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\S 0. Introduction.

Let $K_{M}$ be the canonical line bundle of a compact complex manifold $M$

If dim $H^{0}(M, O(K_{M}^{\otimes m}))=N+1\geqq 2$ we have a meromorphic maPping $\Phi_{mK}$ : $M\rightarrow P^{N}$

of $M$ into $P^{N}$ . When $m$ is a positive integer the meromorphic mapping $\Phi_{mK}$

is called pluricanonical mapping. In this case the Kodaira dimension $\kappa(M)$ of
$M$ is, by definition

$\kappa(M)=\max_{m\in L}$ dim $\Phi_{mK}(M)$ ,

where $L=\{m\in N|\dim H^{0}(M, \mathcal{O}(K_{M}^{\otimes m}))\geqq 2\}$ . When $H^{0}(M, o(K_{M}^{\otimes m}))=0$ for all
positive integers, we define the Kodaira dimension $\kappa(M)$ of $M$ to be $-\infty$ .
When dim $H^{0}(M, O(K_{M}^{\otimes m}))\leqq 1$ for all positive integers $m$ and there exists a
positive integer $m_{0}$ such that dim $H^{0}(M, \mathcal{O}(K_{M}^{\otimes m_{0}}))=1$ , we define $\kappa(M)=0$ . As
for the fundamental properties of Kodaira dimension, see [3].

By a Moi\v{s}ezon manifold $V$ we mean an n-dimensional compact complex
manifold that has $n$ algebraically independent meromorphic functions.

The main purpose of the present paper is to prove the following
MAIN THEOREM. Let $\pi:M\rightarrow S$ be a fibre bundle over a compact complex

manifold $S$ whose fibre and structure group are a Moi\v{s}ezon manifold $V$ and
the group Aut (V) of analytic automorphisms of $V$ respectively. Then we have
an equality

$\kappa(M)=\kappa(V)+\kappa(S)$ .
To prove Main Theorem we need to analyze the action of Aut (V) on the

vector space $H^{0}(V, O(K_{V}^{\otimes m}))$ . More generally the group Bim (V) of all bimero-
morphic mappings of $V$ acts on $H^{0}(V, O(K_{V}^{\otimes m}))$ for any positive integer $m$ .
Hence we have a representation $\rho_{m}$ : Bim $(V)\rightarrow GL(H^{0}(V, \mathcal{O}(K_{V}^{\otimes m})))$ . We call
this representation pluricanonical representation. A group $G$ is called periodic
if each element $g$ of $G$ is of finite order. In \S 1 we shall prove the following
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THEOREM 1. Let $V$ be a Moi\v{s}ezon manifold.
1) $\rho_{m}(Bim(V))$ is a Periodic subgroup of $GL(H^{0}(V, O(K_{V}^{\otimes m})))$ for every

Positive integer $m$ .
2) The representatiOn $\rho_{m}$ is equivalent to a unitary rePresentation.
3) When $\Phi_{mK}(V)$ is not a ruled variety, $\rho_{m}(Bim(V))$ , hence a fortiori

$\rho_{m}(Aut(V))$ is a finite group.
In \S 2 we shall prove Main Theorem.
Main Theorem was first conjectured by S. Iitaka. He proved the theorem

when the fibre $V$ is an abelian variety. He also gave counter examples of
the above two theorems, when we only assume that the manifold $V$ is a
compact complex manifold. (See Remark 1, Remark 4 below.)

\S 1. Pluricanonical representations and Proof of Theorem 1.

