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Introduction.

This paper deals with the problem of continuation of real analytic so-
lutions of partial differential equations with constant coefficients. In [3], [4]

we have considered the following case: Let $K$ and $U$ be compact convex and
open convex subsets of $R^{n}$ such that $K\subset U\subset R^{n}$ . Let $\mathcal{A}_{p}$ denote the real
analytic solutions of the partial differential equation $p(D)u=0$ with constant
coefficients. Then the quotient space $\mathcal{A}_{p}(U\backslash K)/d_{p}(U)$ does not depend on $U$

and represents the obstruction of extensibility of real analytic solutions defined
outside the exceptional set $K$ to a neighborhood of $K$. A satisfactory result
was given there: For the single operator $p$ , it says that $\mathcal{A}_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$

if and only if the characteristic polynomial $p(\zeta)$ has no elliptic irreducible
component. (As for systems see [4].) In this paper we consider a case
somewhat generalizing the preceding one: Let $H$ be an open half space in
$R^{n}$ ; $K_{1}=K\cap H$, where $K$ is compact and convex as above; $U_{1}$ be an open
convex neighborhood of $K_{1}$ in $H$. We discuss conditions for $d_{p}(U_{1}\backslash K_{1})/\mathcal{A}_{p}(U_{1})$

$=0$ , and give some sufficient conditions (Theorems 2.6, 2.7, and 2.12). In case
$K\subset H$ this problem reduces to the preceding one.

We adopt the method employed by $Gru\check{s}in[1]$ , who studied the isolated
singularities of infinitely differentiable solutions. Since we treat here the sets
“ with boundary”, we need a new (relative) type of Phragm\’en-Lindelof theorem
(Lemma 2.9) which plays an essential role in our method.

In \S 1 we consider the same problem for hyperfunction solutions and
obtain a necessary and sufficient condition for the extensibility. The obtained
result is used in the proof of theorem 2.6 for real analytic solutions. Though
we can consider similar problems for other classes of regular solutions, we
mainly concern ourselves with real analytic solutions of single operators here.
Some of the remaining cases will be treated in future.

A part of these results was announced in [6]. Some of them has been

*Partially supported by F\^ujukai.
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improved on revision. For example, we can show $\cup q_{p}(U_{1}\backslash K_{1})/d_{p}(U_{1})=0$ for
the heat equation: $p(D)=\partial^{2}/\partial x_{1}^{2}+\cdots+\partial^{2}/\partial x_{n-1}^{2}-\partial/\partial x_{n}$ and for any compact

convex set $K$, where we employ $H=\{x\in R^{n} ; x_{n}<0\}$ (Corollary 2.14).

I wish to express my sincere gratitude to Professor S. It\^o, Professor H.
Komatsu and Professor K. Aomoto for their hearty encouragements, valuable
discussions and kind advices for improvements.

\S 1. Preliminaries. The case of hyperfunction solutions.

Let $x=$ $(x_{1}, \cdots , x_{n})$ be a system of coordinates on $R^{n}$ . Without loss of
generality we can assume that $H=\{x\in R^{n} ; x_{n}<0\}$ . We put $x^{\prime}=$ $(x_{1}, \cdots , x_{n-1})$ ,

and sometimes write $x=(x^{\prime}, x_{n})$ . Thus $x^{\prime}$ is a system of coordinates of the
hyperplane $\partial H=\{x\in R^{n} ; x_{n}=0\}$ . For saving notations we write $K$ in place
of $K_{1}$ and $U$ in place of $U_{1}$ . Since we make the discussions only for such
parts in the sequel, there is no confusion. We put $L=\overline{K}$, where the closure
is taken in $R^{n}$ . Thus $K$ is a locally closed bounded subset of $R^{n},$ $L$ is compact

and convex, $L\backslash K$ is also compact, convex and $L\backslash K\subset\partial H$. Though we need
not omit the trivial case $ L\backslash K=\emptyset$ ( $i$ . $e$ . the case $L=K\Subset H$) from the logical
standpoint, we clarify the matter assuming $ L\backslash K\neq\emptyset$ in the sequel.

Let $p(D)$ be a partial differential operator with constant coefficients
corresponding to the characteristic polynomial $p(\zeta)$ , where $D=(D_{1}, \cdots , D_{n})$ ,
$D_{j}=\sqrt{}\overline{-1}\partial/\partial x_{j}$ . We always exclude the trivial case $p=constant$ . We denote
by u4 and $\mathcal{B}$ the sheaf of germs of real analytic functions and that of hyper-
functions on $R^{n}$ respectively. We denote by $\leftrightarrow q_{p}$ and $\mathcal{B}_{p}$ the sheaf of germs
of real analytic solutions and that of hyperfunction solutions of $p(D)u=0$

$respec|:ively$ . As a Preliminary work, we are going to seek the condition for
$\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)=0$ below.

Now we write down the fundamental exact sequence of cohomology
groups which is often used in [4].

$\lambda$

(1.1) $0\rightarrow H_{K}^{0}(U, \mathcal{B}_{p})\rightarrow H^{0}(U, \mathcal{B}_{p})\rightarrow H^{0}(U\backslash K, \mathcal{B}_{p})$

$\rightarrow H_{K}^{1}(U, \mathcal{B}_{p})\rightarrow H^{1}(U, \mathcal{B}_{p})$ .
The last term vanishes due to the existence theorem of Komatsu (see [4],
p. 416, (1.7)). Thus, with the usual notations $\mathcal{B}_{p}(U)=H^{0}(U, \mathcal{B}_{p}),$ $\mathcal{B}_{p}(U\backslash K)$

$=H^{0}(U\backslash K, \mathcal{B}_{p})$ , we have

(1.2) $H_{K}^{1}(U, \mathcal{B}_{p})\cong \mathcal{B}_{p}(U\backslash K)/\lambda \mathcal{B}_{p}(U)$ .

On the other hand, since we have a flabby resolution

(1.3) $0\rightarrow \mathcal{B}_{p}\rightarrow \mathcal{B}\rightarrow^{p}\mathcal{B}\rightarrow 0$

,
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\langle see [8], Theorem 5), we can calculate $H_{K}^{1}(U, \mathcal{B}_{p})$ from the following cochain
complex

$p$

\langle 1.4) $0\rightarrow H_{K}^{0}(U, \mathcal{B})\rightarrow H_{K}^{0}(U, \mathcal{B})\rightarrow 0$ .
Thus we have

\langle 1.5) $H_{K}^{1}(U, \mathcal{B}_{p})=H_{K}^{0}(U, \mathcal{B})/pH_{K}^{0}(U, \mathcal{B})$ .

Now we claim that the mappings $\lambda$ and $p$ in (1.2) and (1.5) are injective. In
fact we have

LEMMA 1.1 (Kawai [7 bis], Schapira [14]). $H_{K}^{0}(U, \mathcal{B}_{p})=0$ .
This is a variant of the so called Holmgren’s uniqueness theorem.
PROOF. Take $u\in H_{R}^{0}(U, \mathcal{B}_{p})$ arbitrarily. Let $u_{1}\in H_{L}^{0}(R^{n}, \mathcal{B})$ be an ex-

tension of $u$ . By the assumption $v=P(D)u_{1}$ belongs to $H_{L\backslash K}^{0}(R^{n}, \mathcal{B})$ . Since
$H_{L}^{0}(R^{n}, \mathcal{B})$ and $H_{L\backslash K}^{0}(R^{n}, \mathcal{B})$ are spaces of hyperfunctions with compact supports,

we can apply the Fourier (-Laplace) transform $\tilde{v}=\langle\exp\sqrt{-1}\langle x, \zeta\rangle, v\rangle$ and
obtain the identity $p(\zeta)\tilde{u}_{1}=\overline{v}$ for entire functions. By the inequality of division
(see, $e$ . $g.,$ $[2]$ , Lemma 3.1.7) we see that $\tilde{u}_{1}$ has the same growth order as $\tilde{v}$ ,

namely, the estimate of the following type: given any $\epsilon>0$ we have, with
some $C_{\epsilon}>0$ ,

$|\tilde{u}_{1}(\zeta)|\leqq C_{\epsilon}$ exp $(\epsilon|\zeta|+H_{L\backslash K}(\zeta))$ .

