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In [2], Sweedler has investigated a cohomology theory for module algebras
over a given cocommutative Hopf algebra.

The purpose of this paper is to discuss some dual theories of [2]. In
gection 2, we give the definitions of cohomology groups for comodules,
comodule coalgebras, comodule Hopf algebras and comodule algebras over a
given commutative Hopf algebra. A familiar example of commutative Hopf
algebras is the coordinate ring of an affine algebraic group. Section 3 deals
with relations between these cohomology groups. Sections 4 and 5 contain
the extension theory of coalgebras and Hopf algebras, which is the precisely
dual statements of [2]. In section 6, we compute the cohomology groups for
a special comodule algebra. Finally, section 7 gives a result on the conjugacy
of the coradical splittings of commutative Hopf algebras over a field of
characteristic 0.

§1. Preliminaries.

All vector spaces are over the ground field 2 Our notation and termi-
nology are essentially those used in [3]. One difference; if C is a coalgebra
and ¢: V—CQYV is the structure map of a (left) C-comodule V, we sometimes
write ¢v) =2 v, Query for all veV.

1.1. DEFINITIONS. Let H be a Hopf algebra. The unit map uy: k—H
= HR k gives k the structure of a left H-comodule. An algebra D which is
a left H-comodule is called a left H-comodule algebra if Mp: DQD— D and
up: k—D are H-comodule maps. (DQD has the natural H-comodule structure.)

A coalgebra B which is a left H-comodule is called a left H-comodule
coalgebra if dg: B—~B@B and ep: B—k are H-comodule maps.

A Hopf algebra L which is a left H-comodule is called a left H-comodule
Hopf algebra (or H-Hopf action on L) if My, uy, 4y and ey are H-comodule
maps. -
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(1.1.1) If D is an algebra and ¢: D—H@D is the structure map of a
(left) H-comodule, then the followings are equivalent: '

a) Mp and up are H-comodule maps.

b) ¢ is an algebra map.

(1.1.2) If B is a coalgebra and ¢: B—H®DB is the structure map of a
(left) H-comodule, then the followings are equivalent:

a) dp and ep are H-comodule maps.

b) (1®4p)¢=MzrR1QDNURQTRX1)PR¢P)4s,

(1Qep)¢=(ug@l)ep. (Where T(x®y) =y & x.)

¢) For be B,

E b(H) Q@ b(B)(l) ® b(B)(Z) = 2 b(l)(H)b(Z)(H) ® b(l)(B) ® b(Z)(B);
2 e(besy)bemy = (0)1y.

1.2. EXAMPLES.

(1.2.1) Let H“ be the underlying algebra of H and let H# have the left
H-comodule structure induced by comultiplication. Thus H4 is a left H-
comodule algebra.

(1.2.2) For any positive integer n, let (Y"H denote H@----@H n-times.
&®"H has the algebra structure on the tensor product of algebras and has a
left H-comodule structure where ¢(h,® - Q@ h,) € HRQ(X"H) is defined to be
Ady(h)® - Q@h,. Thus Q"H is a left H-comodule algebra. If we let Q°H
denote k, then ®°H is a left H-comodule Hopf algebra. (% has the trivial
Hopf algebra structure.)

(1.2.3) Let G be an affine algebraic group defined over £ and let X be an
affine variety defined over k. Let H=F[G] and A=Fk[X] be the coordinate
rings of G and X respectively. Then it is well known that H has the Hopf
algebra structure induced by the group structure on G. To give an action
of G on X as a variety is equivalent to giving a H-comodule algebra struc-
ture on A.

(1.2.4) Let V be a left H-comodule with the structure map ¢: V—-HV.
Then the left FH-comodule coalgebra attached to V, denoted by B(V), is
defined as follows:

B(V)=Fk@V as a vector space and a coalgebra structure is defined by
4: B(V)224+v—2AQ1+vQ1+1Qve B(V)QB(V),
e: B(V)s2+v—r21€k.
The left H-comodule structure map gZ': B(V)— HQB(V) is defined by
PG+ =21y ®1+¢0) @Ashk veV).

One easily checks that B(V) is a left H-comodule coalgebra.
(1.2.5) Let H¢ be the underlying coalgebra of H and let H® have the left
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H-comodule structure induced by ¢(h) = h,S(he)Qhey e HR HC, where S
is the antipode of H.

Mp®1@DAR TR (P RQP)du(h)
= 23 hyS(hesy) ey S(hiey) @ heoy @ hesy
= 22 hy(he)S(hesy) Q) hepy @ by
= 2 hwyS(he) @ heoy @ hegy
=1Q4u)¢ph).

Thus H¢ is a left H-comodule coalgebra. If H is commutative as an algebra
then the antipode S is an algebra map and hence so ¢ is. Therefore
H=H*= H¢ is also a left H-comodule Hopf algebra.

(1.2.6) Let us now be in the situation (1.2.3), where X is an affine algebraic
group. Then to give an action of G on X as an algebraic group is equivalent
to giving a H-comodule Hopf algebra structure on A.

1.3. Convolution algebras. Let D be a left H-comodule algebra and
let B be a left H-comodule coalgebra. Hom (B, D) has the following algebra
structure. For f, g€ Hom (B, D) the product f*g is My(f&Xg)4dz. The unit
of Hom (B, D) is upeg. This product is called convolution. If D is a com-
mutative algebra and B is a cocommutative coalgebra then it is clear that
Hom (B, D) is a commutative algebra. Homy (B, D) denotes the H-comodule
maps from B to D. Reg (B, D) denotes the multiplicative group of invertible
elements of Hom (B, D) and Regy (B, D) denotes Homy (B, D) \Reg (B, D).

(1.3.1) Homy (B, D) is a subalgebra of Hom (B, D).

Regy (B, D) is a subgroup of Reg (B, D).
PrOOF. For f, g=Homy (B, D) we show that /*g< Homy (B, D).

$o(f*g) = ppMp(f&g)dp
=(MgQMp)1QTRX1(¢PprX@¢Pp)fQ@g)Ap (¢p is an algebra map)
=Mz QMp)(1QRTRINNRRV1ReNPs@¢s)ds (f, g €Homy (B, D))
=Mz Q@ Mp)(1Q1RfRL)AR TR R¢s)ds
=(1Q®Mp)1R/R)(Muy@1RNARTR1)¢sR¢5)dp
=(1QMp)(1Xf®g)1®4p)¢ps (since (1.1.2))
=(1Qf*8)Ps. Q.E.D.

Let L be a left H-comodule Hopf algebra. Alg (L, D) denotes the algebra
maps from L to D and Alg, (L, D) denotes Alg (L, D) "\Homy (L, D).

(1.3.2) If D is a commutative algebra, then

a) Alg(L, D) is a subgroup of Reg (L, D).
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b) Algy (L, D) is a subgroup of Alg(L, D).

PrOOF. a) For fe Alg(L, D) the inverse of f with respect to the con-
volution product is fS;. Since D is commutative fS; is an algebra map.
b) For fe Algy (L, D) we show that fS is a H-comodule map.

PfS=QAR[f)PS (since f is H-comodule map)
=(1®NARS)¢  (see [1], (4.4)

=1AXfS)¢.
Q.E.D.
1.4. Cotensor products. If W is a right H-comodule and V is a left
H-comodule the cotensor product of W and V is the space WO,V such that
the sequence

Pw R1=1Q ¢y
0— WagV — WV WRQHRV

is an exact sequence of k-spaces. If A is a right H-comodule algebra and
D is a left H-comodule algebra then Ay D is a subalgebra of AR D. Note
that V=W 0OyzV is a covariant functor from left H-comodules to k-spaces.
In fact if /: V—V’ is a H-comodule map then the corresponding map WO,V
—W0OgV’ is given by the following diagram:

Pw Q1=1Q0 ¢y
0— WO,V —WRV — > WHRV
i e [1o1@r
Gy Q11 ¢y
0— WOV — WV T s weHR

§2. Definition of cohomologies.

