We denote anew all functions $g_{s(J, 1}, g_{s(J), 2}, \cdots, g_{s(J), k}$ constructed as above for each partition $J=\left(J_{1}\right.$, $\left.\cdots, J_{k}\right)$ of I by $G_{1}, G_{2}, \cdots, G_{c_{0}}$. Let $D^{\prime}:=\left\{z^{\prime}=\left(z_{2}, \cdots, z_{n}\right) ;\left|z_{i}\right|<r_{i}, 2 \leqq i \leqq n\right\}$. Consider a thin analytic set

$$
V:=\bigcup_{\iota=1}^{\iota_{0}}\left\{z^{\prime} \in D^{\prime} ; G_{\iota}\left(z_{1}, z^{\prime}\right) \equiv 0 \text { as a function of } z_{1}\right\}
$$

in D^{\prime}.
Now, we take an arbitrary point z^{\prime} in $D^{\prime}-V$. Apply Theorem 2.3 to the sequence of maps

$$
h^{(\nu)}\left(z_{1}\right):=f_{0}^{(\nu)}\left(z_{1}, z^{\prime}\right): \cdots: f_{N}^{(\nu)}\left(z_{1}, z^{\prime}\right)
$$

of $\left\{\left|z_{1}\right|<r_{1}\right\}$ into X_{t}. If $\left|z_{1}\right|<r_{1}^{\prime}$, then $\lim _{\nu \rightarrow \infty} h^{(\nu)}\left(z_{1}\right)=g\left(z_{1}, z^{\prime}\right)$ by the assumption. And, since $z^{\prime} \in D^{\prime}-V$, it holds $G_{l}\left(z_{1}, z^{\prime}\right) \not \equiv 0\left(1 \leqq \iota \leqq \varepsilon_{0}\right)$, which means $g\left(\left\{\left(z_{1}, z^{\prime}\right)\right.\right.$: $\left.\left.\left|z_{1}\right|<r_{1}^{\prime}\right\}\right) \nsubseteq C_{t}$. So, $\left\{h^{(\nu)}\right\}$ has no subsequence satisfying the condition (b) of Theorem 2.3, In view of the condition (a) of Theorem 2.3, it has a subsequence converging to some g in $\operatorname{Hol}\left(\left\{\left|z_{1}\right|<r_{1}\right\}, P_{N}(\boldsymbol{C})\right.$). Moreover, by the same reason, any subsequence of $\left\{h^{(\nu)}\right\}$ has a convergent subsequence, whose limit g^{*} is necessarily equal to g by the fact that $g^{*}\left(z_{1}\right)=g\left(z_{1}, z^{\prime}\right)=g\left(z_{1}\right)$ on $\left\{\left|z_{1}\right|<r_{1}^{\prime}\right\}$ and by the theorem of identity. Then, as is easily seen, $\left\{h^{(\nu)}\right\}$ itself converges to g in $\operatorname{Hol}\left(\left\{\left|z_{1}\right|<r_{1}\right\}, P_{N}(\boldsymbol{C})\right)$. In conclusion, each $\left\{f_{i}^{(\nu)}\left(z_{1}, z^{\prime}\right)\right\}$ $(1 \leqq i \leqq N)$ converges compactly in $\left\{\left|z_{1}\right|<r_{1}\right\}$ as a sequence of holomorphic functions of z_{1} for any arbitrarily fixed z^{\prime} in $D^{\prime}-V$. Then, by the above Theorem, it converges compactly on $\left\{\left|z_{1}\right|<r_{1}\right\} \times\left(D^{\prime}-V\right)$ as functions of n complex variables. Moreover, we can easily conclude that $\left\{f^{(\nu)}\right\}$ converges in $\operatorname{Hol}\left(D, P_{N}(\boldsymbol{C})\right)$ by the maximum principle. On the other hand, we know that the limit of any convergent subsequence of nowhere zero holomorphic functions vanishes identically or vanishes nowhere. This concludes that the image of the limit of $\left\{f^{(\nu)}\right\}$ is included in X_{t}. Thus we have Lemma 4.1.
q. e. d.

TheOrem 4.2. Let M be a complex manifold and $\left\{f^{(\nu)}\right\}$ be a sequence in $\operatorname{Hol}\left(M, X_{t}\right)$ such that there are some compact sets K in M and L in $X_{t}-C_{t}$ with $f^{(\nu)}(K) \cap L \neq \phi$, where C_{t} is the critical set for X_{t}. Then $\left\{f^{(\nu)}\right\}$ has a subsequence which converges in $\operatorname{Hol}\left(M, X_{t}\right)$.