Let $K_{V}$ be the canonical line bundle of an n-dimensional compact complex
manifold $V$. For any positive integer $m$ we can consider an element $\varphi$ of
$H^{0}(V, O(K_{V}^{\otimes m}))$ as a holomorphic m-tuple differential n-form. That is, in a
coordinate neighborhood $\mathcal{U}$ of $V$ with a system of local coordinates $(z_{1}, \cdots , z_{n})$ ,
$\varphi$ is expressed in the form

$\varphi=f(z_{1}, \cdots z_{n})(dz_{1}\Lambda\ldots\Lambda dz_{n})^{m}$

where $f(z_{1}, \cdots, z_{n})$ is holomorphic in $\mathcal{U}$ .
Let $g:W\rightarrow V$ be a generically surjective meromorphic maPping of a

compact complex manifold $W$ into a compact complex manifold $V$ of the same
dimension $n$ . Then for any element $\varphi$ of $H^{0}(V, O(K_{V}^{\otimes m}))$ we can define the
pull back $g^{*}(\varphi)$ of $\varphi$ as an m-tuple n-form. Since the point set where $g$ is
not holomorphic is of at least codimension 2, by Hartog’s theorem, $g^{*}(\varphi)$ is
a holomorphic m-tuple n-form on $W$ and defines an element of $H^{0}(W, \mathcal{O}(K_{W}^{\otimes m}))$ .
Moreover, we can define for a meromorphic maPping $g$ the homomorphism of
the free parts of the cohomology groups

$g_{k}^{*}:$ $H^{k}(V, Z)_{0}\rightarrow H^{K}(W, Z)_{0}$

as follows; since $g$ is defined by an analytic subvariety (graph of g) of $W\times V$,
we take a nonsingular model $W^{*}$ of it with canonical projections $f$ and $h$ ,

$WVf\underline{\int_{g}\backslash W^{*}}h$

and consider a homomorphism $f_{*}^{2n-k}$ : $H_{2n-k}(W^{*})\rightarrow H_{2n-k}(W)$ . We define
$f_{k}^{*}:$ $H^{k}(W^{*})_{0}\rightarrow H^{k}(W)_{0}$ to be the dual of the image by $f_{*}^{2n-k}$ of Poincar\’e dual
and also dePne $g_{k}^{*}=h_{k}^{*}\cdot f_{k}^{*}$ . It is easy to check that the definition of $g_{k}^{*}$ is
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independent of the choice of $W^{*}$ . By this homomorphism we obtain the
homomorphism

$g_{k}^{*}:$ $H^{k}(V, C)\rightarrow H^{k}(W, C)$ .
We can regard $H^{0}(V, O(K_{V}))$ and $H^{0}(W, O(K_{W}))$ as subspaces of $H^{n}(V, C)$

and $H^{n}(W, C)$ , respectively. Then for any element $\varphi$ of $H^{0}(V, O(K_{V}))$ we
have

$g^{*}(\varphi)=g_{n}^{*}(\varphi)$ .
PROPOSITION 1. Let $g$ be a bimeromorphic mapping of an n-dimensional

compact complex manifold V. If we have

$ g^{*}(\varphi)=\alpha\varphi$ , $\alpha\in C$ ,

for some non zero element $\varphi$ of $H^{0}(V, O(K_{V}^{\otimes m}))$ , then $\alpha$ is an algebraic integer.
Moreover the degree $[Q(\alpha);Q]$ of the algebraic extension $Q(\alpha)$ over $Q$ is bounded
above by the constant $N(\varphi)$ , which dePends on $\varphi$ but does not dePend on the
bimeromorphic maPping $g$.

PROOF. Case 1. $m=1$ . $\varphi$ is a holomorphic n-form. Since we have
$g^{*}(\varphi)=g_{n}^{*}(\varphi)$ ,

$\alpha$ is an eigenvalue of the automorphism $g_{n}^{*}$ of $H^{n}(V, Z)_{0}$ . Hence $\alpha$ is an
algebraic integer. The degree of the minimal equation of $\alpha$ with coefficients
in $Z$ is bounded above by the n-th Betti number $b_{n}(V)$ of $V$ .