Here $ H_{L\backslash K}(\zeta)=\sup_{x\overline{\subset}L\backslash K}{\rm Re}\langle x, \sqrt{-1}\zeta\rangle$ is the supporting function of $L\backslash K$. There-

fore by the Paley-Wiener-Ehrenpreis-Martineau theorem we conclude that
$u_{1}\in H_{L\backslash K}^{0}(R^{n}, \mathcal{B})$ , namely, $u=0$ in U. $q$ . $e$ . $d$ .

On account of the above lemma we omit the symbol $\lambda$ hereafter. Now
we employ a more complicated form of the fundamental exact sequence of
relative cohomology groups: For a triple of open sets $X\supset Y\supset Z$, we have
the exact sequence

\langle 1.6) $0\rightarrow H_{X\backslash Y}^{0}(X, \mathcal{F})\rightarrow H_{X\backslash Z}^{0}(X, \mathcal{F})\rightarrow H_{Y\backslash Z}^{0}(Y, \mathcal{F})$

$\rightarrow H_{X\backslash Y}^{1}(X, \mathcal{F})\rightarrow H_{X\backslash Z}J(X, \mathcal{F})\rightarrow H_{Y\backslash Z}^{1}(Y, \mathcal{F})$

$\rightarrow H_{X\backslash Y}^{2}(X, \mathcal{F})\rightarrow\ldots$

We apply this sequence to the sets $X=R^{n},$ $Y=R^{n}\backslash (L\backslash K),$ $Z=R^{n}\backslash L$ , and to
the sheaf $\mathcal{F}=\mathcal{B}_{p}$ . We have $H_{Y\backslash Z}^{0}(Y, \mathcal{B}_{p})=H_{K}^{0}(Y, \mathcal{B}_{p})=H_{K}^{0}(U, \mathcal{B}_{p})=0$ by the
excision theorem and by Lemma 1.1; $H_{X\backslash Y}^{2}(X, \mathcal{B}_{p})=0$ because $\mathcal{B}_{p}$ is of flabby
dimension $\leqq 1$ by (1.3); $H_{Y\backslash Z}^{1}(Y, \mathcal{B}_{p})=H_{K}^{1}(U, \mathcal{B}_{p})$ by the excision theorem.
Thus we have the exact sequence

\langle 1.7) $0\rightarrow H_{L\backslash K}^{1}(R^{n}, \mathcal{B}_{p})\rightarrow H_{L}^{1}(R^{n}, \mathcal{B}_{p})\rightarrow H_{K}^{1}(U, \mathcal{B}_{p})\rightarrow 0$ .
Thus we have proved
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THEOREM 1.2.
$\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)\cong H_{K}^{1}(U, \mathcal{B}_{p})$

$\cong H_{K}^{0}(U, \mathcal{B})/pH_{K}^{0}(U, \mathcal{B})$

$\cong H_{L}^{1}(R^{n}, \mathcal{B}_{p})/H_{L\backslash K}^{1}(R^{n}, \mathcal{B}_{p})$ .
REMARK 1. From this theorem we see especially that the factor space

$\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)$ does not depend on the particular choice of $U$.
REMARK 2. Theorem 1.2 holds for single operators even if the convexity

of $K$ is not assumed. In fact, we have the global existence theorem of
Harvey-Komatsu for any open set $U\subset R^{n}$ : $P(D)\mathcal{B}(U)=\mathcal{B}(U)$ . On the other
hand we have obviously $H_{K}^{0}(U, \mathcal{B}_{p})\subset H_{\Gamma K}^{0}(H, \mathcal{B}_{p})$ , where $\Gamma K$ is the convex
hull of $K$. Hence $H_{K}^{0}(U, \mathcal{B}_{p})=0$ by Lemma 1.1. The remaining reasoning is
the same as above.

Since $L$ and $L\backslash K$ are compact convex subsets of $R^{n}$ , we have the follow-
ing representations for the spaces $H_{L}^{1}(R^{n}, \mathcal{B}_{p}),$ $H_{L\backslash K}^{1}(R^{n}, \mathcal{B}_{p})$ by vectors of
holomorphic functions on the variety $N(P)=\{\zeta\in C^{n} ; P(\zeta)=0\}$ of roots of $p$ ;

\langle 1.8) $H_{L\backslash K}^{1}(R^{n}, \mathcal{B}_{p})=\mathcal{B}[L\backslash K]/p\mathcal{B}[L\backslash K]\sim\sim=\mathcal{B}[L\backslash K]\sim\{p, d\}$ ,

$H_{L}^{1}(R^{n}, \mathcal{B}_{p})=\mathcal{B}[L]/p\mathcal{B}[L]\sim\sim=\mathcal{B}[L]\sim\{p, d\}$ ,

and the exact sequences:

\langle 1.9) $0\rightarrow\overline{\mathcal{B}[L\backslash K}$]
$p(\zeta)\rightarrow \mathcal{B}[L\backslash K]\sim\rightarrow^{d}\mathcal{B}[L\backslash K]\sim\{p, d\}\rightarrow 0$

,

$0\rightarrow \mathcal{B}[L]\sim\rightarrow^{p(\zeta)}\overline{\mathcal{B}[L]}\rightarrow^{d}\overline{\mathcal{B}[L]}\{p, d\}\rightarrow 0$ .

These are the so called Fundamental Principle for $A(L)$ etc. ; see [4], Theorem
3.8. We briefly explain the notations.

We employ the notation $\mathcal{B}[L]=H_{L}^{0}(R^{n}, \mathcal{B})$ and $\mathcal{B}[L\backslash K]=H_{L\backslash K}^{0}(R^{n}, \mathcal{B})$ as
in our earlier papers. $\mathcal{B}[L]\sim$ and $\mathcal{B}[L\backslash K]\sim$ denote the Fourier transform of
$\mathcal{B}[L]$ and $\mathcal{B}[L\backslash K]$ resPectively. Due to the Paley-Wiener-Ehrenpreis-

Martineau theorem, $\mathcal{B}[L]\sim$ is the space of entire functions $F(\zeta)$ with the
following growth condition: for any $\epsilon>0$ there exists $C.>0$ such that

$|F(\zeta)|\leqq C_{\text{\’{e}}}$ exp $(\epsilon|\zeta|+H_{L}(\zeta))$ .

