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§1. Introduction.

In this paper, following the methods used in [5] and [6], we investigate
the value distribution of meromorphic functions of divergence class or of
infinite order in the plane |z]| < . Let f(2) be a meromorphic function having

divergence class of order p, 0<p<co, in |z|<oco; that is, f T(t, f)/t+edt
=oo. Then, it is known that there are at most two G-exceptional values
which Satisfyj N(t, a)/t**Pdt =0(1). Further, these values are not always

exceptional in the sense of Nevanlinna ([7]) and conversely there is a mero-
morphic function g(z) of divergence class such that d(0, g)=1 and the value
0 is not G-exceptional (Example 2, §4). These examples show that these two
notions of exceptionality of values are independent of each other in a sense.
Then, how many values are there for f(z) which satisfy d(a, f)=1 or are G-
exceptional? We start from this question, discuss some relations among
Borel exceptional values, G-exceptional values and Nevanlinna exceptional
values, and introduce a new notion of exceptionality of values for mero-
morphic functions of divergence class (§ 2).

Any meromorphic function A(z) of infinite order in |z]< oo is of diver-

gence class in a sense, because for any large number Z,S T(t, h)/t**2dt = oo.

Analogizing with the case of finite order, we introduce notions of exception-
ality of values for meromorphic functions of infinite order and give some
relations with the Nevanlinna deficient values (§ 3).

Some examples are given in §4.

We will use the symbols of the Nevanlinna theory:

T(T’ f)r m(r, a): N(T, a)i 5((1, f); S(ry f) etc.
freely (2], [4).

The authors are very grateful to Professor Matsumoto for his helpful
discussions with them and useful suggestions to them.
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§2. Meromorphic functions of divergence class.

In this section, we discuss meromorphic functions of divergence class of
finite order. Let f(z) be a meromorphic function having divergence class of
order p (0 < p<o0)in [z]<oo:

j‘wa(t’f) di = o0,

tl+‘0
It is said ([7]) that a value w is G-exceptional for f(z) when

[NE. = o).
It is known that the number N(G) of the elements of the set G of G-excep-
tional values for f(2) is at most two ([7]). In [6], we considered the defect
relation in relation to the Borel exceptional values. Here, we consider the
defect relation of meromorphic functions of divergence class in relation to
the G-exceptional values. As a Borel exceptional value is G-exceptional and
the converse is not always true (see Example 1 in §4), the discussions done
here are wider than those in [6].
DEFINITION 1. For r>1, 0=« < p and any value «

T f=f T8Da, N o= Ml ar

l'H-af

LEMMA 1.
lim T, (r,f)=c0.

Because f(z) has divergence class and T(Z, /) is non-negative.
DEFINITION 2. For any value a

e, H=1-limsup L Ada, )= 1=liminf peEf

As in Proposition 5 ([5]), we have
LEMMA 2. For any 0= a<p,

0=0d(a, f)=dula, ) S0,(a, )= dp(a, f)= dula, )= Ma, F)=1.

LEMMA 3. If w is G-exceptional for f(2), then 0,(w, f)=1.
Because lim T, (r, f)=co by and N,(r, w)=0(1) by definition.

PROPOSITION 1. Let a,, -, a, (g=3) be q different values. Then, for all
r>1

(@=2)T,(r, ) < ZN,(r, a)+0().

Because
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logt o)y,

1 t1+p

we obtain this proposition from the second fundamental theorem of Nevan-
linna directly.

From this, we have the so-called defect relation:
COROLLARY 1.
§5p((z,f)§2.

Applying we have

COROLLARY 2. NG)<2.

To consider relations between the order and the number of G-exceptional
values, as in we give the following.

DEFINITION 3. For 0= a < p,

—1 N1, O)+N(r, f)
Ka(f)"‘hl;flosoup T, f) — .

As in Proposition 6 ([5]), we have

PROPOSITION 2. For any 0= a =p,

K(NH=K()=K(U),
where K(f)=1im sup (N(r, 0)+N(r, /))/T(r, /).

PROPOSITION 3. [/ p is nol integer,
1—p  for 0<p<1
(g+1—pXo—a)/pea)  for [pl=q=1,

where [ ranges over all meromorphic funclions having divergence class of order
o and ¢(q)=2(q+1)(log (g+1)+2).