Case 2. $m\geqq 2$ . Let $\{\mathcal{V}_{i}\}_{i\in I}$ be a sufficiently fine finite open covering of
$V$, where $\mathcal{V}_{i}$ is a coordinate neighborhood of $V$ with a system of local
coordinates $(z_{i}^{1}, \cdots , z_{i}^{n})$ . In terms of these local coordinates $\varphi$ is expressed in
the form

$\varphi_{i}(z_{t}^{1}, \cdots z_{i}^{n})(dz_{i}^{1}\wedge\cdots\wedge dz_{i}^{n})^{m}$ ,

where $\varphi_{i}(z_{i}^{1}, \cdots , z_{i}^{n})$ is holomorphic in $\mathcal{V}_{i}$ . Let $K$ be a complex manifold which
is a total space of the canonical line bundle $K_{V}$ . The complex manifold $K$

is covered by coordinate neighborhoods $\mathcal{U}_{i}$ with a system of coordinates
$(z_{i}^{1}, \cdots , z_{i}^{n}, w_{i})$ . $\mathcal{U}_{i}$ is complex analytically isomorphic to $\mathcal{V}_{i}\times C$. We shall
dePne a subvariety $V^{\prime}$ of $K$ by equations

$(w_{i})^{m}=\varphi_{i}(z_{i}^{1}, \cdots z_{i}^{n})$ ,

for any $i\in I$. It is easy to see that a holomorphic n-form $w_{i}dz_{i}^{1}\wedge\cdots\Lambda dz_{i}^{n}$

on $\mathcal{U}_{i}$ defines a global holomorphic n-form $\Psi$ on $K$.
Moreover a bimeromorphic mapping $g$ induces a bimeromorphic maPping

$g_{K}$ of $K$. In fact, if $g(\mathcal{V}_{i})\subset \mathcal{V}_{j}$ , then $g_{K}|_{\mathcal{U}_{i}}$ : $\mathcal{U}_{i}\rightarrow \mathcal{U}_{j}$ is expressed by the
above local coordinates in the form

$(z_{i}^{1}, \cdots z_{i}^{n}, w_{i})\rightarrow(g^{1}(z_{i}),$ $\cdots$ $g^{n}(z_{\ell}),$ $(\det\frac{\partial(g^{1}(z_{i}),\cdot.\cdot.\cdot.’ g^{n}(z_{i}))}{\partial(z_{i}^{1},,z_{i}^{n})})^{-1}w_{i})$ .
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Let $m_{\beta}$ be an analytic automorphism of $K$ defined by

$m_{\beta}$ ; $(z_{i}^{1}, \cdots z_{i}^{n}, w_{i})\rightarrow(z_{i}^{1}, \cdots z_{i}^{n}, \beta w_{i})$ ,

for each $i\in I$, where $\beta$ is one of the m-th root of $\alpha$ .
Since $ g^{*}(\varphi)=\alpha\varphi$ , the bimeromorphic mapping $m_{\beta}\circ g_{K}$ induces a bimero-

morphic mapping of $V^{\prime}$ onto $V^{\prime}$ .
By a suitable sequence of monoidal transformations of the manifold $K$

with non-singular centers, we can obtain a manifold $\tilde{K}$ and the strict trans-
form $W$ of $V^{\prime}$ , which is a non-singular model of the variety $V^{\prime}$ ([2]). Then
the bimeromorphic maPping $m_{\beta}\circ g_{K}$ of $K$ can be extended to the bimero-
morphic mapping $\tilde{h}$ of $\tilde{K}$ which induces a bimeromorphic mapping $h$ of $W$.

Let $f_{1}$ : $W\rightarrow V^{\prime}$ be a surjective holomorphic mapping, which is induced
from the inverse mapping of the above monoidal transformations of $K$. Let
$f_{2}$ : $V^{\prime}\rightarrow V$ be a finite surjective holomorphic map defined by

$f_{2}$ : $(z_{i}^{1}, \cdots z_{i}^{n}, w_{i})\rightarrow(z_{i}^{1}, \cdots z_{i}^{n})$ .
We set $f=f_{2}\circ f_{1}$ .