Here $\lrcorner H_{L}(\zeta)=\sup_{x\in L}{\rm Re}\langle x, \sqrt{-1}\zeta\rangle$ is the suPporting function of $L$ . Similarly
$\mathcal{B}[L\backslash K\acute{]}\sim$ is characterized in the same way with $H_{L}(\zeta)$ replaced by $H_{L\backslash K}(\zeta)$ , the
supporting function of $L\backslash K$. $(Note$ that we employ the Fourier transform

$\tilde{u}(\zeta)=\int\exp(\sqrt{-1}\langle x, \zeta\rangle)u(x)dx.)$
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The symbol $d$ denotes a noetherian operatOr corresponding to $p(\zeta)$ . In
general, it is a vector-valued differential operator with polynomial coefficients
composed with the restriction map to the variety $N(P)$ , and characterized by

the following condition: a polynomial $F(\zeta)$ can be divided by $p(\zeta)$ if and only

if $dF=0$ . In our present case we can assume that each irreducible component

of the algebraic variety $N(P)$ is normally placed with respect to $\zeta_{1}$ . Hence
if $p=p_{1}^{\alpha_{1}}$ $p_{k}^{\alpha_{k}}$ is the irreducible decomposition of $p$ , we can employ
$d=\{d_{1}, \cdots , d_{k}\}$ with

$d_{\lambda}F(\zeta)=[^{t}(1,$ $\frac{\partial}{\partial\zeta_{1}}\ldots$ , $\frac{\partial^{a_{\lambda^{-1}}}}{\partial\zeta_{1}^{a_{\lambda^{-1}}}})F(\zeta)]|_{N_{\lambda}}$ , for $\zeta\in N_{\lambda},$ $\lambda=1,$ $\cdots$ , $k$ ,

where $N_{\lambda}=\{\zeta\in C^{n} ; P_{\lambda}(\zeta)=0\}$ is the $\lambda$ -th irreducible component of $N(p)$ .
For definiteness we employ this noetherian operator in the sequel.

A vector of holomorphic functions $\{F_{\lambda}(\zeta);\lambda=1, \cdots k\}$ on $\{N_{\lambda} ; \lambda=1, \cdots , k\}$

is called a holomorPhic $p$-function if it is locally in the image of the noetherian
operator, namely, if for any point $\zeta_{0}\in N(p)$ there exist a neighborhood $V$ of
$\zeta_{0}$ in $C^{n}$ and a holomorphic function $F(\zeta)$ on $V$ such that $F_{\lambda}(\zeta)=d_{\lambda}F(\zeta)$ for
$\zeta\in N_{\lambda}\cap V$.

Lastly, $\overline{\mathcal{B}[L]}\{p, d\}$ and $\mathcal{B}[L\backslash K]\sim\{p, d\}$ denote the spaces of holomorphic

$p$-functions which satisfy the same growth condition as that of $\mathcal{B}[L]\sim$ described

above and that of $\mathcal{B}[L\backslash K]\sim$ respectively. For fuller details of the terminology
see [13].

DEFINITION 1.3 (Notation). We denote by $\mathcal{B}[L]/\mathcal{B}[L\backslash K]\sim\{p, d\}$ the

quotient space $\mathcal{B}[L]\sim\{p, d\}/\mathcal{B}[L\backslash K]\sim\{p, d\}$ .
Combining this with Theorem 1.2 we have

PROPOSITION 1.4. $\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)\cong \mathcal{B}[L]/\mathcal{B}[L\backslash K]d\sim\sim\{p, d\}$ . The correspOnd-

ence is given in the following way: For $u\in \mathcal{B}_{p}(U\backslash K)$ , let $[u]\in \mathcal{B}(U)$ be an
extension of $u$ and let $[[p(D)[u]]]\in \mathcal{B}[L]$ be an extension of $p(D)[u]\in H_{K}^{0}(U, \mathcal{B})$ .
Then, $d\cdot u=d\cdot\overline{[[p(D)[u]]]}\in\overline{\mathcal{B}[L}$] $\{p, d\}$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ is the corresponding
element in the right hand side.

REMARK 3. The notation in Definition 1.3 is natural since we have the
following commutative exact diagram
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$0$ $0$ $0$

$\downarrow$ $\downarrow$ $\downarrow$

$0\rightarrow \mathcal{B}[L\backslash K]\sim\rightarrow^{p(\zeta)}\mathcal{B}[L\backslash K]\sim\rightarrow^{d}\mathcal{B}[L\backslash K]\sim\{p, d\}\rightarrow 0$

$\downarrow$ $\downarrow$

$ 0\rightarrow$ $\mathcal{B}[L]\sim$ $\mathcal{B}[L]\sim$

$p(\zeta)$

$\downarrow$

$d$

$\mathcal{B}[L]\{p, d\}\sim$ $\rightarrow 0$

$0\rightarrow \mathcal{B}[L]/\mathcal{B}[L\backslash K]\sim\downarrow p(\zeta)\rightarrow \mathcal{B}[L]/\mathcal{B}[L\backslash K]\sim\downarrow\rightarrow^{d}\mathcal{B}[L]/\mathcal{B}[L\backslash K]\{p, d\}\sim\downarrow\rightarrow 0$

.
$\downarrow$ $\downarrow$

$\downarrow$

$0$ $0$ $0$

REMARK 4. In the case of single operator $p$ , we can deduce the iso-
morphism in Proposition 1.4 directly by the explicit definition of the mapPing
$d$ given there, as in the proof of [3], Lemma 4. We only need the fundamental
principle (1.9), thus avoiding tedious sequences of arrows. But the above way
of argument is so general as to be applied to the systems of operators. (See

Remark 5 after the proof of Theorem 1.5.)

THEOREM 1.5. $\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)=0$ if and only if for any $\epsilon>0$ , there
exists some $C.>0$ such that the following inequality holds:

(1.10) $H_{L}(\zeta)\leqq\epsilon|\zeta|+H_{L\backslash K}(\zeta)+C_{\epsilon}$ , $\zeta\in N(P)$ .
PROOF. The sufficiency follows directly from Proposition1.4. In fact, as-

suming the above inequality we have the inclusion $\mathcal{B}[L]\sim\{p, d\}\subset \mathcal{B}[L\backslash K]\sim\{p, d\}$ ,

hence $t$ ]$be$ right hand side of the identity in the proposition vanishes.
Now we prove the necessity. Let $a\in L$ be an arbitrary point. Let

$E\in \mathcal{B}(R^{n})$ be a translation of a fundamental solution: $P(D)E=\delta(x-a)$ , where
$\delta$ is the Dirac delta function. Clearly $E$ belongs to $\mathcal{B}_{p}(U\backslash K)$ . Therefore
$\mathcal{B}[L]\sim\{p, d\}$ contains a vector function $d[[p(D)E]]\sim=d\cdot\exp(\sqrt{-1}\langle a, \zeta\rangle)$ ,

which contains the function $\exp(\sqrt{-1}\langle a, \zeta\rangle)$ in its components. Now
suppose that $\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)=0$ . Then by Proposition 1.4 we have
$\mathcal{B}[L]\sim\{p, d\}\subset \mathcal{B}[L\backslash K]\sim\{p, d\}$ , so that the following estimate must hold for the
function $\exp(\$\overline{-}1\langle a, \zeta\rangle)$ : for any $\epsilon>0$ there exists some $C_{\text{\’{e}}}>0$ such that

(1.11) exp $(\sqrt{-1}\langle a, \zeta\rangle)|\leqq C_{\text{\’{e}}}$ exp $(\epsilon|\zeta|+H_{L\backslash K}(\zeta))$ .

The desired inequality (1.10) follows from this. In fact, suppose that (1.10)

does not hold. Then, there are an $\epsilon>0$ and a sequence $\{\zeta^{(k)}\}_{k=1}^{\infty}\subset N(p)$ such
that
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(1.12) $H_{L}(\zeta^{(k)})\geqq\epsilon|\zeta^{(k)}|+H_{L\backslash K}(\zeta^{(k)})+k$ .
Since $L$ is compact the supremum can be replaced by the maximum: We
have $ H_{L}(\zeta)=\max_{x\equiv L}{\rm Re}\langle x, \sqrt{-1}\zeta\rangle$ , hence we can find a sequence $\{a_{k}\}\subset L$ such

that ${\rm Re}\langle a_{k}, \sqrt{-1}\zeta^{(k)}\rangle=H_{L}(\zeta^{(k)})$ . Taking a subsequence if necessary, we can
assume that $a_{k}$ converge to some point $a_{0}\in L$ when $k$ tends to infinity.