We assume from now on that our Hopf algebra H is commutative. Let
C be the category whose objects are commutative left H-comodule algebras
and morphisms are H-comodule algebra maps which are by definition H-
comodule maps as well as algebra maps. Let <4 be the category of abelian
groups.

2.1. EXAMPLES. We consider some examples of covariant functors from
C to .

(2.1.1) Let V be any left H-comodule. We have the functor F from C to
A if DecC then F(D)=Homy (V, D), and if D-*> D’ then F(«): Homy (V, D)
—Homy (V, D) is given by the rule F(a)(x)=ax.

(2.1.2) Let B be any cocommutative left H-comodule Hopf algebra. We
have the functor F; if D<= C then F(D)=Regy (B, D), and D% D’ in C then
Fla)(x) = ax.

(2.1.3) Let L be any cocommutative left H-comodule Hopf algebra. We
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have the functor F; if D& C then F(D)= Algyg (L, D).

(21.4) Let W be any right H-comodule. We have the functor F; if DecC
then F(D)=W OgD.

(2.1.5) Let A be any commutative right H-comodule algebra. We have
the functor F; if DeC then F(D)=U(AOy,D), the multiplicative group of
the invertible elements of AdyD.

2.2. We form a semi-cosimplicial complex ([2]) in ¢, whose objects are
{R"**H}nzy of Example (1.2.2). The object of n-degree is @"*'H for n—=
0,1,2, ---. The coface operators are given by 0,: " H—-X""H, x;Q - X x,
xR AKX )R - R x, for 1=0,1,--,n—1 and 9, : " H—R""'H, x,& -
Rx,—x,Q - Qx,QQ1. The codegeneracy operators are given by s;: Q""*H
- Q" H, 2,@x%,Q * @Xns1 % DX Qe(X41)%14:Q * @ Xpyy for i=0, 1,
-.-,n. One easily checks all the coface and codegeneracy operators identities.

2.3. Let F:C— A be any covariant functor. We apply this functor F
to the above semi-cosimplicial complex to obtain a semi-cosimplicial complex
{F(®"*"'H)}nzo in A. The homology of {F(®""'H)}nz is defined by means
of the differential d"': F(R"H)— F(R""'H) where d"'=>%,(—1)'F(,).
Thus we have

(lO dl dn~1 dn
F® H)—>F@*H)—> - —> FQ@""H)—> .
The cohomology of F over H is defined to be the homology of the above
complex and the n-th group H™F, H) is Kerd"/Im d™' for n >0 and Kerd*
for n=0.

Com-H™V, H), Coalg-H™(B, H), Hopf-H"(L, H), Hoch-H"(W, H) and Alg-
H"(A, H) denote the n-th cohomology group of F' as in Examples (2.1.1), (2.1.2),
(2.1.3), (2.1.4) and (2.1.5) respectively.

2.4. There is a normal subcomplex of our complex {F(QR""'H), d"}uzo.
For n>0 let N”“:f\oKer (F(sy), where F(s;): F(Q""*H)—F(®"**H). For
n=0let N°=F(®'H). Then {N", d"|N" .20 is a subcomplex of {F(R"*"'H),
d™}nze. The injection map induces an isomorphism of homology. This is the
dual result in [5, Theorem 6.1].

2.5.

(2.5.1) PROPOSITION. Let V be a left H-comodule. Then the map
@ : Homy (V, " H)—Hom (V, Q" *H) defined by O(f)=(exg@1)f is a linear
isomorphism. The inverse map ¥ :Hom (V, " *H)— Homyg (V, Q"H) is given
by ¥(g)=(1R®g)¢.

Proor. It is clear.

(25.2) COROLLARY. Let B be a cocommutate left H-comodule coalgebra
and let L be a cocommutative left H-comodule Hopf algebra. Then the above
isomorphism induces the following group isomorphisms;
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Regy (B, @"H) = Reg (B, ®" ')
Algy (L, ®"H) = Alg (L, ®"'H).

(25.3) PROPOSITION. Let W be a right H-comodule. Then the map
O: WhOx(QH)-»WR(@"'H) defined by Ow@h Q@ Qhy)=eh)w@h,&
-+ Qh, 1s a linear isomorphism. The inverse map ¥ is given by ¥(wXRh,
R Do) = SR D -+ Dby

(25.4) COROLLARY. Let A be a commutative right H-comodule algebra.
Then the above isomorphism induces the following group isomorphism;

UAOx(®"H)) = U(AQ®"'H)) .
2.6. We present the standard complex to compute Com-H™(V, H), Coalg-
H™(B, H), etc., by means of (2.5).

(2.6.1) {Hom (V, Q*H), D"} nz.
The differential D*': Hom (V, ®"'H)—Hom (V, ®"H) is defined by

DY) =ARNY—UdR1-)[+ARAR1--)f
— o 2(1Q 1R/ T/ Run .
Then the complex {Hom(V,®@"H), D"}.:0 is isomorphic to the complex
{Homy (V, ®"*'H), d"} .=, which defines the cohomology Com-H"(V, H).

(2.6.2) {Reg (B, K "H), D"} uz0.
The differential D" ': Reg (B, " 'II)—Reg (B, ®"H) is defined by
D) =[ARNIx DR ) I+« [1R IR -+)f]
w ok [(1Q - 1@ N1+ [/ 7 @],
where Reg (B, ®*'H)> f! is the *inverse of /. Then the complex {Reg (B,
X" "H), D"} .2 is isomorphic to the complex {Reg, (B, **'H), d"}.-, which
defines the cohomology Coalg-H"(B, H).

(263) {Alg (L, ®"H), D"} nz0.

The differential D™ ': Alg (L, Q" *H)—Alg(L, ®"H) is defined by the
restriction of (2.6.2). Then the complex {Alg (L, ®"H), D"}n2o is isomorphic
to the complex {Algy (L, ®*"'H), d"}nzy which defines the cohomology
Hopf-H™(L, H).

(2.6.4) {WQRQ(Q"H), D"} nxzo.

The differential D*': WRQQ"*H)— WQ(Q"H) is defined by

D w @@ - @ hn-y)
=) QM - Qhyoy—w @ A(h) Q1 - Dby
FwQh @ Ah,)Qhy D -+ Qhy-y
= FWRMQ)  Qha s @A )FW R QD - QI Q1.
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Then the complex {WQ(XR"H), D*}nzo is isomorphic to the complex
{(WOg(@®"H), d"}nzo which defines the cohomology Hoch-H™(W, H). Note
that this cohomology equals the Hochschild cohomology [6, p. 191].

(2.6.5) {U(AQ(R"H)), D"} nzo.

The differential D" : UA®(Q"H))— UAR(QR"H)) is defind by
D Ha@Qh® - Qhn-i)
= (RN - Qhp-) @A) QA& =) (e @M & A(h) @ ++)
(@M Rl s @ A(a- 1)) (@ QD - Dl QDT

Then the complex {UAQR(®"H)), D*}.»o is isomorphic to the complex
{UAQ L (@™ H)), d"}nze which defines the cohomology Alg-H"(A, H).

