On the nonlinear semi-groups associated with

$$u_t = \Delta \beta(u)$$
 and $\varphi(u_t) = \Delta u$

By Yoshio Konishi

(Received Nov. 13, 1972)

Introduction.

The purpose of the present paper is to study the differentiability of the nonlinear contraction semi-groups generated in the sense of Crandall and Liggett [4], which are associated with the following nonlinear problems of diffusion:

(1)
$$\begin{cases} u_t = \Delta \beta(u) & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial \Omega \times (0, \infty), \\ u(0) = a & \text{in } \Omega; \end{cases}$$
(2)
$$\begin{cases} \varphi(u_t) = \Delta u & \text{in } \Omega \times (0, \infty), \\ u = 0 & \text{on } \partial \Omega \times (0, \infty), \\ u(0) = a & \text{in } \Omega, \end{cases}$$

where Δ is the Laplace operator on a bounded domain $\Omega \subset R^d$ with smooth boundary $\partial \Omega$, a's are given initial data and β and φ are strictly monotone increasing continuous functions on R^1 such that

$$\beta(0) = \varphi(0) = 0$$

and that the range of φ is R^1 . (Concerning the problem (2), see also Strauss [14, 15].) It has been already known that we can study the problems (1) and (2) from the point of view of the theory established by Crandall and Liggett in [4]. Crandall [2] and Konishi [6], for example, associated with the problem (1) a nonlinear dissipative¹⁾ (accretive) operator $Au = \Delta \beta(u)$ ($Au = -\Delta \beta(u)$)

$$||u-v-\lambda(\mathcal{A}u-\mathcal{A}v)||_{\mathcal{X}} \ge ||u-v||_{\mathcal{X}}$$

for $\lambda > 0$, $u, v \in D(A)$, or equivalently, if

$$\tau(u-v, -\mathcal{A}u+\mathcal{A}v) \geq 0$$

whenever $u, v \in D(\mathcal{A})$; where

$$\tau(f,g) = \lim_{\varepsilon \downarrow 0} (\|f + \varepsilon g\|_{\mathcal{X}} - \|f\|_{\mathcal{X}})/\varepsilon, \quad f, g \in \mathcal{X}.$$

By definition, \mathcal{A} is accretive if $-\mathcal{A}$ is dissipative.

¹⁾ A (possibly) nonlinear operator $\mathcal A$ in a real Banach space $\mathcal X$ is said to be dissipative if

with the domain D(A) and the range R(A) contained in the separable Banach space $X = L^1(\Omega)$, and constructed the corresponding nonlinear semi-group. In order to study its differentiability, we shall introduce a natural extension \widetilde{A} of A in the dual space X'^* of a suitable Banach space X' which is strongly separable and weakly* dense in the dual space X^* of X^2 . The same idea will be applied to the problem (2), which has been grasped by Konishi [7] within the scope of the semi-group theory. Special nonlinearities in our problems permit us to use arguments which seem somewhat peculiar, especially in the study of (2). Nevertheless, we hope that our result can be a contribution to the construction of an abstract general theory on the differentiability of nonlinear semi-groups in non-reflexive Banach spaces. See also the recent work of Crandall [3].

§ 1. On
$$u_t = \Delta \beta(u)$$
.

We denote by $C_0(\Omega)$ the Banach space of all real-valued continuous functions f on $\overline{\Omega}$ satisfying f(x)=0 for $x\in\partial\Omega$, normed with the maximum of the absolute value. Then the dual space $C_0(\Omega)^*$ of $C_0(\Omega)$ is the Banach space of all bounded Baire measures on Ω , with the norm of total variation. The space $L^1(\Omega)$ can be regarded as a subspace of $C_0(\Omega)^*$. Let us consider the problem (1) in $C_0(\Omega)^*$. We define an operator Δ_0 in $C_0(\Omega)$:

$$D(\varDelta_0) = \{f \in C_0(\varOmega) \cap W^{2,d+1}(\varOmega) \; ; \; \varDelta f \in C_0(\varOmega) \} \; ,$$
 $\varDelta_0 f = \varDelta f \quad ext{for} \quad f \in D(\varDelta_0) \; .$