Proof. By the assumption, we can find a sequence $\left\{p_{\mu}\right\}$ in M and a subsequence $\left\{f^{(\nu \mu)}\right\}$ of $\left\{f^{(\nu)}\right\}$ such that $\lim _{\mu \rightarrow \infty} p_{\mu}=p_{0} \in M$ and $\lim _{\mu \rightarrow \infty} f^{(\nu \mu)}\left(p_{\mu}\right)=q_{0}$ $\in X_{t}-C_{t}$ exist. Take the unit ball B with center at p_{0} with respect to a system of local coordinates in a neighborhood of p_{0} and an open neighborhood U of q_{0} with $U \Subset X_{t}-C_{t}$. Let $\delta:=\min _{q \in \partial U} d_{X_{t}}\left(q, q_{0}\right), W:=\left\{p \in B ; d_{B}\left(p, p_{0}\right)<\delta / 2\right\}$ and V be the connected component of the set $\left\{q \in X_{t} ; d_{X_{t}}\left(q, q_{0}\right)<\delta\right\}$ with $q_{0} \in V$, where ∂U denotes the boundary of U. We have then $p_{\mu} \in W$, $f^{(\nu \mu)}\left(p_{\mu}\right)$ $\in V$ and $d_{X_{t}}\left(f^{(\nu \mu)}\left(p_{\mu}\right), q_{0}\right)<\delta / 2$ for sufficiently large μ. So, for any $p \in W$,

$$
\begin{aligned}
d_{X_{t}}\left(f^{(\nu \mu)}(p), q_{0}\right) & \leqq d_{X_{t}}\left(f^{(\nu \mu)}(p), f^{(\nu \mu)}\left(p_{\mu}\right)\right)+d_{X_{t}}\left(f^{(\nu \mu)}\left(p_{\mu}\right), q_{0}\right) \\
& \leqq d_{B}\left(p, p_{\mu}\right)+d_{X_{t}}\left(f^{(\nu \mu)}\left(p_{\mu}\right), q_{0}\right) \\
& <\frac{\delta}{2}+\frac{\delta}{2}=\delta .
\end{aligned}
$$

This shows that $f^{(\nu \mu)}(W) \subset\left\{q \in X_{t} ; d_{X_{t}}\left(q, q_{0}\right)<\delta\right\}$. Since $f^{(\nu \mu)}(W) \cap V \neq \phi$ and $f^{(\nu \mu)}(W)$ is connected, we obtain $f^{(\nu \mu)}(W) \subset V$. On the other hand, we may consider V as a bounded domain in $\boldsymbol{C}^{N}=P_{N}(\boldsymbol{C})-H_{0}$. We can choose a subsequence $\left\{f^{\left(\nu_{\lambda}\right)}\right\}$ of $\left\{f^{(\nu \mu)}\right\}$ converging compactly on W. Obviously, $g:=\lim _{\lambda \rightarrow \infty}\left(f^{(\nu \lambda)} \mid W\right)$ satisfies the conditions $g(W) \subset X_{t}$ and $g(W) \nsubseteq C_{t}$. Now, let us consider the set M^{\prime} of all points p in M such that $\left\{f^{(\nu)}\right\}$ converges on some neighborhood W_{p} of p to a map g_{p} in $\operatorname{Hol}\left(W_{p}, X_{t}\right)$ with $g_{p}\left(W_{p}\right) \subset X_{t}$ and $g_{p}\left(W_{p}\right) \nsubseteq C_{t}$. As was shown in the above, M^{\prime} is not empty. Moreover, Lemma 41 implies that M^{\prime} is open and closed in M. It follows that $M^{\prime}=M$ because M is connected, whence we have Theorem 4.2 by the usual diagonal argument.
q. e. d.

§ 5. Families of holomorphic maps into X_{t}.

There are some applications of Theorem 4.2 to the study of families of holomorphic maps into X_{t}.

Theorem 5.1. Let M be a complex manifold and $r \geqq N-t+1$. Then,

$$
\operatorname{Hol}^{r}\left(M, X_{t}\right):=\left\{f \in \operatorname{Hol}\left(M, X_{t}\right) ; f \text { is of rank } \geqq r \text { somewhere }\right\}
$$

is a locally compact subset of $\operatorname{Hol}\left(M, X_{t}\right)$, where the rank of f means the rank of the Jacobian matrix of f.