Since $a$ is arbitrary we can take $a=a_{0}$ . Now by (1.12) we have

${\rm Re}\langle a_{k}, \sqrt{-1}\zeta^{(k)}\rangle\geqq\epsilon|\zeta^{(k)}|+H_{L\backslash R}(\zeta^{(k)})+k$ .
On the other hand, by (1.11) we have

${\rm Re}\langle a_{0}, \sqrt{-1}\zeta^{(k)}\rangle\leqq(\epsilon/2)|\zeta^{(k)}|+H_{L\backslash K}(\zeta^{(k)})+\log C_{\epsilon/2}$ .
Combining these we obtain

$(\epsilon/2)|\zeta^{(k)}|\leqq{\rm Re}\langle a_{0}-a_{k}, \sqrt{-1}\zeta^{(k)}\rangle-k+\log C_{\epsilon/2}$

$\leqq|a_{0}-a_{k}|\cdot|\zeta^{(k)}|-k+\log C_{\epsilon/2}$ .
Hence

$((\epsilon/2)-|a_{0}-a_{k}|)|\zeta^{(k)}|\leqq-k+\log C_{\text{\’{e}}/2}$ .
Since $|a_{0}-a_{k}|\rightarrow 0$ by the assumption, and $|\zeta^{(k)}|\rightarrow\infty$ by (1.12), we have a
contradiction when we let $ k\rightarrow\infty$ . $q.e$ . $d$ .

REMARK 5. Let $P(D)$ be a general system of operators corresponding to
the matrix $p(\zeta):\mathcal{P}^{s}\rightarrow \mathcal{P}^{t}$ , where $\mathcal{P}$ denotes the ring of all the polynomials
of $\zeta$ . Let $p_{1}(D)$ be a compatibility system of $p$ . Put $M=Cokerp^{\prime}$ , where $p^{\prime}$

is the transposed matrix of $p$ . Then a similar argument combined with the
results of [4] gives the following isomorphisms:

$\mathcal{B}_{p}(U\backslash K)/\lambda \mathcal{B}_{p}(U)=H_{K}^{1}(U, \mathcal{B}_{p})$

$=H_{K}^{0}(U, \mathcal{B}_{p_{1}})/p[H_{K}^{0}(U, \mathcal{B})]^{s}$

$=H_{L}^{1}(R^{n}, \mathcal{B}_{p})/H_{L\backslash K}^{1}(R^{n}, \mathcal{B}_{p})$

$=\mathcal{B}[L]\sim\{Ext^{1}(M, \mathcal{P}), d_{p}^{\prime}\}/\mathcal{B}[L\backslash K]\sim\{Ext^{1}(M, \mathcal{P}), d_{p}^{\prime}\}$ .

Here $\mathcal{B}[L]\{Ext^{1}\sim(M, \mathcal{P}), d_{p}^{\prime}\}$ denotes the space of vectors of holomorphic
functions on the family of algebraic varieties $N(Ext^{1}(M, \mathcal{P}))$ which have the

same growth order as elements of $\mathcal{B}[L]\sim$ and which are locally in the image

of a certain noetherian operator $d_{p}^{\prime}$ . $\mathcal{B}[L\backslash K]\sim\{Ext^{1}(M, \mathcal{P}), d_{p}^{\prime}\}$ has a similar

meaning with $\mathcal{B}[L]\sim$ replaced by $\mathcal{B}[L\backslash K]\sim$ . (For the details see [4], p. 421.)

Thus the assertion of Thorem 1.5 can be modified to the case of systems in
the following way: $\mathcal{B}_{p}(U\backslash K)/\lambda \mathcal{B}_{p}(U)=0$ if and only if the inequality (1.10)

is satisfied for $\zeta\in N(Ext^{1}(M, \mathcal{P}))$ , where $\lambda$ denotes the restriction maP. If, and
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\langle ) $nly$ if $p$ is determined, we can omit the symbol $\lambda$ , that is, we have the unique
way of extension of solutions.

Now, let us say for the present that a closed convex cone $C$ with the
origin as its vertex is the Propagation cone of $p$ , if its dual cone

$C^{0}=$ { $\eta\in R^{n}$ ; $\langle x,$ $\eta\rangle\geqq 0$ for any $x\in C$ }

is the smallest of the closed cones which contain every cone $\Gamma$ satisfying
the following condition: For any $\epsilon>0$ , there exists $C_{\text{\’{e}}}>0$ such that

$’(1.13)$ $|{\rm Im}\zeta|\leqq\epsilon|\zeta|+C_{\epsilon}$ , when $\zeta\in N(p)$ and ${\rm Im}\zeta\in\Gamma$ .
$’$($Of$ course such a cone as $\Gamma$ may not exist. Then we must put $C=R^{n}.$)

We can paraphrase the condition (1.10) as follows.
LEMMA 1.6. (1.10) is equivalent to the following condition:

$\Gamma\langle 1.14$) $(a+C)\cap H\subset K$ for any $a\in K$ .
Here $a+C$ denotes the set $\{x\in R^{n} ; x=a+y, y\in C\}$ .

PROOF. First note that (1.14) implies in particular that $C$ is proPerly
$contaiJned$ in the upper half space $\{x\in R^{n} ; x_{n}\geqq 0\}$ . (Given two cones $\Gamma_{1},$ $\Gamma_{2}$ ,

in the upper half space with their vertices at the origin, we will say that
$\Gamma_{1}$ is properly contained in $\Gamma_{2}$ if $\Gamma_{1}\cap\{x\in R^{n} ; x_{n}=1\}\Subset\Gamma_{2}\cap\{x\in R^{n} ; x_{n}=1\}.$)

Since (1.14) is a relation concerning two convex sets, it is obviously equivalent
to the following:

(1.15) $(a+C)\cap\partial H\subset L\backslash K$ .
Further, it can be rewritten in terms of supporting functions:

$’\langle 1.16)$ $H_{(a+C)\cap\text{{\it \^{a}}} H}(\zeta)\leqq H_{L\backslash K}(\zeta)$ .
Put $a=(a^{\prime}, a_{n})$ . We have obviously

(1.17) $H_{(a+C)\cap\partial H}(\zeta)$

$=\sup_{x}[{\rm Re}\langle x, \sqrt{-1}\zeta\rangle;x\in C\cap\{x\in R^{n} ; x_{n}=-a_{n}\}]-\langle a, {\rm Im}\zeta\rangle$

$=\sup_{x}[-a_{n}{\rm Re}\langle x, \sqrt{-1}\zeta\rangle ; x\in C\cap\{x\in R^{n} ; x_{n}=1\}]-\langle a, {\rm Im}\zeta\rangle$

$=a_{n}\inf_{x}[\langle x, {\rm Im}\zeta\rangle ; x\in C\cap\{x\in R^{n} ; x_{n}=1\}]-\langle a, {\rm Im}\zeta\rangle$ .

Now assuming (1.10) let us prove (1.14). Let $C^{\prime}$ be the convex Proper

cone in the uPper half space, with its vertex at the origin, which satisfies

\langle 1.18) $(a+C^{\prime})\cap\partial H=L\backslash K$

for some point $a\in K$. (That is, let $C^{\prime}$ be the translation to the origin of the
convex Proper cone generated by the half lines drawn from the pointa to
the points of $L\backslash K.$) In the following we will show that the estimate ( $ 1.13\rangle\wedge$
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is satisfied for any cone properly contained in $C^{\prime 0}$ , the dual cone of $C^{\prime}$ .
That will show, in particular, that $C^{0}\supset C^{\prime 0}$ , namely, $C\subset C^{\prime}$ . Since $a\in K$ is
arbitrary, we will conclude that $C$ must satisfy (1.15) for any $a\in K$. Thus
(1.14) will be proved.

