Cohomologies over commutative Hopf algebras

By Yukio Doi

with Appendix

By Mitsuhiro TAKEUCHI

(Received Jan. 30, 1973)

In [2], Sweedler has investigated a cohomology theory for module algebras over a given cocommutative Hopf algebra.

The purpose of this paper is to discuss some dual theories of [2]. In section 2, we give the definitions of cohomology groups for comodules, comodule coalgebras, comodule Hopf algebras and comodule algebras over a given commutative Hopf algebra. A familiar example of commutative Hopf algebras is the coordinate ring of an affine algebraic group. Section 3 deals with relations between these cohomology groups. Sections 4 and 5 contain the extension theory of coalgebras and Hopf algebras, which is the precisely dual statements of [2]. In section 6, we compute the cohomology groups for a special comodule algebra. Finally, section 7 gives a result on the conjugacy of the coradical splittings of commutative Hopf algebras over a field of characteristic 0.

§ 1. Preliminaries.

All vector spaces are over the ground field k. Our notation and terminology are essentially those used in [3]. One difference; if C is a coalgebra and $\psi: V \to C \otimes V$ is the structure map of a (left) C-comodule V, we sometimes write $\psi(v) = \sum v_{(C)} \otimes v_{(Y)}$ for all $v \in V$.

1.1. DEFINITIONS. Let H be a Hopf algebra. The unit map $u_H: k \to H \cong H \otimes k$ gives k the structure of a left H-comodule. An algebra D which is a left H-comodule is called a left H-comodule algebra if $M_D: D \otimes D \to D$ and $u_D: k \to D$ are H-comodule maps. $(D \otimes D)$ has the natural H-comodule structure.)

A coalgebra B which is a left H-comodule is called a left H-comodule coalgebra if $\Delta_B: B \to B \otimes B$ and $\varepsilon_B: B \to k$ are H-comodule maps.

A Hopf algebra L which is a left H-comodule is called a left H-comodule Hopf algebra (or H-Hopf action on L) if M_H , u_H , Δ_H and ε_H are H-comodule maps.

- (1.1.1) If D is an algebra and $\phi: D \rightarrow H \otimes D$ is the structure map of a (left) H-comodule, then the followings are equivalent:
 - a) M_D and u_D are H-comodule maps.
 - b) ϕ is an algebra map.
- (1.1.2) If B is a coalgebra and $\psi: B \to H \otimes B$ is the structure map of a (left) H-comodule, then the followings are equivalent:
 - a) Δ_B and ε_B are H-comodule maps.
 - b) $(1 \otimes \Delta_B) \phi = (M_H \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\phi \otimes \phi) \Delta_B$, $(1 \otimes \varepsilon_B) \phi = (u_H \otimes 1)\varepsilon_B$. (Where $T(x \otimes y) = y \otimes x$.)
 - c) For $b \in B$, $\sum b_{(H)} \otimes b_{(B)(1)} \otimes b_{(B)(2)} = \sum b_{(1)(H)} b_{(2)(H)} \otimes b_{(1)(B)} \otimes b_{(2)(B)},$ $\sum \varepsilon(b_{(B)}) b_{(H)} = \varepsilon(b) 1_{H}.$
 - 1.2. EXAMPLES.
- (1.2.1) Let H^A be the underlying algebra of H and let H^A have the left H-comodule structure induced by comultiplication. Thus H^A is a left H-comodule algebra.
- (1.2.2) For any positive integer n, let $\bigotimes^n H$ denote $H \bigotimes \cdots \bigotimes H$ n-times. $\bigotimes^n H$ has the algebra structure on the tensor product of algebras and has a left H-comodule structure where $\psi(h_1 \bigotimes \cdots \bigotimes h_n) \in H \bigotimes (\bigotimes^n H)$ is defined to be $\Delta_H(h_1) \bigotimes \cdots \bigotimes h_n$. Thus $\bigotimes^n H$ is a left H-comodule algebra. If we let $\bigotimes^0 H$ denote k, then $\bigotimes^0 H$ is a left H-comodule Hopf algebra. (k has the trivial Hopf algebra structure.)
- (1.2.3) Let G be an affine algebraic group defined over k and let X be an affine variety defined over k. Let $H = k \lceil G \rceil$ and $A = k \lceil X \rceil$ be the coordinate rings of G and X respectively. Then it is well known that H has the Hopf algebra structure induced by the group structure on G. To give an action of G on X as a variety is equivalent to giving a H-comodule algebra structure on G.
- (1.2.4) Let V be a left H-comodule with the structure map $\psi: V \to H \otimes V$. Then the left H-comodule coalgebra attached to V, denoted by B(V), is defined as follows:
 - $B(V) = k \oplus V$ as a vector space and a coalgebra structure is defined by

$$\Delta: B(V) \ni \lambda + v \longmapsto \lambda \otimes 1 + v \otimes 1 + 1 \otimes v \in B(V) \otimes B(V),$$

$$\varepsilon: B(V) \ni \lambda + v \longmapsto \lambda \in k$$
.

The left H-comodule structure map $\widetilde{\psi}: B(V) \to H \otimes B(V)$ is defined by

$$\widetilde{\phi}(\lambda+v) = \lambda 1_H \otimes 1 + \phi(v) \qquad (\lambda \in k, \ v \in V).$$

One easily checks that B(V) is a left H-comodule coalgebra.

(1.2.5) Let H^c be the underlying coalgebra of H and let H^c have the left

H-comodule structure induced by $\psi(h) = \sum h_{(1)}S(h_{(3)}) \otimes h_{(2)} \in H \otimes H^c$, where *S* is the antipode of *H*.

$$(M_{H} \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\phi \otimes \phi) \Delta_{H}(h)$$

$$= \sum h_{(1)} S(h_{(3)}) h_{(4)} S(h_{(6)}) \otimes h_{(2)} \otimes h_{(5)}$$

$$= \sum h_{(1)} (h_{(3)}) S(h_{(5)}) \otimes h_{(2)} \otimes h_{(4)}$$

$$= \sum h_{(1)} S(h_{(4)}) \otimes h_{(2)} \otimes h_{(3)}$$

$$= (1 \otimes \Delta_{H}) \phi(h).$$

Thus H^c is a left H-comodule coalgebra. If H is commutative as an algebra then the antipode S is an algebra map and hence so ϕ is. Therefore $H = H^A = H^c$ is also a left H-comodule Hopf algebra.

- (1.2.6) Let us now be in the situation (1.2.3), where X is an affine algebraic group. Then to give an action of G on X as an algebraic group is equivalent to giving a H-comodule Hopf algebra structure on A.
- 1.3. Convolution algebras. Let D be a left H-comodule algebra and let B be a left H-comodule coalgebra. Hom (B, D) has the following algebra structure. For $f, g \in \operatorname{Hom}(B, D)$ the product f * g is $M_D(f \otimes g) \Delta_B$. The unit of $\operatorname{Hom}(B, D)$ is $u_D \varepsilon_B$. This product is called convolution. If D is a commutative algebra and B is a cocommutative coalgebra then it is clear that $\operatorname{Hom}(B, D)$ is a commutative algebra. $\operatorname{Hom}_H(B, D)$ denotes the H-comodule maps from B to D. $\operatorname{Reg}(B, D)$ denotes the multiplicative group of invertible elements of $\operatorname{Hom}(B, D)$ and $\operatorname{Reg}_H(B, D)$ denotes $\operatorname{Hom}_H(B, D) \cap \operatorname{Reg}(B, D)$.
 - (1.3.1) $\operatorname{Hom}_{H}(B, D)$ is a subalgebra of $\operatorname{Hom}(B, D)$. $\operatorname{Reg}_{H}(B, D)$ is a subgroup of $\operatorname{Reg}(B, D)$.

PROOF. For $f, g \in \text{Hom}_H(B, D)$ we show that $f * g \in \text{Hom}_H(B, D)$.

$$\begin{split} \psi_D(f*g) &= \psi_D M_D(f \otimes g) \varDelta_B \\ &= (M_H \otimes M_D)(1 \otimes T \otimes 1)(\psi_D \otimes \psi_D)(f \otimes g) \varDelta_B \quad (\psi_D \text{ is an algebra map}) \\ &= (M_H \otimes M_D)(1 \otimes T \otimes 1)(1 \otimes f \otimes 1 \otimes g)(\psi_B \otimes \psi_B) \varDelta_B \quad (f, g \in \operatorname{Hom}_H(B, D)) \\ &= (M_H \otimes M_D)(1 \otimes 1 \otimes f \otimes g)(1 \otimes T \otimes 1)(\psi_B \otimes \psi_B) \varDelta_B \\ &= (1 \otimes M_D)(1 \otimes f \otimes g)(M_H \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\psi_B \otimes \psi_B) \varDelta_B \\ &= (1 \otimes M_D)(1 \otimes f \otimes g)(1 \otimes \mathcal{A}_B) \psi_B \quad (\text{since } (1.1.2)) \\ &= (1 \otimes f * g) \psi_B \,. \end{split}$$
 Q. E. D.

Let L be a left H-comodule Hopf algebra. Alg (L, D) denotes the algebra maps from L to D and Alg $_H(L, D)$ denotes Alg $(L, D) \cap \operatorname{Hom}_H(L, D)$.

(1.3.2) If D is a commutative algebra, then

a) Alg (L, D) is a subgroup of Reg (L, D).

b) $Alg_H(L, D)$ is a subgroup of Alg(L, D).

PROOF. a) For $f \in Alg(L, D)$ the inverse of f with respect to the convolution product is fS_L . Since D is commutative fS_L is an algebra map. b) For $f \in Alg_H(L, D)$ we show that fS is a H-comodule map.

$$\psi fS = (1 \otimes f) \psi S$$
 (since f is H -comodule map)
$$= (1 \otimes f)(1 \otimes S) \psi \text{ (see [1], (4.4) Lemma)}$$

$$= (1 \otimes fS) \psi.$$

Q. E. D.

1.4. Cotensor products. If W is a right H-comodule and V is a left H-comodule the *cotensor product* of W and V is the space $W \square_H V$ such that the sequence

$$0 \longrightarrow W \square_H V \longrightarrow W \otimes V \xrightarrow{\phi_W \otimes 1 - 1 \otimes \phi_V} W \otimes H \otimes V$$

is an exact sequence of k-spaces. If A is a right H-comodule algebra and D is a left H-comodule algebra then $A \square_H D$ is a subalgebra of $A \otimes D$. Note that $V \mapsto W \square_H V$ is a covariant functor from left H-comodules to k-spaces. In fact if $f \colon V \to V'$ is a H-comodule map then the corresponding map $W \square_H V \to W \square_H V'$ is given by the following diagram:

$$0 \longrightarrow W \square_{II} V \longrightarrow W \otimes V \xrightarrow{\phi_{W} \otimes 1 - 1 \otimes \phi_{V}} W \otimes H \otimes V$$

$$\downarrow \qquad \qquad \downarrow 1 \otimes f \qquad \qquad \downarrow 1 \otimes 1 \otimes f$$

$$0 \longrightarrow W \square_{II} V' \longrightarrow W \otimes V' \xrightarrow{\phi_{W} \otimes 1 - 1 \otimes \phi_{V'}} W \otimes H \otimes V'.$$

§ 2. Definition of cohomologies.

We assume from now on that our Hopf algebra H is commutative. Let \mathcal{C} be the category whose objects are commutative left H-comodule algebras and morphisms are H-comodule algebra maps which are by definition H-comodule maps as well as algebra maps. Let \mathcal{A} be the category of abelian groups.

- **2.1.** EXAMPLES. We consider some examples of covariant functors from \mathcal{C} to \mathcal{A} .
- (2.1.1) Let V be any left H-comodule. We have the functor F from C to \mathcal{A} ; if $D \in C$ then $F(D) = \operatorname{Hom}_H(V, D)$, and if $D \xrightarrow{\alpha} D'$ then $F(\alpha) : \operatorname{Hom}_H(V, D) \to \operatorname{Hom}_H(V, D')$ is given by the rule $F(\alpha)(x) = \alpha x$.
- (2.1.2) Let B be any cocommutative left H-comodule Hopf algebra. We have the functor F; if $D \in \mathcal{C}$ then $F(D) = \operatorname{Reg}_H(B, D)$, and $D \xrightarrow{\alpha} D'$ in \mathcal{C} then $F(\alpha)(x) = \alpha x$.
 - (2.1.3) Let L be any cocommutative left H-comodule Hopf algebra. We

have the functor F; if $D \in \mathcal{C}$ then $F(D) = \operatorname{Alg}_{H}(L, D)$.