Proof. Take an arbitrary $f_{0} \in \operatorname{Hol}^{r}\left(M, X_{t}\right)$. By Lemma 2.2, there is a
point p in M such that $f_{0}(p) \notin C_{t}$ and f_{0} is of rank $\geqq r$ at p. We make use of the Jacobian matrix of f at p with respect to arbitrarily fixed local coordinates in a neighborhood of p and fixed global coordinates on X_{t}. For an open neighborhood V of $f_{0}(p)$ with $V \Subset X_{t}-C_{t}$ and a real number $\delta>0$, $\mathfrak{H}_{\dot{\delta}}$ be the set of all maps $f \in \operatorname{Hol}^{r}\left(M, X_{t}\right)$ satisfying the conditions that $f(p)$ $\in V$ and the Jacobian matrix of f at p has a minor of order r with the absolute value $>\delta$. Clearly, \mathfrak{H}_{∂} is an open subset of $\operatorname{Hol}^{r}\left(M, X_{t}\right)$. By the assumption, at least one minor of order r of the Jacobian matrix of f_{0} at p has the absolute value $>\delta_{0}(>0)$. Then, $\mathfrak{l}_{\hat{\delta}_{0}}$ is a neighborhood of f_{0}. Moreover, any sequence $\left\{f^{(\nu)}\right\}$ in $\mathfrak{U}_{\hat{\delta}_{0}}$ satisfies the assumption of Theorem 4.2 and hence has a subsequence $\left\{f^{(\nu \mu)}\right\}$ converging in $\operatorname{Hol}\left(M, X_{t}\right)$. The limit of $\left\{f^{\left(\nu_{\mu}\right)}\right\}$ is obviously contained in $\operatorname{Hol}^{r}\left(M, X_{t}\right)$. This shows that $\mathfrak{l}_{\delta_{0}}$ is relatively compact in $\operatorname{Hol}\left(M, X_{t}\right)$.
q. e. d.

The following theorem is in a sense considered as a generalization of the classical Schottky's theorem (cf., [2], p. 23).

Theorem 5.2. Let M be a complex manifold, K an arbitrarily given compact set, p_{0} a point in K and q_{0} a point in $X_{t}-C_{t}$. Then, there is a compact set L in $X_{t}-C_{t}$ such that any holomorphic map f of M into X_{t} with $f\left(p_{0}\right)=q_{0}$ satisfies the condition $f(K) \subset L$.

Proof. If the conclusion is not valid, we can find compact subsets $L_{\nu}(\nu=1,2, \cdots)$ of $X_{t}-C_{t}$ with $L_{\nu} \subset \stackrel{\circ}{L}_{\nu+1}$ and $X_{t}=\cup_{\nu} L_{\nu}$ such that there is a holomorphic map $f^{(\nu)}$ of M into X_{t} with $f^{(\nu)}\left(p_{0}\right)=q_{0}$ and $f^{(\nu)}(K) L \pm_{\nu}$, where \dot{L}_{ν} denotes the interior of L_{ν}. The sequence $\left\{f^{(\nu)}\right\}$ has no convergent subsequence though it satisfies the assumption of Theorem 4.2, which is absurd. We have therefore Theorem 5.2.
q. e. d.

Before we state another application of Theorem 4.2, we give some comments to the results in the previous paper [5].

As in $\S 2$, we consider a partition $J=\left(J_{1}, \cdots, J_{k}\right)(k \geqq 2)$ of $I:=\{0,1, \cdots, N\}$ and a map $\chi:\{1,2, \cdots, t\} \rightarrow\{1,2, \cdots, k\}$. Using homogeneous coordinates $w_{0}: \cdots: w_{N}$ on $P_{N}(\boldsymbol{C})$ with the property (*), we define this time the set

$$
E_{J, \chi}:=\left\{w_{0}: \cdots: w_{N} \in P_{N}(\boldsymbol{C}) ; \sum_{i \bigcup_{l}} \alpha_{s}^{i} w_{i}=0,1 \leqq l \leqq k, l \neq \chi(s), 1 \leqq s \leqq t\right\}
$$

in $P_{N}(C)$. Obviously, $\bigcup \bigcup_{J, \chi} E_{J, \chi} \subset \bigcup_{J, \chi} C_{J, \chi}$.
We can prove the following improvement of Theorem B in [5].
Theorem 5.3. Every holomorphic map f of \boldsymbol{C}^{n} into X_{t} satisfies one of the following conditions (a) and (b):
(a) f is of constant,
(b) $f\left(\boldsymbol{C}^{n}\right) \subset E_{J, \chi}$ for some suitable J and χ.