2.7. We can find a normal subcomplex of our standard complex which
is isomorphic to {N™ d"|N"} .z In fact we define (for n>0);

Hom, (V, ®"H)

={feHom(V,®"H) | (R1Q ) =(1ReR :--)f = -+ =0}
Reg. (B, Y¥"H)

={/€Reg(B, ¥"H) [ Q1R ) =(1RQe -)f = ++ =ue}
Alg, (L, Q"H)
={/feAlg(L, @"H) [ QLR - )f =1QeQ -)f = - =ue}
W (Q"H)={Zw@h® - Qh,€ WR(Q"H) |
2wReh)h,Q - Qhy=wQh Qe(h)hy@ - = - =0}

U(AQ@"H) = {Xa@ & - h, € UARQ(Q"H)) |
2aQehph,@ - by =2aQh;Qe(h)h;Q - Qh,

= ese — 1}
and

Hom, (V, ®*H)=Hom (V, *'H)=Hom (V, k)= V*
Reg. (B, ®°H)=Reg (B, ' H)=Reg (B, k)= U(B¥)
Alg, (L, H)=Alg (L, Q°'H)=Alg (L, k)= G(L")
WR:(QH)=WRR H)=WQk=W

U (AQR'H))=UARQK "H)=U(4).

Then {Hom., (V, ®"H), D"|Hom, (V, ®"H)}nzo is a normal subcomplex and
the inclusion map induces an isomorphism of homology. {Reg, (B, ®"H)}nz0,
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{Alg, (L")} .20, etc., similar.

2.8. H( ,H)and H'( , H).

(281) Com-HXV, H)={zeV*| 1&®)pw) =] for all ve V}.

If /: V—H is a linear map then f is a l-cocycle if and only if

AfW) =1 &XNHp)+(v)®1 for all ve V.

We denote by V¥ the set (v €V | ¢(v)=1Rv}. In case V=V this reduces
to 4fv)=1Qf()+f(v)¥1 so that f(v)e H is a primitive element of H.
1-coboundary is one of the form D%z) for reV*. For veV, D(r)v)=
1R o)) —z()1.

(2.82) Coalg-H(B, H)= {r = U(B*) | 1Q)¢(b) = (b)1 for all b < B}.

If feReg (B, H) then f is a 1-cocycle if and only if

20y @S0y = 2 by J(Deay) Q f(bires) for all b= B.

In case B= B¥ this reduces to X (), X f(b)wy= 2 f(bery) Qf(byy) so that f is
a coalgebra map if f< Reg, (B, H), since B is cocommutative. 1-coboundary
is one of the form D%z) for z € U(B*). For be B, D(z)(b)= 3 bca,t(baycsy)
R |

(2.83) Hopf-H'(L,H)={ce Alg(L, k) | QQ7)p()=z()1 for all [ L}.

If fe Alg(L, H) then f is a 1-cocycle if and only if

Zf(l)(l) ®f(l)(2) = Zl(l)(H)f(l(Z)) ®f(l(1)(L)> for all lE L .
In case L =L" this reduces that f is a Hopf algebra map if f< Alg, (L, H).

(2.84) Hoch-H'(W, H)={weW | ¢w)=w®1} = W7,

If w@hreWQRHis a l-cocycle then 2w @ A(A)=2J(wW)Q@Qh+2w@@hR@1.
1-coboundary is one of the form ¢(w)—w®1 for we W.

(2.85) Alg-H'(A, H)y={ac U(A) | ¢(a)=a @1} = UA) N A".

If Xa@h=U(AQH) is a 1-cocycle then X aQ4(h)=(Z ¢(a) Qr)(Z aQhR)1).
1-coboundary is one of the form ¢(a)(a*®1) for a & U(A).

2.9. Let F, F': C— A be covariant functors and let »: F—F’ be a natural
transformation from F to F’. Then » induces a morphism of complexes 7
from {F{(QR""'H)}nzo to {F/(Q""'H)}nzo. Suppose 7 is a pointwise mono-
morphism, that is, yp: F(D)— F'(D) is a monomorphism for all D& . Then
there is an exact sequence of complexes:

0—> {F(®"""H)}nzo l) {F'(Q " H)} nzo —> Coker 7 —> 0.
This gives rise to the long exact cohomology sequence:
0 —> HYF, H) —> H°(F’, H) —> H°(Coker ) —> HY(F, H) —> -
oo —> H™(F', H) —> H™(Coker ) —> H"*(F, H) — H""'(F', H) —> ---.

We can also consider the situation where %: F— F’ is a pointwise epimorphism.
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§ 3. Comparisons.

3.1. Let V be a finite dimensional vector space. There is a natural linear
isomorphism y: V¥*@Q H—Hom (V, H), y is given by r(§X@h)(v)=§&w)h. The
inverse map o: Hom(V, H)— V*QH is given by o(f) =215 & f(v,), where
{v} is a base of V and {&;} its dual base.

Suppose ¢: V—-HXV gives a left H-comodule structure (that is, (c®1)¢
=idy, 1®¢P)p=(4Q1)¢p). Define p: V¥—V*QH by p(&)=0(1Q&)¢).

(3.1.1) LEMMA. (V* p) is a right H-comodule.

PrROOF. For any jJ,

1®e)p(§) =1Qe)Zi§: QU RENP(vy)
= 2515608 (e QD))
=216 Q&)
=£;.

Hence we have (1®¢)p=id,. Next we show that (0@ Lp =1 d)p. If we
denote ¢(v;) by 2i-1his@vy, then p(§:) = 24§ QU ENP(Ve) = i1 64 D Nt
(1R1RXENAXP)Pve) =(1R1XE NN PNZi1 hri Qi)

=(1Q1QE Nttt hei @hu@v1)
=30 R @ hy; .
Now (p®1D)p(§,) = 24 (0D hij) = k16 Mg @ g
(1R DpE)=1RANZ}-1§: QA RENP(Ve))
=256 QURLIREN AR DP(ve)
=216 Q(1LRIRENIRDIP(ve)
=215 Qhu®hy; .

Hence we have (p®1)p=(1& 4)p. Q.E.D.

(3.1.2) PROPOSITION. Let V be a finite dimensional left H-comodule. Then
Com-H™(V, H) and Hoch-H™(V*, H) are canonically isomorphic for all n. The
isomorphism 1s induced by a canonical isomorphism between the standard
complex to compute Com-H™(V, H) and the standard complex to compute
Hoch-H™(V*, H).

PROOF. One easily checks that the natural linear isomorphisms
Hom (V, Q*H)— V*Q(R"H) form a morphism of complexes.

3.2. Let V be a left H-comodule and let S(V) be the symmetric algebra
of V. S(V) has a canonical Hopf algebra structure [3, Proposition 3.2.3].
Define ¢: S(V)— H®S(V) by the following diagram:
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v ®V
L |1®i
¢
S(V) o> HQS(V)

where 1: V—S(V) is the natural injection.

(3.21) LEMMA. (S(V), ¢) is a left H-comodule Hopf algebra.

PROOF. It is clear that S(V') is a left H-comodule. Since ¢ is an algebra
map S(V) is a left H-comodule algebra. And since S(V) is generated by V
as an algebra, to show b) in (1.1.2), it suffices to show the following two
equalities :

(") 1@DPW) =M1 DU TR (PR ¢P)Aw) for all ve V.

(7)) ARXRe)p(v)=ur@e(v) for all ve V.

(MR1RDAK TR (PR P)A(w)
=(MRLIQDURTRNP R (v R1-+1Qv)
=(MRLIDARTRNZ v, @var, D LR 121X 1@ vun@ veyy)
=20, @V, ®1+Zvun@ L@ vy,
=(1R®DHP).

Hence the equation (') holds. Since ¢(V)=10, (”) is clear. Q.E.D.