Apply the calculation in (1.17) to $C^{\prime}$ . Let $\Gamma$ be a cone properly contained
in $C^{\prime 0}$ . Then there exists $\delta>0$ such that

$\inf_{x}[\langle x, {\rm Im}\zeta\rangle;x\in C^{\prime}\cap\{x\in R^{n} ; x_{n}=1\}]\geqq\delta|{\rm Im}\zeta|$ ,

when ${\rm Im}\zeta\in\Gamma$ . Thus (1.18) and (1.17) imply

$ H_{L\backslash K}(\zeta)=H_{(a+C^{\prime})\cap\partial H}(\zeta)\leqq a_{n}\delta|{\rm Im}\zeta|-\langle a, {\rm Im}\zeta\rangle$ , when ${\rm Im}\zeta\in\Gamma$ .
On the other hand, (1.10) implies, for any $\epsilon>0$ ,

$ a_{n}\delta|{\rm Im}\zeta|-\langle a, {\rm Im}\zeta\rangle\leqq a_{n}\delta$ lIm $\zeta|+H_{L}(\zeta)$

$\leqq a_{n}\delta|{\rm Im}\zeta|+H_{L\backslash K}(\zeta)+\epsilon|\zeta|+C_{\epsilon}$ ,

with some $C.>0$ , when $\zeta\in N(p)$ . Thus we conclude
$(-a_{n})\delta|{\rm Im}\zeta|\leqq\epsilon|\zeta|+C_{\text{\’{e}}}$ , when ${\rm Im}\zeta\in\Gamma$ and $\zeta\in N(P)$ .

Since $(-a_{n})\delta$ is a positive constant independent of $\epsilon$ , we have proved (1.13),

hence (1.14), as remarked at the beginning.
Conversely, assume (1.14). Then, by (1.16) and by the calculation of (1.17)

we have

$a_{n}\inf_{x}[\langle x, {\rm Im}\zeta\rangle;x\in C\cap\{x\in R^{n} ; x_{n}=1\}]-\langle a, {\rm Im}\zeta\rangle\leqq H_{L\backslash K}(\zeta)$ .

Assume first that ${\rm Im}\zeta$ does not belong to the interior of $C^{0}$ . Then, we have

$\inf_{x}[\langle x, {\rm Im}\zeta\rangle;x\in C\cap\{x\in R^{n} ; x_{n}=1\}]\leqq 0$ .

Since $a_{n}<0$ , we can thereby omit the first term and obtain

(1.19) $-\langle a, {\rm Im}\zeta\rangle\leqq H_{L\backslash K}(\zeta)$ .
Now consider the set

$\Gamma_{\epsilon}=$ { $\eta;\langle x,$ $\eta\rangle\geqq\epsilon|\eta|$ for any $x\in C\cap\{x\in R^{n}$ ; $x_{n}=1\}$ }.

This is a closed cone Properly contained in $C^{0}$ . Thus by the assumption on
$C$ we have, when ${\rm Im}\zeta\in\Gamma_{\epsilon}$ and $\zeta\in N(p)$ ,

$|{\rm Im}\zeta|\leqq\epsilon|\zeta|+C_{\epsilon}$ ,

with some $C_{\epsilon}>0$ . Hence, for such $\zeta$ we have obviously

(1.20) $H_{L}(\zeta)\leqq H_{L\backslash K}(\zeta)+A\epsilon|\zeta|+C_{\epsilon}$ ,

where $A$ is a constant depending only on the size of $L$ .
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On the other hand, assume ${\rm Im}\zeta\not\in\Gamma_{\epsilon}$ . Let $x({\rm Im}\zeta)$ be one of the points
of $C\cap\{x\in R^{n} ; x_{n}=1\}$ at which $\langle x, {\rm Im}\zeta\rangle$ attains its minimum. (Note that
$C\cap\{x\in R^{n} ; x_{n}=1\}$ is a compact set.) We have

$\inf_{x}[\langle x,$ ${\rm Im}\zeta-\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle}\rangle;x\in C\cap\{x\in R^{n} ; x_{n}=1\}]$

$\leqq\langle x({\rm Im}\zeta),$ ${\rm Im}\zeta-\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle}\rangle$

$\leqq\epsilon|{\rm Im}\zeta|-\epsilon$ lIm $\zeta|=0$ .
Hence we have from (1.19)

$-\langle a, {\rm Im}\zeta\rangle\leqq-\langle a,$ ${\rm Im}\zeta-\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle}\rangle-\langle a,$ $\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle}\rangle$

$\leqq H_{L\backslash K}(\zeta-\sqrt{-}1\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle})-\langle a,$ $\frac{\epsilon|{\rm Im}\zeta|x({\rm Im}\zeta)}{\langle x({\rm Im}\zeta),x({\rm Im}\zeta)\rangle}\rangle$

$\leqq H_{L\backslash K}(\zeta)+B\epsilon|\zeta|$ ,

where $B$ is a constant depending only on the sets $L$ and $C$. Thus taking the
supremum $\cdot$ with respect to $a\in K$ in the left hand side, we have

(1.21) $H_{L}(\zeta)\leqq H_{L\backslash K}(\zeta)+B\epsilon|\zeta|$ .
Combining (1.20) with (1.21) we obtain

$H_{L}(\zeta)\leqq H_{L\backslash K}(\zeta)+(A+B)\epsilon|\zeta|+C_{\epsilon}$ ,

for $\zeta\in N(p)$ . Since $\epsilon>0$ is arbitrary, we have obtained (1.10). $q$ . $e$ . $d$ .
We shall say that $p$ is hyperbolic with respect to the direction $(0, \cdots , 0,1)$

(in the sense of hyperfunctiOns) if the propagation cone of $p$ is properly con-
tained in the upPer half space $\{x\in R^{n} ; x_{n}\geqq 0\}$ . Thus, we have

COROLLARY 1.7. $\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)=0$ if and only if $P$ is hyperbolic with
respect to $(0, \cdots , 0,1)$ and its Propagation cone satisfies (1.14).

In [7] Kawai has proved that we can construct a fundamental solution
$E$ of $ p(D)E=\delta$ whose support is contained in a cone Properly contained in
the uPper half space if and only if $p$ is hyperbolic with respect to $(0, \cdots , 0,1)$ .
(In fact, we can immediately make his proof so precise as to see that the
convex hull of the support of the fundamental solution agrees with the
propagation cone $C.$)

It is known (cf. [7]) that $p$ is hyperbolic with respect to $(0, \cdots , 0,1)$ if
and only if $p_{m}(0, \cdots , 0,1)\neq 0$ and the equation $p_{m}(\zeta^{\prime}, \zeta_{n})=0$ in $\zeta_{n}$ has only real
roots when $\zeta^{\prime}$ is real, where $p_{m}$ is the principal part of $p$ and $\zeta=(\zeta^{\prime}, \zeta_{n})$ is
the corresponding partition of the variables. The propagation cone of $p$ is
readily seen to be the following:
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$C=the$ dual cone of the connected component of the set
$\{\eta\in R^{n} ; P_{m}(\eta)\neq 0\}$ containing $(0, \cdots , 0,1)$ .

Note that Corollary 1.7 has a meaning even in case $p$ is a general system
(see Remark 5), though the signiPcance of the propagation cone is not clear
in that case.