The holomorphic n-form $\Psi$ can be lifted to a holomorphic n-form $\tilde{\Psi}$ on
$\tilde{K}$, which induces a holomorphic n-form $\omega$ on $W$. From the arguments above
it is easy to see that

$\omega^{\emptyset m}=f^{*}(\varphi)$ .
Moreover since $(m_{\beta}\circ g_{K})*(\Psi)=\beta\Psi$ , it follows

$ h^{*}(\omega)=\beta\omega$ and $\beta^{m}=\alpha$ .

Hence by Case l, $\beta$ is an algebraic integer and $[Q(\beta):Q]\leqq b_{n}(W)$ . This implies
$\alpha$ is an algebraic integer and $[Q(\alpha):Q]\leqq b_{n}(W)$ . Since $b_{n}(W)$ depends only
on $\varphi$ and does not depend on $g$ , we complete the proof.

PROPOSITION 2. Let $V,$ $g,$ $\varphi$ and $\alpha$ be the same as those of Proposition1.
Then we have $|\alpha|=1$ . Moreover when $V$ is a Moi\v{s}ezon manifold $\alpha$ is a root
of unity.

PROOF. We use the same notations as above. By $(\varphi A \overline{\varphi})^{1\prime m}$ we denote
a differential $2n$ -form on $V$ defined over $\mathcal{V}_{i}$ in the form

$(\sqrt{-1})^{-n^{2}}|\varphi_{i}(z_{i}^{1}, \cdots z_{i}^{n})|^{2/m}dz_{i}^{1}\wedge\cdots$ A $dz_{i}^{n}\wedge d\overline{z}_{i}^{1}\wedge\cdots\wedge d_{Z_{i}}^{w}$ .
We set

$\Vert\varphi\Vert=(\int_{V}(\varphi A \overline{\varphi})^{1/m})^{1/2}$

Then we have

$0<\Vert\varphi\Vert^{2}=\int_{V}(\varphi\wedge\overline{\varphi})^{1/m}=\int_{V}(g^{*}\varphi\wedge\overline{g^{*}\varphi})^{1/m}=\Vert g^{*}\varphi\Vert^{2}=|\alpha|^{2/m}\Vert\varphi\Vert^{2}$

Hence we have $|\alpha|=1$ .
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Next we shall prove the latter half of the Proposition. By a theorem of
Moi\v{s}ezon, for any $Moi\check{s}ezon$ manifold there exists a non-singular projective
model of it. Hence we may assume $V$ to be projective. We fix an imbed-
ding of $V$ into $P^{N}$ for some $N$ and set $I(V)$ the defining ideal of $V$ . For an
automorphism $\sigma$ of the complex number field and a homogeneous polynomial
$f(z)=f(z_{0}, \cdots, z_{N})$ , we define $f^{\sigma}(z)=(f(z_{0}^{\sigma^{-1}}, \cdots , z_{N}^{\sigma^{-1}}))^{\sigma}$ and also define $I(V)^{\sigma}=$

$\{f^{\sigma} ; f\in I(V)\}$ . Another projective manifold $V^{\sigma}$ is defined by the ideal $I(V)^{\sigma}$ .
Then a meromorphic mapping $g^{\sigma}$ of $V^{\sigma}$ is defined to be $g^{\sigma}(z)=(g(z^{\sigma^{-1}}))^{\sigma}$

symbolically. Similarly for an element $\varphi$ of $H^{0}(V, O(K_{V}^{\otimes m}))$ we define an
element $\varphi^{\sigma}$ of $H^{0}(V^{\sigma}, \mathcal{O}(K_{V^{\sigma}}^{\otimes m}))$ . Then it follows $(g^{\sigma})^{*}\varphi^{\sigma}=(g^{*}\varphi)^{\sigma}$ . In fact

$(g^{\sigma})^{*}\varphi^{\sigma}(z)=\varphi^{\sigma}(g^{\sigma}(z))=(\varphi((g^{\sigma}(z))^{\sigma^{-1}}))^{\sigma}=((\varphi\circ g)(z^{\sigma^{-1}}))^{\sigma}=(g^{*}\varphi)^{\sigma}(z)$ .
Hence if $ g^{*}\varphi=\alpha\varphi$ then we have $(g^{\sigma})^{*}\varphi^{\sigma}=\alpha^{\sigma}\varphi^{\sigma}$ . The above argument implies
$|\alpha^{\sigma}|=1$ . Hence $\alpha$ is a root of unity. $q$ . $e$ . $d$ .