Thus Δ_0 is the infinitesimal generator of a contraction semi-group of class (C_0) in $C_0(\Omega)$ (see Masuda [11]). We denote its dual operator by Δ_0^* , which is dissipative in $C_0(\Omega)^*$ by the well known theory on dual semi-groups (see, for example, Yosida [16]). Next we define a nonlinear strongly closed operator β_1 in $L^1(\Omega)$:

$$D(\beta_1) = \{ f \in L^1(\Omega) ; \ \beta(f(\cdot)) \in L^1(\Omega) \} ,$$

$$(1.1)$$

$$(\beta_1 f)(x) = \beta(f(x)) , \quad x \in \Omega , \quad \text{for} \quad f \in D(\beta_1) .$$

Then we obtain

LEMMA 1. The product $\Delta_0^*\beta_1$ of the operators Δ_0^* and β_1 is a dissipative operator in $C_0(\Omega)^*$ and satisfies the relation:

$$(1.2) R(I - \lambda \Delta_0^* \beta_1) \supset \overline{D(\Delta_0^* \beta_1)} = L^1(\Omega) for \lambda > 0^{s}.$$

²⁾ This idea is due to Kōmura [5] (see Problem I) and is used also in addendum II of Konishi [9]. See also Konishi [8, 10].

³⁾ $\overline{D(\Delta_0^*\beta_1)}$ denotes the closure of $D(\Delta_0^*\beta_1)$ relative to the strong topology.

624 Y. Konishi

PROOF. In the case where $\mathcal{X} = C_0(\Omega)^*$, we have

$$\tau(f,g) = g_f^c(\Omega_f^+) - g_f^c(\Omega_f^-) + \|g_f^s\|_{C_0(\mathcal{Q})^*}, \quad f,g \in C_0(\Omega)^*,$$

where g_f^s and g_f^s are, respectively, the absolutely continuous part and the singular part of g with respect to |f| and Ω_f^+ and Ω_f^- denote, respectively, the positivity set and the negativity set in the Hahn decomposition of Ω relative to f (see Sato [13], 6.7). Hence, for $u, v \in D(\Delta_0^*\beta_1)$, we have

$$\tau(u-v,\,-\varDelta_0^*\beta_1u+\varDelta_0^*\beta_1v)=\tau(\beta_1u-\beta_1v,\,-\varDelta_0^*\beta_1u+\varDelta_0^*\beta_1v)\geqq 0 \ ,$$

i. e., $\Delta_0^*\beta_1$ is again dissipative in $C_0(\Omega)^*$. Next we show (1.2). We know that $R(I-\lambda\Delta_0^*\beta_1)$ ($\lambda>0$) is strongly dense in $L^1(\Omega)$ (see Theorem 4.12 of Crandall [2]). Moreover, since $(\Delta_0^*)^{-1}$ (= $(\Delta_0^{-1})^*$) is a strongly continuous operator of $C_0(\Omega)^*$ into $L^1(\Omega)$, $\Delta_0^*\beta_1$ is strongly closed. Thus $R(I-\lambda\Delta_0^*\beta_1)$ ($\lambda>0$) is strongly closed in $C_0(\Omega)^*$. Consequently we have

$$R(I-\lambda \Delta_0^*\beta_1) \supset L^1(\Omega)$$
 for each $\lambda > 0$.

Moreover, since $\beta_1^{-1}(\mathcal{Q}(\Omega))$ is strongly dense in $L^1(\Omega)$, we have

$$\overline{D(\Delta_0^*\beta_1)} = L^1(\Omega)$$
. Q. E. D.

By virtue of Lemma 1, the operator $\Delta_0^*\beta_1$ generates a nonlinear contraction semi-group $\{\exp(t\Delta_0^*\beta_1)\}_{t\geq 0}$ on $L^1(\Omega)\subset C_0(\Omega)^*$ in the sense of Theorem I of Crandall and Liggett [4]. We shall study the differentiability of this semi-group.

THEOREM 1. We assume that

$$a \in D(\Delta_0^* \beta_1)$$
.