- (2.1.4) Let W be any right H-comodule. We have the functor F; if $D \in \mathcal{C}$ then $F(D) = W \square_H D$.
- (2.1.5) Let A be any commutative right H-comodule algebra. We have the functor F; if $D \in \mathcal{C}$ then $F(D) = U(A \square_H D)$, the multiplicative group of the invertible elements of $A \square_H D$.
- 2.2. We form a semi-cosimplicial complex ([2]) in \mathcal{C} , whose objects are $\{ \bigotimes^{n+1} H \}_{n \geq 0}$ of Example (1.2.2). The object of n-degree is $\bigotimes^{n+1} H$ for $n = 0, 1, 2, \cdots$. The coface operators are given by $\partial_i : \bigotimes^n H \to \bigotimes^{n+1} H$, $x_1 \otimes \cdots \otimes x_n \mapsto x_1 \otimes \cdots \otimes \Delta(x_{i+1}) \otimes \cdots \otimes x_n$ for $i = 0, 1, \cdots, n-1$ and $\partial_n : \bigotimes^n H \to \bigotimes^{n+1} H$, $x_1 \otimes \cdots \otimes x_n \mapsto x_1 \otimes \cdots \otimes x_n \otimes 1$. The codegeneracy operators are given by $s_i : \bigotimes^{n+2} H \to \bigotimes^{n+1} H$, $x_0 \otimes x_1 \otimes \cdots \otimes x_{n+1} \mapsto x_0 \otimes \cdots \otimes x_i \otimes \varepsilon(x_{i+1}) x_{i+2} \otimes \cdots \otimes x_{n+1}$ for $i = 0, 1, \cdots, n$. One easily checks all the coface and codegeneracy operators identities.
- **2.3.** Let $F: \mathcal{C} \to \mathcal{A}$ be any covariant functor. We apply this functor F to the above semi-cosimplicial complex to obtain a semi-cosimplicial complex $\{F(\bigotimes^{n+1}H)\}_{n\geq 0}$ in \mathcal{A} . The homology of $\{F(\bigotimes^{n+1}H)\}_{n\geq 0}$ is defined by means of the differential $d^{n-1}: F(\bigotimes^n H) \to F(\bigotimes^{n+1}H)$ where $d^{n-1} = \sum_{i=0}^n (-1)^i F(\widehat{\partial}_i)$. Thus we have

$$F(\bigotimes^{1} H) \xrightarrow{d^{0}} F(\bigotimes^{2} H) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} F(\bigotimes^{n+1} H) \xrightarrow{d^{n}} \cdots.$$

The cohomology of F over H is defined to be the homology of the above complex and the n-th group $H^n(F, H)$ is $\operatorname{Ker} d^n/\operatorname{Im} d^{n-1}$ for n > 0 and $\operatorname{Ker} d^n$ for n = 0.

Com- $H^n(V, H)$, Coalg- $H^n(B, H)$, Hopf- $H^n(L, H)$, Hoch- $H^n(W, H)$ and Alg- $H^n(A, H)$ denote the *n*-th cohomology group of *F* as in Examples (2.1.1), (2.1.2), (2.1.3), (2.1.4) and (2.1.5) respectively.

2.4. There is a normal subcomplex of our complex $\{F(\bigotimes^{n+1}H), d^n\}_{n\geq 0}$. For n>0 let $N^{n+1}=\bigcap_{i=0}^n \operatorname{Ker}(F(s_i))$, where $F(s_i):F(\bigotimes^{n+2}H)\to F(\bigotimes^{n+1}H)$. For n=0 let $N^0=F(\bigotimes^1H)$. Then $\{N^n, d^n|N^n\}_{n\geq 0}$ is a subcomplex of $\{F(\bigotimes^{n+1}H), d^n\}_{n\geq 0}$. The injection map induces an isomorphism of homology. This is the dual result in [5, Theorem 6.1].

2.5.

(2.5.1) PROPOSITION. Let V be a left H-comodule. Then the map Φ : $\operatorname{Hom}_H(V, \otimes^n H) \to \operatorname{Hom}(V, \otimes^{n-1} H)$ defined by $\Phi(f) = (\varepsilon_H \otimes 1)f$ is a linear isomorphism. The inverse map $\Psi: \operatorname{Hom}(V, \otimes^{n-1} H) \to \operatorname{Hom}_H(V, \otimes^n H)$ is given by $\Psi(g) = (1 \otimes g) \psi$.

PROOF. It is clear.

(2.5.2) COROLLARY. Let B be a cocommutative left H-comodule coalgebra and let L be a cocommutative left H-comodule Hopf algebra. Then the above isomorphism induces the following group isomorphisms;

$$\operatorname{Reg}_{H}(B, \otimes^{n} H) \cong \operatorname{Reg}(B, \otimes^{n-1} H)$$
$$\operatorname{Alg}_{H}(L, \otimes^{n} H) \cong \operatorname{Alg}(L, \otimes^{n-1} H).$$

- (2.5.3) PROPOSITION. Let W be a right H-comodule. Then the map $\Phi: W \square_H(\bigotimes^n H) \rightarrow W \bigotimes(\bigotimes^{n-1} H)$ defined by $\Phi(w \bigotimes h_1 \bigotimes \cdots \bigotimes h_n) = \varepsilon(h_1) w \bigotimes h_2 \bigotimes \cdots \bigotimes h_n$ is a linear isomorphism. The inverse map Ψ is given by $\Psi(w \bigotimes h_1 \bigotimes \cdots \bigotimes h_{n-1}) = \psi(w) \bigotimes h_1 \bigotimes \cdots \bigotimes h_{n-1}$.
- (2.5.4) Corollary. Let A be a commutative right H-comodule algebra. Then the above isomorphism induces the following group isomorphism;

$$U(A \square_H(\bigotimes^n H)) \cong U(A \boxtimes (\bigotimes^{n-1} H))$$
.

2.6. We present the standard complex to compute Com- $H^n(V, H)$, Coalg- $H^n(B, H)$, etc., by means of (2.5).

(2.6.1) {Hom $(V, \bigotimes^n H), D^n$ } $_{n \ge 0}$.

The differential D^{n-1} : Hom $(V, \bigotimes^{n-1} H) \to \text{Hom}(V, \bigotimes^n H)$ is defined by

$$D^{n-1}(f) = (1 \otimes f) \psi - (\Delta \otimes 1 \cdots) f + (1 \otimes \Delta \otimes 1 \cdots) f$$
$$- \cdots \pm (1 \otimes \cdots \otimes 1 \otimes \Delta) f \mp f \otimes u_n.$$

Then the complex $\{\operatorname{Hom}(V, \otimes^n H), D^n\}_{n\geq 0}$ is isomorphic to the complex $\{\operatorname{Hom}_H(V, \otimes^{n+1} H), d^n\}_{n\geq 0}$ which defines the cohomology $\operatorname{Com-}H^n(V, H)$.

(2.6.2) {Reg $(B, \bigotimes^n H), D^n$ } $_{n \ge 0}$.

The differential D^{n-1} : Reg $(B, \bigotimes^{n-1} H) \to \text{Reg}(B, \bigotimes^n H)$ is defined by

$$D^{n-1}(f) = [(1 \otimes f)\psi] * [(\Delta \otimes 1 \cdots)f^{-1}] * [(1 \otimes \Delta \otimes 1 \cdots)f]$$
$$* \cdots * [(1 \otimes \cdots 1 \otimes \Delta)f^{\pm 1}] * [f^{\pm 1} \otimes u_{H}],$$

where $\operatorname{Reg}(B, \bigotimes^{n-1}H) \ni f^{-1}$ is the *-inverse of f. Then the complex $\{\operatorname{Reg}(B, \bigotimes^n H), D^n\}_{n \geq 0}$ is isomorphic to the complex $\{\operatorname{Reg}_H(B, \bigotimes^{n+1}H), d^n\}_{n \geq 0}$ which defines the cohomology $\operatorname{Coalg-H}^n(B, H)$.

(2.6.3) {Alg
$$(L, \bigotimes^n H), D^n$$
} $_{n \ge 0}$.

The differential D^{n-1} : Alg $(L, \otimes^{n-1}H) \to \text{Alg }(L, \otimes^n H)$ is defined by the restriction of (2.6.2). Then the complex $\{\text{Alg }(L, \otimes^n H), D^n\}_{n\geq 0}$ is isomorphic to the complex $\{\text{Alg}_H(L, \otimes^{n+1}H), d^n\}_{n\geq 0}$ which defines the cohomology Hopf- $H^n(L, H)$.

$$(2.6.4) \quad \{W \otimes (\otimes^n H), D^n\}_{n \geq 0}.$$

The differential $D^{n-1}: W \otimes (\otimes^{n-1}H) \to W \otimes (\otimes^n H)$ is defined by

$$\begin{split} D^{n-1}(w \otimes h_1 \otimes \cdots \otimes h_{n-1}) \\ &= \psi(w) \otimes h_1 \otimes \cdots \otimes h_{n-1} - w \otimes \mathcal{A}(h_1) \otimes h_2 \otimes \cdots \otimes h_{n-1} \\ &+ w \otimes h_1 \otimes \mathcal{A}(h_2) \otimes h_3 \otimes \cdots \otimes h_{n-1} \\ &- \cdots \pm w \otimes h_1 \otimes \cdots \otimes h_{n-2} \otimes \mathcal{A}(h_{n-1}) \mp w \otimes h_1 \otimes \cdots \otimes h_{n-1} \otimes 1 \,. \end{split}$$

Then the complex $\{W \otimes (\otimes^n H), D^n\}_{n \geq 0}$ is isomorphic to the complex $\{W \square_H (\otimes^{n+1} H), d^n\}_{n \geq 0}$ which defines the cohomology *Hoch-H^n(W, H)*. Note that this cohomology equals the Hochschild cohomology [6, p. 191].

$$(2.6.5) \quad \{U(A \otimes (\otimes^n H)), D^n\}_{n \geq 0}.$$
The differential $D^{n-1} : U(A \otimes (\otimes^{n-1} H)) \to U(A \otimes (\otimes^n H))$ is defind by
$$D^{n-1}(a \otimes h_1 \otimes \cdots \otimes h_{n-1})$$

$$= (\phi(a) \otimes h_1 \otimes \cdots \otimes h_{n-1})(a \otimes \Delta(h_1) \otimes h_2 \otimes \cdots)^{-1}(a \otimes h_1 \otimes \Delta(h_2) \otimes \cdots)$$

$$\cdots (a \otimes h_1 \otimes \cdots \otimes h_{n-2} \otimes \Delta(h_{n-1}))^{\pm 1}(a \otimes h_1 \otimes \cdots \otimes h_{n-1} \otimes 1)^{\mp 1}.$$

Then the complex $\{U(A \otimes (\otimes^n H)), D^n\}_{n\geq 0}$ is isomorphic to the complex $\{U(A \square_H(\otimes^{n+1} H)), d^n\}_{n\geq 0}$ which defines the cohomology $Alg \cdot H^n(A, H)$.