Moreover, in the case (b), $f\left(\boldsymbol{C}^{n}\right)$ is included in a linear subvariety of dimension $k-1$ if J is a partition of I into k subclasses.

This is easily proved by Lemma 5 in [5] and the same argument as in the proof of Theorem B in it.

Remark 5.4. If we have the case (b) in Theorem 5.3, the number k is always $\leqq[N /(t+1)]$ (cf., [5], § 7).

We have also the similar improvement of Theorem A in [5].
Theorem 5.5. Every holomorphic map of a complex manifold M excluding a regular thin analytic subset S into X_{t} satisfies one of the conditions:
(a) f can be extended to a holomorphic map of M into $P_{N}(\boldsymbol{C})$.
(b) $f(M-S) \subset E_{J, \chi}$ for some suitable J and χ.

Remark 5.6. If we have the case (b) in Theorem 5.5 as was shown in the proof of Theorem A in [5], $f(M-S)$ is included in a linear subvariety of dimension $N-(k-1) t \leqq N-t$ because $k \geqq 2$. So, f is of rank $\leqq N-t$ everywhere, which shows Theorem A in [5].

Now, we give a generalization of the classical Landau's theorem.
Theorem 5.7. For any given $\delta>0$ and point q in $X_{t}-C_{t}$, there exists a real number $R(0<R<+\infty)$ depending only on δ and q with the following property:

If $\rho>R$, then there is no holomorphic map $f(z):=1: f_{1}(z): \cdots: f_{N}(z)$ of a disc $\{|z|<\rho\}$ in \boldsymbol{C} into X_{t} such that $f(0)=q$ and

$$
\left|f_{1}^{\prime}(0)\right|^{2}+\cdots+\left|f_{N}^{\prime}(0)\right|^{2} \geqq \delta^{2} .
$$

Proof. Assume the contrary. We can find a sequence $\left\{R_{\nu}\right\}$ of real numbers with $R_{1}<R_{2}<\cdots$ and $\lim _{\nu \rightarrow \infty} R_{\nu}=\infty$ such that there is a holomorphic map $f^{(\nu)}$ of $D_{\nu}:=\left\{|z|<R_{\nu}\right\}$ into X_{t} with $f^{(\nu)}(0)=q$ and

$$
\left|f_{1}^{(\nu) \prime}(0)\right|^{2}+\cdots+\left|f_{N}^{(L)}(0)\right|^{2} \geqq \delta^{2}
$$

for each ν. As is easily seen by Theorem 4.2 and the diagonal argument, we can choose a subsequence $\left\{f^{(\nu \mu)}\right\}$ of $\left\{f^{(\nu)}\right\}$ with the property that for any μ the sequence

$$
f^{(\nu \mu)}, f^{(\nu \mu+1)}, f^{(\nu \mu+2)}, \ldots
$$

converges in $\operatorname{Hol}\left(D_{\mu}, X_{t}\right)$. Then, $\left\{f^{(\nu \mu)}\right\}$ may be considered to converge to a holomorphic map $f: C \rightarrow X_{t}$. Obviously, $f(0)=q \notin E_{J, \chi}$ for any J and χ and f is not of constant. This contradicts Theorem 5.3, We have therefore Theorem 5.7.
q. e.d.

§ 6. Holomorphic automorphisms of X_{1}.

The purpose of this section is to study holomorphic automorphisms of the space X_{1}, namely, $P_{N}(\boldsymbol{C})$ minus $N+2$ hyperplanes in general position. We shall prove

Theorem 6.1. Every holomorphic automorphism of X_{1} is given by a linear automorphism of $P_{N}(\boldsymbol{C})$. Moreover, Aut $\left(X_{1}\right)$ is isomorphic with the symmetric group S_{N+2} on $N+2$ elements.

For the proof, we need the following lemma on polynomials of N variables z_{1}, \cdots, z_{N}.

