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§0. Introduction.

Let Ky be the canonical line bundle of a compact complex manifold M.
If dim H(M, o(K%")=N-+1=2 we have a meromorphic mapping @,x: M—P¥
of M into P¥. When m is a positive integer the meromorphic mapping @ %
is called pluricanonical mapping. In this case the Kodaira dimension £(M) of
M is, by definition

(M) = max dim @ ,,x(M) ,
me

where L={me N |dim H'(M, o(K§"))=2}. When H°(M, 0(K§™)=0 for all
positive integers, we define the Kodaira dimension x#(M) of M to be —oo,
When dim H'(M, o(K§™)) <1 for all positive integers m and there eXists a
positive integer m, such that dim H(M, O(K§™))=1, we define x(M)=0. As
for the fundamental properties of Kodaira dimension, see [3].

By a MoiSezon manifold V we mean an n-dimensional compact complex
manifold that has n algebraically independent meromorphic functions.

The main purpose of the present paper is to prove the following

MAIN THEOREM. Let n: M— S be a fibre bundle over a compact complex
manifold S whose fibre and structure group ave a MoiSezon manifold V and
the group Aut(V) of analytic automorphisms of V respectively. Then we have
an equality

e(M)=r(V)+£(S).

To prove Main Theorem we need to analyze the action of Aut(V) on the
vector space H(V, 0(K$™)). More generally the group Bim (V) of all bimero-
morphic mappings of V acts on H°(V, O(K$™)) for any positive integer m.
Hence we have a representation p,: Bim (V)— GL(H(V, O(K§™)). We call
this representation pluricanonical representation. A group G is called periodic
if each element g of G is of finite order. In §1 we shall prove the following
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THEOREM 1. Let V be a Moisezon manifold.

1) pnBim (V)) is a periodic subgroup of GL(H(V, O(KEg™)) for every
positive integer m.

2) The representation p, is equivalent to a unitary representation.

3) When @,x(V) is not a ruled variety, p,(Bim(V)), hence a fortiori
pn{Aut(V)) is a finite group.

In §2 we shall prove Main Theorem.

Main Theorem was first conjectured by S. litaka. He proved the theorem
when the fibre V is an abelian variety. He also gave counter examples of
the above two theorems, when we only assume that the manifold V is a
compact complex manifold. (See Remark 1, Remark 4 below.)

§1. Pluricanonical representations and Proof of Theorem 1.

Let Ky be the canonical line bundle of an n-dimensional compact complex
manifold V. For any positive integer m we can consider an element ¢ of
H(V, o(K$™)) as a holomorphic m-tuple differential n-form. That is, in a
coordinate neighborhood U of V with a system of local coordinates (z,, -, z,),
¢ is expressed in the form

SD:f(Zl’ " 1Zn)(dzl FANEITRWAN dzn)m

where f(z, -, 2,) is holomorphic in U.

Let g:W—V be a generically surjective meromorphic mapping of a
compact complex manifold W into a compact complex manifold V of the same
dimension n. Then for any element ¢ of HV, 0(K$™)) we can define the
pull back g*(p) of ¢ as an m-tuple n-form. Since the point set where g is
not holomorphic is of at least codimension 2, by Hartog’s theorem, g*(¢) is
a holomorphic m-tuple n-form on W and defines an element of H*(W, O(K§™)).
Moreover, we can define for a meromorphic mapping g the homomorphism of
the free parts of the cohomology groups

gt HXV,Z),— H¥W, Z),

as follows; since g is defined by an analytic subvariety (graph of g) of WXV,
we take a nonsingular model W* of it with canonical projections f and &,

W
7/ g\
w |4

and consider a homomorphism [f¥%: Hy o(W*)— H,, (W),  We define
f¥: HY(W*),— HW), to be the dual of the image by f3¥* of Poincaré dual
and also define g¥=~h¥-f¥. It is easy to check that the definition of gi¥ is
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independent of the choice of W*. By this homomorphism we obtain the
homomorphism

gt: HYV,C)— HYW, ).

We can regard H%(V, 0(Ky)) and H'(W, 0(Ky)) as subspaces of H*(V, C)
and H*(W, C), respectively. Then for any element ¢ of HYV, 0(K,)) we
have

g¥@)=g%(p).