2.7. We can find a normal subcomplex of our standard complex which is isomorphic to $\{N^n, d^n | N^n\}_{n \ge 0}$. In fact we define (for n > 0);

$$\begin{split} \operatorname{Hom}_{+}(V, \otimes^{n} H) &= \{ f \in \operatorname{Hom}(V, \otimes^{n} H) \mid (\varepsilon \otimes 1 \otimes \cdots) f = (1 \otimes \varepsilon \otimes \cdots) f = \cdots = 0 \} \\ \operatorname{Reg}_{+}(B, \otimes^{n} H) &= \{ f \in \operatorname{Reg}(B, \otimes^{n} H) \mid (\varepsilon \otimes 1 \otimes \cdots) f = (1 \otimes \varepsilon \otimes \cdots) f = \cdots = u \varepsilon \} \\ \operatorname{Alg}_{+}(L, \otimes^{n} H) &= \{ f \in \operatorname{Alg}(L, \otimes^{n} H) \mid (\varepsilon \otimes 1 \otimes \cdots) f = (1 \otimes \varepsilon \otimes \cdots) f = \cdots = u \varepsilon \} \\ W \otimes_{+}(\otimes^{n} H) &= \{ \sum w \otimes h_{1} \otimes \cdots \otimes h_{n} \in W \otimes (\otimes^{n} H) \mid \\ & \sum w \otimes \varepsilon(h_{1}) h_{2} \otimes \cdots \otimes h_{n} = w \otimes h_{1} \otimes \varepsilon(h_{2}) h_{3} \otimes \cdots = \cdots = 0 \} \\ U_{+}(A \otimes (\otimes^{n} H)) &= \{ \sum a \otimes h_{1} \otimes \cdots h_{n} \in U(A \otimes (\otimes^{n} H)) \mid \\ & \sum a \otimes \varepsilon(h_{1}) h_{2} \otimes \cdots h_{n} = \sum a \otimes h_{1} \otimes \varepsilon(h_{2}) h_{3} \otimes \cdots \otimes h_{n} \\ &= \cdots = 1 \} \end{split}$$

and

$$\begin{split} \operatorname{Hom}_+\left(V, \, \otimes^{\scriptscriptstyle{0}} H\right) &= \operatorname{Hom}\left(V, \, \otimes^{\scriptscriptstyle{0}} H\right) = \operatorname{Hom}\left(V, \, k\right) = V * \\ \operatorname{Reg}_+\left(B, \, \otimes^{\scriptscriptstyle{0}} H\right) &= \operatorname{Reg}\left(B, \, \otimes^{\scriptscriptstyle{0}} H\right) = \operatorname{Reg}\left(B, \, k\right) = U(B^*) \\ \operatorname{Alg}_+\left(L, \, \otimes^{\scriptscriptstyle{0}} H\right) &= \operatorname{Alg}\left(L, \, \otimes^{\scriptscriptstyle{0}} H\right) = \operatorname{Alg}\left(L, \, k\right) = G(L^{\scriptscriptstyle{0}}) \\ W \otimes_+\left(\otimes^{\scriptscriptstyle{0}} H\right) &= W \otimes \left(\otimes^{\scriptscriptstyle{0}} H\right) = W \otimes k \cong W \\ U_+\left(A \otimes \left(\otimes^{\scriptscriptstyle{0}} H\right)\right) &= U(A \otimes \left(\otimes^{\scriptscriptstyle{0}} H\right)) \cong U(A) \, . \end{split}$$

Then $\{\operatorname{Hom}_+(V, \otimes^n H), D^n | \operatorname{Hom}_+(V, \otimes^n H)\}_{n\geq 0}$ is a normal subcomplex and the inclusion map induces an isomorphism of homology. $\{\operatorname{Reg}_+(B, \otimes^n H)\}_{n\geq 0}$,

 $\{Alg_+(L \otimes^n H)\}_{n \ge 0}$, etc., similar.

2.8. $H^{0}(, H)$ and $H^{1}(, H)$.

(2.8.1) $Com-H^0(V, H) = \{ \tau \in V^* \mid (1 \otimes \tau) \phi(v) = \tau(v) 1 \text{ for all } v \in V \}.$

If $f: V \rightarrow H$ is a linear map then f is a 1-cocycle if and only if

$$\Delta f(v) = (1 \otimes f) \phi(v) + f(v) \otimes 1$$
 for all $v \in V$.

We denote by V^H the set $\{v \in V \mid \psi(v) = 1 \otimes v\}$. In case $V = V^H$ this reduces to $\Delta f(v) = 1 \otimes f(v) + f(v) \otimes 1$ so that $f(v) \in H$ is a primitive element of H. 1-coboundary is one of the form $D^0(\tau)$ for $\tau \in V^*$. For $v \in V$, $D^0(\tau)(v) = (1 \otimes \tau) \psi(v) - \tau(v) 1$.

(2.8.2) Coalg-H⁰(B, H) = $\{\tau \in U(B^*) \mid (1 \otimes \tau)\phi(b) = \tau(b)1 \text{ for all } b \in B\}$. If $f \in \text{Reg}(B, H)$ then f is a 1-cocycle if and only if

$$\sum f(b)_{(1)} \otimes f(b)_{(2)} = \sum b_{(1)(H)} f(b_{(2)}) \otimes f(b_{(1)(B)})$$
 for all $b \in B$.

In case $B=B^H$ this reduces to $\sum f(b)_{(1)} \otimes f(b)_{(2)} = \sum f(b_{(2)}) \otimes f(b_{(1)})$ so that f is a coalgebra map if $f \in \operatorname{Reg}_+(B, H)$, since B is cocommutative. 1-coboundary is one of the form $D^0(\tau)$ for $\tau \in U(B^*)$. For $b \in B$, $D^0(\tau)(b) = \sum b_{(1)(H)} \tau(b_{(1)(B)}) \cdot \tau^{-1}(b_{(2)})$.

(2.8.3) Hopf- $H^0(L, H) = \{ \tau \in Alg(L, k) \mid (1 \otimes \tau) \psi(l) = \tau(l) 1 \text{ for all } l \in L \}.$

If $f \in Alg(L, H)$ then f is a 1-cocycle if and only if

$$\sum f(l)_{(1)} \otimes f(l)_{(2)} = \sum l_{(1)(H)} f(l_{(2)}) \otimes f(l_{(1)(L)}) \quad \text{for all} \quad l \in L.$$

In case $L=L^H$ this reduces that f is a Hopf algebra map if $f \in Alg_+(L, H)$. (2.8.4) $Hoch-H^0(W, H) = \{w \in W \mid \phi(w) = w \otimes 1\} = W^H$.

If $\sum w \otimes h \in W \otimes H$ is a 1-cocycle then $\sum w \otimes \Delta(h) = \sum \phi(w) \otimes h + \sum w \otimes h \otimes 1$. 1-coboundary is one of the form $\phi(w) - w \otimes 1$ for $w \in W$.

(2.8.5)
$$Alg-H^{0}(A, H) = \{a \in U(A) \mid \psi(a) = a \otimes 1\} = U(A) \cap A^{H}.$$

If $\sum a \otimes h \in U(A \otimes H)$ is a 1-cocycle then $\sum a \otimes \Delta(h) = (\sum \psi(a) \otimes h)(\sum a \otimes h \otimes 1)$. 1-coboundary is one of the form $\psi(a)(a^{-1} \otimes 1)$ for $a \in U(A)$.

2.9. Let $F, F': \mathcal{C} \to \mathcal{A}$ be covariant functors and let $\eta: F \to F'$ be a natural transformation from F to F'. Then η induces a morphism of complexes $\tilde{\eta}$ from $\{F(\bigotimes^{n+1}H)\}_{n\geq 0}$ to $\{F'(\bigotimes^{n+1}H)\}_{n\geq 0}$. Suppose η is a pointwise monomorphism, that is, $\eta_D: F(D) \to F'(D)$ is a monomorphism for all $D \in \mathcal{C}$. Then there is an exact sequence of complexes:

$$0 \longrightarrow \{F(\bigotimes^{n+1} H)\}_{n \ge 0} \xrightarrow{\tilde{\eta}} \{F'(\bigotimes^{n+1} H)\}_{n \ge 0} \longrightarrow \operatorname{Coker} \tilde{\eta} \longrightarrow 0.$$

This gives rise to the long exact cohomology sequence:

$$0 \longrightarrow H^{0}(F, H) \longrightarrow H^{0}(F', H) \longrightarrow H^{0}(\operatorname{Coker} \tilde{\eta}) \longrightarrow H^{1}(F, H) \longrightarrow \cdots$$

$$\cdots \longrightarrow H^{n}(F', H) \longrightarrow H^{n}(\operatorname{Coker} \tilde{\eta}) \longrightarrow H^{n+1}(F, H) \longrightarrow H^{n+1}(F', H) \longrightarrow \cdots$$

We can also consider the situation where $\eta: F \rightarrow F'$ is a pointwise epimorphism.

§ 3. Comparisons.

3.1. Let V be a finite dimensional vector space. There is a natural linear isomorphism $\gamma: V^* \otimes H \to \operatorname{Hom}(V, H)$, γ is given by $\gamma(\xi \otimes h)(v) = \xi(v)h$. The inverse map $\sigma: \operatorname{Hom}(V, H) \to V^* \otimes H$ is given by $\sigma(f) = \sum_{i=1}^n \xi_i \otimes f(v_i)$, where $\{v_i\}$ is a base of V and $\{\xi_i\}$ its dual base.

Suppose $\psi: V \to H \otimes V$ gives a left H-comodule structure (that is, $(\varepsilon \otimes 1)\psi = id_V$, $(1 \otimes \psi)\psi = (\Delta \otimes 1)\psi$). Define $\rho: V^* \to V^* \otimes H$ by $\rho(\xi) = \sigma((1 \otimes \xi)\psi)$.

(3.1.1) LEMMA. (V^*, ρ) is a right H-comodule.

PROOF. For any j,

$$(1 \otimes \varepsilon) \rho(\xi_j) = (1 \otimes \varepsilon) (\sum_{i=1}^n \xi_i \otimes (1 \otimes \xi_j) \psi(v_i))$$

$$= \sum_{i=1}^n \xi_i \otimes \xi_j (\varepsilon \otimes 1) \psi(v_i)$$

$$= \sum_{i=1}^n \xi_i \otimes \xi_j (v_i)$$

$$= \xi_j.$$

Hence we have $(1 \otimes \varepsilon)\rho = id_V$. Next we show that $(\rho \otimes 1)\rho = (1 \otimes \Delta)\rho$. If we denote $\phi(v_i)$ by $\sum_{k=1}^n h_{ik} \otimes v_k$, then $\rho(\xi_i) = \sum_{k=1}^n \xi_k \otimes (1 \otimes \xi_i)\phi(v_k) = \sum_{k=1}^n \xi_k \otimes h_{ki}$.

$$(1 \otimes 1 \otimes \xi_{j})(1 \otimes \psi)\psi(v_{k}) = (1 \otimes 1 \otimes \xi_{j})(1 \otimes \psi)(\sum_{i=1}^{n} h_{ki} \otimes v_{i})$$

$$= (1 \otimes 1 \otimes \xi_{j})(\sum_{i,t=1}^{n} h_{ki} \otimes h_{it} \otimes v_{t})$$

$$= \sum_{i=1}^{n} h_{ki} \otimes h_{ij}.$$

Now
$$(\rho \otimes 1)\rho(\xi_{j}) = \sum_{i=1}^{n} (\rho \otimes 1)(\xi_{i} \otimes h_{ij}) = \sum_{i,k=1}^{n} \xi_{k} \otimes h_{ki} \otimes h_{ij}.$$

$$(1 \otimes \Delta)\rho(\xi_{j}) = (1 \otimes \Delta)(\sum_{k=1}^{n} \xi_{k} \otimes (1 \otimes \xi_{j})\phi(v_{k}))$$

$$= \sum_{k=1}^{n} \xi_{k} \otimes (1 \otimes 1 \otimes \xi_{j})(\Delta \otimes 1)\phi(v_{k})$$

$$= \sum_{k=1}^{n} \xi_{k} \otimes (1 \otimes 1 \otimes \xi_{j})(1 \otimes \phi)\phi(v_{k})$$

$$= \sum_{i,k=1}^{n} \xi_{k} \otimes h_{ki} \otimes h_{ij}.$$

Hence we have $(\rho \otimes 1)\rho = (1 \otimes \Delta)\rho$.

Q. E. D.

(3.1.2) PROPOSITION. Let V be a finite dimensional left H-comodule. Then $Com-H^n(V,H)$ and $Hoch-H^n(V^*,H)$ are canonically isomorphic for all n. The isomorphism is induced by a canonical isomorphism between the standard complex to compute $Com-H^n(V,H)$ and the standard complex to compute $Hoch-H^n(V^*,H)$.

PROOF. One easily checks that the natural linear isomorphisms $\operatorname{Hom}(V, \otimes^n H) \to V^* \otimes (\otimes^n H)$ form a morphism of complexes.

3.2. Let V be a left H-comodule and let S(V) be the symmetric algebra of V. S(V) has a canonical Hopf algebra structure [3, Proposition 3.2.3]. Define $\phi: S(V) \to H \otimes S(V)$ by the following diagram:

$$V \longrightarrow H \otimes V$$

$$\downarrow i \qquad \qquad \downarrow 1 \otimes i$$

$$S(V) \longrightarrow H \otimes S(V)$$

where $i: V \rightarrow S(V)$ is the natural injection.

(3.2.1) LEMMA. $(S(V), \phi)$ is a left H-comodule Hopf algebra.

PROOF. It is clear that S(V) is a left H-comodule. Since ϕ is an algebra map S(V) is a left H-comodule algebra. And since S(V) is generated by V as an algebra, to show b) in (1.1.2), it suffices to show the following two equalities:

- (') $(1 \otimes \Delta) \phi(v) = (M \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\phi \otimes \phi) \Delta(v)$ for all $v \in V$.
- (") $(1 \otimes \varepsilon) \phi(v) = (u_H \otimes 1) \varepsilon(v)$ for all $v \in V$.