Lemma 6.2. If $k \leqq N+1$ and
(1) $\left.\sum_{i=1}^{k} a_{i} z_{1}^{l_{i 1}} \cdots z_{N^{l}}^{l_{i N}(1+}+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}}=0$,
then we have
(2) $\sum_{i=1}^{k} a_{i} z_{1}^{l_{i 1}} \cdots a_{N}^{l_{i}} z_{N+1}^{l_{i N+1}}=0$
for another new variable z_{N+1}.
Proof. The proof is given by double induction on N and k. If $k=1$, Lemma 62 is evident for any N. In the case of $k=2$ and $N=1$, from the identity

$$
a_{1} z_{1}^{l_{11}}\left(1+z_{1}\right)^{l_{12}}+a_{2} z_{1}^{l_{21}}\left(1+z_{1}\right)^{l_{22}}=0,
$$

we conclude easily $a_{1}=-a_{2}, l_{11}=l_{21}$ and $l_{12}=l_{22}$. So, Lemma 6.2 is valid in the case of $N=1$. For our purpose, it suffices to prove Lemma 6.2 under the assumption that it is true for polynomials of $\leqq N-1$ variables and polynomials of N variables with $\leqq k-1$ terms, where $2 \leqq N$ and $2 \leqq k \leqq N+1$. Here, it may be assumed that $l_{i N+1}=0$ for some i and $l_{j N+1}>0$ for some $j_{\text {. }}$ For, if not, consider the polynomial whose terms are constructed by the division of a common factor in (1). Changing indices, we may assume that $l_{i N+1}=0(1 \leqq i \leqq r)$ and $l_{i N+1}>0(r+1 \leqq i \leqq k)$. In (1), putting $z_{N}=-\left(1+z_{1}+\right.$ $\left.\cdots+z_{N-1}\right)$, we obtain

$$
\sum_{i=1}^{r} a_{i} z_{1}^{l_{11}} \cdots z_{N-1}^{l_{N N-1}}\left(-\left(1+z_{1}+\cdots+z_{N-1}\right)\right)^{l_{i N}}=0
$$

It follows from the induction assumption that

$$
\sum_{i=1}^{r} a_{i} z_{1}^{l_{i 1}} \cdots z_{N-1}^{l_{N-1}-1} z_{N}^{l_{i N}}=0
$$

Then, by (1), we have also

$$
\sum_{i=r+1}^{k} a_{i} z_{1}^{l_{i 1}} \cdots z_{N}^{l_{i N}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}}=0
$$

Since $k-r<k$, we get by the induction hypothesis on k

$$
\sum_{i=r+1}^{k} a_{i} z_{1}^{l_{i 1}} \cdots z_{N}^{l_{i N}} z_{N+1}^{l_{i N}+1}=0
$$

and hence the identity (2).
q.e.d.

Proof of Theorem 6.1. According to Theorem 6 in [5], every holomorphic automorphism f of X_{1} can be extended to a bimeromorphic map of $P_{N}(\boldsymbol{C})$ onto itself. As is well-known, every meromorphic function on $P_{N}(\boldsymbol{C})$ is rational. Therefore, using the inhomogeneous coordinates $z_{1}=w_{1} / w_{0}, \cdots$, $z_{N}=w_{N} / w_{0}$ and $u_{1}=v_{1} / v_{0}, \cdots, u_{N}=v_{N} / v_{0}$ for homogeneous coordinates $w_{0}: w_{1}$: $\cdots: w_{N}$ and $v_{0}: v_{1}: \cdots: v_{N}$ on $P_{N}(\boldsymbol{C})$ with the property (*), we can write $f=$ $\left(f_{1}, \cdots, f_{N}\right)$ with rational functions $u_{i}=f_{i}(z)=P_{i}(z) / Q_{i}(z)(1 \leqq i \leqq N)$, where $P_{i}(z)$ and $Q_{i}(z)$ are mutually prime polynomials in z_{1}, \cdots, z_{N}. Then, any prime factor of each P_{i} or Q_{i} is necessarily a constant multiple of the polynomial $z_{1}, z_{2}, \cdots, z_{N}$ or $1+z_{1}+\cdots+z_{N}$. Indeed, if not, we can find easily a point $a=\left(a_{1}, \cdots, a_{N}\right)$ in X_{1} with $f(a) \notin X_{1}$. Accordingly, we can write
(3) $\quad u_{i}=f_{i}(z)=a_{i} z_{1}^{l_{i 1}} \cdots z_{N}^{l_{i N}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}}(1 \leqq i \leqq N)$,
where $l_{i j}$ are not necessarily non-negative integers. Moreover, since a rational function $1+f_{1}(z)+\cdots+f_{N}(z)$ has non-zero finite values everywhere on X_{1}, we can write also

$$
\begin{equation*}
1+u_{1}+\cdots+u_{N}=a_{N+1} z_{1}^{l_{N+11}} \cdots z_{N}^{l_{N+1 N}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{N+1 N+1}} . \tag{4}
\end{equation*}
$$