We can prove this as in the case of in [}

COROLLARY 3. If K,(f)=0 (therefore if N(G)=2), then p is integer.

REMARK. Even if K,(f)=0, f(2) is not always of regular growth as
Theorem 5 in shows.

As cited in §1, the G-exceptionality and the Nevanlinna exceptionality
are independent of each other in a sense. But considering d,(a, /), we can
control the two notions into a single relation. That is, we can prove the
following

THEOREM 1. For any meromorphic function f(z) having divergence class
of order p (0< p<co)in |z|<co, the following inequality holds:

%Lcﬁ,,(a, N=2—-NG).

K,=inf K,(f)=

PROOF. 1) The case when G=#. See [Corollary 1. 2) The case when
G+0. Let G=1{a;}% (n=1 or 2) and ¢> 2, then from
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(@207, ) < I, Nilr, ) +0(0).

Using and by definition of d,(a, f), we have
> dplay, f)=2—n=2—N(G).
a;FG

This inequality reduces to this theorem as usual.
COROLLARY 4.

2 0(a, /) =2—NG).

COROLLARY 5. The number of values which are G-exceptional for f(2) or
at which f(z) has the maximal Nevanlinna deficiency is at most two.

LEMMA 4. f/(2) has also divergence class of order p ([1]).

Using this lemma, we can prove the following proposition as in [Theorem

1 [5D.

PROPOSITION 3.

. T Y . TS ) <o 5 (o
agmﬁp(a, f)éllrflgonf 720’7 7 élllﬁiuP—T:—(rﬁ)_éz 0,(0, f).

As in (5], we have
PROPOSITION 4.

200, ) =(2=0,(20, 1))5,(0, 1)

THEOREM 2. Let f(2) be any meromorphic function having divergence class
of order p(0<p <o) in |z|<co. If p is not integer and N(G) >0, then N(G)
=1 and

<1—
a?ﬂé,,(a, N=E1-K,.
PrOOF. If N(G)=2, we may assume that G= {0, o} by using a linear
transformation if necessary. Then, by
5p<0,f):5p(00,f):1

This implies K,(f)=0, so that from p is integer. This is a
contradiction. N(G) must be equal to 1.

Thus, we may suppose G = {co} as above. Then,
0p(c0, f)=1.
As T,(r, f')/ o (Lemma 4) and as N(r, /') < 2N(r, f),

N(r, [)S2N,(r, /)=0Q).
Suppose that

(1) > 0da, /) >1-K,.
Then, from
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20, N)Z0,0,7)
as 0,(c0, f)=1, so that

l—K‘u < 5/1(09 f/) .
Adding both sides d,(co, f//)=1, we have
2) 2—K,<0,00, //)+0,(c0, [1).

As
K, (/") =2-0,0, f)—d,(c0, ),
we have by (2)
K, (/) <K,,

which is a contradiction, because /(z) has divergence class of order p, and
so K,< K, (/") by definition. This shows that the inequality (1) is false. We

have the result.

Next, introducing a new notion of exceptionality of values for meromor-
phic functions of divergence class, we will give precise forms for some
results given above. Let f(2) have divergence class of order p(0<p <o) as

above.
DEFINITION 4. For r>1 and 0 Z4=p,

Toutr, )= Lot ar.

[1+1

LEMMA 5. lim T, (7, /) =0 if and only if lim T (r, ) == o0

PrROOF. By a simple computation, we obtain
T, Tu(t,
©) Tr, =T o "Dl g,

It is trivial that T,(r, f) and T, (7, /) increase as r increases.
= oo, then T,(r, f) tends to infinity because

TP(T, f) _\é PTo,p(V, f)

If hm TO,(l(rv f)

by (3). Conversely, if T, ,(r, f/)=0(1), we see that Ty(r, f/)/r” tends to 0 for

r—oo, so that T,(r, f)=0O().
DEFINITION 5. For r=r7, and 0=2=p

1100 =] iy

where 7, is a positive number such that Ty(r,, f)> 0.
PROPOSITION 5. f(z) is of diwvergence class if and only if

lim T(r, f)=o0
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PROOF. As
Tﬁ(?’, f) - lOg TO,,n(r’ f)_O(l) ’

we have the result by
DEFINITION 6. For any value «,

: 4 Nyt a
DN o= [ it O

*
2) 0% f)=1-lim sup %’;((—:7% )

-dt for r=r,and 0=4A=p;

DEFINITION 7. A value « is said to be G,-exceptional for f(z) when
N¥(r, @) =0Q) (r->co).