Then

(1.3)
$$\exp(t\Delta_0^*\beta_1) \cdot a \in D(\Delta_0^*\beta_1) \quad \text{for each } t \ge 0,$$

the function

$$t \in [0, \infty) \longmapsto \exp(t \Delta_0^* \beta_1) \cdot a \in L^1(\Omega) \subset C_0(\Omega)^*$$

is weakly* continuously differentiable and

$$\begin{cases} w^* \cdot \frac{d}{dt} \exp(t\Delta_0^*\beta_1) \cdot a = \Delta_0^*\beta_1 \exp(t\Delta_0^*\beta_1) \cdot a, & t \ge 0, \\ \exp(0\Delta_0^*\beta_1) \cdot a = a. \end{cases}$$

PROOF OF THEOREM 1. We know that

$$(1.4) s-\lim_{\lambda\downarrow 0} (I-\lambda\varDelta_0^*\beta_1)^{-\lceil t/\lambda \rceil} a = \exp\left(t\varDelta_0^*\beta_1\right) \cdot a \quad \text{in} \quad L^1(\Omega) , \qquad t \geq 0 ,$$

and that

Hence, by the strong compactness of $(\Delta_0^*)^{-1}$, the set

$$\{\beta_1(I-\lambda\Delta_0^*\beta_1)^{-[t/\lambda]}a; \lambda>0\}$$

is strongly relatively compact in $L^1(\Omega)$ for each $t \ge 0$. Accordingly

$$\exp(t\Delta_0^*\beta_1) \cdot a \in D(\beta_1)$$

and

$$(1.6) s-\lim_{t \to 0} \beta_1 (I - \lambda \Delta_0^* \beta_1)^{-\lceil t/\lambda \rceil} a = \beta_1 \exp(t \Delta_0^* \beta_1) \cdot a \quad \text{in} \quad L^1(\Omega)$$

for each $t \ge 0$. In view of (1.5) and (1.6) and by the weak* closedness of Δ_0^* , we have (1.3) and

$$(1.7) w^*-\lim_{\lambda \downarrow 0} \Delta_0^* \beta_1 (I-\lambda \Delta_0^* \beta_1)^{-\lfloor t/\lambda \rfloor} a = \Delta_0^* \beta_1 \exp\left(t \Delta_0^* \beta_1\right) \cdot a \quad \text{in} \quad C_0(\Omega)^*$$

for each $t \ge 0$. Moreover (1.5) and (1.7) imply the estimate:

$$\|\Delta_0^*\beta_1 \exp(t\Delta_0^*\beta_1) \cdot a\|_{C_0(Q)^*} \le \|\Delta_0^*\beta_1 a\|_{C_0(Q)^*}, \quad t \ge 0$$
,

from which follows the weak* continuity of the function

$$t \in [0, \infty) \longmapsto \Delta_0^* \beta_1 \exp(t \Delta_0^* \beta_1) \cdot a \in C_0(\Omega)^*$$
.

Now letting λ tend to zero in the following equality due to Ôharu (see, for example, [12]):

$$(1.8) \qquad (I - \lambda \Delta_0^* \beta_1)^{-\lceil t/\lambda \rceil} a - a = \int_0^t \Delta_0^* \beta_1 (I - \lambda \Delta_0^* \beta_1)^{-\lceil s/\lambda \rceil} a \, ds$$

$$+ \lambda \{ \Delta_0^* \beta_1 (I - \lambda \Delta_0^* \beta_1)^{-\lceil t/\lambda \rceil} a - \Delta_0^* \beta_1 a \}$$

$$- \int_{\lceil t/\lambda \rceil \lambda}^t \Delta_0^* \beta_1 (I - \lambda \Delta_0^* \beta_1)^{-\lceil s/\lambda \rceil} a \, ds \,, \qquad \lambda > 0 \,, \quad t \ge 0 \,,$$

we have, by (1.4), (1.5) and (1.7),

$$\exp(t\Delta_0^*\beta_1)\cdot a - a = \mathbf{w}^* - \int_0^t \Delta_0^*\beta_1 \exp(s\Delta_0^*\beta_1)\cdot a \, ds \quad \text{in} \quad C_0(\Omega)^*$$

for each $t \ge 0$, from which follows (1)'.

Q. E. D.

§ 2. On
$$\varphi(u_t) = \Delta u$$
.