PROPOSITION 1. Let g be a bimeromorphic mapping of an n-dimensional
compact complex manifold V. If we have

g¥o)=ap, acsC,

Jfor some non zero element ¢ of H(V, O(Kg™)), then a is an algebraic integer.
Moreover the degree [Q(a): Q] of the algebraic extension Q(c) over Q is bounded
above by the constant N(p), which depends on ¢ but does not depend on the
bimeromorphic mapping g.

PrROOF. Case 1. m=1. ¢ is a holomorphic n-form. Since we have

g¥o)=g¥(p),

a is an eigenvalue of the automorphism g¥ of H™(V, Z),. Hence a is an
algebraic integer. The degree of the minimal equation of a with coefficients
in Z is bounded above by the n-th Betti number b,(V) of V.

Case 2. m=2. Let {<V;};e; be a sufficiently fine finite open covering of
V, where <V; is a coordinate neighborhood of V with a system of local
coordinates (2}, -, 27). In terms of these local coordinates ¢ is expressed in
the form

Qe -+, Dz A - A dE)m,

where ¢,(2}, ---, 2F) is holomorphic in <&V;. Let K be a complex manifold which
is a total space of the canonical line bundle Ky. The complex manifold K
is covered by coordinate neighborhoods U; with a system of coordinates
(28, -+, 28, w;). U; is complex analytically isomorphic to <V;XC. We shall
define a subvariety V’/ of K by equations
(w)" =2, -, 2D,

for any i= 1. It is easy to see that a holomorphic n-form w;dz} A --- A dz?
on U; defines a global holomorphic n-form ¥ on K.

Moreover a bimeromorphic mapping g induces a bimeromorphic mapping
gx of K. In fact, if g(cV,)CV,, then ggl|w,: U;— U; is expressed by the
above local coordinates in the form

@ 2 w) — (7, g7z, (det LEED 2 BN Y,y
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Let mg be an analytic automorphism of K defined by
mﬁ: (Z%y e, 23, wi) — (2,}, Tty z7, ‘sz) y

for each i< I, where 8 is one of the m-th root of a.

Since g*(¢) =a¢, the bimeromorphic mapping mgogx induces a bimero-
morphic mapping of V’ onto V.

By a suitable sequence of monoidal transformations of the manifold K
with non-singular centers, we can obtain a manifold K and the strict trans-
form W of V’/, which is a non-singular model of the variety V' ((2]). Then
the bimeromorphic mapping mgzogg of K can be extended to the bimero-
morphic mapping # of K which induces a bimeromorphic mapping 2 of W.

Let f,: W—V’ be a surjective holomorphic mapping, which is induced
from the inverse mapping of the above monoidal transformations of K. Let
/2 V'—V be a finite surjective holomorphic map defined by

f2: (2115, o ,Z{L, wi)__><z%r ot ,Zfb.")_
We set f=f,0f..
The holomorphic n-form ¥ can be lifted to a holomorphic n-form ¥ on

K, which induces a holomorphic n-form w on W. From the arguments above
it is easy to see that

w®™ = f*(¢p).
Moreover since (mgogg)*(¥) =¥, it follows
h*(w) = Bw and fr=a.

Hence by Case 1, B is an algebraic integer and [Q(8): Q1= b,(W). This implies
« is an algebraic integer and [Q(a): Q] < b,(W). Since b,(W) depends only
on ¢ and does not depend on g, we complete the proof.

PROPOSITION 2. Let V, g, ¢ and a be the same as those of Proposition 1.
Then we have |a|=1. Moreover when V is a MoiSezon manifold a is a root
of unity.

PrROOF. We use the same notations as above. By (p A §)V™ we denote
a differential 2n-form on V defined over <V; in the form

(V=1)" @2, -, ZD)|¥™dzt A -+ AdzP NdZA -+ A dEP.
We set

ol =(§ @nerm)".

Then we have
b s\1/m — * * 1m — E3 2 — 2/m 2
0<liglr =] (o Aym={ (g*o NEF)™=lg*pl* =]al*™|p]*.