REMARK. “G-exceptional” is “G,-exceptional” trivially. But the converse
is not always true as Example 3 (§4) shows.

Let N(G,) be the number of the elements of the set G, of G,-exceptional
values for f(z). Then, how many G,-exceptional values are there? For this
question, we have

THEOREM 3. For any meromorphic function [f(z) of divergence class of
order p (0<p < o0), it holds

> 35(e, /) £2- NG
a0y

PROOF. From the second fundamental theorem of Nevanlinna, we have
easily

(q—=2Tr, /) < 2 Ny(r, a)+0O((log 7)?)

for all » >1 and ¢ different values ¢; (t=1, ---, q; ¢ =3).
Dividing this by »'**T, (7, f) and integrating from 7, to r, it reduces to

@ (=2)THr, )< 3 N3(r, a)+0().

From this inequality, as lim T#(7, /)= oo, we have the following defect rela-

tion as usual:
X oxa, /=2,

When G, +##9, if a = G,, then 0%(a, f)=1. This implies N(G,) <2 from the
above inequality. Let G,= {a;}%, (n=1 or 2). For ¢=3, from (4) and Pro-
position 5

> of(a;, f)=2—n=2—N(G,).
a{&6,

This reduces to the desired result as usual.
COROLLARY 6.
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> i(a, /) £2—N(GY).
a6

Because, as in Lemma 2, d(q, /) < 0¥, /).

COROLLARY 7. N(G) 2.

REMARK. When N(G)=2, p is integer (Corollary 3); but even when
N(G,)=2, it is still open whether p is integer or not.

§3. Meromorphic functions of infinite order.

In this section, introducing some new exceptionalities of values which
include the Borel exceptionality, we generalize some results given in §2 to
the case of infinite order.

Let f(z) be a meromorphic function of infinite order in |z] <o and

Tyr, f)= ‘s‘:"”]‘(il:fl— di, Ny(r, a) = j: ’N(tzf'*a)‘dt

mo(r, )= 5' :Jl‘,,(l;»,f ). dt, So(7, f) = f :i(_tz_-o“ dt
(see [5D. '

First, using these notations we give a modified second fundamental
theorem of Nevanlinna without exceptional intervals.

PROPOFITION 6. Let ay, ---, a, (¢=3) be q different values. Then, for all
r>1

5) (q—2)T(r, )< § Ny(r, a)+Si(r, )
where
©) Si(r, £)=0og ry)+0(f 128D )
for all r>1 and

~ . S f)
™ lim =27y =0.

PROOF. We have the inequality (5) directly from the second fundamental
theorem of Nevanlinna, and so we have only to prove (6) and (7). As is
known (see [4))

® S(r, /) <8log"R+6log" - +8log*T(R, /)+0(1)
for 1<r<R. As in the proof of (4], p. 62), putting
r'—r

R=r4— -

for » =r>1 and dividing both sides of (8) by #, we integrate them from
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r=r,tor=r (1<r,<r’). We estimate each term of the righthand side of
(8) as follows.

i J”'_logﬂ?‘dr:yf"Jgg_(r+(:’-—r)/ﬁﬁl,_,dréj“ log (:H) dr
7 70

0 r 0]

7\2
= ﬂogz?;)m +log 7.

ii) y:'ﬂgﬂﬁiﬁw j‘r log 7, 7//0,/_7,) "
L i LN

Tu @—Du ™ Nuy=rjr—r,)

*5 :0 (lltogll;u du +5 (112%1%7 du  (r'>ery/(e—1)

< Lo—l-%g—_—llL du+0Q1) (as u,>1)

<lo —"—1-'» FO(1) < log 7+ 0(1) .

iii)

[" Lo TR 4y [ log+T(t, D Yar

70 o

v log+T(t f)
< —;1 j dt

where =7+ —r)/r, ly=ry+- (' —ry)/r" and ¢/ =r’, Using i), ii) and iii), we
obtain (6) easily.