The same argument can be applicable to the inverse map $g:=f^{-1}$ of f. It can be written $g=\left(g_{1}, \cdots, g_{N}\right)$ with the rational functions

$$
\begin{equation*}
z_{j}=g_{j}(u)=b_{j} u_{1}^{m_{j 1}} \cdots u_{N}^{m_{j N}}\left(1+u_{1}+\cdots+u_{N}\right)^{m_{j N+1}} \quad(1 \leqq j \leqq N), \tag{5}
\end{equation*}
$$

and moreover we have

$$
\begin{equation*}
1+z_{1}+\cdots+z_{N}=b_{N+1} u_{1}^{m_{N+11}} \cdots u_{N}^{m_{N+1 N}}\left(1+u_{1}+\cdots+u_{N}\right)^{m_{N+1 N+1}} . \tag{6}
\end{equation*}
$$

Substituting (3) and (4) into (5) and (6), we get

$$
\begin{align*}
& z_{j}=c_{j} z_{1}^{n_{j 1}} \cdots z_{N}^{n_{j N}}\left(1+z_{1}+\cdots+z_{N}\right)^{n_{j N+1}} \quad(1 \leqq j \leqq N) \tag{7}\\
& 1+z_{1}+\cdots+z_{N}=c_{N+1} z_{1}^{n_{N+11}} \cdots z_{N}^{n_{N+1 N}}\left(1+z_{1}+\cdots+z_{N}\right)^{n_{N+1 N+1}}
\end{align*}
$$

where $c_{j}=b_{j} a_{1}^{m_{j 1}} \cdots a_{N+1}^{m_{j N+1}}(1 \leqq j \leqq N+1)$ and $n_{j i}=\sum_{k=1}^{N+1} m_{j k} l_{k i}(1 \leqq i, j \leqq N+1)$, i. e., the matrix ($n_{j i}$) is the product of the matrices $\left(m_{j k}\right)$ and ($l_{k j}$). In (7), by transposing factors with negative powers into the left side of the equations and by observing the coefficients of each term in their expansions, we see $c_{j}=1$ and $n_{j i}=\delta_{j i}$, where $\delta_{j i}=1$ if $i=j$ and $=0$ if $i \neq j$. In particular, $a_{i} \neq 0, b_{j} \neq 0$ and $\operatorname{det}\left(l_{i j}\right)=\operatorname{det}\left(m_{i j}\right)= \pm 1$. On the other hand, putting $l_{0,}^{\prime}=$ $-\min \left\{0, l_{1 j}, l_{2 j}, \cdots, l_{N+1 j}\right\}, l_{i j}^{\prime}:=l_{i j}+l_{0 j}^{\prime}(\geqq 0), a_{0}^{\prime}=1, \quad a_{i}^{\prime}=a_{i}(1 \leqq i \leqq N)$ and $a_{N+1}^{\prime}=-a_{N+1}$, we get by (3) and (4)
(8) $\sum_{i=0}^{N+1} a_{i}^{\prime} z_{1}^{l_{11}} \cdots z_{N}^{l_{i N}^{\prime}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}^{\prime}}=0$,
where for each $j(1 \leqq j \leqq N+1)$ there is at least one index i with $l_{i j}^{\prime}=0$.

Let $\{0,1, \cdots, N+1\}=I_{1} \cup \cdots \cup I_{\kappa_{0}}\left(I_{\kappa} \neq \phi, I_{\kappa} \cap I_{\kappa^{\prime}}=\phi\right.$ if $\left.\kappa \neq \kappa^{\prime}\right)$ be a partition with the property that for any κ

$$
\sum_{i=I_{r}} a_{a_{1}^{\prime}}^{z_{1}^{\prime} l_{i 1}^{\prime}} \cdots z_{n}^{l_{i N}^{\prime}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}^{\prime}}=0
$$

where we choose it so that the number κ_{0} of classes is as large as possible. Clearly, $\# I_{\kappa} \geqq 2$ for any $\kappa\left(1 \leqq \kappa \leqq \kappa_{0}\right)$. After a suitable change of indices, it may be assumed that $I_{1}=\{0,1, \cdots, k\}(k \geqq 1)$. Assume that $k \leqq N$. By Lemma 6.2,

$$
\sum_{i=0}^{k} a_{i}^{\prime} z_{1}^{l_{i 1}^{\prime}} \cdots z_{N}^{l_{i N}^{l_{N}^{\prime}}}\left(1+z_{1}+\cdots+z_{N}\right)^{l_{i N+1}^{\prime}}=0
$$

implies

$$
\sum_{i=0}^{k} a_{i}^{\prime} z_{1}^{l_{i 1}^{\prime}} \cdots z_{N}^{l_{i N}^{\prime}} z_{N+1}^{l_{i N+1}^{\prime}}=0
$$