 $(M \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\phi \otimes \phi) \Delta(v)$

- $= (M \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\phi \otimes \phi)(v \otimes 1 + 1 \otimes v)$
- $= (M \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\sum v_{(H)} \otimes v_{(Y)} \otimes 1 \otimes 1 + \sum 1 \otimes 1 \otimes v_{(H)} \otimes v_{(Y)})$
- $= \sum v_{(H)} \otimes v_{(V)} \otimes 1 + \sum v_{(H)} \otimes 1 \otimes v_{(V)}$
- $=(1 \otimes \Delta) \phi(v)$.

Hence the equation (') holds. Since $\varepsilon(V) = 0$, (") is clear. Q. E. D.

(3.2.2) PROPOSITION. Com- $H^n(V, H)$ and Hopf- $H^n(S(V), H)$ are canonically isomorphic for all n.

PROOF. By the universal mapping property of S(V), Hom $(V, \otimes^n H)$ is in 1-1 correspondence with Alg $(S(V), \otimes^n H)$. This map induces the isomorphism between the standard complex to compute $Com-H^n(V, H)$ and the standard complex to compute $Hopf-H^n(S(V), H)$.

- **3.3.** Let V be a left H-comodule and let B(V) be the left H-comodule coalgebra attached to V (see (1.2.3)). We consider $Coalg o H^n(B(V), H)$. Let D be any commutative algebra. There is a natural linear isomorphism φ from Hom(B(V), D) to $D \oplus Hom(V, D)$, since $B(V) = k \oplus D$ as a space. $D \oplus Hom(V, D)$ has an algebra structure induced by φ . Thus $(\lambda, f)(\mu, g) = (\lambda \mu, \lambda g + \mu f)$, where $\lambda, \mu \in D$ and $f, g \in Hom(V, D)$. The unit of $D \oplus Hom(V, D)$ is (1, 0). Let (λ, f) be in $D \oplus Hom(V, D)$. If λ is invertible in D then $(\lambda, f)(\lambda^{-1}, -\lambda^{-2}f) = (1, 0)$ and hence (λ, f) is invertible in $D \oplus Hom(V, D)$. Conversely if (λ, f) is invertible then λ is invertible in D. Thus we have the following Lemma.
- (3.3.1) LEMMA. The map $\operatorname{Reg}(B(V), \otimes^n H) \to U(\otimes^n H) \otimes \operatorname{Hom}(V, \otimes^n H)$, $(\lambda, f) \mapsto (\lambda, \lambda^{-1} f)$ is a group isomorphism.
 - (3.3.2) PROPOSITION. Coalg- $H^n(B(V), H) \cong Coalg-H^n(k, H) \oplus Com-H^n(V, H)$.

PROOF. The natural projection $B(V) \to k$ induces a group monomorphism $\operatorname{Reg}(k, \otimes^n H) \to \operatorname{Reg}(B(V), \otimes^n H)$. By (3.3.1), its cokernel is $\operatorname{Hom}(V, \otimes^n H)$. Thus we have the short exact sequence of complexes;

$$0 \longrightarrow \{\operatorname{Reg}(k, \otimes^n H)\} \longrightarrow \{\operatorname{Reg}(B(V), \otimes^n H)\} \longrightarrow \{\operatorname{Hom}(V, \otimes^n H)\} \longrightarrow 0.$$

Moreover the exact sequence splits, the splitting map is induced by the natural inclusion $k \subseteq B(V)$. Q. E. D.

- **3.4.** Let B be a cocommutative left H-comodule coalgebra. The linear dual B^* has an algebra structure. Suppose B is finite dimensional. Then the linear isomorphism γ from $B^* \otimes H$ to the convolution algebra $\operatorname{Hom}(B,H)$ is an algebra isomorphism.
 - (3.4.1) Lemma. B^* is a commutative right H-comodule algebra.

PROOF. We show that the composite $B^* \xrightarrow{\rho} B^* \otimes H \xrightarrow{\gamma} \operatorname{Hom}(B, H)$ is an algebra map. For $\xi_1, \xi_2 \in B^*$,

$$\begin{split}
[(1 \otimes \xi_1)\psi] * [(1 \otimes \xi_2)\psi] &= M(1 \otimes \xi_1 \otimes 1 \otimes \xi_2)(\psi \otimes \psi) \Delta \\
&= (M \otimes \xi_1 \otimes \xi_2)(1 \otimes T \otimes 1)(\psi \otimes \psi) \Delta \\
&= (1 \otimes \xi_1 \otimes \xi_2)(M \otimes 1 \otimes 1)(1 \otimes T \otimes 1)(\psi \otimes \psi) \Delta \\
&= (1 \otimes \xi_1 \otimes \xi_2)(1 \otimes \Delta)\psi.
\end{split}$$
Q. E. D.

- (3.4.2) PROPOSITION. Suppose B is finite dimensional. Then Coalg- $H^n(B, H)$ and Alg- $H^n(B^*, H)$ are canonically isomorphic for all n. The isomorphism is induced by a canonical isomorphism between the standard complex to compute Coalg- $H^n(B, H)$ and the standard complex to compute Alg- $H^n(B^*, H)$.
- 3.5. For a commutative algebra A the Amitsur cohomology group of A is denoted $H^n(A)$. Note that the Amitsur complex of A is the complex $\{U(\bigotimes^{n+1}A), E^n\}_{n\geq 0}$ and the differential $E^{n-1}\colon U(\bigotimes^n A) \to U(\bigotimes^{n+1}A)$ is defined by $E^{n-1}(x) = e_0(x)e_1(x)^{-1} \cdots e_n(x)^{\pm 1}$, where $e_i \colon \bigotimes^n A \to \bigotimes^{n+1}A$, $a_1 \bigotimes \cdots \bigotimes a_n \mapsto a_1 \bigotimes \cdots \bigotimes a_i \bigotimes 1 \bigotimes a_{i+1} \bigotimes \cdots \bigotimes a_n$.

Suppose A is a left H-comodule algebra. We have an algebra map $\Omega: \bigotimes^{n+1} A \to A \bigotimes (\bigotimes^n H)$. This is given by

$$Q(a_1 \otimes \cdots \otimes a_{n+1}) = \sum a_1 a_{2(0)} a_{3(0)} \cdots a_{n+1(0)} \otimes a_{2(1)} a_{3(1)} \cdots a_{n+1(1)} \\ \otimes \cdots \otimes a_{n(n-1)} a_{n+1(n-1)} \otimes a_{n+1(n)},$$

where we use the Sweedler's notation, for $a \in A$, $\phi(a) = \sum a_{(0)} \otimes a_{(1)} \in A \otimes H$, and we inductively define:

$$\sum a_{(0)} \otimes a_{(1)} \otimes \cdots \otimes a_{(n)} = (\phi \otimes 1 \otimes \cdots) (\sum a_{(0)} \otimes a_{(1)} \otimes \cdots \otimes a_{(n-1)}).$$

Proposition. Ω induces a morphism of complexes

$$\tilde{\Omega}: \{U(\bigotimes^{n+1}A), E^n\}_{n\geq 0} \longrightarrow \{U(A\bigotimes(\bigotimes^n H)), D^n\}_{n\geq 0}.$$

Therefore there is a morphism from $H^n(A)$ to $Alg-H^n(A, H)$.

§ 4. Extensions and crossed products.

Let B be a cocommutative left H-comodule coalgebra and let L be a cocommutative left H-comodule Hopf algebra.

- **4.1.** We say that a triple (C, f, ω) is a coalgebra extention of B by H if:
- (1) C is a coalgebra
- (2) $f: C \rightarrow B$ is a coalgebra map and surjective
- (3) $\omega: C \otimes H \to C$ is a coalgebra map (we denote $\omega(c \otimes h) = c \leftarrow h$) such that the followings hold:

(a)
$$C \otimes H \xrightarrow{\omega} C \xrightarrow{f} B$$
 is exact (i. e., $C/\operatorname{Im}(\omega - 1 \otimes \varepsilon) \cong B$ as a space)

- (b) (C, ω) is a right H-module
- (c) The following diagram is commutative:

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{1 \otimes f} C \otimes B$$

$$\downarrow \Delta \qquad \qquad \uparrow \qquad \qquad \downarrow \omega \otimes 1$$

$$\downarrow T \qquad \qquad \downarrow T \qquad \qquad \downarrow C \otimes C \xrightarrow{1 \otimes f} C \otimes B \xrightarrow{1 \otimes \psi} C \otimes H \otimes B$$

i. e.,
$$\sum c_{(1)} \otimes f(c_{(2)}) = \sum c_{(2)} - f(c_{(1)})_{(H)} \otimes f(c_{(1)})_{(B)}$$
 for all $c \in C$.

We say that a triple (C, f, ω) is a Hopf extension of L by H if:

- (1) C is a Hopf algebra
- (2) $f: C \rightarrow L$ is a Hopf algebra map and surjective
- (3) $\omega: C \otimes H \rightarrow C$ is a Hopf algebra map

such that the above conditions (a), (b) and (c) hold.

A morphism of coalgebra extensions (of B by H) from (C, f, ω) to (C', f', ω') is a coalgebra map $\gamma: C \to C'$ such that the following diagram is commutative:

$$C \otimes H \xrightarrow{\omega} C \qquad f$$

$$\downarrow \gamma \otimes 1 \qquad \downarrow \gamma \qquad B \qquad \text{(i. e., } \gamma \text{ is an } H\text{-module map and } f = f'\gamma \text{)}.$$

$$C' \otimes H \xrightarrow{\omega'} C' \qquad f'$$

A morphism of Hopf extensions (of L by H) from (C, f, ω) to (C', f', ω') is a Hopf algebra map $\gamma: C \rightarrow C'$ such that the above diagram is commutative.

4.2. The co-smash product.

We define the coalgebra B
ildet H to be $B \otimes H$ as a space. (We write b
ildet h for $b \otimes h$ when thought of as an element of B
ildet h, $b \in B$, $h \in H$.) The coalgebra structure is defined by

$$\Delta: B \otimes H \xrightarrow{\Delta \otimes \Delta} B \otimes B \otimes H \otimes H \xrightarrow{1 \otimes \psi \otimes 1 \otimes 1} B \otimes H \otimes B \otimes H \otimes H$$

$$\xrightarrow{1 \otimes 1 \otimes T \otimes 1} B \otimes H \otimes H \otimes B \otimes H \xrightarrow{1 \otimes M \otimes 1 \otimes 1} B \otimes H \otimes B \otimes H$$

$$\varepsilon: B \otimes H \xrightarrow{\varepsilon \otimes \varepsilon} k \otimes k \cong k$$
i. e.,
$$\Delta(b \triangleright h) = \sum_{B(b)} b_{(2)(H)} h_{(1)} \otimes b_{(2)(B)} \triangleright h_{(2)}$$

$$\varepsilon(b \triangleright h) = \varepsilon_B(b)\varepsilon_H(h).$$

 $B \triangleright H$ is called the co-smash product of B with H.

We define the Hopf algebra $L \triangleright H$ to be $L \otimes H$ as an algebra and to be $L \triangleright H$ as a coalgebra. The antipode is defined by

$$S: L \otimes H \xrightarrow{S_L \otimes S_H} L \otimes H \xrightarrow{\psi \otimes 1} H \otimes L \otimes H$$

$$\xrightarrow{T \otimes 1} L \otimes H \otimes H \xrightarrow{1 \otimes S \otimes 1} L \otimes H \otimes H \xrightarrow{1 \otimes M} L \otimes H.$$

 $L \triangleright H$ is called the co-smash product of L with H (see [1], (4.2)).

4.3. The crossed product.

We now introduce crossed products. Suppose $\sigma: B \to H \otimes H$ is a linear map. $B \not\models_{\sigma} H$ is the space $B \otimes H$ with comultiplication defined by

$$\Delta(b \flat_{\sigma} h) = \sum b_{(1)} \flat_{\sigma} b_{(2)(H)} b_{(3)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \flat_{\sigma} b_{(3)\sigma(2)} h_{(2)},$$

where we use a new notation, for $b \in B$,

$$\sigma(b) = \sum b_{\sigma(1)} \otimes b_{\sigma(2)} \in H \otimes H$$
.

Note that when $\sigma = (u_H \otimes u_H) \varepsilon_B$ then $B \triangleright_{\sigma} H$ is precisely $B \triangleright H$.

(4.3.1) LEMMA.