Next, as lim T(r, f)/(log r)* = oo ([6], and
limlog*T(r, f)/T(r, f) =0, we can prove (7) easily from (6).

We wish to generalize some results obtained in § 2 to the case of infinite
order. For this purpose, this proposition 6 plays a fundamental role. First
of all, it is necessary to define a divergence class for meromorphic functions
of infinite order. Analogizing with the case of finite order (cf. Prop. 5), it
is natural to say that f(z) has divergence class when, for all 0= A< o

“ Ty, f) Lo\l J)
T, f) d=co

From this point of view, we give some definitions.
DEFINITION 8. For r>7, and any 2 (0£2A< )

T, )= [ T DT Dt

Ni(r, @)= [ Ni(t, )/t T, (8, fat
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where T (7, f)-:j: T, /)/t***dt and r, is a positive number such that
Ty(re, 1) > 0.

PROPOSITION 7. For any mevomorphic function f(z) of infinite order in
|z] < oo,

i) T¥(@, f) oo for v/ wo and limsup T§(r, f)/logr=co for any A (0= 2
< ); Mo

) for a=g, TE(r, =T, /).

PROOF. By definition,

T(r, f)=1log To(r, /)—O()

and T, (7, f) increases to infinity monotonously when 7 tends to infinity for

any A, positive or zero, as in [Proposition 1| ([5]), so that we have the first

assertion of i). To prove the second, we note first that, as in Proposition?;l

()

lim sup ——~—10g1’£°g(:’ )

Using this, as in ([(5)), we have for any 1 (=0)

. IOg T0,2(79 f) .
im sup 0L oo

=0,

This shows the second assertion of i).
Integration by parts gives us easily

Tos5(r, [)= aj:ﬂ’”([’ /) dt - T“?”(,T’if.)_

iff-{-s - re

where ¢ = f—a. From this we obtain
rﬂTO,ﬁ(T) f) = 7/.(17”0,!1'(7/’ f) ’

so that we have ii) by definition.

It is our aim to define a divergence class for meromorphic functions of
infinite order. But, these properties force us to assert that any meromorphic
function of infinite order is of divergence class in a sense. Therefore, con-
trary to the case of finite order, the following discussion is wvalid for all
meromorphic functions of infinite order.

Form now on, let f(z) be any meromorphic function of infinite order in
|z| < co.

DEFINITION 9. 1) A value w is said to be

i) G,-exceptional for f(z) when for some 4, N¥(r, w)=0Q);

ii) P,-exceptional for f(z) when for some A, N¥(r, w)=O(logr).

2) For any value a
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Ni(r, o) ) vy e N¥(r, a)
T A= liminE oy

70

0%(a, f)=1—Ilim sup

REMARK, i) Trivially, “Borel-exceptional” is “G,;-exceptional” and “G,-
exceptional” is “P,-exceptional”; where a value w is Borel exceptional when
N(r, w) is of finite order.

ii) There is an example of meromorphic function which has a G;-excep-
tional value not being Borel exceptional (§4, Example 4).

Let N(G)) (resp. N(P,)) be the number of the elements of the set G,
(resp. P,) of G, (resp. P,)-exceptional values for f(2).

THEOREM 4. Let f(2) be any meromorphic function of infinite ovder in
|z| <oo. Then, there is a A, such that for all 2= 2,

2 0%(a, [)=2—N(Py).

PrOOF. Dividing the inequality (5) of by r**T, (v, f) and
integrating from 7, to , we have for r =7,

© (=2)THr, /)< £ Ni(r, a)+S1(r, /)
where
10) i N)=oTHr, 1) (r—e0).

The relation is derived from (7) easily.

1) The case P,=0. In this case, we can prove this theorem easily from
(9) by using and Definition 9-2).