In this situation, we have $l_{0 j}^{\prime}=l_{1 j}^{\prime}=\cdots=l_{k j}^{\prime}(1 \leqq j \leqq N+1)$. Indeed, e. g., if $l_{01}^{\prime}=l_{11}^{\prime}=\cdots=l_{k^{\prime} 1}^{\prime}$ and $l_{i_{1}}^{\prime} \neq l_{01}^{\prime}$ for any i with $k^{\prime}+1 \leqq i \leqq k$ ($k^{\prime} \leqq k-1$), we see easily

$$
\sum_{i=0}^{k_{i}^{\prime}} a_{i}^{\prime} z_{1}^{l_{i 1}^{\prime}} \cdots z_{N+1}^{l_{N N+1}^{\prime}}=0 \quad \text { and } \sum_{i=k^{\prime}+1}^{k} a_{i}^{\prime} z_{1}^{l_{i 1}^{\prime}} \cdots z_{N+1}^{l_{i N+1}^{\prime}}=0,
$$

which contradicts the property of κ_{0}. Now, it holds that

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1 & l_{01}^{\prime} \cdots & l_{0 N+1}^{\prime} \\
1 & l_{11}^{\prime} & \cdots & l_{i N+1}^{\prime} \\
& \cdots & \\
1 & l_{N+11}^{\prime} & \cdots & l_{N+1 N+1}^{\prime}
\end{array}\right| \\
& \quad=\left|\begin{array}{clc}
1 & l_{01}^{\prime} \cdots & l_{0 N+1}^{\prime} \\
0 & l_{11} \cdots & l_{1 N+1} \\
& \cdots & \\
0 & l_{N+11} & \cdots \\
l_{N+1 N+1}
\end{array}\right|=\operatorname{det}\left(l_{i j}\right)= \pm 1 .
\end{aligned}
$$

On the other hand, this is equal to zero because at least two rows are equal to each other. This is a contradiction. We conclude $k=N+1$ or $\kappa_{0}=1$.

In (8), after a suitable change of indices, let $l_{i N+1}^{\prime}=0(0 \leqq i \leqq r)$ and $l_{i N+1}^{\prime}$ $\neq 0(r+1 \leqq i \leqq N+1)$. If $r \leqq N-1$, substituting $z_{N}=-\left(1+z_{1}+\cdots+z_{N-1}\right)$ in (8), we obtain

$$
\sum_{i=0}^{r} a_{i}^{\prime} z_{1}^{l_{i 1}^{\prime}} \cdots z_{N-1}^{l_{i N-1}^{\prime}}\left(-\left(1+z_{1}+\cdots+z_{N-1}\right)\right)^{l_{i N}^{\prime}}=0
$$

and hence by Lemma 6.2 the identity

$$
\sum_{i=0}^{r} a_{i}^{\prime} z_{1}^{i_{i 1}^{\prime}} \cdots z_{N}^{l_{i N}^{\prime}}=0
$$

which contradicts the above shown fact $\kappa_{0}=1$. Therefore, there is at most one index i with $l_{i N+1}^{\prime}>0$. By a suitable non-singular linear transformation of variables, it can be similarly proved that for any $j(1 \leqq j \leqq N+1)$ there is at most one index i with $l_{i j}^{\prime}>0$. Moreover, in this situation we have at most one index j with $l_{i j}^{\prime}>0$ for any i. Indeed, if not, two distinct rows of the matrix (11) are equal to ($1,0, \cdots, 0$) and then $\operatorname{det}\left(l_{i j}\right)=0$. In conclusion, we have a subset $\left\{i_{1}, i_{2}, \cdots, i_{N+1}\right\}\left(i_{l} \neq i_{m}\right.$ if $\left.l \neq m\right)$ of $\{0,1, \cdots, N+1\}$ such that any $l_{i j}^{\prime}$ is equal to zero except $l_{i 11}^{\prime}, l_{i 22}^{\prime}, \cdots, l_{i_{N+1} N+1}^{\prime}$. Then $\operatorname{det}\left(l_{i j}\right)=l_{i_{11}}^{\prime} l_{i 22}^{\prime} \cdots$ $l_{i_{N+1} N+1}^{\prime}= \pm 1$. Since $l_{i j}^{\prime} \geqq 0$, we get $l_{i 11}^{\prime}=l_{i 22}^{\prime}=\cdots=l_{i_{N+1} N+1}^{\prime}=1$.