(3.2.2) ProproSITION. Com-H™(V,H) and Hop/-H"(S(V), H) are canonically
1somorphic for all n.

PrOOF. By the universal mapping property of S(V), Hom (V, ®"H) is in
1-1 correspondence with Alg (S(V), ®"H). This map induces the isomorphism
between the standard complex to compute Com-H™(V, H) and the standard
complex to compute Hopf-H*(S(V), H).

3.3. Let V be a left H-comodule and let B(V) be the left H-comodule
coalgebra attached to V (see (1.2.3)). We consider Coalg-H"(B(V), H). Let
D be any commutative algebra. There is a natural linear isomorphism ¢
from Hom (B(V), D) to DPHom(V, D), since B(V)=k@D as a space.
D@Hom (V, D) has an algebra structure induced by ¢. Thus (4, f/)(¢, &)=
(A, Ag+pf), where 2, p=D and f, g = Hom (V, D). The unit of D@ Hom (V, D)
is (1,0). Let (1, f) be in DPHom(V, D). If 2 is invertible in D then
(A, HAY, —4A%f)=(1,0) and hence (4, f) is invertible in DG Hom (V, D).
Conversely if (4, f) is invertible then 4 is invertible in D. Thus we have the
following

(33.1) LEMMA. The map Reg(B(V), Q" H)—U@"H)Q®Hom (V, X"H),
(2, £)—(4, A7Yf) is a group isomorphism.

(3.3.2) PROPOSITION. Coalg-HB(V), H) = Coalg-H"(k, HY® Com-H"(V, H).
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PRrROOF. The natural projection B(V)—k induces a group monomorphism
Reg(k, Q"H)—Reg (B(V), ®"H). By (3.3.1), its cokernel is Hom (V, Q"H).
Thus we have the short exact sequence of complexes;

0 — {Reg(k, @"H)} —> {Reg (B(V), @"H)} —> {Hom (V, Q"H)} —> 0.

Moreover the exact sequence splits, the splitting map is induced by the
natural inclusion 2C B(V). Q.E.D.
3.4. Let B be a cocommutative left H-comodule coalgebra. The linear
dual B* has an algebra structure. Suppose B is finite dimensional. Then
the linear isomorphism y from B*® H to the convolution algebra Hom (B, H)
is an algebra isomorphism.
(3.4.1) LEMMA. B* is a commulative right H-comodule algebra.

p I8
PROOF. We show that the composite B* —> B*® H—> Hom (B, H) is an
algebra map. For &, &, € B¥*,

[AXENPI*[(L®EIPT=MIRERLIRENP R4
=(M®&ERE)IRQTRNPR ¢4
=(1®&Q&)MRIIRNURITRN¢ R4
=(1®&QEAR Y. Q.E.D.

(3.4.2) PROPOSITION. Suppose B is finite dimensional. Then Coalg-H™(B,H)

and Alg-H™(B*, H) are canonically isomorphic for all n. The isomorphism is
induced by a canonical isomorphism between the standard complex to compute
Coalg-H™(B, H) and the standard complex to compute Alg-H™(B*, H).

3.5. For a commutative algebra A the Amitsur cohomology group of A
is denoted H"(A). Note that the Amitsur complex of A is the complex
{U@™*A), E™ 2o and the differential E™': UQ"A)— U(Q"**A) is defined
by E™ Y x)=e¢y(x)e,(x)™ -+ e,(0)*!, where e¢;: 'A—Q"A, a,Q - Qa,—
a1® ®ai®1®ai+1® ®an-

Suppose A is a left H-comodule algebra. We have an algebra map
Q:R"MA—-AR(@"H). This is given by

a0, @ - @ ape1) = X 010508500y *** Cns 10 Toey@scy *** Qut1c
&+ @ nn-pnricn-1& dnticn »
where we use the Sweedler’s notation, for a€ A4, ¢(a)=2a,Rawn, € AQH,
and we inductively define:

200y Qa1Q @y =(PR1Q Nty ® a1y & ++ Qam-1) -

PROPOSITION. §2 tnduces a morphism of complexes
Q: {U®"'A), E™nzo —> {UAQ(R"H)), D"}bnzo -
Therefore there is a morphism from H"(A) to Alg-H"(A, H).
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§4. Extensions and crossed products.

Let B be a cocommutative left H-comodule coalgebra and let L be a
cocommutative left H-comodule Hopf algebra.
4.1. We say that a triple (C, f, w) is a coalgebra extention of B by H if:
(1) C is a coalgebra
(2) f:C—B is a coalgebra map and surjective
(B) w:CRYH-—C is a coalgebra map (we denote w(cQRQh)=c—h)
such that the followings hold:

) f
(a) C®H§ C —> B is exact (i.e., C/Im(w—1Qe)= B as a space)
1R e
(b)) (C,w) is a right H-module

(¢) The following diagram is commutative:

1®f
C CRC C®XB
|4 |
CRC w1
l T
181 1®¢
CRC C®B CRHRB
i.e, SR few) = 2oy — few)a @ f(cas) s for all ceC.

We say that a triple (C, f, w) is a Hopf extension of L by H if:

(1) C is a Hopf algebra

(2) f:C—L is a Hopf algebra map and surjective

(3) w:CRH—C is a Hopf algebra map
such that the above conditions (a), (b) and (c) hold.

A morphism of coalgebra extensions (of B by H) from (C, f, w) to (C', f/, ®")
is a coalgebra map y: C—C’ such that the following diagram is commutative:

w

C Q@H- >C f
~

lr@)l lr B (i.e, 7 is an H-module map and f=/y).
w’ "
CQH - C f

A morphism of Hopf extensions (of L by H) from (C, f, w) to ((’, f/, o)
is a Hopf algebra map y: C—C’ such that the above diagram is commutative.

4.2. The co-smash product.

We define the coalgebra Bh H to be B H as a space. (We write bhh
for b®h when thought of as an element of Bb H, b= B, he H.) The co-
algebra structure is defined by
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4 4 1XOX1X1
4d: BQH-———— B@B@H@HM> BRQHKRBRYHRH
1®IRXTR1 7 , IMP1IX1
BOHRRHKBXH BRHKYBYH
e®e
¢: BQH —> k= k
i.e., Ay h)y= 2 bay b bemyeanhay @ beaxsy b he

e(bh h) =ep(b)en(h).
B b H is called the co-smash product of B with H.
We define the Hopf algebra Lbp H to be L& H as an algebra and to be
Lb H as a coalgebra. The antipode is defined by

St Q Sk PR1

S: LQH LQ®H

HRYLYH

T1 10S®1
LQHRH ———— > LQHQH

LY H is called the co-smash product of L with H (see [1], (4.2)).

4.3. The crossed product.

We now introduce crossed products. Suppose 6: B—>HX®H is a linear
map. B, H is the space BQ H with comultiplication defined by

A(b [70‘ h) = Eb(l) bd b(2)(H)b(8)a(1)h(l)® b(Z)(B) {70 b(S)G(Z)h(Z) ’
where we use a new notation, for b B,
0(b) =X boy R boy € HR H .

Note that when 0 =(uyQug)ep then Bb, H is precisely B H.
(4.3.1) LEMMA.
(a) The comultiplication in B b, H is coassociative if and only if

[(1®a¢]*[(1QMNDe]l=[(4Q Dol *[c@u].
(b) esQey is the counit in Bh, H if and only if
3 6(bac)bocsy = (W)l g = X e(bos)bocr,  for all beB.