REMARK 1. PropOsitjOn does not hold for a compact complex manifold in
general. In fact, S. Iitaka made the following example. Let $a,$ $b,$ $c$ be three
roots of the equation

$x^{3}+3x+1=0$ .
We assume $a$ to be real. Let $\alpha_{1},$ $\alpha_{2},$

$\beta_{1},$ $\beta_{2},$
$\gamma_{1},$ $\gamma_{2}$ be six roots of the equation

$z^{6}+3z^{2}+1=0$ ,
such that

$\alpha_{1}^{2}=\alpha_{2}^{2}=a$ , $\beta_{1}^{2}=\beta_{2}^{2}=b$ , $\gamma_{1}^{2}=\gamma_{2}^{2}=c$ .
We set

$\Omega=\left(\begin{array}{llllll}1 & \alpha_{1} & \alpha_{1}^{2} & \alpha_{1}^{3} & \alpha_{1}^{4} & \alpha_{1}^{5}\\1 & \beta_{1} & \beta_{1}^{2} & \beta_{1}^{3} & \beta_{1}^{4} & \beta_{1}^{5}\\1 & \beta_{2} & \beta_{2}^{2} & \beta_{2}^{3} & \beta_{2}^{4} & \beta\S\end{array}\right)$

Then there exists a three-dimensional complex torus $T$ with a period matrix

$\Omega$ . Left multiplication of the matrix ( $00\alpha_{1}\beta_{0^{1}}0$
$\beta_{2}00$ ) defines a holomorphic

automorphism $g$ of the complex torus $T$ . Then we have

$g^{*}$ ( $dz_{1}$ A $dz_{2}$ A $dz_{3}$) $=\alpha dz_{1}$ A $dz_{2}$ A $dz_{3}$

where $\alpha=\alpha_{1}\beta_{1}\beta_{2}=-\alpha_{1}b$ .
On the other hand the Galois group of $L=Q(a, b, c)$ over $Q$ is a sym-

metric group $S_{3}$ .
Hence there exists an automorphism $\sigma$ of $L$ such that $\alpha^{\sigma}=\beta_{1}\gamma_{1}\gamma_{2}=-\beta_{1}c$ .

Since

$|a|>1$ , $|c|=1/\sqrt{|a|}<1$ , $|\beta_{1}|=\sqrt{|c|}$
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we have
$|\alpha^{\sigma}|=\sqrt{|c|}^{3}<1$ .

Hence $\alpha$ is not a root of unity.
PROPOSITION 3. Let $V$ be a compact complex manifold and let $\rho_{m}$ : Bim (V)

$\rightarrow GL(H^{0}(V, O(K_{V}^{\otimes m})))$ be a Pluricanonical representatjOn. Then for any element
$g$ of Bim (V), $\rho_{m}(g)$ is semi-simple.