REMARK 6. If we take the propagation cone of a hyperbolic operator to,

be the convex hull of the support of the fundamental solution specified
above, then we can prove Corollary 1.7 more directly. In fact, assume that
$\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)=0$ . Let $E$ be a solution of $ p(D)E=\delta$ , where $\delta$ is the Dirac
delta function. For $a\in K$, the function $u(x)=E(x-a)|_{U\backslash K}$ belongs to $\mathcal{B}_{p}(U\backslash K)$ .
Hence by the assumption $u$ can be extended to an element $v\in \mathcal{B}_{p}(U)$ . The
function $w(x)=E(x-a)-v(x)$ on $U$ satisfies $ P(D)w=\delta$ , and $suppw\subset K$. By
the usual argument we can conclude from these relations that $p$ is hyperbolic
with respect to $(0, 0,1)$ . Therefore, let $E$ be the fundamental solution for
which the convex hull of its $suPport$ gives the propagation cone $C$ . Now
assume that (1.14) dose not hold for some point $a\in K$. Then the function
$u(x)=E(x-a)|_{U\backslash K}$ cannot be extended to an element of $\mathcal{B}_{p}(U)$ , which shows
the necessity of (1.14). In fact, if there would exist an extension $v\in \mathcal{B}_{p}(U)$ ,
then applying Lemma 1.1 to the set $(a+C)\cap H$ we would have $v\equiv 0$ . (We

can assume without loss of generality that $(a+C)\cap H\subset U,$ $U$ being sufficiently
large.) Hence $E(x-a)=0$ in $U\backslash K$. This is a contradiction.

Conversely, let $p$ be hyperbolic with respect to $(0, \cdots , 0,1)$ and assume
that (1.14) is satisfied. Then we can little by little solve the Cauchy problem
and construct the solution on the whole $U$. Condition (1.14) guarantees the
coherency of the local solutions given in individual steps. We omit the
details.

REMARK 7. We give an example which shows that in order to extend
hyperfunction solutions the hyPerbolicity of $p$ is not sufficient in general
and the condition on the shape of $K$ is really necessary. Assume $n=2$ for
simplicity. For the set $K=\{(s, -t);-t\leqq s\leqq t, 0<t\leqq 1\}\subset R^{2}$ , the condition
(1.14) is not satisPed for any operator $p$ . Thus we have $\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)\neq 0$

for any $p$ . Note that this has been the case when $K\Subset U$. Let $P(D)=D_{1}$ , for
example. The following function really gives a nontrivial element of
$\mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)$ .

$u(x_{1}, x_{n})=\left\{\begin{array}{l}1-x_{1} for x_{1}>-x_{n},0<x_{1}\leqq 1,\\1+x_{1} for x_{1}<x_{n},-1\leqq x_{1}<0,\\0 otherwise.\end{array}\right.$

It is obvious that we can also give an example in infinitely differentiable
soIutions.
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I do not know the exact literature concerning this problem. Only we
point out the work of Malgrange [10]. In that work he proved that infinitely
differentiable solutions of an overdetermined system defined in $U\backslash K$ can be
continued to $K$, and remarked that there exist single operators having the
same property for fixed K. (See also Palamodov [13] for distribution solutions.)

The result of this section can be easily translated to other classes of so-
lutions of non-quasianalytic type. We only have to change the meaning of
hyperbolicity according to the classes of solutions. (Cf. the argument of
Remark 6.) Essential difference arises when we treat quasianalytic solutions
or when we treat regular solutions outside a set $K$ with no interior points.

\S 2. Continuation of real analytic solutions.

Let $A$ denote the sheaf of germs of real analytic functions, $d_{p}$ the
sheaf of germs of real analytic solutions of $p(D)u=0$ . We employ the usual
notatiolns $\mathcal{A}(U)=H^{0}(U, d),$ $d_{p}(U)=H^{0}(U, \mathcal{A}_{p})$ . Now we are going to discuss
the conditions on $p$ on which $d_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ holds. For this purpose,
we first quote a result on propagation of regularities.

THEOREM 2.1 (T. Kawai). $\mathcal{B}_{p}(U)\cap d(U\backslash K)\subset\leftrightarrow t_{p}(U)$ .
The proof is carried out in a way similar to Lemma 1.1 but with a more

delicate argument using the Fourier hyperfunctions and the sheaf of rapidly
decreasing real analytic functions. See [7], Theorem 5.1.1.

REMARK 8. From this theorem we see that the natural map

$\mathcal{A}_{p}(U\backslash K)/\mathcal{A}_{p}(U)\rightarrow \mathcal{B}_{p}(U\backslash K)/\mathcal{B}_{p}(U)$

is injective. Hence, in showing that a solution $u\in d_{p}(U\backslash K)$ can be extended
to an element of $\llcorner fl_{p}(U)$ , we only have to show that it can be extended to
an element of $\mathcal{B}_{p}(U)$ .

We must make a detailed study of the image of the real analytic so-
lutions under the map $d$ in the isomorphism in Proposition 1.4. For this
purpose, we are going to seek another expression of the map $d$ for real
analytic solutions. Let $\chi\in C^{\infty}(U)$ be such that $\chi=1$ on a neighborhood of
$K$, and $\overline{\sup p\chi}\cap\partial U\subset L\backslash K$, where the closure or the boundary are taken in
$R^{n}$ . Take $u\in d_{p}(U\backslash K)$ arbitrarily. Then supp $ p(D)(xu)\cap K=\emptyset$ , so that, we
can extend $P(D)(xu)$ to $K$ by zero and obtain an element of $H_{\sup p\chi}^{0}(U, C^{\infty})$ .
Let $[[P(D)(xu)]]_{0}$ be one of its extension to an element of $H\frac{0}{\sup p\chi}(R^{n}, \mathcal{B})$ .

LEMMA 2.2.
$ d\cdot u=-d\cdot[[p(D)(\chi u)]]_{0}\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .

PROOF. Let $[u]\in \mathcal{B}(U)$ be an extension of $u$ and let $[[\chi[u]]]\in$

$H\frac{0}{\sup p\chi}(R^{n}, \mathcal{B})$ be an extention of $\chi[u]$ . Then we have obviously
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$P(D)[[\chi[u]]]\equiv[[p(D)(xu)]]_{0}+[[p(D)[u]]]$ mod $\mathcal{B}[L\backslash K]$ .
Hence, the definition of the noetherian oPerator implies

$ 0=d\cdot p(\zeta)[[\chi[u]]]\equiv d[[p(D)(\chi u)]]_{0}+d[[p(D)[u]]]\sim\sim\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .
Thus we have proved

$ d\cdot u=d[[p(D)[u]]]\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$

$=-d[[p(D)(\chi u)]]_{0}\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ . $q$ . $e$ . $d$ .

PROPOSITION 2.3. Let $\{F_{\lambda}(\zeta);\lambda=1, \cdots , k\}$ be a holomorphic p-function
which represents the residue class $d\cdot u$ corresPonding to $u\in\leftrightarrow q_{p}(U\backslash K)$ . Then,

for every $\lambda$ , any component $F(\zeta)$ of the vector $F_{\lambda}(\zeta)$ has the following property:
Given any $\epsilon>0$ and any infra-exponential entire function $J(\zeta)$ , we can find
holomorphic functions $f_{J,\text{\’{e}}}$ and $g_{J,\epsilon}$ on the corresponding component $N_{\lambda}$ such
that they give the decomposition $J(\zeta)F(\zeta)=f_{J,\epsilon}(\zeta)+g_{J,\epsilon}(\zeta)$ and they satisfy the
following estimates. $f_{J,\epsilon}$ satisfies, for any $\eta>0$ and for some $C_{J,\text{\’{e}},\eta}>0$ depend-
ing on $\eta$ ,

(2.1) $|f_{J,\epsilon}(\zeta)|\leqq C_{J,\epsilon\eta}\exp$ ( $\eta|\zeta|+\epsilon$ lIm $\zeta|+H_{L\backslash K}(\zeta)$) , when $\zeta\in N_{\lambda}$ .
$g_{J,e}$ satisfies, for any $k\geqq 0$ and for some $C_{J,\epsilon,k}>0$ depending on $k$ ,

(2.2) $|g_{J,\text{\’{e}}}(\zeta)|\leqq C_{J,\epsilon,k}(1+|\zeta|)^{-k}$ exp $(\epsilon$ lIm $\zeta^{\prime}|+\frac{\epsilon}{2}{\rm Im}\zeta_{n}+H_{L}(\zeta))$ , when $\zeta\in N_{\lambda}$ .
PROOF. We employ here the local operator with constant coefficients.