(a) The comultiplication in $B
otin \sigma H$ is coassociative if and only if $[(1 \otimes \sigma)\phi] * [(1 \otimes \Delta)\sigma] = [(\Delta \otimes 1)\sigma] * [\sigma \otimes u].$

(b)
$$\varepsilon_B \otimes \varepsilon_H$$
 is the counit in $B
bar{\ } \sigma H$ if and only if
$$\sum \varepsilon(b_{\sigma(1)})b_{\sigma(2)} = \varepsilon(b)1_H = \sum \varepsilon(b_{\sigma(2)})b_{\sigma(1)} \quad \text{for all} \quad b \in B.$$

PROOF. (a) Suppose B
otin H is coassociative. Then $(\Delta \otimes 1) \Delta (b \otimes h) = (1 \otimes \Delta) \Delta (b \otimes h)$ for all $b \in B$, $h \in H$. The left hand side equals,

 $\sum b_{(1)} \otimes b_{(2)(H)} b_{(3)\sigma(1)} b_{(4)(H)(1)} b_{(5)\sigma(1)(1)} h_{(1)} \otimes b_{(2)(B)}$ $\otimes b_{(3)\sigma(2)} b_{(4)(H)(2)} b_{(5)\sigma(1)(2)} h_{(2)} \otimes b_{(4)(B)} \otimes b_{(5)\sigma(2)} h_{(3)} .$

And the right hand side equals,

 $\sum b_{(1)} \otimes b_{(2)(H)} b_{(3)\sigma(1)} h_{(1)} \otimes b_{(2)(B)(1)} \otimes b_{(2)(B)(2)(H)} b_{(2)(B)(3)\sigma(1)} b_{(3)\sigma(2)(1)} h_{(2)}$ $\otimes b_{(2)(B)(2)(B)} \otimes b_{(2)(B)(3)\sigma(2)} b_{(3)\sigma(2)(2)} h_{(3)} .$

Applying $\varepsilon \otimes 1 \otimes \varepsilon \otimes 1 \otimes \varepsilon \otimes 1$ to (*) and (**) and equating shows σ satisfies the identity in (a). Conversely, suppose σ satisfies the identity in (a). Applying $1 \otimes \Delta \otimes 1$ to the first identity in c), (1.1.1) yields

$$(***) \qquad \sum b_{(1)} \otimes b_{(B)(1)} \otimes b_{(B)(2)} \otimes b_{(B)(3)} \\ = \sum b_{(1)(H)} b_{(2)(H)} \otimes b_{(1)(B)(1)} \otimes b_{(1)(B)(2)} \otimes b_{(2)(B)} .$$

$$(**) = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)\sigma(1)} h_{(1)} \otimes b_{(2)(B)(1)} \otimes b_{(2)(B)(3)(H)} \\ \cdot b_{(2)(B)(2)\sigma(1)} b_{(3)\sigma(2)(1)} h_{(2)} \otimes b_{(2)(B)(3)(B)} \otimes b_{(2)(B)(2)\sigma(2)} b_{(3)\sigma(2)(2)} h_{(3)} \\ \text{(since } b_{(2)(B)} \text{ is a cocommutative element)} \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)} b_{(4)\sigma(1)} h_{(1)} \otimes b_{(2)(B)(1)} \otimes b_{(3)(B)(B)} \otimes b_{(2)(B)(2)\sigma(2)} b_{(4)\sigma(2)(2)} h_{(3)} \\ \text{(since } (***)) \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)\sigma(2)(1)} h_{(2)} \otimes b_{(3)(B)(B)} \otimes b_{(2)(B)(2)\sigma(2)} b_{(4)\sigma(2)(2)} h_{(3)} \\ \text{(since } (****)) \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)\sigma(1)} h_{(1)} \otimes b_{(3)(B)(B)} \otimes b_{(2)(B)(2)\sigma(2)} b_{(4)\sigma(2)(2)} h_{(3)} \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(B)(2)\sigma(2)} b_{(4)\sigma(2)(2)} h_{(3)} \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(3)(B)\sigma(1)} b_{(5)\sigma(2)(1)} h_{(2)} \otimes b_{(3)(B)} \otimes b_{(4)(B)\sigma(2)} b_{(6)\sigma(2)(2)} h_{(3)} \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(5)\sigma(2)(1)} h_{(2)} \otimes b_{(3)(B)} \otimes b_{(4)(B)\sigma(2)} b_{(6)\sigma(2)(2)} h_{(3)} \\ = \sum b_{(1)} \otimes b_{(2)(H)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)\sigma(1)} h_{(4)(H)(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)(H)(1)} h_{(6)(H)(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} b_{(6)(H)(1)} h_{(4)(H)(1)} \otimes b_{(2)(B)} \otimes b_{(3)(H)(2)} \\ \cdot b_{(4)(B)\sigma(1)} b_{(3)(H)(1)} b_{(4)(H)(1)} \otimes b_{(3)(H)(1)} \otimes b_{(4)(H)(1)} \otimes b_{$$

=(*) (by the index permutation (345)).

(b) is clear. Q. E. D.

(4.3.2) We define $f: B \triangleright_{\sigma} H \rightarrow B$, $b \triangleright_{\sigma} h \mapsto \varepsilon(h)b$ and $\omega: B \triangleright_{\sigma} H \otimes H \rightarrow B \triangleright_{\sigma} H$, $b \triangleright_{\sigma} h \otimes g \mapsto b \triangleright_{\sigma} hg$. When σ satisfies the conditions of (4.3.1) Lemma one easily verifies that $(B \triangleright_{\sigma} H, f, \omega)$ is a coalgebra extention of B by H. We call it a crossed product (extention).

(since the identity in (a))

(4.3.3) Let σ be in $\operatorname{Alg}_+(L, H \otimes H)$ and $D^2(\sigma) = (u \otimes u \otimes u)\varepsilon$; i.e., normal 2-cocycle. We define the Hopf algebra $L \triangleright_{\sigma} H$ to be $L \otimes H$ as an algebra and to be $L \triangleright_{\sigma} H$ as a coalgebra. The antipode is defined by

$$S: L \otimes H \xrightarrow{\Delta \otimes 1} L \otimes L \otimes H \xrightarrow{1 \otimes \sigma^{-1} \otimes 1} L \otimes H \otimes H \otimes H$$

$$\xrightarrow{1 \otimes 1 \otimes S \otimes 1} L \otimes H \otimes H \otimes H \xrightarrow{1 \otimes M(M \otimes 1)} L \otimes H$$

where $\sigma^{-1}: L \to H \otimes H$ is the *-inverse of σ . Thus $L \triangleright_{\sigma} H$ is a Hopf extension of L by H.

§ 5. Cleft extensions and H^2 .

5.1. A coalgebra extension (C, f, ω) of B by H is called *cleft* if there is an H-module map in Reg(C, H). (Regard H as a right H-module via M_H .) A Hopf extension (M, f, ω) of L by H is called cleft if there is an H-module map in Alg(M, H).

Note that if $\gamma:(C, f, \omega) \to (C', f', \omega')$ is a morphism of extensions and (C', f', ω') is cleft then so is (C, f, ω) .

5.2. Examples.

- (5.2.1) H may be viewed as a coalgebra (or Hopf) extension of k by H if we put $f = \varepsilon$ and $\omega = M_H$. The identity map on H is an H-module map which is invertible (since H has the antipode). Thus H is a cleft coalgebra (or Hopf) extension of k by H.
- (5.2.2) Let G_2 be an affine algebraic group over an algebraically closed field k and let M be its coordinate ring. Let G_1 be a closed normal subgroup of G_2 which is commutative and let L be its coordinate ring. L is a cocommutative Hopf algebra. The inclusion map $G_1 \subseteq G_2$ induces a surjective Hopf algebra map f from M to L. Let G_3 be the quotient algebraic group of G_2 by G_1 and let H be its coordinate ring. We can consider H as a sub Hopf algebra of M.

$$1 \longrightarrow G_1 \xrightarrow{i} G_2 \xrightarrow{p} G_3 \longrightarrow 1$$

$$L \xleftarrow{f} M \xleftarrow{\frown} H.$$

 G_1 has a G_3 -module structure: $x^g = sxs^{-1}$ (g = p(s)), $g \in G_3$, $x \in G_1$. Hence L has a H-comodule Hopf algebra structure ((1.2.6)). Define $\omega: M \otimes H \to M$ by $m \otimes h \to mh$. Then it is easily shown that (M, f, ω) is a Hopf extension of L by H. Suppose that there exists a morphism of varieties $\alpha: G_3 \to G_2$ such that $p \circ \alpha = id_{G_3}$. The corresponding algebra map $\tau: M \to H$ is the identity on H. This means that τ is an H-module map so that (M, f, ω) is a cleft extension of L by H.

5.3.

- (5.3.1) LEMMA. Let (C, f, w) be a coalgebra extension of B by H.
- (a) If $\tau \in \text{Reg}(C, H)$ is an H-module map then $\tau^{-1}\omega = M_H(\tau^{-1} \otimes S)$.
- (b) If (C, f, ω) is cleft then there is an H-module map τ in Reg(C, H) such that $\varepsilon_H \tau = \varepsilon_C$.

PROOF. (a) Since τ is an H-module map it satisfies $\tau \omega = M_H(\tau \otimes 1)$ in $\operatorname{Reg}(C \otimes H, H)$. One easily verifies that the inverse of $\tau \omega$ in $\operatorname{Reg}(C \otimes H, H)$ is $\tau^{-1}\omega$ and the inverse of $M_H(\tau \otimes 1)$ is $M_H(\tau^{-1} \otimes S)$. By the uniqueness of inverses we are done.

(b) By the assumption there is an H-module map τ in $\operatorname{Reg}(C,H)$. We define $\tau':C\to H$, $\tau'(c)=\sum \varepsilon(\tau^{-1}(c_{(2)}))\tau(c_{(1)})$. A calculation shows that $\tau'\in\operatorname{Reg}(C,H)$ and $\varepsilon_H\tau'=\varepsilon_C$. Next we show that τ' is an H-module map.

$$\begin{split} \tau' \pmb{\omega}(c \otimes h) &= \sum \varepsilon (\tau^{-1}(c_{(2)} - h_{(2)})) \tau(c_{(1)} - h_{(1)}) \\ &= \sum \varepsilon (\tau^{-1}(c_{(2)}) S(h_{(2)})) \tau(c_{(1)}) h_{(1)} \quad \text{(by (a))} \\ &= \sum \varepsilon (\tau^{-1}(c_{(2)})) \tau(c_{(1)}) h \\ &= M_H(\tau' \otimes 1) (c \otimes h) \,. \end{split}$$
 Q. E. D.

(5.3.2) LEMMA. If $B
otin _{\sigma} H$ is a crossed porduct extension then the H-module map $\tau : B
otin _{\sigma} H \rightarrow H$, $b
otin _{\sigma} h \mapsto \varepsilon(b) h$ is invertible if $\sigma \in \text{Reg}(B, H \otimes H)$. The inverse is given by $b
otin _{\sigma} h \mapsto \sum S(b_{\sigma^{-1}(1)}) b_{\sigma^{-1}(2)} S(h)$.

PROOF. It is clear.

5.4.

- (5.4.1) LEMMA. Let (C, f, ω) be a cleft coalgebra extension of B by H and $\tau \in \text{Reg}(C, H)$ an H-module map.
 - (a) The composite

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{f \otimes \tau} B \otimes H$$

is a linear isomorphism.

(b) There is a map $P: B \rightarrow C$ such that the following diagram is commutative:

And the composite

$$B \otimes H \xrightarrow{P \otimes 1} C \otimes H \xrightarrow{\omega} C$$

is the inverse isomorphism to the isomorphism given in (a).