PROOF. If $\rho_{m}(g)$ is not semi-simple there exist two linearly independent
elements $\varphi_{1},$ $\varphi_{2}$ of $H^{0}(V, O(K_{V}^{\otimes m}))$ such that

$g^{*}\varphi_{1}=\alpha\varphi_{1}+\varphi_{2}$ ,

$g^{*}\varphi_{2}=\alpha\varphi_{2}$ , $|\alpha|=1$ ,

where $\alpha$ is an algebraic integer by Proposition 1. Then

$(g^{l})^{*}\varphi_{1}=\alpha^{l}\varphi_{1}+l\alpha^{l- 1}\varphi_{2}$ .
Since $g^{\iota}$ is a bimeromorphic mapping of $V$ we have

$|I(g^{l})^{*}\varphi_{1}\Vert=\Vert\varphi_{1}\Vert$ .
On the other hand we have

$\Vert(g^{l})^{*}\varphi_{1}\Vert^{2}=(\sqrt{-1})^{-n2}\int|\alpha^{l}\varphi_{1,i}+l\alpha^{l-1}\varphi_{2,i}|^{2/m}dz_{i}^{1}\wedge\cdots$ A $dz_{i}^{n}$ A $ d\overline{z}_{i}^{1}\Lambda\ldots$ A $d\overline{z}_{i}^{n}$

$=(\sqrt{-1})^{-n^{2}}l^{2/m}\int|\frac{\varphi_{1.i}}{l}+\frac{\varphi_{2.i}}{\alpha}|^{2/m}dz_{i}^{1}\Lambda\ldots\wedge dz_{i}^{n}\wedge d\overline{z}_{i}^{1}\wedge\cdots\Lambda d\overline{z}_{i}^{n}$ .

It is easy to see that there exists a positive number $A$ such that

$(\sqrt{1})^{-n^{2}}\int|\frac{\varphi_{1i}}{l}+\frac{\varphi_{2.i}}{\alpha}|^{2/m}dz_{i}^{1}\wedge\cdots$ A $dz_{i}^{n}\wedge d\overline{z}_{i}^{1}$ A – A $d\overline{z}_{i}^{n}\geqq A$

for any sufficiently large positive integer $l$ . Hence

$\varliminf_{l}\Vert(g^{l})^{*}\varphi_{1}\Vert^{2}=+\infty$ .

This contradicts the fact $\Vert\varphi_{1}\Vert=\Vert(g^{\iota})^{*}\varphi_{1}\Vert$ for all 1. $q$ . $e$ . $d$ .
PROOF OF THEOREM 1. 1) By Proposition 2 every eigenvalue of $\rho_{m}(g)$

is a root of unity for any element $g$ of Bim (V). By Proposition 3 $\rho_{m}(g)$ is
diagonalizable. Hence $\rho_{m}(g)$ is of finite order.

2) Schur proved that 1) implies 2) ([1] \S 36.11).
3) Let $\varphi_{0},$ $\varphi_{1},$ $\cdots,$ $\varphi_{N}$ be a basis of $H^{0}(V, O(K_{V}^{\otimes m}))$ . We can assume the

pluricanonical mapping $\Phi_{mK}$ is dePned by this basis.
Let $S$ be $\Phi_{mK}(V)$ and Lin $(S)$ a subgroup of Aut $(S)$ consisting of the

elements induced by the projective transformations of the ambient space
$P(H^{0}(V, O(K_{V}^{\otimes m})))$ which leave $S$ invariant. The group Lin $(S)$ is obviously an
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algebraic group. Since $S$ is not a ruled variety by the assumption, Lin (S)

is discrete ([4]). Hence Lin $(S)$ is a finite group. On the other hand
$\rho_{m}(Bim(V))\subset Lin(S)$ . Hence $o_{m}(Bim(V))$ is a finite group. $q$ . $e$ . $d$ .

REMARK 2. It is interesting to know whether the third part of Theorem
1 is valid for all Moi\v{s}ezon manifolds. When $V$ is an elliptic surface of
general type $(i. e. \kappa(V)=1)$ , even if $\Phi_{mK}(V)=P^{1}$ , we can easily show that
$\rho_{m}(Bim(V))$ is a finite group.

REMARK 3. When $V$ is a compact complex manifold the Pluricanonical
representation $\rho_{m}$ : Aut $(V)\rightarrow GL(H^{0}(V, O(K_{V}^{\otimes m})))$ maps the connected component
$Aut^{0}(V)$ of Aut (V) onto the identity matrix. This is an immediate con-
sequence of Proposition 3.