PROOF. (a) Suppose B, H is coassociative. Then (AQDIORQh)=
1QMHAMbRHA) for all be B, he H. The left hand side equals,

(*) 2 b(l) ® b(2)(H)b(s)a(1)b(4)(H)(1)b(5)0(1)(1) h(l) @ b(z)(B)
® b(8)0(2)b(4)(H)(2)b(5)0(1)(2)h(2) ® b(4)(B) ® b(B)U(Z)h(3) .
And the right hand side equals,

(**) Z b(l) ® b(z)(H)bGS)G(l)h(l) ® b(Z)(B)(l) ® b(2)(B)(Z)(H)b(z)(B)(S)U(I)b(3)a(2)(1)h(2)

® b(z)(B)(sz)® b(szxs)acz)b(s)acz)(z)h(3> .

LRYH.
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Applying eQR1®e®1®eX®1 to (*) and (**) and equating shows o satisfies the
identity in (a). Conversely, suppose o satisfies the identity in (a). Applying
1®4X1 to the first identity in c¢), (1.1.1) yields

(***) Zb(H)®b(B)(1)®b(B)(2)®b(B)(3)
- 2 b(l)(H)b(Z)(H)® b(l)(B)(l)® b(l)(B)(Z) ® b(z)(B) .
<**) = 2 b(l)@ b(z)(H)b(3)0(l)h(l) ® b(z)(B)(1)® b(Z)(B)(3)(II)

: b(sz)(2)0(1)b(3)u(2>(1)h(2) ® b(2)(B)(3)(B)® b(2)(3)(2)0(2)b(3)0(2)(2)h(3)

(since beyp, 18 a cocommutative element)

=2 b(l) ® b(z)(H)b(3)<H)b(4)a(1)h(l) ® b(2)cB)(1) ® b(s)(B)(H)
) bCZ)(B)(Z)zI(1)b(4)o(2)(1)h(2) ® b(s)(B)(B) ® b(2)(B)(2)a(2)b(4)a(2)(2)h(s)
(since (***))
=2 b(l) ® b(Z)(H)b(3)(H)(1)b(4)a<1)h(1) ® b(Z)(B)(I) ® b(3)(H)(2)
: b(z)(B)(Z)U(l)b(4)0(2)(l)h(2) ® b(3)(B) ® b(z)(B)(Z)a(Z)b@i)0(2)(2)h’(3)
= Z b(l) ® b(Z)(H)b(S)(H)b(4)(H)(1)b(ﬁ)d(l)h(l) ® b(Z)(B) ® b(4)(H)(2)

: b(3)(B)ﬂ(l)b(5)ﬂ(2)(1)h(2) ® b(4)(B) ® b(3)(B)0(2)b(S)U(Z)(Z)h(3)

- 2 b(l) ® b(2)(H)b(3)(H)(l)b(4)(H)b(S)G(I)h(l) ® b(Z)(B) ® b(a\(H)(z)

* b(4)(B)a(1)b(5)a(2)(1)h(2) ® b(s)(B) ® b(4)(B)acz)b(s)a(z)(z)h(3)
- 2 b(l) ® b(Z)(H)b(3)(H)C1)b(4)0(1)(1)b(s)d(l)h‘(l) ® b(Z)(B) ® b(3)(H)(2)

° b(4)0(1)C2)b(5)€T(2)h(2)®b(3)(5)®b(4)0(2)h(3)
(since the identity in (a))
=(*) (by the index permutation (345)).

(b) is clear. Q.E.D.

(4.3.2) We define f: Bh, H—B, bbh,h—e(h)b and w: Bb, HOQH— B}, H,
bbe h@g—bb, hg. When o satisfies the conditions of (4.3.1) one easily
verifies that (Bb, H, f, w) is a coalgebra extention of B by H. We call it a
crossed product (extention).

(4.3.3) Let ¢ be in Alg, (L, HRH) and D¥o)=u@u@u)e; i.e.,, normal
2-cocycle. We define the Hopf algebra L}, H to be LQ H as an algebra and
to be L b, H as a coalgebra. The antipode is defined by

A1 1R '®1
S:LQH——— > LQLRH LRHRQHRQH

1IR1IRSR1 1QMMR1)
LRQHRHRQH LQH
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YRS 1®QS®1
— HRLQH ——— " > HQLQH
TRl 105®1
> LQHRQH —— > L[QHRH
1QM
R > LQH,

where ¢7': L—-H® H is the *-inverse of o.
Thus L b, H is a Hopf extension of L by H.

5. Cleft extensions and H?.

5.1. A coalgebra extension (C, f, w) of B by H is called cleft if there is
an H-module map in Reg(C, H). (Regard H as a right H-module via Mj.)
A Hopf extension (M, f, w) of L by H is called cleft if there is an H-module
map in Alg (M, H).

Note that if y:(C, f, o)—(C’, f/, »’) is a morphism of extensions and
(C', f', @) is cleft then so is (C, f, w).

5.2. EXAMPLES.

(5.2.1) H may be viewed as a coalgebra (or Hopf) extension of %2 by H
if we put f=¢ and w= My. The identity map on H is an H-module map
which is invertible (since H has the antipode). Thus H is a cleft coalgebra
(or Hopf) extension of 2 by H.

(5.2.2) Let G, be an affine algebraic group over an algebraically closed
field k and let M be its coordinate ring. Let G, be a closed normal subgroup
of G, which is commutative and let L be its coordinate ring. L is a cocom-
mutative Hopf algebra. The inclusion map G, ", G, induces a surjective Hopf
algebra map f from M to L. Let G, be the quotient algebraic group of G,
by G, and let H be its coordinate ring. We can consider I as a sub Hopf
algebra of M.

J
L<«— M<—H.

G, has a G,-module structure: xf=sxs! (g=9p(s)), g€ G,, x=G,. Hence L
has a H-comodule Hopf algebra structure ((1.2.6)). Define w: MQH—M by
m@h—mh. Then it is easily shown that (M, f, w) is a Hopf extension of
L by H. Suppose that there exists a morphism of varieties a«: G;— G, such
that poa =1ids,. The corresponding algebra map z: M—H is the identity
on H. This means that z is an H-module map so that (M, f, w) is a cleft
extension of L by H.
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5.3.
(5.3.1) LEMMA. Let (C, f, w) be a coalgebra extension of B by H.
(a) If t=Reg(C, H) is an H-module map then 7w = Myz(z71®S).
(b) If (C, f, w) is cleft then there is an H-module map = in Reg(C, H)
such that egr =¢..
PrROOF. (a) Since z is an H-module map it satisfies ro = Myz(z®1) in
Reg (CQ H, H). One easily verifies that the inverse of zw in Reg (CQRH, H)

is z7'w and the inverse of Myz(r®1) is My(r*®S). By the uniqueness of
inverses we are done.

(b) By the assumption there is an H-module map 7 in Reg(C, H).

We define z/:C—H, 7/(c)=2e(z  (cy)zlcy). A calculation shows that
/€ Reg(C, H) and e¢xr’ =¢,. Next we show that ¢’ is an H-module map.

T'o(cQh) = X e(r7 ey — he))T(cay— hay)
= X e(r7Hew)S(heay))T(Ccn)her (by (a))
= Xe(r ™ ew))T(ca)h
=Mu(z/QD{(cRh). Q.E.D.
(5.3.2) LEMMA. If Bb,H is a crossed porduct extension then the H-module
map t: Bbs H—H, bbh, h—e(b)h is invertible if 0 = Reg (B, HQ H). The inverse
1s giwen by bhs h— > S(bg-101)bs-1055S(h).

PrOOF. It is clear.

5.4.

(5.4.1) LEMMA. Let (C, f, ) be a cleft coalgebra extension of B by H and
€ Reg (C, H) an H-module map.