2) The case P,+0. Let P,= {a;}}Y¥® and n be any finite number such
that 1 <n< N(P,). Then, there is a 4, such that for any 4= 4,

N;{:(r’ ai)ZO(IOgT) (T——>OO; i:]-;""n)°
Using this, we have from (9) for ¢ > max (2, n) and r =7,
q
(@=2T1(r, f) <Olog N+ 2 Ni(r, a)+Si(r, f)
and so by and Proposition 7-i),
> ey, H)=2—n.
i=nt1
This implies N(P;) <2 and
> 0f(a, f)=2—N(Py.
a&EP)
COROLLARY 8. NG)ENPH2.
COROLLARY 9. g’a(a, f)E2—N(P).
aPy
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Becanse d(q, /) < 0d5(a, f) for any 4.
REMARK. This is an extension of ([6]) for the case of infinite

order.

§4. Examples.

In this section, we give several examples which explain relations among
exceptional values used in §2 and §3. First we note that Valiron gave
an example with G-exceptional values which are not Nevanlinna exceptional
values.

EXAMPLE 1. Example of a G-exceptional value which is not Borel excep-
tional (cf. §2).

Let
had z
7 =1 (14 iog )
Then, ,
T, )~ gy M UA~N ol

(see [2], p. 29). (Here, p(r)~q(r) means lim p(r)/q(r)=1.) Therefore, p=1
and f(2) has divergence class of order 1 as
T (rYy~loglogr.

The order of N(»,1/f), which is equal to that of n(r, 1/f), is one.
On the other hand, in this case

“ N, 0) (7m0
jl 3 dt__fl - dt =0(1)

because jwl/r(log ridr < co.
2

That is, the value 0 is G-exceptional but not Borel exceptional for f(2). -

EXAMPLE 2. Example of f(2) such that 6(0, fY=1 but the value 0 is not
G-exceptional (cf. §1).

For any positive integer ¢, let

))

=L e (G p () o
with
a, = —[n(log m)*J"¢,

where p=¢ and 0 <a <1. Then,

(1) T, )~ a8, Nor, 0~ L0080
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(see [4], p. 18-19).
Since from
Tp(”, f)~(log 7’>2""/(2——a)(1—a)7tp““ ,

/(2) has divergence class of order p.
As

Np(r’ O)N (IOg r)l—n/(l_a>[0“+l ’
the value 0 is not G-exceptional, but from

00, /H=1.
EXAMPLE 3. Example of a G,-exceptional value which is not G-exceptional
(cf. Remark of Definition 7).

Let f(2) be the same as in Example 2. Then the value 0 is not G-excep-
tional by Example 2. We show that it is G,-exceptional.

Put

A(ry=rr(logr)'~*,  B@r)=r°(logr)“.

Then
A= [ Awytat zr#/p—00)

and

A0 = [T A) /150t = (10g 1/p—0(1).
Further

By(r)=| {;Bu)/mz < 2r(log r)~"/p

and '

[ B SRS S
BY)=J 4 pren iy S K 1o tye 4= 0)

where K is a positive constant. Applying these estimates, we have from
that the value 0 is G,-exceptional.

EXAMPLE 4. Example of a G,-exceptional value which is not Borel excep-
tional (case of infinite order) (cf. Remark of Definition 9).

Let

f(z)=(exp e’?—1) exp &
for 1 <p<co, Put
g(z)=expe’?—1 and g,(2)=expe’.
Then
T(r, fy~e/Qe’r)?  (r—o0)
because
T(r, g,)~e /(2n°r)'® and T(r, ) =0o(T(r, &) (r—c0)
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(see [2], p. 7 and p. 19-20). Therefore, p=oo.

On the other hand, 0 and oo are Picard exceptional, and so Borel excep-
tional for expe”?. As there are at most two Borel exceptional values for
meromorphic functions of infinite order (see [3] or [6]), the value 1 is not
Borel exceptional for expe”?. This shows that the order of N(r, 1/g,) is
infinite because that of g,(2) is infinite. Therefore, the value 0 is not Borel
exceptional for f(2). As, for a positive constant K and r = r,(K)

N(r, 1/f)= N(r, 1/g) = T(r, g)+0Q1) = Ke™?,
it holds that
Ny(r, 0)< Ke"?logr

for » =7, Further, for a positive constant K, and r =r(K))
Ty(r, )= K.e/r'* and so v+ T (r, f) = K.e"/r'"?,

so that for any non-negative 4

r t1/2,t/p
N1t 0= |8 drroq)
=0Q)

as p>1. This shows that for f(2) the value 0 is G,-exceptional but not being
Borel exceptional.
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