\S 2. Proof of Main Theorem.

Let $\{\mathcal{U}_{i}\}_{i\in I}$ be a finite covering of $S$ by small open subsets $\mathcal{U}_{i}$ with
systems of local coordinates $(u_{i}^{1}, \cdots , u_{i}^{l})$ . By Aut (V) we denote the sheaf of
germs of holomorphic sections of Aut (V). The complex fibre bundle $\pi;M-S$

is determined by a l-cocycle $\{F_{ij}\}$ where $F_{ij}\in H^{0}$ ( $\mathcal{U}_{i}\cap \mathcal{U}_{j}$ , Aut (V)). Let
$\{\mathcal{V}_{j}\}_{j\in J}$ be a sufficiently fine finite open covering of $V$ where $\mathcal{V}_{i}$ is a co-
ordinate neighborhood with a system of local coordinates $(z_{i}^{1}, \cdots, z_{i}^{n})$ . The
fibre bundle $M$ is covered by a finite open covering $\{\mathcal{M}_{ij}\}$ such that an open
set $\mathcal{M}_{ij}$ is analytically isomorphic to $\mathcal{U}_{i}\times \mathcal{V}_{j}$ . The transition functions
$\{K_{(i,j)(k,l)}(M)\}$ of the canonical line bundle $K_{M}$ of $M$ is given by

1) $K_{(i,j)(k,l)}(M)=(\det\underline{\partial(u_{i}^{1},}\partial\frac{u_{i}^{\iota},F_{ik}^{1}(u_{k},z_{l}),\cdot.\cdot.\cdot,F_{ik}^{n}(u_{k},z_{l}))}{(u_{k}^{1},\cdots,u_{k}^{l},z_{l}^{1},\cdot,z_{l}^{n})})^{-1}$

$=\det(\frac{\partial(u_{i}^{1},\cdot.\cdot.\cdot.u_{i}^{l}}{\partial(u_{k}^{1},,u}l\overline{)})^{-1}k)$ det $(\frac{\partial(F_{ik}^{1}(u_{k},z_{l}),\cdot.\cdot.\cdot,F_{ik}^{n}(u_{k},z_{l}))}{\partial(z_{l}^{1},\cdot,z_{l}^{n})})^{-1}$

Hence we have
$K_{M}=\pi^{*}(K_{S})\otimes L$ ,

where $L$ is a line bundle determined by transition functions

$\{\det(\frac{\partial(F_{ik}^{1}(u_{k},z_{l}),\cdot.\cdot.\cdot,F_{ik}^{n}(u_{k},z_{l})}{\partial(z_{l}^{1},\cdot,z_{l}^{n})})^{-1}\}$ .

If we restrict the line bundle $L$ to the fibre $M_{s}=\pi^{-1}(s),$ $s\in S$ , then $L|_{\pi^{-1}(s)}$ is
nothing but the canonical line bundle $K_{M_{s}}$ .

By $\pi_{*}(K_{M}^{\otimes m})$ and $\pi_{*}(L^{\otimes m})$ we denote the vector bundles associated to the
locally free sheaves $\pi_{*}(\mathcal{O}(K_{M}^{\otimes m}))$ and $\pi_{*}(O(L^{\otimes m}))$ respectively. We have

$\pi_{*}(K_{M}^{\otimes m})=K_{s}^{\otimes m}\otimes\pi_{*}(L^{\otimes m})$ .
On $\mathcal{U}_{i},$ $\pi_{*}(K_{M}^{\otimes m})|_{U_{l}}c$ is analytically isomorphic to a trivial vector bundle
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$\mathcal{U}_{i}\times H^{0}(V, \mathcal{O}(K_{V}^{\otimes m}))$ .
From 1) we can easily show that transition functions $\{G_{ij}\}$ of this vector

bundle are given by
$G_{ij}=\rho_{m}(F_{ij})\cdot K_{ij}(S)$ ,

where $\rho_{m}$ is the pluricanonical representation of Aut (V) into $GL(H^{0}(V, O(K_{V}^{\otimes m})))$

and $\{K_{ij}(S)\}$ are transition functions of the canonical line bundle $K_{S}$ of $S$.
Let $A_{m}$ be a subgroup of $\rho_{m}(Aut(V))$ generated by $\rho_{m}(F_{ij})$ for all $(i, j)\in$