PROOF. For $c \in C$ and $h \in H$,

$$\begin{split} \omega(1 \otimes \tau^{-1}) \varDelta \omega(c \otimes h) \\ &= \omega(1 \otimes \tau^{-1}) (\sum c_{(1)} - h_{(1)} \otimes c_{(2)} - h_{(2)}) \qquad (\omega \text{ is a coalgebra map}) \\ &= \omega(\sum c_{(1)} - h_{(1)} \otimes \tau^{-1}(c_{(2)}) S(h_{(2)})) \qquad (\text{by (a) in (5.3.1) Lemma}) \\ &= \sum \varepsilon(h) c_{(1)} - \tau^{-1}(c_{(2)}) \\ &= \omega(1 \otimes \tau^{-1}) \varDelta (1 \otimes \varepsilon) (c \otimes h) \; . \end{split}$$

Thus $\omega(1 \otimes \tau^{-1}) \Delta \omega = \omega(1 \otimes \tau^{-1}) \Delta (1 \otimes \varepsilon)$. Since $C \otimes H \xrightarrow{\omega} C \xrightarrow{f} B$ is exact the existence of the map $P: B \to C$ is guaranteed. Now

$$\omega(P \otimes 1)(f \otimes \tau) \Delta(c) = \omega(\sum Pf(c_{(1)}) \otimes \tau(c_{(2)}))$$

$$= \omega(\sum c_{(1)} \leftarrow \tau^{-1}(c_{(2)}) \otimes \tau(c_{(3)}))$$

$$= \sum c_{(1)} \leftarrow \tau^{-1}(c_{(2)}) \tau(c_{(3)})$$

$$= \sum c_{(1)} \varepsilon(c_{(2)})$$

$$= c.$$

And

$$(f \otimes \tau) \Delta \omega (P \otimes 1) (f(c) \otimes h)$$

$$= (f \otimes \tau) \Delta (\sum c_{(1)} - \tau^{-1}(c_{(2)})h)$$

$$= (f \otimes \tau) (\sum c_{(1)} - \tau^{-1}(c_{(3)})_{(1)}h_{(1)} \otimes c_{(2)} - \tau^{-1}(c_{(3)})_{(2)}h_{(2)})$$

$$= \sum f(c_{(1)}) \varepsilon (\tau^{-1}(c_{(3)})_{(1)}h_{(1)}) \otimes \tau (c_{(2)})\tau^{-1}(c_{(3)})_{(2)}h_{(2)}$$

$$(\text{since } f\omega = f(1 \otimes \varepsilon) \text{ and } \tau \text{ is an } H\text{-module map})$$

$$= \sum f(c_{(1)}) \otimes \tau (c_{(2)})\tau^{-1}(c_{(3)})h$$

$$= f(c) \otimes h.$$

Thus C is isomorphic to $B \otimes H$.

Q. E. D.

- (5.4.2) LEMMA. Let (C, f, ω) be a cleft coalgebra extension of B by H and $\tau \in \text{Reg}(C, H)$ an H-module map such that $\varepsilon_H \tau = \varepsilon_C$.
- (a) There is a map $\sigma(\tau): B \to H \otimes H$ such that the following diagram is commutative:

 $\sigma(\tau)$ is a 2-cocycle in Reg₊ $(B, H \otimes H)$.

(b) $\gamma_{\tau}: C \xrightarrow{\Delta} C \otimes C \xrightarrow{f \otimes \tau} B \otimes H = B \flat_{\sigma(\tau)} H$ is an isomorphism of extensions.

PROOF. (a) The map $\sigma(\tau)$ is given by

$$b \longmapsto \sum \tau(c_{(1)})\tau^{-1}(c_{(2)})_{(1)} \otimes \tau(c_{(2)})\tau^{-1}(c_{(3)})_{(2)} \qquad (f(c) = b).$$

A calculation—involving the condition (c) in 4.1.—shows that $(\gamma_{\tau} \otimes \gamma_{\tau}) \mathcal{L}_{c} = \mathcal{L}_{B \flat_{\sigma(\tau)} H} \gamma_{\tau}$ and $(\varepsilon_{B} \otimes \varepsilon_{H}) \gamma_{\tau} = \varepsilon_{C}$. (5.4.1) Lemma implies γ_{τ} is bijective and thus $B \flat_{\sigma(\tau)} H$ is a (coassociative) coalgebra. Thus $\sigma(\tau)$ satisfies the condition of (4.3.1) Lemma. One easily verifies that $\sigma(\tau) \in \text{Reg}(B, H \otimes H)$.

(5.4.3) REMARK. If $C = B \not \mid_{\sigma} H$ for 2-cocycle $\sigma \in \text{Reg}(B, H \otimes H)$ then $\tau \equiv \varepsilon \otimes 1 : B \not \mid_{\sigma} H \to H$, $b \not \mid_{\sigma} h \mapsto \varepsilon(b)h$ is an H-module map such that $\varepsilon \tau = \varepsilon$. One easily checks that $\sigma(\tau) = \sigma$ and γ_{τ} is the identity map on $B \otimes H$.

(5.4.4) LEMMA. Let (C_i, f_i, ω_i) be coalgebra extensions of B by H for i=1, 2 and let $\varphi: C_1 \to C_2$ be a morphism of extensions. If (C_2, f_2, ω_2) is cleft then φ is an isomorphism.

PROOF. Suppose $\tau \in \text{Reg}(C_2, H)$ is an H-module map such that $\varepsilon \tau = \varepsilon$. Then $\tau \varphi \in \text{Reg}(C_1, H)$ is an H-module map and $\sigma(\tau) = \sigma(\tau \varphi)$ (since we have $([(\tau \otimes \tau) \Delta] * [\Delta \tau^{-1}]) \varphi = [(\tau \varphi \otimes \tau \varphi) \Delta] * [\Delta (\tau \varphi)^{-1}])$. Clearly the diagram,

is commutative. By (5.4.2) Lemma the horizontal and vertical maps are isomorphisms which implies φ is an isomorphism. Q. E. D.

(5.4.5) LEMMA. Let σ and ρ be 2-cocycles in $\operatorname{Reg}_+(B, H \otimes H)$. Then the followings are equivalent:

- (a) $B \triangleright_{\sigma} H \cong B \triangleright_{\rho} H$ as a coalgebra extension.
- (b) σ and ρ are cohomologous: i. e., $\sigma * \rho^{-1} = D^1(e)$ for some $e \in \text{Reg}_+(B, H)$. PROOF. (b) \Rightarrow (a). We define $\varphi : B \not\models_{\rho} H \rightarrow B \not\models_{\sigma} H$, $b \not\models_{\rho} h \mapsto \sum b_{(1)} \not\models_{\sigma} e(b_{(2)})h$. Then φ is a morphism of extensions.
- (a) \Rightarrow (b). Suppose $\varphi: B \not\models_{\rho} H \rightarrow B \not\models_{\sigma} H$ is a morphism of extensions. Define $e: B \rightarrow H$, $b \mapsto (\varepsilon \otimes 1) \varphi(b \not\models_{\rho} 1)$. We claim that $\varphi(b \not\models_{\rho} 1) = \sum b_{(1)} \not\models_{\sigma} e(b_{(2)})$ for all $b \in B$. The map $\tau: B \not\models_{\sigma} H \rightarrow H$, $b \not\models_{\sigma} h \mapsto \varepsilon(b)h$ is an H-module map in Reg (C, H). By (5.4.1) Lemma the composite $(f \otimes \tau) \Delta_{B \not\models_{\sigma} C}$ is bijective so that it suffices to show the following equality,

$$\begin{split} (f \otimes \tau) \varDelta \varphi(b \not\models_{\rho} 1) &= (f \otimes \tau) \varDelta (\sum b_{(1)} \not\models_{\sigma} e(b_{(2)})) \,. \\ (f \otimes \tau) \varDelta \varphi(b \not\models_{\rho} 1) &= (f \otimes \tau) (\varphi \otimes \varphi) (\sum b_{(1)} \not\models_{\rho} b_{(2)(H)} b_{(3)\rho(1)} \otimes b_{(2)(B)} \not\models_{\rho} b_{(3)\rho(2)}) \\ &= \sum \varepsilon(b_{(2)(H)}) \varepsilon(b_{(3)\rho(1)}) b_{(1)} \otimes e(b_{(2)(B)}) b_{(3)\rho(2)} \\ &\qquad \qquad (\text{since } f\varphi = f \text{ and } \tau \text{ is an H-module map}) \end{split}$$

$$= \sum b_{(1)} \otimes e(b_{(2)})$$

$$= (f \otimes \tau) \Delta(\sum b_{(1)} \flat_{\sigma} e(b_{(2)})) \qquad \text{(by (5.4.3) Remark)}.$$

Thus

$$\begin{split} \varDelta\varphi(b \mid \flat_{\rho} 1) &= \varDelta(\sum b_{(1)} \mid \flat_{\sigma} e(b_{(2)})) \\ (*) &= \sum b_{(1)} \mid \flat_{\sigma} b_{(2)(H)} b_{(3)\sigma(1)} e(b_{(4)})_{(1)} \bigotimes b_{(2)(B)} \mid \flat_{\sigma} b_{(3)\sigma(2)} e(b_{(4)})_{(2)} \\ (\varphi \bigotimes \varphi) \varDelta(b \mid \flat_{\rho} 1) \\ (**) &= \sum \varphi(b_{(1)} \mid \flat_{\rho} 1) - b_{(2)(H)} b_{(3)\sigma(1)} \bigotimes \varphi(b_{(2)(B)} \mid \flat_{\rho} 1) b_{(3)\sigma(2)} \,. \end{split}$$

Equating (*) and (**) and applying $\varepsilon \otimes 1 \otimes \varepsilon \otimes 1$ implies

$$\sigma * [\Delta e] = [(1 \otimes e)\phi] * [e \otimes u] * \rho.$$

Also $\varepsilon e = \varepsilon$. Thus if we show $e \in \text{Reg}(B, H)$ it follows $e \in \text{Reg}_+(B, H)$ and $\sigma * \rho^{-1} = D^1(e)$.

A calculation shows $ef = [\tau \varphi] * [\tau^{-1}]$. Thus $(ef)^{-1} = [\tau^{-1} \varphi] * [\tau]$ in Reg $(B \not\models_{\rho} H, H)$. $[\tau^{-1} \varphi] * [\tau]$ induces a map $e' : B \to H$ such that $e'f = [\tau^{-1} \varphi] * [\tau]$. Now $(e * e')f = ef * e'f = u_H \varepsilon_{B \not\models_{\rho} H} = u_H \varepsilon_B f$. Hence we have $e * e' = u_H \varepsilon_B$.

Q. E. D.

5.5. Theorem. Let H be a commutative Hopf algebra and let B be a cocommutative left H-comodule coalgebra. Then there is a bijective correspondence between the isomorphism classes of cleft coalgebra extensions of B by H and $Coalg-H^2(B, H)$.

PROOF. The correspondence is gotten by choosing a crossed product from the isomorphism class and passing to the cohomology class of the 2-cocycle determing the crossed product.

Q. E. D.

Similar calculations show the next result about Hopf algebra extensions.

5.6. Theorem. Let L be a cocommutative left H-comodule Hopf algebra. Then there is a bijective correspondence between the isomorphism classes of cleft Hopf algebra extensions of L by H and Hopf-H²(L, H).

§ 6. Cohomology of comodule algebras.

Let H be a commutative Hopf algebra and let A be a commutative right H-comodule algebra. Suppose that the ground field k is an algebraically closed field and k is algebraically closed in A and H.

The importance of this hypothesis resides in the following result ([4]), known as Ax-Lichtenbaum-Halperin's units theorem.

Suppose k is an algebraically closed field, X and Y commutative algebras over k and k is algebraically closed in X and Y. Then every invertible element in $X \otimes Y$ is of the form of $x \otimes y$ where x is an invertible element of X and Y and invertible element of Y.

APPLICATION TO HOPF ALGEBRAS: Under our condition of k, every invertible element of H is of the form of λg where $\lambda \in k-\{0\}$ and $g \in G(H)=\{g \in H \mid g \neq 0, \Delta(g)=g \otimes g\}$.

We note that if A is finitely generated then our condition of k being algebraically closed in A is equivalent to zero being the only nilpotent element of A and $\operatorname{Spec}(A)$ —maximal or prime ideal spec —being Zariski connected. If H is finitely generated then H is the coordinate ring of an affine algebraic group. Since a Zariski connected affine algebraic group is actually irreducible we have that our condition of k guarantees that H is an integral domain.

6.1.

(6.1.1) Let a be an invertible element of A; i.e., $a \in U(A)$. Since the comodule structure map $\psi: A \to A \otimes H$ is an algebra map we have that $\psi(a)$ is an invertible element in $A \otimes H$. By the units theorem $\psi(a) = b \otimes g_a$ where b is an invertible element of A and g_a is a grouplike element of H; i.e., $g \in G(H)$. Since $(1 \otimes \varepsilon) \psi = id$, we have that b = a and $\psi(a) = a \otimes g_a$.

In case A=k[X] and H=k[G] as in Example (1.2.3) the above result implies that every invertible regular function a is a semi-invariant with weight g_a , that is, $a(x^t)=g_a(t)a(x)$ for all $x\in X$ and $t\in G$ where we denote the action of t on x by x^t . Note that grouplike elements of H are multiplicative characters of G.

In general the grouplike elements of H form a multiplicative subgroup of U(H) $(S(g) = g^{-1})$. They are linearly independent. It is clear that the map $\xi: U(A) \to G(H)$, $a \mapsto g_a$ is a group homomorphism.

(6.1.2) PROPOSITION. $Alg-H^1(A, H) \cong G(H)/\mathrm{Im} \, \xi$. In particular if $A = A^H$ (= $\{a \in A \mid \psi(a) = a \otimes 1\}$) then $Alg-H^1(A, H) \cong G(H)$.