(a) The composite

yi| &z
C—— CQRQC—> BRXH

1S a linear isomovphism.

(b) There is a map P: B—C such that the following diagram is commuta-
tive:

-1
cA + cocL1ET CQH

\B/

And the composite

P®1
BRH ——> CRQH

> C

1S the inverse isomorphism to the isomorphism given in (a).
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PROOF. For ceC and he H,
o(1Q 7 Vdw(cQh)
=0(1Qt N cy—hayQcwy—hew) (o is a coalgebra map)
= o(Z e —ha ® v7(cw)S(he)) (by (a) in (5.3.1)
= ey —77Hcew)
=0(1QrHAAQe)(cQh).

w I
Thus (1R Vdo=w(1®7r)4(1R¢). Since C®H1§ C —> B is exact the
&
existence of the map P: B—C is guaranteed. Now

o(PRL(fQ 7)d(c) = o(Z Pf (cay) @ 7(ceay)
= o(Zcar— 77 HC) @ 7(Cesy))
= =77 HC)T(Ces)
= 20 cr&(Cear)

=cC.

And
(f@7)du(PR(f()Qh)
=R )A(Z cn—7 " cw)h)
=R NZ cay — 77w @ ceay— 77 Cew)ewrPeay)
= B flea)e(t eamdarhar) @ 7(Cw)t  (Cwahien
(since fo=f(1®e) and = is an H-module map)
= 2 flec) Q te)t™ (e
=fc)Qh.

Thus C is isomorphic to BQ H. Q.E.D.
(5.4.2) LEMMA. Let (C, f, w) be a cleft coalgebra extension of B by H and
e Reg (C, H) an H-module map such that ezt =e¢c.
(@) There is a map o(zr): B—HQH such that the following diagram is

commutative:
[(z®z)d]*x[dz']: C
N
B

a(7) 1s a 2-cocycle in Reg, (B, HQ H).

HRH

4 R
(b) 7::C—>CQC—> BRH=Bbo H is an isomorphism of extensions.
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PROOF. (a) The map o(z) is given by

b—> 31 7(cay) T (C5)y @ T(€) T Cear)eo (fle)y=0b).

A calculation——involving the condition (c¢) in 4.1.——shows that (y:Q7)4c
= Ap,yon 7 and (epPep)re=¢ec. (5.4.1) implies y. is bijective and thus
BheyH is a (coassociative) coalgebra. Thus o(z) satisfies the condition of (4.3.1)
One easily verifies that o(r) € Reg (B, HR H).

(b) is clear. Q.E.D.

(5.4.3) REMARK. If C=B},H for 2-cocycle o<=Reg(B, HQH) then
t=e®l: Bp,H—H, bh, h—eb)h is an H-module map such that ez —=e. One
easily checks that o(z)=0 and 7. is the identity map on B H.

(5.4.4) LEMMA., Let (C; fy, w;) be coalgebra extensions of B by H for
1=1,2 and let ¢:C,—C, be a morphism of extensions. If (C,, f, w,) is cleft
then ¢ is an isomorphism.

PROOF. Suppose 7 < Reg(C,, H) is an H-module map such that sr=e.
Then z¢ € Reg (C,, H) is an f-module map and ¢(z) =0(z¢) (since we have
[(QR)A]*[dz ' Do =[(re@z@)d]*[d(zp) *]). Clearly the diagram,

C, BbH=B by H

% a(r) alrg)
\\ T
G

is commutative. By (5.4.2) the horizontal and vertical maps are
isomorphisms which implies ¢ is an isomorphism. Q.E.D.

(5.45) LEMMA. Let o and p he 2-cocycles in Reg, (B, HQ H). Then the
followings are equivalent:

(a) Bb,H=B),H as a coalgebra extension.

(b) o and p are cohomologous: i.e., oxp~' = D'(e) for some e = Reg.(B, H).

PrOOF. (b)=(a). We define ¢:Bb, H>Bb, H, bbh,h— b bse(bu)h.
Then ¢ is a morphism of extensions.

(a)=(b). Suppose ¢:Bbp, H—B}, H is a morphism of extensions. Define
e: B—H, b—(®@Doebb,1). We claim that ¢(bb,1)= by, bse(bs,) for all
beB. Themap z:Bbh, H—>H, bb, h—e(b)h is an H-module map in Reg (C, H).
By (5.4.1) Lemmal the composite (f® 7)dp,,¢ is bijective so that it suffices to
show the following equality,

(f®7)dpbb, 1) =(fR7)A(Z bery bo e(besy)) -
(f® T)ASD<[) 17,0 1)= (f® T)(SD X QD)(E bm bp b(z)(H)b(3)p(l) ® b(z)(B) [7p b(s)pm))
=3 €(b<2><H>)5(b<s>p<1>)b<1) X e(bcsz))b(a)p(z)

(since fo=f and 7 is an H-module map)
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=2 by @ e(beyy)
=(f@)A(Z b, bs e(beyy)) (by (5.4.3) Remark).
Thus
do(bh, 1) =A(Zba, bs e(bey)
*) = 2605 bo beaymnbenay@(be) iy @ ey bo bessacere(be)ces
(e @ @)dbh,1)
(**) =20(bcr b 1) = beosmnbenrpay @ ©(bearess bo Dbieayocas -

Equating (*) and (**) and applying e®1&®e®X1 implies
ox[de]=[(1Re)pI+[eQ@ul*p.

Also ee=¢. Thus if we show e¢=Reg (B, H) it follows e Reg, (B, H) and

oxp ' = D¥(e).

A calculation shows ef=[z¢]lx[z7']. Thus (ef)'=[z'¢lx[z] in
Reg(Bb, H, H). [r7'¢]*[r] induces a map ¢ :B—H such that ef=
[z7'¢]*[z]. Now (e*e’)f:ef*e’f:uHstpH:uHer. Hence we have exe’ =
UgEp. Q.E.D.

5.5. THEOREM. Let H be a commutative Hopf algebra and let B be a
cocommutative left H-comodule coalgebra. Then there is a bijective correspond-
ence between the isomorphism classes of cleft coalgebra extensions of B by H
and Coalg-H?*(B, H).

PrROOF. The correspondence is gotten by choosing a crossed product
from the isomorphism class and passing to the cohomology class of the
2-cocycle determing the crossed product. Q.E.D.

Similar calculations show the next result about Hopf algebra extensions.

5.6. THEOREM. Let L be a cocommutative left H-comodule Hopf algebra.

Then there is a bijective correspondence between the isomovphism classes of cleft
Hopf algebra extensions of L by H and Hopf-H*(L, H).

§ 6. Cohomology of comodule algebras.

Let H be a commutative Hopf algebra and let A be a commutative right
H-comodule algebra. Suppose that the ground field £ is an algebraically
closed field and % is algebraically closed in A and H.

The importance of this hypothesis resides in the following result ([4]),
known as Ax-Lichtenbaum-Halperin's units theorem.

Suppose k 1s an algebraically closed field, X and Y commulative algebras
over k and k 1is algebraically closed in X and Y. Then every invertible element
in XQRY 1s of the form of xQRQy where x is an wnvertible element of X and y
an invertible element of Y.
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APPLICATION TO HOPF ALGEBRAS: Under our condition of k, every invertible
element of H is of the form of Ag where A€ k—{0} and g G(H)={ge H|
g+0, 4(g)=gQ4g}.

We note that if A is finitely generated then our condition of % being
algebraically closed in A is equivalent to zero being the only nilpotent element
of A and Spec (A)—maximal or prime ideal spec——being Zariski connected.
If H is finitely generated then H is the coordinate ring of an affine algebraic
group. Since a Zariski connected affine algebraic group is actually irreducible
we have that our condition of %2 guarantees that H is an integral domain.