$I\times J$. By Theorem 1 and Remark 3, $A_{m}$ is a finitely generated periodic sub-
group. Hence by the theorem of Schur $A_{m}$ is a finite group ([1] \S 36.2).
Then there exists a finite unramified covering manifold $f:\tilde{S}\rightarrow S$ such that
the induced vector bundle $f^{*}(\pi_{*}(K_{M}^{\otimes m}))$ is analytically isomorphic to $ K_{s}^{\bigotimes_{\sim}m}\otimes$

$H^{0}(V, O(mK_{V}))$ . From this we infer that $\kappa(M)=-\infty$ follows from $\kappa(S)=-\infty$

or $\kappa(V)=-\infty$ .
In the other case, we let $\tilde{f}:(\tilde{M},\tilde{\pi},\tilde{S})\rightarrow(M, \pi, S)$ be a lift of $\pi;M\rightarrow S$

over $\tilde{S}$. Note that
$H^{0}(\tilde{M}, \mathcal{O}(K_{\tilde{M}}^{\otimes m}))=H^{0}(\tilde{S},\tilde{\pi}_{*}\mathcal{O}(K_{\tilde{M}}^{\otimes m}))$

$=H^{0}(\tilde{S},\tilde{\pi}_{*}f*o(K_{M}^{\otimes m}))$

$=H^{0}(\tilde{S}, f^{*}\pi_{*}\mathcal{O}(K_{M}^{\otimes m}))$ .
Then combining this with

$H^{0}(\tilde{S}, f^{*}\pi_{*}\mathcal{O}(K_{M}^{\otimes m}))=H^{0}(\tilde{S}, \mathcal{O}(K_{s}^{\bigotimes_{\sim}m}))\otimes H^{0}(V, O(K_{V}^{\otimes m}))$

we have
$H^{0}(\tilde{M}, O(K_{\tilde{M}}^{\otimes m}))=H^{0}(\tilde{S}, \mathcal{O}(K_{s}^{\bigotimes_{\sim}m}))\otimes H^{0}(V, O(K_{V}^{\otimes m}))$ .

From this it follows $\kappa(\tilde{M})=\kappa(\tilde{S})+\kappa(V)$ . Recalling $\kappa(\tilde{M})=\kappa(M)$ and $\kappa(\tilde{S})=\kappa(S)$ ,
we obtain $\kappa(M)=\kappa(S)+\kappa(V)$ as required. $q$ . $e$ . $d$ .

REMARK 4. Let $T$ be a three-dimensional complex torus constructed in
Remark 1. Let $E$ be an elliptic curve with fundamental periods $\{1, \omega\}$ . Let
$G$ be a free abelian group of analytic automorphisms of $C\times T$ generated by
two automorphisms

$f_{1}$ : $(z, q)-(z+1, q)$ ,

$f_{2}$ : $(z, q)-(z+\omega, g(q))$ ,

where $g:T\rightarrow T$ is an analytic automorphism of the complex torus $T$ con-
structed in Remark 1. Then $G$ acts on $C\times T$ properly discontinuously and
its action has no fixed points. The quotient manifold $M=C\times T/G$ is a fibre
bundle over $E$ whose fibre and structure group are $T$ and Aut $(T)$ respectively.
By the result of Remark 1 we infer readily that $\kappa(M)=-\infty$ .

Hence Main Theorem does not hold in general without the assumptiOn that
$V$ is a Moi\v{s}ezon manifold.
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