PROOF. The invertible elements in $A \otimes H$ are all of the form $a \otimes h$ where $a \in U(A)$ and $h \in G(H)$. Now

$$D^{1}(a \otimes h) = (a \otimes \xi(a) \otimes h)(a^{-1} \otimes h^{-1} \otimes h^{-1})(a \otimes h \otimes 1)$$
$$= a \otimes \xi(a) \otimes 1.$$

Thus if $c = a \otimes h$ is a 1-cocycle we can assume c is of the form $c = 1 \otimes h$ where $h \in G(H)$. On the other hand for $a \in U(A)$,

$$D^{0}(a) = (a \otimes \xi(a))(a^{-1} \otimes 1) = 1 \otimes \xi(a)$$
.

Hence we have $Alg-H^1(A, H) \cong G(H)/\text{Im } \xi$.

Finally if
$$A = A^H$$
 then Im $\xi = \{1\}$.

Q. E. D.

This gives rise to the exact sequence of groups:

$$1 \longrightarrow Alg - H^{0}(A, H) \longrightarrow U(A) \xrightarrow{\xi} G(H) \longrightarrow Alg - H^{1}(A, H) \longrightarrow 1.$$

6.2.

(6.2.1) THEOREM. $Alg-H^n(A, H) = \{1\} \text{ for } n \ge 2.$

PROOF. By [4], 3.0 Lemma the invertible elements in $A \otimes (\otimes^n H)$ are all of the form $a \otimes h_1 \otimes \cdots \otimes h_n$ where $a \in U(A)$ and $\{h_i\} \subset G(H)$. A calculation shows

$$D^n(a \otimes h_1 \otimes \cdots \otimes h_n)$$

$$=\left\{\begin{array}{ll} a\otimes\xi(a)\otimes h_2\otimes h_2\otimes h_4\otimes h_4\otimes\cdots\otimes h_{n-1}\otimes h_{n-1}\otimes 1 & \text{if } n\text{ odd }(n\geqq3)\text{,}\\ 1\otimes\xi(a)h_1^{-1}\otimes 1\otimes h_2h_3^{-1}\otimes 1\otimes h_4h_5^{-1}\otimes\cdots\otimes h_{n-2}h_{n-1}^{-1}\otimes 1\otimes h_n \end{array}\right.$$

if n even $(n \ge 2)$.

Thus if n is odd $(n \ge 3)$ and $c = a \otimes h_1 \otimes h_2 \otimes \cdots \otimes h_n$ is a cocycle we must have that a = 1 and $h_2 = h_4 = \cdots = h_{n-1} = 1$. Thus we can assume c is of the form

$$c = 1 \otimes h_1 \otimes 1 \otimes h_3 \otimes \cdots \otimes 1 \otimes h_n$$
.

Then we have that

$$c = D^{n-1}(1 \otimes h_1^{-1} \otimes 1 \otimes h_3^{-1} \otimes \cdots \otimes 1 \otimes h_{n-2}^{-1} \otimes h_n)$$

so that c is a coboundary.

If n is even $(n \ge 2)$ and c is a cocycle we have that $\xi(a) = h_1$, $h_2 = h_3$, $h_4 = h_5$, $\cdots h_{n-2} = h_{n-1}$ and $h_n = 1$. This implies that c can be written

$$c = a \otimes \xi(a) \otimes h_2 \otimes h_2 \otimes h_4 \otimes h_4 \otimes \cdots \otimes h_{n-2} \otimes h_{n-2} \otimes 1$$
.

Then we have that

$$c = D^{n-1}(a \otimes 1 \otimes h_2 \otimes 1 \otimes h_4 \otimes \cdots \otimes h_{n-2} \otimes 1)$$

so that c is a coboundary.

Q. E. D.

(6.2.2) COROLLARY. Coalg- $H^n(k, H) = \{1\}$ for $n \ge 2$.

PROOF. It is clear from (3.4.2) Proposition and (6.2.1) Theorem.

(6.2.3) COROLLARY. Let C be a coalgebra which is a right H-module

(with action $\omega: C \otimes H \to C$). Suppose $C \otimes H \xrightarrow{\omega} C \xrightarrow{\varepsilon} k$ is exact and there is

an H-module map in Reg(C, H). Then $C \cong H$ as a coalgebra.

PROOF. It is very easy to see that (C, ε, ω) is a cleft coalgebra extension of k by H. Since $Coalg-H^2(k, H) = \{1\}$, it follows from 5.5 Theorem that $C \cong k \nmid H$ as a coalgebra. Clearly, $k \nmid H \cong H$ as a coalgebra so that (6.2.3) is proved.

§ 7. Application to coradical splittings.

7.1. Inner automorphisms.

We introduce inner automorphisms of Hopf algebras. Let M be a commutative Hopf algebra over a field k. For $\tau \in \operatorname{Alg}(M, k)$ we define the map $I(\tau): M \to M$ by $m \mapsto \sum \tau S(m_{(1)}) m_{(2)} \tau(m_{(3)})$. It is easy to see that $I(\tau)$ is a Hopf algebra endomorphism. And we have $I(\tau)I(\tau S)=id$, which implies $I(\tau)$ is a Hopf algebra automorphism. We say that a Hopf algebra automorphism is inner if it is one of the form $I(\tau)$. Inner automorphisms form a group.

7.2. Let M be a commutative Hopf algebra over k of characteristic 0. Let H be the coradical of M, that is, H is the sum of all simple subcoalgebras of M. We know that H is a sub Hopf algebra of M ([1], (3.1)) and $L = M/M \cdot H^+$ is an irreducible Hopf algebra where $H^+ = \operatorname{Ker} \varepsilon_H$.

The purpose of this section is to prove the following Theorem.

THEOREM. Suppose L is cocommutative. If $q, q': M \rightarrow H$ are Hopf algebra maps such that q = identity on H = q', then there exists an inner automorphism $I(\tau)$ such that the following diagram is commutative:

$$M \xrightarrow{I(\tau)} M$$

$$q \setminus \sqrt{q'}$$

$$H$$

REMARKS. (1) By [7, Theorem 1] there exists a Hopf algebra map $q: M \rightarrow H$ such that q = identity on H, where M and H are as in the above Theorem. (2) The above Theorem with Remark (1) is similar in spirit to [8, Theorem 14.2].

7.3. We assume that k is of characteristic 0 and $L = M/M \cdot H^+$ is co-commutative. Let f denote the canonical projection $M \rightarrow L$.

(7.3.1) L is a left H-comodule Hopf algebra under the left H-comodule structure

$$\phi: L \longrightarrow H \otimes L$$
, $f(m) \longmapsto m_{(1)}S(m_{(2)}) \otimes f(m_{(2)})$.

Indeed since $L = M/M \cdot H^+$ we have that L is a quotient M-comodule of M under the left M-comodule structure of Example (1.2.5). Hence it suffices to show that $\phi(L) \subset H \otimes L$. But this follows from [7, Lemma 5].

(7.3.2)
$$Hopf-H^1(L, H) = \{1\}.$$

PROOF. Since L is irreducible cocommutative it follows from [3, Theorem 13.0.1] that L is isomorphic as a Hopf algebra to U(V), the universal enveloping algebra of V, where $V = P(L) = \{v \in L \mid \Delta(v) = v \otimes 1 + 1 \otimes v\}$. Since L is commutative as an algebra we have U(V) = S(V), the symmetric algebra of V. Thus we are done when we show that $Com \cdot H^1(V, H) = \{1\}$ (by (3.2.2)).

This follows from the next Proposition.

7.4. PROPOSITION. Let H be a co-semi-simple Hopf algebra over a field k (k is not necessarily of characteristic 0). For every left H-comodule V, we have $Com-H^1(V,H)=\{1\}$.

PROOF. Since H is co-semi-simple there exists a linear map $x: H \rightarrow k$ such that $wx = \langle w, 1 \rangle x$ for all $w \in H^*$ and x(1) = 1 (see [3], Theorem 14.0.3), where we write $\langle w, h \rangle$ for w(h) ($w \in H^*$, $h \in H$). Now

$$wx = \langle w, 1 \rangle x \qquad \text{for all} \quad w \in H^*$$

$$\Leftrightarrow \langle w \otimes x, \Delta(h) \rangle = \langle w, 1 \rangle \langle x, h \rangle \qquad \text{for all} \quad w \in H^* \text{ and } h \in H$$

$$\Leftrightarrow \sum \langle w, \langle x, h_{(2)} \rangle h_{(1)} \rangle = \langle w, \langle x, h \rangle 1 \rangle$$

$$\Leftrightarrow \langle w, (1 \otimes x) \Delta(h) \rangle = \langle w, u_H x(h) \rangle$$

(*)
$$\Leftrightarrow (1 \otimes x) \Delta = u_H x$$
.

Now let $f: V \rightarrow H$ be a 1-cocycle. Then we have (for $v \in V$)

(**)
$$\Delta f(v) = (1 \otimes f) \phi(v) + f(v) \otimes 1.$$

We denote by α the composite: $V \xrightarrow{f} H \xrightarrow{x} k$. For $v \in V$,

$$D^{0}(\alpha)(v) = (1 \otimes \alpha)\phi(v) - \alpha(v)1$$

$$= (1 \otimes x)(1 \otimes f)\phi(v) - xf(v)1$$

$$= (1 \otimes x)(\Delta f(v) - f(v) \otimes 1) - xf(v)1 \quad \text{by (**)}$$

$$= xf(v)1 - f(v) - xf(v)1 \quad \text{by (*) and } \langle x, 1 \rangle = 1$$

$$= -f(v).$$

Thus we have $D^0(-\alpha) = f$, whence f is a 1-coboundary. Q. E. D.

REMARK. The followings are equivalent: (a) H is co-semi-simple; (b) for every left H-comodule V, Com-H¹ $(V, H) = \{1\}$; (c) for every left H-comodule V, Com-Hⁿ $(V, H) = \{1\}$ $(n \ge 1)$. This is similar in spirit to [6, II, § 3, 3.7].

7.5. THE PROOF OF THE THEOREM.

We define the algebra map $\bar{F}: M \rightarrow H$ by

$$\bar{F}(m) = (q * q'^{-1})(m) = \sum q(m_{(1)})q'S(m_{(2)}).$$

Since $M \cdot H^+$ is evidently contained in the kernel of \bar{F} , we have the induced algebra map $F: L = M/M \cdot H^+ \to H$. Now let f denote the canonical projection $M \to L$. For $l = f(m) \in L$,

$$\sum F(l)_{(1)} \otimes F(l)_{(2)} = \sum q(m_{(1)})_{(1)} q' S(m_{(2)})_{(1)} \otimes q(m_{(1)})_{(2)} q' S(m_{(2)})_{(2)}$$
$$= \sum q(m_{(1)}) q' S(m_{(4)}) \otimes q(m_{(2)}) q' S(m_{(3)}).$$

On the other hand,

$$\begin{split} \sum l_{(1)(H)} F(l_{(2)}) \otimes F(l_{(1)(L)}) \\ &= \sum m_{(1)} S(m_{(3)}) Ff(m_{(4)}) \otimes Ff(m_{(2)}) \\ &= \sum q(m_{(1)}) q S(m_{(4)}) q(m_{(5)}) q' S(m_{(6)}) \otimes q(m_{(2)}) q' S(m_{(3)}) \quad \text{(by } m_{(1)} S(m_{(3)}) \in H) \\ &= \sum q(m_{(1)}) q' S(m_{(4)}) \otimes q(m_{(2)}) q' S(m_{(3)}) \,. \end{split}$$

This shows that $F: L \to H$ is a 1-cocycle. By (7.3.2) there exists a $\alpha \in \text{Alg}(L, k)$ such that $F = D^0(\alpha) = [(1 \otimes \alpha)\phi] * [\alpha^{-1} \otimes u]$. The equality $Ff = D^0(\alpha)f$ reduces

$$q = ([\alpha^{-1} \otimes u] * [(1 \otimes \alpha) \psi]) f * q'$$
.

Thus we have that for $m \in M$,

$$\begin{split} q(m) &= \sum \alpha Sf(m_{(1)}) m_{(2)} S(m_{(4)}) \alpha f(m_{(3)}) q'(m_{(5)}) \\ &= \sum \alpha f S(m_{(1)}) q'(m_{(2)}) q' S(m_{(4)}) \alpha f(m_{(3)}) q'(m_{(5)}) \qquad \text{(by } m_{(2)} S(m_{(4)}) \in H) } \\ &= \sum \alpha f S(m_{(1)}) q'(m_{(2)}) \alpha f(m_{(3)}) \\ &= q' I(\alpha f)(m) \, . \end{split}$$

Hence we have $q = q'I(\tau)$ where $\tau = \alpha f$, and the Theorem is proved.