We define an operator \mathcal{L}_1 in $L^1(\Omega)$:

$$D(\Delta_1) = \{ f \in W_0^{1,1}(\Omega) ; \Delta f \in L^1(\Omega) \},$$

 $\Delta_1 f = \Delta f \text{ for } f \in D(\Delta_1).$

Thus Δ_1 is the infinitesimal generator of a contraction semi-group of class (C_0) in $L^1(\Omega)$ (see Brezis and Strauss [1]). We denote its dual operator by Δ_1^* , which is dissipative in $L^{\infty}(\Omega) = L^1(\Omega)^*$. We define a nonlinear homeo-

morphism φ_{∞} of $L^{\infty}(\Omega)$ onto itself:

$$D(arphi_\infty)=L^\infty(arOmega)$$
 ,
$$(arphi_\infty f)(x)=arphi(f(x))\,,\quad x\inarOmega\;,\qquad {
m for}\quad f\in L^\infty(arOmega)\,.$$

Then we have

LEMMA 2. $\varphi_{\infty}^{-1} \mathcal{J}_1^*$ is dissipative in $L^{\infty}(\Omega)$ and

$$(2.1) R(I - \lambda \varphi_{\infty}^{-1} \Delta_1^*) \supset \overline{D(\varphi_{\infty}^{-1} \Delta_1^*)} = C_0(\Omega), \lambda > 0.$$

PROOF. (2.1) is a direct consequence of Proposition 2 of Konishi [7] and the fact that $D(\mathcal{A}_0) \subset D(\mathcal{A}_1^*) \subset C_0(\Omega)$. The dissipativity of $\varphi_{\infty}^{-1}\mathcal{A}_1^*$ follows from the concrete form of τ for $\mathcal{X} = L^{\omega}(\Omega)$ (cf. Lemma 3 of Konishi [7]):

$$\tau(f,g) = \lim_{\epsilon \downarrow 0} \underset{x \in \mathcal{Q}(f,\epsilon)}{\operatorname{ess sup}} (\operatorname{sgn} f(x)) g(x), \quad f,g \in L^{\infty}(\Omega), \quad f \neq 0,$$

here

$$\Omega(f, \varepsilon) = \{x \in \Omega; |f(x)| > ||f||_{L^{\infty}(\Omega)} - \varepsilon\}$$

(see Sato [13], 6.4).

Q. E. D.

We denote by $\{\exp(t\varphi_{\omega}^{-1}\Delta_{1}^{*})\}_{t\geq0}$ the semi-group on $C_{0}(\Omega)$ generated by $\varphi_{\omega}^{-1}\Delta_{1}^{*}$ in the sense of Crandall and Liggett [4]. Concerning its differentiability, we have:

THEOREM 2. Suppose that

$$a \in D(\mathcal{A}_1^*)$$
.

Then

(2.2)
$$\exp(t\varphi_{\infty}^{-1}\Delta_{1}^{*}) \cdot a \in D(\Delta_{1}^{*}) \quad \text{for each} \quad t \geq 0,$$

the function

$$t \in [0, \infty) \longmapsto \exp(t\varphi_{\infty}^{-1}\Delta_1^*) \cdot a \in C_0(\Omega) \subset L^{\infty}(\Omega) = L^1(\Omega)^*$$

is weakly* continuously differentiable, and

$$\left\{ \begin{array}{l} \varphi_{\infty} \left(\mathbf{w}^* \cdot \frac{d}{dt} \exp\left(t \varphi_{\infty}^{-1} \mathcal{\Delta}_1^*\right) \cdot a \right) = \mathcal{\Delta}_1^* \exp\left(t \varphi_{\infty}^{-1} \mathcal{\Delta}_1^*\right) \cdot a \,, \qquad t \geq 0 \,, \\ \exp\left(0 \varphi_{\infty}^{-1} \mathcal{\Delta}_1^*\right) \cdot a = a \,. \end{array} \right.$$

PROOF. We have the following:

$$(2.3) s-\lim_{\lambda\downarrow 0} (I-\lambda\varphi_{\infty}^{-1}\Delta_{1}^{*})^{-[t/\lambda]}a = \exp(t\varphi_{\infty}^{-1}\Delta_{1}^{*})\cdot a \quad \text{in} \quad C_{0}(\Omega), \quad t\geq 0,$$

Thus we have (2.2) and

$$\text{(2.5)} \qquad \qquad \text{w*-}\lim_{\lambda \downarrow 0} \varDelta_1^* (I - \lambda \varphi_\infty^{-1} \varDelta_1^*)^{-\lfloor t/\lambda \rfloor} a = \varDelta_1^* \exp\left(t \varphi_\infty^{-1} \varDelta_1^*\right) \cdot a \quad \text{in} \quad L^\infty(\Omega) \, .$$