We put $l_{i 0}^{\prime}=1$ if $l_{i 1}^{\prime}=l_{i 2}^{\prime}=\cdots=l_{i N+1}^{\prime}=0$ and $l_{i 0}^{\prime}=0$ if $l_{i j}^{\prime}=1$ for some j. Then, rewriting the representation (4) of f by homogeneous coordinates $w_{0}: w_{1}: \cdots: w_{N}$ and $v_{0}: v_{1}: \cdots: v_{N}$, we have

$$
\begin{equation*}
v_{i}=a_{i}^{\prime} w_{0}^{l_{i 0}^{\prime}} w_{1}^{l_{i 1}^{\prime}} \cdots w_{N}^{l_{i N}^{\prime}}\left(w_{0}+w_{1}+\cdots+w_{N}\right)^{l_{i N+1}^{\prime}} \quad(0 \leqq i \leqq N) \tag{11}
\end{equation*}
$$

and the identity

$$
\begin{equation*}
v_{0}+v_{1}+\cdots+v_{N}=a_{N+1}^{\prime \prime} w_{0}^{l_{N+10}^{\prime}} w_{1}^{l_{N+11}^{\prime}} \cdots w_{N}^{l_{N+1 N}^{\prime}}\left(w_{0}+\cdots+w_{N}\right)^{l_{N+1 N+1}^{\prime}}, \tag{12}
\end{equation*}
$$

where $a_{i}^{\prime}(0 \leqq i \leqq N)$ and $a_{N+1}^{\prime \prime}$ are uniquely determined up to a non-zero constant common factor by the identity (12) and ($l_{i j}^{\prime}$) $(0 \leqq i, j \leqq N+1)$ is a nonsingular matrix whose components are either 1 or 0 . The formulas (11) and (12) show that any given f in $\operatorname{Aut}\left(X_{1}\right)$ is a linear automorphism of $P_{N}(\boldsymbol{C})$ which induces a permutation among the spaces $H_{0}, H_{1}, \cdots, H_{N+1}$. This completes the proof of Theorem 61.

Department of Mathematics
 Faculty of General Education
 Nagoya University
 Furo-cho, Chikusa-ku
 Nagoya, Japan

References

[1] H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leur applications, Ann. Sci. Ecole Norm. Sup., 45 (1928), 255-346.
[2] J. Dufresnoy, Théorie nouvelle des familles complexes normales; applications à l'étude des fonctions algebroïdes, Ann. Sci. Ecole Norm. Sup. (3) 61 (1944), 1-44.
[3] D. Eisenman, Intrinsic measure on complex manifolds and holomorphic mappings, Mem. Amer. Math. Soc., No. 96 (1970).
[4] H. Fujimoto, On holomorphic maps into a taut complex spaces, Nagoya Math. J., 46 (1972), 49-61.
[5] H. Fujimoto, Extensions of the big Picard's theorem, Tôhoku Math. J., 24 (1972), 415-422.
[6] W. Kaup, Reelle Transformationsgruppen und invarianten Metriken auf komplexen Räumen, Invent. Math., 3 (1967), 43-70.
[7] W. Kaup, Some remarks on the automorphism groups of complex spaces, Rice Univ. Studies, 56 (1970), 181-186.
[8] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc., 76 (1970), 49-51.
[9] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 19 (1967), 460-480.
[10] T. Nishino, Sur une propriété des familles de fonctions analytiques de deux variables complexes, J. Math. Kyoto Univ., 4 (1965), 255-282.
[11] H. Wu, Normal families of holomorphic mappings, Acta Math., 119 (1967), 193-233.
[12] H. Wu, The equidistribution theory of holomorphic curves, Ann. of Math. Studies, Princeton, 1970.

[^0]: 1) In this paper, a complex manifold is always assumed to be connected and σ compact.