Appendix

By Mitsuhiro TAKEUCHI

1. Comparison with the Hochschild cohomology.

Let \mathfrak{G} be a k-group-functor and \mathfrak{M} a \mathfrak{G} -module-functor. In $[6, II, \S 3, 1.1]$ the Hochschild cohomology $H^n_0(\mathfrak{G}, \mathfrak{M})$ of \mathfrak{G} with coefficients in \mathfrak{M} is defined. Let H, V, B, L, W and A be just as in $\S 2.1$. Let $\mathfrak{G} = \mathfrak{Sp}(H)$ be the affine group scheme of H, hence $\mathfrak{G}(R) = \mathrm{Alg}_k(H, R)$ for any k-model R. We define five \mathfrak{G} -module-functors \mathfrak{M}_i , $i = 1, 2, \cdots, 5$, as follows:

$$\mathfrak{M}_1(R) = \operatorname{Hom}_k(V, R)$$
 on which $\mathfrak{G}(R)$ acts as
$$(g \rightharpoonup x)(v) = \sum g(v_{(H)}) x(v_{(V)}), \ g \in \mathfrak{G}(R), \ x \in \mathfrak{M}_1(R), \ v \in V$$
 $\mathfrak{M}_2(R) = \operatorname{Reg}_k(B, R)$ $\mathfrak{M}_3(R) = \operatorname{Alg}_k(L, R).$

The action of $\mathfrak{G}(R)$ on $\mathfrak{M}_2(R)$ (resp. $\mathfrak{M}_3(R)$) is induced from the action on $\mathfrak{M}_1(R)$ with V replaced by B (resp. by L).

$$\mathfrak{M}_{\scriptscriptstyle{4}}\!(R) = R \otimes W$$
 with the $\mathfrak{G}(R)$ -action $g \rightharpoonup (r \otimes w) = \sum rg(w_{\scriptscriptstyle{(H)}}) \otimes w_{\scriptscriptstyle{(W)}}, \ g \in \mathfrak{G}(R), \ r \in R, \ w \in W$ $\mathfrak{M}_{\scriptscriptstyle{5}}\!(R) = U(R \otimes A)$.

The action of $\mathfrak{G}(R)$ on $\mathfrak{M}_{\mathfrak{s}}(R)$ is induced from the action on $\mathfrak{M}_{\mathfrak{s}}(R)$ with W replaced by A.

PROPOSITION. $H_0^n(\mathfrak{G}, \mathfrak{M}_1) = Com \cdot H^n(V, H), \quad H_0^n(\mathfrak{G}, \mathfrak{M}_2) = Coalg \cdot H^n(B, H),$ $H_0^n(\mathfrak{G}, \mathfrak{M}_3) = Hopf \cdot H^n(L, H), \quad H_0^n(\mathfrak{G}, \mathfrak{M}_4) = Hoch \cdot H^n(W, H) \quad and \quad H_0^n(\mathfrak{G}, \mathfrak{M}_5) = Alg \cdot H^n(A, H).$

The proof may be omitted, since it is easy and standard.

In view of the above identifications, Theorems 5.5 and 5.6 are contained, in a sense, in $\lceil 6 \rceil$, II, $\S 3$, 2.3.

2. Non-abelian cohomology.

Let $\mathfrak S$ be a k-group-functor. By a $\mathfrak S$ -group-functor we mean a (not necessarily commutative) k-group-functor $\mathfrak M$ on which $\mathfrak S$ acts as group-automorphisms. We define in the following $H^0_0(\mathfrak S,\mathfrak M)$ and $H^1_0(\mathfrak S,\mathfrak M)$ for any $\mathfrak S$ -group-functor $\mathfrak M$.

First we define $H_0^0(\mathfrak{G}, \mathfrak{M}) = \mathfrak{M}^{\mathfrak{G}}(k)$. Next a morphism $\mathfrak{f}: \mathfrak{G} \to \mathfrak{M}$ is called a 1-cocycle if

$$f(gh) = f(g) \lceil g \rightarrow f(h) \rceil$$
, $g, h \in \mathfrak{G}(R)$, $R \in M_k$.

Two 1-cocycles f and f' are said to be cohomologous if there is an $x \in \mathfrak{M}(k)$ such that

$$\mathfrak{f}'(g) = \mathfrak{x}_R^{-1}\mathfrak{f}(g)(g - \mathfrak{x}_R), \qquad g \in \mathfrak{G}(R).$$

This is an equivalence relation and the quotient space is denoted by $H_0^1(\mathfrak{G}, \mathfrak{M})$. This is a pointed set having the class of the identity cocycle as its base point.

Let $1 \to \mathfrak{M}' \to \mathfrak{M} \to \mathfrak{M}'' \to 1$ be a k-model-wise exact sequence of \mathfrak{G} -group-functors. This means that

$$1 \longrightarrow \mathfrak{M}'(R) \longrightarrow \mathfrak{M}(R) \longrightarrow \mathfrak{M}''(R) \longrightarrow 1$$

is exact in the usual sense for any k-model R. Then just as in [J.-P. Serre, Corps locaux, p. 133], we have an exact sequence of pointed sets:

$$\begin{split} 1 &\longrightarrow H^0_0(\mathfrak{G},\,\mathfrak{M}') &\longrightarrow H^0_0(\mathfrak{G},\,\mathfrak{M}) &\longrightarrow H^0_0(\mathfrak{G},\,\mathfrak{M}'') \\ &\xrightarrow{\partial} H^1_0(\mathfrak{G},\,\mathfrak{M}') &\longrightarrow H^1_0(\mathfrak{G},\,\mathfrak{M}) &\longrightarrow H^1_0(\mathfrak{G},\,\mathfrak{M}'') \,. \end{split}$$

Now let \mathfrak{M} be a \mathfrak{G} -group-functor and form the semi-direct product $\overline{\mathfrak{G}} = \mathfrak{M} \cdot \mathfrak{G}$. Thus $\overline{\mathfrak{G}}(R) = \mathfrak{M}(R) \times \mathfrak{G}(R)$ and

$$(x, g)(y, h) = (x(g \rightarrow y), gh)$$
 in $\overline{\mathfrak{S}}(R)$.

Let $\pi: \overline{\mathbb{S}} \to \overline{\mathbb{S}}$ be the canonical projection. Let $\sigma: \overline{\mathbb{S}} \to \overline{\mathbb{S}}$ be a morphism such that $\pi \circ \sigma = 1$. Write $\sigma(g) = (\mathfrak{f}(g), g)$. Then σ is a homomorphism of k-group-functors if and only if \mathfrak{f} is a 1-cocyle. Let $\sigma': \overline{\mathbb{S}} \to \overline{\mathbb{S}}$ be another

homomorphism such that $\pi \circ \sigma' = 1$ and write $\sigma'(g) = (\mathfrak{f}'(g), g)$. Then \mathfrak{f} and \mathfrak{f}' are cohomologous if and only if there is an $x \in \mathfrak{M}(k)$ such that

$$\sigma' = \Im(x) \circ \sigma$$

where $\Im(x)$ denotes the inner-automorphism of \mathfrak{G} determined by $(x, 1) \in \mathfrak{G}(k)$. This is clear since

$$(x_R, 1)^{-1}(\mathfrak{f}(g), g)(x_R, 1) = (x_R^{-1}\mathfrak{f}(g)(g - x), g)$$
.

In particular $H_0^1(\mathfrak{G},\mathfrak{M})=\{1\}$ means that any homomorphism of k-groupfunctors $\sigma:\mathfrak{G}\to\overline{\mathfrak{G}}$ such that $\pi\circ\sigma=1$ can be written as

$$\sigma(g) = (x_R, 1)^{-1}(1, g)(x_R, 1), \quad g \in \mathfrak{G}(R)$$

for some $x \in \mathfrak{M}(k)$.

LEMMA. Suppose that k is of characteristic 0. Let $\mathfrak{G} = \mathfrak{Sp}(H)$ be an affine algebraic k-group with H co-semi-simple. Let \mathfrak{M} be an affine algebraic unipotent k-group on which \mathfrak{G} acts as group-automorphisms. Then $H_0^1(\mathfrak{G}, \mathfrak{M}) = 1$.

PROOF. The case where $\mathfrak M$ is commutative. Then we have a canonical isomorphism of groups

exp: Lie
$$(\mathfrak{M})_{\mathfrak{a}} \xrightarrow{\simeq} \mathfrak{M}$$

[6, IV, § 2, 4.1]. Notice that the action of $\mathfrak G$ on $\mathfrak M$ induces a natural linear representation: $\mathfrak G \to \mathfrak G \mathfrak L(\operatorname{Lie}(\mathfrak M))$. The above isomorphism can be easily seen to be $\mathfrak G$ -equivalent. Since $H=\mathcal O(\mathfrak G)$ is co-semi-simple, we have

$$H_0^1(\mathfrak{G}, \mathfrak{M}) = H^1(\mathfrak{G}, \operatorname{Lie}(\mathfrak{M})) = 0$$

by [6, II, § 3, 3.7].

General case. Let 3 be the center of \mathfrak{M} . Since 3 is characteristic, it is \mathfrak{G} -stable. The exact sequence of \mathfrak{G} -group-functors

$$1 \longrightarrow 3 \longrightarrow \mathfrak{M} \longrightarrow \mathfrak{M} \widetilde{/} 3 \longrightarrow 1$$

is k-model-wise exact, since $3 \simeq V_a$ for some vector space V and since [6, III, § 4, 6.6] holds with α_k replaced by V_a . Hence we have an exact sequence

$$0 = H_0^1(\mathfrak{G}, \mathfrak{Z}) \longrightarrow H_0^1(\mathfrak{G}, \mathfrak{M}) \longrightarrow H_0^1(\mathfrak{G}, \mathfrak{M} / \mathfrak{Z}) = 1$$

 $(H_0^1(\mathfrak{G},\mathfrak{M}/3)=1)$ by the induction hypothesis). Therefore $H_0^1(\mathfrak{G},\mathfrak{M})=1$.

COROLLARY. Let M be a commutative Hopf algebra over a field of characteristic 0. If M is finitely generated as an algebra then the statement of Theorem 7.2 holds, whether L is cocommutative or not.

PROOF. Put $\mathfrak{G} = \mathfrak{Sp}(H)$, $\overline{\mathfrak{G}} = \mathfrak{Sp}(m)$, $\mathfrak{U} = \mathfrak{Sp}(L)$. Then the Hopf algebra maps

$$L \stackrel{f}{\longleftarrow} M \stackrel{\longleftarrow}{\Longrightarrow} H$$

induce a split exact sequence of k-group-schemes

$$1 \longrightarrow \mathfrak{U} \longrightarrow \overline{\mathfrak{G}} \Longrightarrow \mathfrak{G} \longrightarrow 1$$
.

This permits us to identify $\overline{\mathbb{G}}$ with the semi-direct product $\mathfrak{U} \cdot \mathfrak{G}$, where the action of \mathfrak{G} on \mathfrak{U} is determined through $\mathfrak{Sp}(q)$. Since \mathfrak{U} is unipotent and H is co-semi-simple, we have $H_0^1(\mathfrak{G}, \mathfrak{U}) = 1$. Hence if $q' : M \to H$ is another Hopf algebra projection, then there is an $x \in \mathfrak{U}(k)$ such that

or equivalently

References

- [1] E. Abe and Y. Doi, Decomposition theorem for Hopf algebras and pro-affine algebraic groups, J. Math. Soc. Japan, 24 (1972), 433-447.
- [2] M. E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc., 133 (1968), 205-239.
- [3] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.
- [4] M. E. Sweedler, A units theorem applied to Hopf algebras and Amitsur cohomology, Amer. J. Math., 92 (1970), 259-271.
- [5] S. Maclane, Homology, Academic Press, New York, 1963.
- [6] M. Demazure et P. Gabriel, Groupes algebriques, Tome I, Masson & Cie., Paris, North-Holland, Amsterdam, 1970.
- [7] M. Takeuchi, On a semi-direct product decomposition of affine groups over a field of characteristic 0, Tôhoku Math. J., 24 (1972), 453-456.
- [8] G. Hochschild, Introduction to affine algebraic groups, Holden-Day, San Francisco, 1971.

Yukio Doi

Department of the Foundations of Mathematical Sciences Tokyo University of Education Otsuka, Bunkyo-ku Tokyo, Japan Mitsuhiro TAKEUCHI
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo, Japan