Local operators are a kind of differential operators of infinite order aPpearing
in the theory of hyperfunctions. We employ here only those with constant
coefficients. By the Fourier transform they correspond to the operators of
multiplication by the infra-exponential entire functions (or, entire functions
of minimal type of order one). For the details see [5], \S 1.

Now let $J(D)$ be a local operator with constant coefficients. First remark
that $J(D)u$ also belongs to $d_{p}(U\backslash K)$ . Thus by Lemma 2.2 we have

$ d\cdot J(D)u=-d[[p(D)(xJ(D)u)]]_{0}\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .
By a smooth cut-off function we decompose $[[P(D)(\chi J(D)u)]]_{0}$ into $v+w$ such

that $suppv\subset\{x_{n}>-\epsilon\}\cap L_{\epsilon},$ $suppw\subset\{x_{n}<-\frac{\epsilon}{2}\}\cap L_{\epsilon}$ and $w\in C_{0}^{\infty}(R^{n})$ , where
$L_{\epsilon}$ is the $\epsilon$ -neighborhood of $L$ . Thus

$d\cdot J(D)u=-d\cdot\overline{v}-d\cdot\tilde{w}$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .
By the Paley-Wiener theorem the two terms on the right hand side satisfy

the desired estimates. Adjusting by a suitable element of $\mathcal{B}[L\backslash K]\sim\{p, d\}$ , we
have obtained the decomposition for any representative $F(\zeta)$ of $d\cdot J(D)u$ .
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In order to obtain the decomposition for $J(\zeta)F(\zeta)$ , recall that $d\cdot J(D)u$ has
the following form

(2.3) $d\cdot J(D)u$

$=d[[p(D)[J(D)u]]]\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$

$=d[[J(D)p(D)[u]]]+d[[p(D)([J(D)u]-J(D)[u])]]\sim\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$

$=d\cdot J(D)[[p(D)[u]]]+d\cdot p(D)[[[J(D)u]-J(D)[u]]]\sim\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$

$=d\cdot J(\zeta)[[p(D)[u]]]+d\cdot p(\zeta)[[[J(D)u]-J(D)[u]]]\sim\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .
Here $J(\zeta)$ is the infra-exponential entire function corresponding to $J(D)$ . The
last term vanishes by the definition of the noetherian operator. Thus we
have

$ d\cdot J(D)u=d\cdot J(\zeta)[[p(D)[u]]]\sim$ mod $\mathcal{B}[L\backslash K]\sim\{p, d\}$ .

Further the component $ d_{\lambda}J(\zeta)[[p(D)[u]]]\sim$ of $ d\cdot J(\zeta)[[p(D)[u]]]\sim$ corresponding
to the irreducible component $N_{\lambda}$ of $N(p)$ has the following form

$ d_{\lambda}J(\zeta)[[P(D)[u]]]=\left\{\begin{array}{l}J(\zeta)[[p(D)[u]]]|_{N_{\lambda}}\\\vdots\\\frac{\partial^{\alpha}\lambda^{-1}}{\partial\zeta_{1}^{\alpha_{\lambda^{-1}}}}J(\zeta)[[p(D)[u]]]|_{N_{\lambda}}\sim\end{array}\right\}\sim$

$=[_{\frac{\partial^{\alpha_{\lambda}-1}}{\partial\zeta_{1}^{a_{\lambda^{-1}}}}J(\zeta)}^{J(\zeta)}$

...
$J(\zeta)0]\times\left\{\begin{array}{l}[[p(D)[u]]]|_{N_{\lambda}}\sim\\\vdots\\\frac{\partial^{\alpha_{\lambda}-1}}{\partial\zeta_{1}^{a_{\lambda^{-1}}}}[[p(D)[u]]]|_{N_{\lambda}}\sim\end{array}\right\}$

.
(Here we have assumed that we can adopt the noetherian operator $d=\{d_{\lambda}\}$ ,
$d_{\lambda}={}^{t}(1, \cdots , \partial^{\alpha_{\lambda^{-1}}}/\partial\zeta_{1}^{a_{\lambda^{-1}}})|_{N_{\lambda}}$ indicated in the explanations of (1.9) in \S 1.
Therefore the above equality is a direct consequence of the Leibniz formula.)

Note that the derivatives of $J(\zeta)$ are also infra-exponential entire func-
tions. Thus, from this formula we see that each comPonent of $F_{\lambda}(\zeta)=$

${}^{t}([[p(D)[u]]]\sim|_{N_{\lambda}}, \cdots , \partial^{\alpha_{\lambda^{-1}}}/\partial\zeta_{1}^{a_{\lambda^{-1}}}[[p(D)[u]]]\sim|_{N_{\lambda}})$ also admits a decomposition
stated in our Proposition, step by step from the earlier ones. $q$ . $e$ . $d$ .

So far we have fixed a convex set $K$ to which we intended to extend the
solutions. Now we need to consider a family JT of such sets.

LEMMA 2.4. Let $JC$ be a family of sets $K’ s$ which satisfies: if $K\in JC$ , then
also $[K+(0, \cdots , 0, \delta)]\cap\{x_{n}<0\}\in J\zeta$ for any $\delta>0$ . Assume that for each ir-
reducible compOnent $p_{\lambda}$ of $p$ we have $d_{p_{\lambda}}(U\backslash K)/d_{p_{\lambda}}(U)=0$ for any $K\in JC$

and for any open convex neighborhood U. Then we have $\mathcal{A}_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$
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for any $K\in JC$ and for any such $U$.
PROOF. Let $p=p_{1}\cdots p_{k}$ be the irreducible decomposition of $P$ . (Some of

$p_{f}$ may agree.) We employ the induction on $k$ . Assume that the lemma is
proved for any $p$ with $k-1$ irreducible components. Take $u\in d_{p}(U\backslash K)$ .
Then $v_{1}=p_{2}(D)\cdots p_{k}(D)u\in\leftrightarrow l_{p_{1}}(U\backslash K)$ . Therefore by the assumption we have
$v_{1}\in d_{p_{1}}(U)$ . The equation

$p_{2}(D)$ $p_{k}(D)u_{1}=v_{1}$

has an analytic solution $u_{1}$ in a convex neighborhood $U_{1}$ of $K_{1}=K\cap\{x_{n}<-\epsilon\}$

which is relatively compact in $U$ (see [9], Theorem 3.1). Put $u_{2}=u-u_{1}$ .
Then $u_{2}\in\leftrightarrow q_{p_{2}\cdots p_{k}}(U_{1}\backslash K_{1})$ . Thus, by the assumption on $c\chi$ we can apply the
induction hypothesis to the operator $p_{2}\cdots p_{k}$ and to the set $K_{1}$ , since our
operator is invariant under translation along $x_{n}$ -axis. Thus we conclude
that $u_{2}\in A(U_{1})$ , hence $u=u_{1}+u_{2}\in=t(U_{1})$ . Due to the Property of unique
continuation of analytic functions, we conclude that $u\in d(U\cap\{x_{n}<-\epsilon\})$ .
Since $\epsilon$ is arbitrary, we finally conclude that $u\in\leftrightarrow q(U)$ , which obviously
implies $u\in d_{p}(U)$ . $q$ . $e$ . $d$ .

