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This paper is a continuation of our previous paper (Kawai [2]), where
the global existence of real analytic solutions of a single linear differential
equation with constant coefficients $P(D)u=f$ is discussed on a relatively
compact open set $\Omega\subset R^{n}$ . Recently H\"ormander [1] gave a necessary and
sufficient condition for the solvability of $P(D)u=f$ assuming that $\Omega$ is con-
vex. Once one restricts oneself to the consideration of convex sets, one can
easily prove the global existence of real analytic solutions of the overdeter-
mined system of linear differential equations with constant coefficients which
is of “de Rham type” in the sense of Sato-Kawai-Kashiwara [6] by the aid
of ”micro-local” analysis (Cf. Kawai [3]). The purpose of this paper is to
give a proof of this theorem. Note that the restriction to the consideration
of “de Rham type” is a natural one in view of the above quoted results of
H\"ormander [1].

The system $\mathcal{M}$ of linear differential equations which we consider in this
paper is always assumed to satisfy the following condition.

(1) It is with constant coefficients, $i$ . $e$ . it has the form $P(D)u=0$ , where
$P(D)$ is an $r\times l$ matrix of linear differential operators with constant
coefficients of finite order.

(2) Its characteristic variety $V$ is real and non-singular.

(3) It is purely d-dimensional for some $d,$ $i$ . $e$ . $\mathcal{E}xt_{\mathcal{P}}^{j}(\mathcal{M}, \mathcal{P})=0$ for $j\neq d$. (Here
$\mathcal{P}$ denotes the sheaf of pseudo-differential operators.)

We consider the solvability of such equations on a relatively compact
convex open set $\Omega$ with $C^{o}$ boundary $\partial\Omega$ in $R^{n}$ . We denote by $\mathcal{A}(\Omega)$ and
$d(\overline{\Omega})$ the space of real analytic functions on $\Omega$ and $\overline{\Omega}$ respectively.

Our theorem is as follows:
THEOREM. Let $\mathcal{M}$ and $\Omega$ satisfy the above conditions. Assume that the

r-vector $f(x)$ of real analytic functions on $\Omega$ satisfies the compatibility conditions.
Then the equation $P(D)u(x)=f(x)$ has a real analytic solution $u(x)$ in $\llcorner l(\Omega)^{t}$ .

PROOF. We first prove that
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$\rho:Ext_{\mathcal{D}}^{0}(\overline{\Omega};\mathcal{M}, \mathcal{B}/\mathcal{A})\rightarrow Ext_{\mathcal{D}}^{0}(\Omega;\mathcal{M}, \mathcal{B}/d)$

is surjective. Hereafter, when we use the same notations as in our previous
Paper (Kawai [2]) and Sato-Kawai-Kashiwara [6], we do not repeat their
definitions.

Let $V_{0}=\{(x, \sqrt{-1}\eta)\in\sqrt{-}1S^{*}R^{n}|x\in\partial\Omega,$ $\eta\in V$ and $\pi(b_{(x,\sqrt{-1}\eta)})$ , the pro-
jection of the bicharacteristic manifold passing through $(x, \sqrt{-1}\eta)$ to $R^{n}$ , is
tangent to $\partial\Omega$ }. If $\mu(x)$ is in $Ext_{q)}^{0}(\Omega;\mathcal{M}, \mathcal{B}/d)$ , then assumptions (2) and (3)

imply that $\mu(x)$ can be extended uniquely to $\overline{\Omega}-\pi(V_{0})$ . (Sato-Kawai-Kashiwara

[6] Chapter III Theorem 2.1.8.) Moreover for any $(x, \sqrt{-1}\eta)\in V_{0}$ we can
find its open neighborhood to so that $b_{(x}$’ intersects $\sqrt{-1}S^{*}N_{\omega}\times VN_{\omega}$ trans-

versally there for a suitable hypersurface $N_{\omega}\subset R^{n}$ passing through $x$ . Then
the above quoted theorem of Sato-Kawai-Kashiwara [6] shows $\mu(x)$ can be
extended to $\omega$ as a microfunction solution of the equation $P(D)\mu=0$ if we
take $\omega$ sufficiently small. Since $V_{0}$ is compact, we can find $\{\omega_{j}\}_{j=1}^{N}$ so that

U $\omega_{j}$

N
$\supset$) $V_{0}$ and $\mu(x)$ can be extended to $\omega_{j}$ . Taking a neighborhood $U$ of $\overline{\Omega}$

$j=1$

sufficiently small, we can assume that $ b_{(x}\sqrt{-1}\eta$
) and $b_{(x^{\prime},-1\eta)}\sqrt{}^{-}$, do not intersect

mutually in $\sqrt{-1}S^{*}U-\sqrt{-1}S^{*}\Omega$ if $(x, \sqrt{-1}\eta)\in\omega_{j}\cap(\sqrt{-1}S^{*}U-\sqrt{-1}S^{*}\Omega)$

and $(x^{\prime}, \sqrt{-1}\eta^{\prime})\in\omega_{k}\cap(\sqrt{-1}S^{*}U-\sqrt{-1}S^{*}\Omega)(j\neq k)$ . Since the $suPport$ of
the above extention of $\mu(x)$ is invariant under Hamiltonian flow associated
with $V,$ $\mu(x)$ is seen to be extended consistently to $\overline{\Omega}$ . Thus we have proved
the restriction map $\rho$ is surjective.