On the other hand,

(2.6)
$$\Delta_1^* (I - \lambda \varphi_{\infty}^{-1} \Delta_1^*)^{-[t/\lambda]} a = (I - \lambda \Delta_0^* (\varphi^{-1})_1)^{-[t/\lambda]} \Delta_1^* a, \qquad t \ge 0, \quad \lambda > 0^{4},$$

here $(\varphi^{-1})_1$ is an operator in $L^1(\Omega)$ defined by (1.1) with $\beta = \varphi^{-1}$. Hence, by the result of § 1, (2.5) shows

$$\operatorname{s-lim}_{\lambda \downarrow 0} \varDelta_1^* (I - \lambda \varphi_{\scriptscriptstyle \infty}^{\scriptscriptstyle -1} \varDelta_1^*)^{\scriptscriptstyle -\lceil t/\lambda \rceil} a = \varDelta_1^* \exp\left(t \varphi_{\scriptscriptstyle \infty}^{\scriptscriptstyle -1} \varDelta_1^*\right) \cdot a \quad \text{in} \quad L^1(\Omega) \,, \qquad t \geqq 0 \,.$$

Thus, in view of (2.4) and (2.6), we have

$$(2.7) w^*-\lim_{\lambda\downarrow 0} \varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*} (I-\lambda \varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*})^{-[t/\lambda]} a = \varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*} \exp\left(t \varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*}\right) \cdot a \quad \text{in} \quad L^{\infty}(\Omega) ,$$

$$t \geq 0 .$$

and that

(2.8)
$$\varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*} \exp(t \varphi_{\infty}^{-1} \mathcal{\Delta}_{1}^{*}) \cdot a = (\varphi^{-1})_{1} \exp(t \mathcal{\Delta}_{0}^{*} (\varphi^{-1})_{1}) \cdot \mathcal{\Delta}_{1}^{*} a, \quad t \geq 0.$$

(2.8) implies the weak* continuity of the function $t \in [0, \infty) \mapsto \varphi_{\infty}^{-1} \mathcal{A}_{1}^{*} \exp(t\varphi_{\infty}^{-1} \mathcal{A}_{1}^{*}) \cdot a$ $\in L^{\infty}(\Omega)$. Letting λ tend to 0 in the equality:

$$\begin{split} (I-\lambda\varphi_{\infty}^{-1}\Delta_{1}^{*})^{-\lceil t/\lambda \rceil}a - a &= \int_{0}^{t} \varphi_{\infty}^{-1}\Delta_{1}^{*}(I-\lambda\varphi_{\infty}^{-1}\Delta_{1}^{*})^{-\lceil s/\lambda \rceil}a \ ds \\ &+ \lambda \{\varphi_{\infty}^{-1}\Delta_{1}^{*}(I-\lambda\varphi_{\infty}^{-1}\Delta_{1}^{*})^{-\lceil t/\lambda \rceil}a - \varphi_{\infty}^{-1}\Delta_{1}^{*}a\} \\ &- \int_{\lceil t/\lambda \rceil}^{t} \varphi_{\infty}^{-1}\Delta_{1}^{*}(I-\lambda\varphi_{\infty}^{-1}\Delta_{1}^{*})^{-\lceil s/\lambda \rceil}a \ ds \ , \qquad t \geq 0 \ , \quad \lambda > 0 \ , \end{split}$$

we have, by (2.3), (2.4) and (2.7),

$$\exp\left(t\varphi_{\infty}^{-1}\varDelta_{1}^{*}\right)\cdot a-a=\mathrm{w}^{*}\cdot\int_{0}^{t}\varphi_{\infty}^{-1}\varDelta_{1}^{*}\exp\left(s\varphi_{\infty}^{-1}\varDelta_{1}^{*}\right)\cdot a\;ds\quad\text{in}\quad L^{\infty}(\varOmega)\;,\qquad t\geq0\;.$$

Consequently we have (2)'.

Q.E.D.

