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A supplement to my paper “On zeta-theta functions”

By Koji KATAYAMA
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The purpose of the present paper is to supplement our previous paper
[1] in showing that the zeta-theta function introduced there is essentially
equal to the non-holomorphic Eisenstein series.

By Theorem 4, in [1], the zeta-theta functions {;(w, s) for j=0,1, have
the following form:
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K,(2) is the modified Bessel function.

Then we can write Z(w, s) in the following form:
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On the other hand, it is known that the non-holomorphic Eisenstein series
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where the sum is over all (m, n)e Z* except for (0, 0), has the following
expansion (see, for example, C.L. Siegel [2], p. 290):
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where the last integral equals
$—1/2
2)  Keus2mymn).

Comparing the infinite series expressions of Z(w, s) and Q(w, s), we get
the following
THEOREM.

Cilw, 8)=(1/2)0 (@) '(1/2)(s+ 1))~ VPCH0p=12Q(w, (1/2)(s+1))
for j=0, 1.
REMARK.

1) From this theorem, we see that the series expression of Z(w, s) con-
verges for Re s> 1.

2) Since the Eisenstein series Q(w, s) is invariant by the modular sub-
stitutions, we can derive, from this theorem, the transformation formula of
¢ (o, s), independent of [L].

3) We know that ;(w, s) satisfies the functional equation

Cj(w’ S) - Cj(a)v —S)

(see [1], 4.1). Therefore we can derive, from this theorem, the functional
equation of the Eisenstein series Q(w, $).
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