On the other hand $Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B})=0$ by a theorem of Komatsu [5] since
$\overline{\Omega}$ is convex. Moreover $Ext_{\mathcal{D}}^{2}(\overline{\Omega};\mathcal{M}, \mathcal{A})=0$ by a theorem of Ehrenpreis, Mal-
grange and Komatsu, since $\overline{\Omega}$ is compact and convex. (See $e$ . $g$ . Komatsu [4].)
Therefore the following exact sequence (4) implies $Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/A)=0$ .
(4) $...\rightarrow Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B})-Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/\llcorner fl)$

$\rightarrow Ext_{\mathcal{D}}^{2}(\overline{\Omega};\mathcal{M}, d)\rightarrow\ldots$

Therefore the surjectivity of $\rho$ implies the vanishing of $Ext_{\mathcal{D},\partial 9}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/\cup q)$

since the following exact sequence holds:

(5) $...\rightarrow Ext_{\mathcal{D}}^{0}(\overline{\Omega};\mathcal{M}, \mathcal{B}/d)Ext_{\mathcal{D}}^{0}(\Omega;\mathcal{M}, \mathcal{B}/d)\underline{\rho}$

$\rightarrow Ext_{\mathcal{D}.\partial 9}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/d)\rightarrow Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/d)\rightarrow\ldots$

Now we use the existence theorem of Komatsu [5] and find easily that

(6) $Ext_{\mathcal{D}.\theta 9}^{2}(\overline{\Omega};\mathcal{M}, \mathcal{B})=0$ .
In fact, taking a fundamental system of open neighborhoods $\{U_{j}\}_{j=1}^{\infty}$ of $\overline{\Omega}$ so
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that they are convex, Komatsu’s theorem implies that $Ext_{\mathcal{D}}^{1}(\Omega;\mathcal{M}, \mathcal{B})=$

$Ext_{\mathcal{D}}^{2}(U_{j} ; \mathcal{M}, \mathcal{B})=0$ . Therefore the exact sequence

(7) $...\rightarrow Ext_{\mathcal{D}}^{1}(\Omega;\mathcal{M}, \mathcal{B})\rightarrow Ext_{\mathcal{D}.U_{j}\cap(R^{n}-g)}^{2}(U_{j} ; \mathcal{M}, \mathcal{B})$

$\rightarrow Ext_{\mathcal{D}}^{2}(U_{j} ; \mathcal{M}, \mathcal{B})\rightarrow\cdots$

proves the vanishing of $Ext_{9.U_{j}\cap(R^{n}-9)}^{2}(U_{j} ; \mathcal{M}, \mathcal{B})$ , whence the vanishing of
$Ext_{\mathcal{D},\partial 9}^{2}(\overline{\Omega};\mathcal{M}, \mathcal{B})$ by the definition.

In passing, we consider the following exact sequence:

(8) $...\rightarrow Ext_{\mathcal{D},\partial 9}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/\mathcal{A})\rightarrow Ext_{\mathcal{D},\partial 9}^{2}(\overline{\Omega};\mathcal{M}, A)$

$\rightarrow E_{Xt_{9.\hat{o}9}^{2}(}\overline{\Omega};\mathcal{M},$ $\mathcal{B}$ ) $\rightarrow\cdots$ .

Then the vanishing of $Ext_{\mathcal{D}.\partial 9}^{1}(\overline{\Omega};\mathcal{M}, \mathcal{B}/\mathcal{A})$ and $Ext_{\mathcal{D}.\partial 9}^{2}(\overline{\Omega};\mathcal{M}, \mathcal{B})$ proves that
of $Ext_{\mathcal{D}.\partial O}^{2}(\overline{\Omega};\mathcal{M}, \mathcal{A})$ . Therefore we conclude that $Ext_{\mathcal{D}}^{1}(\Omega;\mathcal{M}, \mathcal{A})$ vanishes
since the following exact sequence (9) exists:

(9) $...\rightarrow Ext_{9}^{1}(\overline{\Omega};\mathcal{M}, \leftrightarrow q)\rightarrow Ext_{9}^{1}(\Omega;\mathcal{M}, \leftrightarrow l)$

$\rightarrow Ext_{\Phi.\theta\Omega}^{2}(\overline{\Omega};\mathcal{M}, cl)\rightarrow\cdots$ .
Note that the above quoted result of Ehrenpreis, Malgrange and Komatsu

concerning the existence of real analytic solutions on a compact convex set
means that $Ext_{\mathcal{D}}^{1}(\overline{\Omega};\mathcal{M}, A)=0$.

The vanishing of $Ext_{\mathcal{D}}^{1}(\Omega;\mathcal{M}, d)$ is nothing but the global existence of a
real analytic solution $u(x)$ of the equation $P(D)u(x)=f(x)$ when $f(x)$ satisfies
the compatibility conditions. This completes the proof of the theorem.

REMARK. It is also possible to show the vanishing of $Ext_{9}^{j}(\Omega;\mathcal{M}, \cup l)$

$(j>1)$ by the aid of “micro-local” analysis under the same assumptions as
in the theorem. This problem will be discussed somewhere else.
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Added in proof. Mr. T. Miwa has recently given a necessary and suf-
ficient condition for the vanishing of $Ext^{1}(\Omega;\mathcal{M}, \mathcal{A})$ under the assumption
that $\Omega$ is convex and that $\mathcal{M}$ is a system of linear differential equations with
constant coefficients. His way of proof relies on the excellent and ingenious
idea of H\"ormander [1]. See T. Miwa: on the global existence of real
analytic solutions of linear partial differential equations with constant co-
efficients, to appear in Proc. Japan Acad., 49, No. 7.
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