Hence we have |a|=1.
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Next we shall prove the latter half of the Proposition. By a theorem of
MoisSezon, for any MoiSezon manifold there exists a non-singular projective
model of it. Hence we may assume V to be projective. We fix an imbed-
ding of V into P¥ for some N and set I(V) the defining ideal of V. For an
automorphism ¢ of the complex number field and a homogeneous polynomial
f(2)=f(zy, -+, zy), we define foz)=(Ff (28", -, 28 ")) and also define [(V)*=
{f?; feI(V)}. Another projective manifold V? is defined by the ideal I(V)°.
Then a meromorphic mapping g° of V¢ is defined to be g%z)=(g(z" "))’
symbolically. Similarly for an element ¢ of H%V, 0(K$™)) we define an
element ¢7 of H(V?, O(K%7)). Then it follows (g%)*¢’=(g*%p)’. In fact

(g°)*¢°(2) = ¢*(g°(2)) = (p((g°(2)* )’ = (o g)(z" ))* =(g*p)(2) .

Hence if g*¢=a¢ then we have (g%)*¢” =a’’. The above argument implies
|a’|=1. Hence « is a root of unity. q.e.d.

REMARK 1. Proposition does not hold for a compact complex manifold in
general. In fact, S. litaka made the following example. Let a, b, ¢ be three
roots of the equation

x34+3x+1=0.
We assume a to be real. Let ay, a,, B4, B 71, 72 De six roots of the equation
z°4+3z2°+1=0,
such that
a=aj=a, Pi=pi=b, ri=ri=c
We set

o=|1 & & & B #
1 os B OB B A

Then there exists a three-dimensional complex torus 7 with a period matrix
a, 0 0 )

Q. Left multiplication of the matrix (O Bs 0) defines a holomorphic
0 0 B

automorphism g of the complex torus 7. Then we have

g*(dz, Ndz, A dz,) =adz, Ndz, \ dz,

where a =a,f,8, = —a;b.

On the other hand the Galois group of L =Q(a, b,c) over Q is a sym-
metric group S,.

Hence there exists an automorphism o of L such that a®= 7,7, =—pic.
Since

la]>1, lcl=1/v]a| <1, | Bl =+ ]c|
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we have
@] =+Te] "< 1.

Hence « is not a root of unity.

PROPOSITION 3. Let V be a compact complex manifold and let p,:Bim (V)
— GL(H(V, O(K$™))) be a pluricanonical representation. Then for any element
g of Bim (V), pn(g) is semi-simple.

PROOF. If p,(g) is not semi-simple there exist two linearly independent
elements ¢y, ¢, of H(V, O(K$™)) such that

g =ap;+o,,
grp,=ap,, |aj=1,
where a is an algebraic integer by [Proposition 1. Then
(g*g,=alo,+lat g, .
Since g' is a bimeromorphic mapping of V we have
I(gD*eill =l .

On the other hand we have

(g e,llP = (V=T)" [|a‘gy+lat gy [Pz A e Ad2p AAZLA - N dE

= (V=T e (| £y Foa AN e AdZEAAELA e A dEP

It is easy to see that there exists a positive number A such that

. . 2/m
(xCT)-”"’ﬂi’%’—Jr—‘D;’—lz dZIN - NdZEANABA - NdEPZ A

for any sufficiently large positive integer /. Hence
lim (g%, = +oo.

This contradicts the fact |, = [(g)*¢,|| for all L g.e.d.
PrROOF OF THEOREM 1. 1) By every eigenvalue of p,(g)
is a root of unity for any element g of Bim (V). By on(g) is

diagonalizable. Hence p,(g) is of finite order.

2) Schur proved that 1) implies 2) ((I] § 36.11).

3) Let ¢y, ¢, -, ¢xy be a basis of H(V, 0(K§™)). We can assume the
pluricanonical mapping @, is defined by this basis.

Let S be @,%x(V) and Lin(S) a subgroup of Aut(S) consisting of the
elements induced by the projective transformations of the ambient space
P(HYV, o(K%™))) which leave S invariant. The group Lin(S) is obviously an
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algebraic group. Since S is not a ruled variety by the assumption, Lin (S)
is discrete ([4]). Hence Lin(S) is a finite group. On the other hand
px(Bim (V))CLin(S). Hence 0,(Bim(V)) is a finite group. q.e.d.

REMARK 2. It is interesting to know whether the third part of Theorem
1 is wvalid for all Moisezon manifolds. When V is an elliptic surface of
general type (i.e. k(V)=1), even if @,x(V)=P', we can easily show that
pn(Bim (V)) is a finite group.