6.1.

(6.1.1) Let @ be an invertible element of A; i.e., ac U(A). Since the
comodule structure map ¢: A—AXH is an algebra map we have that ¢(a)
is an invertible element in AXQH. By the units theorem ¢(a)=b0&® g, where
b is an invertible element of A and g, is a grouplike element of H; i.e.,
g<= G(H). Since (1Q¢)¢p=1d., we have that b=a and ¢(a)=aQg,.

In case A=k[X] and H=k[G] as in Example (1.2.3) the above result implies
that every invertible regular function a is a semi-invariant with weight g,, that
is, a(x")=g,()a(x) for all x= X and t =G where we denote the action of ¢
on x by x! Note that grouplike elements of H are multiplicative characters
of G.

In general the grouplike elements of H form a multiplicative subgroup
of UH) (S(g)=g™"). They are linearly independent. It is clear that the
map &: U(A)—G(H), a—g, is a group homomorphism.

(6.1.2) PrROPOSITION. Alg-H'(A, HY=G(H)/Im&. In particular if A= A"
(={ae A| Pla)=a®1}) then Alg-H'(A, H)=G(H).

ProOOF. The invertible elements in AX H are all of the form a® 7 where
ac U(A) and he G(H). Now

D(a@n)=(@R&@)@n(@QrTQh N a@h®1)
=a®&@X1.

Thus if c=a®h is a 1-cocycle we can assume ¢ is of the form ¢c=1Qh
where h e G(H). On the other hand for a = U(A),

D(a)=(a@&(@)(a” @D =18 &a).

Hence we have Alg-HY(A, H)= G(H)/Imé&.
Finally if A= A" then Im &= {1}. Q.E.D.
This gives rise to the exact sequence of groups:

1—> Alg-H(A, H) U(A) : G(H) Alg-H'(A, H) —> 1.
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6.2.
(6.2.1) THEOREM. Alg-H"(A, H)= {1} for n=2.
ProOF. By [4], 3.0 the invertible elements in AQ(R"H) are all

of the form a@h,Q - Qh, where a< U(A) and {h;} CG(H). A calculation
shows

DHaR@h & - Qhy)
aREQRh,Rh,Qh, Q@ @by @b, Q1 if n odd n=3),
1Q DA QLA Q1R ' Q)+ @ hp-sh i Q1R Ry
if n even (n=2).

Thus if #n is odd (n=3) and ¢c=a®h, I, Q- Rh, is a cocycle we must
have that ¢=1 and h,=h,= - =h,.,=1. Thus we can assume ¢ is of the
form '

c=10n1QRQ1R1R - X1IRh, .

Then we have that

c=D"(1QMN'QLI'R - ®1R h;' s @ hy)

so that ¢ is a coboundary.
If n is even (n=2) and ¢ is a cocycle we have that &(a)=h,, h,= h,,
hy="hs «h,_y=nh,, and h,=1. This implies that ¢ can be written

C= (l@s((l)@hZ@hz@h‘q ®h1® ot ®hn—2®hn—2®l .
Then we have that

c=D"HaQ1Rh, Q1R - @huy 1)

so that ¢ is a coboundary. Q. E.D.

(6.2.2) COROLLARY. Coalg-H™k, Hy= {1} for n=2.

PrOOF. It is clear from (3.4.2) and (6.2.1) [Theorem|

(6.2.3) COROLLARY. Let C be a coalgebra which is a right H-module
(with action w:CRQH—C). Suppose C®Hl% C—€—> k 1is exact and there is

&
an H-module map in Reg (C, H). Then C=H as a coalgebra.

PROOF. It is very easy to see that (C, ¢, w) is a cleft coalgebra extension
of £ by H. Since Coalg-H*k, H)= {1}, it follows from 5.5 that
C=Fkp H as a coalgebra. Clearly, kh H= H as a coalgebra so that (6.2.3) is
proved.
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§7. Application to coradical splittings.

7.1. Inner automorphisms.

We introduce inner automorphisms of Hopf algebras. Let M be a com-
mutative Hopf algebra over a field & For € Alg (M, k) we define the map
I(z): M— M by m— 3 tS(mg,)met(me,). It is easy to see that I(zr) is a Hopf
algebra endomorphism. And we have I(t)I(zS)=1id., which implies I(z) is a
Hopf algebra automorphism. We say that a Hopf algebra automorphism is
inner if it is one of the form I(z). Inner automorphisms form a group.

7.2. Let M be a commutative Hopf algebra over & of characteristic 0. Let
H be the coradical of M, that is, H is the sum of all simple subcoalgebras
of M. We know that H is a sub Hopf algebra of M (1], (3.1)) and L=
M/M-H* is an irreducible Hopf algebra where H*=XKer ¢y.

The purpose of this section is to prove the following [Theoreml

THEOREM. Suppose L is cocommutative. If q,q : M— H are Hopf algebra
maps such that q=1identity on H=q’, then there exists an inner automorphism
I(7) such that the following diagram is commutative:

I(7)
M > M

N
H

REMARKS. (1) By [7, Theorem 1] there exists a Hopf algebra map
g: M— H such that ¢:=identity on H, where M and H are as in the above
fTheorem. (2) The above with Remark (1) is similar in spirit to
[8, Theorem 14.2].

7.3. We assume that & is of characteristic 0 and L=M/M-H* is co-
commutative. Let / denote the canonical projection M— L.

(73.1) L is a left H-comodule Hopf algebra under the left f{-comodule

structure

¢: L—>HRL, Sm) = m,S(m ) @ f(mes) .

Indeed since L= M/M-H* we have that L is a quotient M-comodule of M
under the left M-comodule structure of Example (1.2.5). Hence it suffices to
show that ¢(L)C HQ L. But this follows from [7, Lemma 5].

(7.3.2) Hopf-H'(L, H)= {1}.

PROOF. Since L is irreducible cocommutative it follows from [3, Theorem
13.0.1] that L is isomorphic as a Hopf algebra to U(V), the universal envelop-
ing algebra of V, where V=P(L)={ve L | dv)=v@1+1®v}. Since L is
commutative as an algebra we have U(V)=S(V), the symmetric algebra of
V. Thus we are done when we show that Com-H'(V, H)= {1} (by (3.2.2)).
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This follows from the next
7.4. PROPOSITION. Let H be a co-semi-simple Hopf algebra over a field k

(k is not necessarily of characteristic 0). For every left H-comodule V, we have
Com-HY(V, H)= {1}.

PROOF. Since H is co-semi-simple there exists a linear map x: H—kFk

such that wx=<w,1>x for all we H* and x(1)=1 (see [3], Theorem 14.0.3),
where we write (w, h) for w(h) (we H*, he H). Now

wx=<w,1>x for all we H*
oKw®x, dh)y=<w,1><{x, h) for all we H* and he H
& W, {x, hapyyhayy=<w, {x, h)1)
& (w, AQx)4(h)> =< w, ugx(h))
(*) e(1Qxd=uyx.
Now let f: V—H be a l-cocycle. Then we have (for ve V)

(**) Afw) =1 QNp)+/()R1.

We denote by a the composite: VLHL k. ForveV,
D(@)(v) = (1 Q@ a)d(v)—a(v)l
=1R®0ARNPw)—x/(w)1
=(1QR0NUfW)— (@D —xf(v)I by (**)

= xf(W)1—f(v)—x/()1 by (*) and {x,1>=1
=—Jf).
Thus we have D°(—a)=Ff, whence f is a 1l-coboundary. Q. E.D.