CONCLUDING REMARK. $D(\Delta_0^*\beta_1)$ and $D(\varphi_\infty^{-1}\Delta_1^*)$ themselves coincide with what Crandall [3] calls the "generalized domains" $\hat{D}(\Delta_0^*\beta_1)$ and $\hat{D}(\varphi_\infty^{-1}\Delta_1^*)$ respectively. Hence we can conclude that $\Delta_0^*\beta_1$ and $\varphi_\infty^{-1}\Delta_1^*$ are "weak* infinitesimal generators" of $\{\exp(t\Delta_0^*\beta_1)\}_{t\geq 0}$ and $\{\exp(t\varphi_\infty^{-1}\Delta_1^*)\}_{t\geq 0}$ respectively:

$$\begin{split} &D(\varDelta_0^*\beta_1) = \{f \in L^1(\mathcal{Q}) \;;\; \mathbf{w}^*\text{-}\!\lim_{h \downarrow 0} (\exp{(t\varDelta_0^*\beta_1)} \cdot f - f)/h \;\; \text{exists in} \;\; C_0(\mathcal{Q})^*\} \;, \\ &\mathbf{w}^*\text{-}\!\lim_{h \downarrow 0} (\exp{(t\varDelta_0^*\beta_1)} \cdot f - f)/h = \varDelta_0^*\beta_1 f \;, \qquad f \in D(\varDelta_0^*\beta_1) \;; \\ &D(\varphi_\infty^{-1}\varDelta_1^*) = \{f \in C_0(\mathcal{Q}) \;;\; \mathbf{w}^*\text{-}\!\lim_{h \downarrow 0} (\exp{(t\varphi_\infty^{-1}\varDelta_1^*)} \cdot f - f)/h \;\; \text{exists in} \;\; L^\infty(\mathcal{Q})\} \;, \\ &\mathbf{w}^*\text{-}\!\lim_{h \downarrow 0} (\exp{(t\varphi_\infty^{-1}\varDelta_1^*)} \cdot f - f)/h = \varphi_\infty^{-1}\varDelta_1^*f \;, \qquad f \in D(\varphi_\infty^{-1}\varDelta_1^*) \;. \end{split}$$

⁴⁾ This equality has its origin in a kind remark by Prof. S. Ôharu.

References

- [1] H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in L^1 , J. Math. Soc. Japan (to appear).
- [2] M.G. Crandall, Semigroups of nonlinear transformations in Banach spaces. Contributions to Nonlinear Functional Analysis, Academic Press, New York-London, 1971, 157-179.
- [3] M. G. Crandall, A generalized domain for semigroup generators, MRC Technical Summary Report #1189, Madison, Wisconsin (to appear in Proc. Amer. Math. Soc.).
- [4] M.G. Crandall and T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.
- [5] Y. Kōmura, Result of Crandall-Liggett and some open problems. Semi-groups and evolution equations, Kōkyūroku, RIMS Kyoto Univ., 134 (1972), 1-5 (in Japanese).
- [6] Y. Konishi, Some examples of nonlinear semi-groups in Banach lattices, J. Fac. Sci. Univ. Tokyo Sect. IA, 18 (1972), 537-543.
- [7] Y. Konishi, On the uniform convergence of a finite difference scheme for a nonlinear heat equation, Proc. Japan Acad., 48 (1972), 62-66.
- [8] Y. Konishi, On $u_t = u_{xx} F(u_x)$ and the differentiability of the nonlinear semigroup associated with it, Proc. Japan Acad., 48 (1972), 281-286.
- [9] Y. Konishi, Une méthode de résolution d'une équation d'évolution non linéaire dégénérée, J. Fac. Sci. Univ. Tokyo Sect. IA, 19 (1972), 243-255.
- [10] Y. Konishi, Sur un système dégénéré des équations paraboliques semi-linéaires avec les conditions aux limites non linéaires, J. Fac. Sci. Univ. Tokyo Sect. IA, 19 (1972), 353-361.
- [11] K. Masuda, On the integration of diffusion equations in some function spaces, I (to appear).
- [12] S. Ôharu, A note on the generation of nonlinear semigroups in a locally convex space, Proc. Japan Acad., 43 (1967), 847-851.
- [13] K. Sato, On the generators of non-negative contraction semi-groups in Banach lattices, J. Math. Soc. Japan, 20 (1968), 423-436.
- [14] W. A. Strauss, Evolution equations non-linear in the time derivative, J. Math. Mech., 15 (1966), 49-82.
- [15] W. A. Strauss, The Energy Method in Nonlinear Partial Differential Equations, Lecture Notes (1967), IMPA, Notas de Matemática, Rio de Janeiro.
- [16] K. Yosida, Functional Analysis, Springer, Berlin-Heidelberg-New York (1971).

Yoshio Konishi

Department of Mathematics Faculty of Science University of Tokyo Hongo, Bunkyo-ku, Tokyo Japan