REMARK 3. When V is a compact complex manifold the pluricanonical
representation pn: Aut (V)— GL(H(V, O(K$™))) maps the connected component
Aut®(V) of Aut(V) onto the identity matrix. This is an immediate con-

sequence of [Proposition

§2. Proof of Main Theorem.

Let {U;}ier be a finite covering of S by small open subsets U, with
systems of local coordinates (u},---,u¢). By Aut(V) we denote the sheaf of
germs of holomorphic sections of Aut(V). The complex fibre bundle 7: M—S
is determined by a 1l-cocycle {F;;} where F;;€ H(U,N\U; Aut(V)). Let
{V;} jes be a sufficiently fine finite open covering of V where <V; is a co-
ordinate neighborhood with a system of local coordinates (z},---,2z%). The
fibre bundle M is covered by a finite open covering {#;;} such that an open
set M;; is analytically isomorphic to U,X<V,. The transition functions
{Kq,je,n(M)} of the canonical line bundle K, of M is given by

oul, -, ut, F(uy, z)), -, Fa(u,, -1
D K, pa,nM) = (det (u G(Z}C, ---k(,uﬁ,‘c,zzlg, - Z?)k(uk z) )

B, o, ut) N Oy, 20, -y PRt 2))
=det (G tyyy) - det(FRSEp e B0

Hence we have
Ky=n*Ks)QL,

where L is a line bundle determined by transition functions

O(F 4 (u, l y iU, 20) \7F
e (A i),

If we restrict the line bundle L to the fibre M,=xz"(s), s€ S, then L|-14 is
nothing but the canonical line bundle Kjy,.

By n«(K$™) and m«(L®™) we denote the vector bundles associated to the
locally free sheaves m«(O(K$™) and m«(O(L®™)) respectively. We have

wx(K5) = K§™ Q mx(LeT) .

On vU,;, nx(K§™)|v,; is analytically isomorphic to a trivial vector bundle
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U, X H(V, 0(K$™)).

From 1) we can easily show that transition functions {G,;} of this vector
bundle are given by

Gy = pn(Fi) - Ki5(S),

where p,, is the pluricanonical representation of Aut (V) into GL(H(V, O(K$™)))
and {K;;(S)} are transition functions of the canonical line bundle Ks of S.

Let A, be a subgroup of p,(Aut(}V)) generated by p,(F;;) for all (,)) e
Ix]. By and Remark 3, A, is a finitely generated periodic sub-
group. Hence by the theorem of Schur A, is a finite group (1] § 36.2).
Then there exists a finite unramified covering manifold f: S—S such that
the induced vector bundle f*(z«(K§™)) is analytically isomorphic to K%’"@
HV, o(mKy)). From this we infer that £(M)= —oco follows from £(S)= —oco
or £(V)=—o0,

In the other case, we let f: (M, z, §)—>(M, 7, S) be a lift of #: M—S
over §. Note that

H(M, 0K §™) = H'@S, #:0(K$™)
= H'S, % J*0(K5™)

= H°S, fas0(Kg™).
Then combining this with

HS, f*re 0K §m) = H'S, o(K ENRQH(V, o(K$™))
we have
H'M, o(Kg")=H °S, oK ENRQH(V, O(KF™) .

From this it follows E(M):E(§)+IC(V). Recalling /:(1\7I)=/:(M) and lc(§)=/c(S),
we obtain £#(M)=«x(S)+£(V) as required. q.e.d.

REMARK 4. Let T be a three-dimensional complex torus constructed in
Remark 1. Let E be an elliptic curve with fundamental periods {1, w}. Let
G be a free abelian group of analytic automorphisms of CXT generated by
two automorphisms

flz <21 q)}'_-)<2+17 Q>y
for (7, — (z+w, 2(9),

where g: T— T is an analytic automorphism of the complex torus T con-
structed in Remark 1. Then G acts on CXT properly discontinuously and
its action has no fixed points. The quotient manifold M=CXT/G is a fibre
bundle over E whose fibre and structure group are 7 and Aut(T") respectively.
By the result of Remark 1 we infer readily that x(M)= —oo.

Hence Main Theorem does not hold in general without the assumption that
V is a Moisezon manifold.
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