REMARK. The followings are equivalent: (a) H is co-semi-simple; (b) for
every left H-comodule V, Com-HV, H)= {1} ; (¢) for every left H-comodule
V, Com-HV, H)= {1} (n=1). This is similar in spirit to [6, II, §3, 3.7].

7.5. THE PROOF OF THE THEOREM.

We define the algebra map F: M— H by

F(m)=(g%q'")(m) = X q(m)q’S(me) .

Since M-H* is evidently contained in the kernel of £, we have the induced

algebra map F: L=M/M-H*—H. Now let f denote the canonical projection
M—L. Forl=f(m)elL,

2FD)0y @ F Dy = 2 a(meay) @’ S(May)y @ q(M1)irq” S(My)ce

= 29(My)q" S(m) @ q(mepy)q’ S(ms))
On the other hand,
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2wt () @ F(laywy)
= 2 M, S(Megy) Ff (i) @ Ff(mesy)
= 2q(m1,))qS(my)q(mes,)q" S(me,) @ g(mey,)q’ S(mesy) - (by m,Siney,) € H)
= 24(M1,)q" S(Myy) @ 4(Mez) g’ S(mea) -

This shows that F': L—H is a 1-cocycle. By (7.3.2) there exists a a € Alg (L, k)
such that F=D%a)=[1 X a)¢1+x[a*@u]. The equality Ff= D«a)f reduces

g=([a'Qul*[ARQa¢] f*q".
Thus we have that for me M,
q(m) = 2 aSf(meay)me,S(me)af(m,)q' (mes,)
= 2 afS(mu,)q' (me)q' S(me)af(me)q' () (by mepSine,) € H)
= 2 afS(mq,)q’ (mey)af(me,)
=q'Iaf)(m).
Hence we have ¢ =¢’'I(z) where z =«af, and the [Theoreml is proved.

Appendix

By Mitsuhiro TAKEUCHI

1. Comparison with the Hochschild cohomology.

Let ® be a k-group-functor and T a &-module-functor. In [6, II, §3, 1.1]
the Hochschild cohomology HE (S, M) of & with coefficients in M is defined.
Let H V,B, L, W and A be just as in §2.1. Let &=&p(H) be the affine
group scheme of H, hence &(R)= Alg,(H, R) for any k-model K. We define
five ®-module functors M,, 1=1, 2, ---, 5, as follows:

M,(R)=Hom, (V, R) on which &(R) acts as
(g—x)v)=ZgWur)x(vw>), £ S(R), xeM(R), veV

M,(R)=Reg, (B, R)

M, (R) = Alg, (L, R).

The action of G(R) on M,(R) (resp. M,(R)) is induced from the action on
M,(R) with V replaced by B (resp. by L).

M(R)=R@W with the G(R)-action
g—(rQuw)=Xrg(Wum)Quwwy, g€ &R), re R, we W
M(R)=URRQA).
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The action of G&(R) on M,(R) is induced from the action on M,(R) with
W replaced by A.

PROPOSITION.  Hi (&, M) = Com-H™(V, H), H{(®, M,) = Coalg-HB, H),
Hy (S, M) = Hopf-H*(L, H), H{(®, W,)= Hoch-H* (W, H) and Hi(®, M;)=
Alg-H"(A, H).

The proof may be omitted, since it is easy and standard.

In view of the above identifications, Theorems 5.5 and 5.6 are contained,
in a sense, in [6, II, §3, 2.3]. ‘

2. Non-abelian cohomology.

Let ® be a k-group-functor. By a &-group-functor we mean a (not
necessarily commutative) k-group-functor MM on which & acts as group-
automorphisms. We define in the following H{(®, M) and HS, M) for any
®&-group-functor M.

First we define H)®, M) =Me(k). Next a morphism f: &—M is called
a l-cocycle if

f(gh)=i(g)g—ih)], g he®R), ReM,.
Two 1-cocycles T and |/ are said to be cohomologous if there is an x < M(k)

such that
V(g)=x"(g) g xr), g&®&R).

This is an equivalence relation and the quotient space is denoted by H{(®, ).
This is a pointed set having the class of the identity cocycle as its base point.

Let 1 - —-M—-IM”—1 be a k-model-wise exact sequence of &-group-
functors. This means that

11— M(R) — MR) — M"(R) —> 1

is exact in the usual sense for any k-model R. Then just as in [J.-P. Serre,
Corps locaux, p. 133], we have an exact sequence of pointed sets:

1 — H{(S, W) — HYG, M) —> HY(S, M)

0
—> HY(®, M) — H)(G, M) —> HY(S, M”).
Now let M be a G-group-functor and form the semi-direct product &=N-G.
Thus G(R) =M(R)xG(R) and
(x. &)y, hy=(x(g—Y), gh) in G(R).

Let 7:®—@® be the canonical projection. Let ¢:8—® be a morphism
such that roo=1. Write o(g)=(f(g), g). Then ¢ is a homomorphism of

k-group-functors if and only if | is a l-cocyle. Let ¢/: 8 —@® be another
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homomorphism such that woe’=1 and write ¢/(g)=({(g), g). Then | and
i’ are cohomologous if and only if there is an x < M(k) such that

o' =J(x)o0o

where J(x) denotes the inner-automorphism of & determined by (x, 1) & &(k).
This is clear since

(xg, 1)7'(0(2), &)(xp, 1)=(xz"T(g)g—x), &).

In particular H{(®, M) = {1} means that any homomorphism of k-group-
functors ¢: ® —@® such that z-o=1 can be written as

o(g)=(xp, V7'(A, ©)xp, 1), gEGR)
for some x < M(k).

LEMMA. Suppose that k is of characteristic 0. Let & =&p(H) be an affine
algebraic k-group with H co-semi-simple. Let M be an affine algebraic unipotent
k-group on which & acts as group-automorphisms. Then H{S, M)=1.

PROOF. The case where M is commutative. Then we have a canonical
isomorphism of groups

~

exp: Lie(M). >IN

[6, IV, §2, 4.1]. Notice that the action of & on T induces a natural linear
representation: & —®L(Lie (M)). The above isomorphism can be easily seen
to be ®-equivalent. Since H=0(®) is co-semi-simple, we have
H)(®, M) =H"(®, Lie(M))=0
by [6, 1I, §3, 3.71.
General case. Let 3 be the center of M. Since 3 is characteristic, it
is &-stable. The exact sequence of &-group-functors

1 3 m M/3—>1

is k-model-wise exact, since 3=V, for some vector space V and since [6,
III, §4, 6.6] holds with a, replaced by V.. Hence we have an exact sequence

0=HY®, 3) —> HY(G, M) —> HY(G, M/3)=1

(HY®, M/ 3)=:1 by the induction hypothesis). Therefore H)®, M)=1.
COROLLARY. Let M be a commutative Hopf algebra over a field of charac-
teristic 0. If M is finitely generated as an algebra then the statement of
Theorem 7.2 holds, whether L is cocommutative or not.
PrROOF. Put G=06p(H), 8=6p(m), 1=6p(L). Then the Hopf algebra
maps

f
L<—M=sH
q
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induce a split exact sequence of k-group-schemes
1l —-UN—-8=6—1.

This permits us to identify & with the semi-direct product 1-®, where the
action of & on I is determined through &p(g). Since U is unipotent and H
is co-semi-simple, we have H{(®&, 1)=1. Hence if ¢’: M— H is another Hopf
algebra projection, then there is an x = W(k) such that

= 3(x)

G 8
@P((J\Q ©n(g")
¢

or equivalently

H.
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