REMARK 9. The converse implication of the lemma trivially holds with
no restriction on the family $JC$ . In fact, we have $d_{p_{\lambda}}(U\backslash K)/\mathcal{A}_{p_{\lambda}}(U)$

$\subset \mathcal{A}_{p}(U\backslash K)/\leftrightarrow q_{p}(U)$ for each $\lambda$ .
Next we need to change the convex neighborhood $U$ of $K$. For this

reason we discuss to what extent $U$ affects the possibility of continuation
of real analytic solutions.

LEMMA 2.5. Let d1C be a family of $K’ s$ satisfying the condition of Lemma
2.4. Let $C_{0}$ be either a fixed oPen convex cone with its vertex at the origin and
Properly contained in the uPper half space $\{x\in R^{n} ; x_{n}>0\}$ , or a fixed cylindrical
domain of the form $C_{0}=\{x\in R^{n} ; x_{n}>0, |x_{j}|<c, j=1, \cdots , n-1\}$ . Assume that
we $have\approx\emptyset_{p}(V\backslash K)/d_{p}(V)=0$ for any $K\in JC$ and for any $V\supset K$ of the form
$V=(a+C_{0})\cap H$ with $a=(0, \cdots , 0, a_{n})\in H$. (In case $C_{0}$ is cylindrical, we assume
that for every $K\in JC$ there exists at least one such $V$ containing $K.$) Then we
have $\mathcal{A}_{p}(U\backslash K)/d_{p}(U)=0$ for any Pair $U\supset K$ with $K\in JC$ .

PROOF. First assume that the given $U\supset K$ is convex, and contained in
some $V$ of the form $(a+C_{0})\cap H$. Put

$U_{\text{{\it \’{e}}},\delta}=$ { $x\in U$ ; dis $(x,$ $\partial U)>\delta$ } $\cap\{x_{n}<-\epsilon\}$ ,

$V.=V\cap\{x_{n}<-\epsilon\}$ ,
and

$K_{\epsilon}=K\cap\{x_{n}\leqq-\epsilon\}$ .
Let $\overline{U}_{\epsilon,\delta}$ , V. be their closure taken in $R^{n}$ . We choose $\delta$ so small that $\overline{U}_{\epsilon,\delta}\supset K_{\epsilon}$ .
Now we employ the exact sequence:
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$0$

$|I$

(2.4) $0\rightarrow H_{K_{g}}^{0}(\overline{U}_{\text{\’{e}},\delta}, A_{p})\rightarrow H^{0}(\overline{U}_{\epsilon,\delta}, \mathcal{A}_{p})\rightarrow H^{0}(\overline{U}_{\epsilon,\delta}\backslash K_{\text{{\it \’{e}}}}, A_{p})$

$\rightarrow H_{K_{\epsilon}}^{1}(\overline{U}_{\epsilon,\delta}, \leftrightarrow l_{p})\rightarrow H^{1}(\overline{U}_{\epsilon,\delta}, d_{p})$ .
$11$

$0$

(We here sketch the proof of $H^{1}(\overline{U}_{\epsilon,\delta}, A_{p})=0$ . (C. $f$ . $[9].$) We have the exact
sequence:

$p$

$0\rightarrow H^{0}(\overline{U}_{\epsilon\delta}, d_{p})\rightarrow H^{0}(\overline{U}_{\epsilon,\delta}, d)\rightarrow H^{0}(\overline{U}_{\epsilon\delta}, \mathcal{A})$

$\rightarrow H^{1}(\overline{U}_{\epsilon,\delta}, d_{p})\rightarrow H^{1}(\overline{U}_{\epsilon,\delta}, d)$ .
Here $H^{1}(\overline{U}_{\epsilon,\delta}, \mathcal{A})-=0$ due to Malgrange’s theorem. Since $p$ is surjective in the
space $\leftrightarrow\emptyset(U_{\text{\’{e}},\delta})$ for a compact convex set $\overline{U}_{\epsilon,\delta}$ , we have thus $H^{1}(\overline{U}_{\text{\’{e}},\delta}, d_{p})=0.)$

Thus we have from (2.4),

(2.5) $H_{K_{\epsilon}}^{1}(\overline{U}_{\epsilon\delta}, \mathcal{A}_{p})=d_{p}(\overline{U}_{\epsilon,\delta}\backslash K_{\epsilon})/\mathcal{A}_{p}(\overline{U}_{\epsilon,\delta})$ ,

and similarly

(2.6) $H_{K_{\epsilon}}^{1}(\overline{V}_{\epsilon}, d_{p})=d_{p}(\overline{V}_{\text{\’{e}}}\backslash K_{\epsilon})/\leftrightarrow q_{p}(\overline{V}_{\epsilon})$ .
On the other hand, the excision theorem shows that the left hand sides of
(2.5) and (2.6) agree. Hence we have

(2.7) $d_{p}(\overline{V}_{\epsilon}\backslash K_{\epsilon})/d_{p}(\overline{V}_{\epsilon})\cong \mathcal{A}_{p}(\overline{U}_{\epsilon\delta}\backslash K_{\epsilon})/\mathcal{A}_{p}(\overline{U}_{\epsilon,\delta})$ ,

where the isomorphism is obviously given by the restriction map from
$d_{p}(\overline{V}_{\text{\’{e}}}\backslash K_{\epsilon})$ to $d_{p}(\overline{U}_{\epsilon,\delta}\backslash K_{\text{\’{e}}})$ . Now take $u\in \mathcal{A}_{p}(U\backslash K)$ arbitrarily. Restricting
$u$ to $\overline{U}_{l_{j}}.,\delta\backslash K_{\text{\’{e}}}$ , we take it as an element of $C\lrcorner q_{p}(\overline{U}_{\epsilon\delta}\backslash K_{\epsilon})$ . Then (2.7) shows that
there exist $v\in \mathcal{A}_{p}(\overline{V}_{\epsilon}\backslash K_{\epsilon})$ and $w\in\cup q_{p}(\overline{U}_{\epsilon,\delta})$ such that

(2.8) $u=v+w$ , on $\overline{U}_{\epsilon,\delta}\backslash K$ .
By the assumption of the lemma every element $v\in d_{p}(\overline{V}_{\text{\’{e}}}\backslash K_{\epsilon})$ can be con-
tinued analytically to $V_{\epsilon}$ . Thus the right hand side of (2.8) can be continued
analytically to $U_{\epsilon,\delta}$ , hence to $U_{\epsilon}$ . Since $\epsilon>0$ is arbitrary, we conclude that
$u\in\leftrightarrow t_{p}(U)$ .

Finally assume that $U$ is not convex (and not small). Since $K$ itself is
convex, we can find a convex neighborhood $U_{1}$ of $K$ such that $U\supset U_{1}\supset K$ and
$V\supset U_{1}$ for some $V$. We have obviously $\cup l_{p}(U\backslash K)/ct_{p}(U)\subset d_{p}(U_{1}\backslash K)/\leftrightarrow q_{p}(U_{1})$ ,
where the injection is induced from the restriction map. Since we have
proved that the latter equals zero, we conclude that $A_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ .

$q$ . $e$ . $d$ .
Now we present our main results. The first one is a direct corollary
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from the result of \S 1, and does not rely on Proposition 2.3.
THEOREM 2.6. Assume that each irreducible compOnent $p_{\lambda}$ of $P$ satisfies the

following condition: There exists a sequence of directions $\theta_{\lambda}^{(k)},$ $k=1,2,$ $\cdots$

converging to $(0, \cdots, 0,1)$ such that $p_{\lambda}$ is $hyPerbolic$ with respect to every $\theta_{\lambda}^{(k)}$ .
Then $cA_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ .

PROOF. Since $K$ is arbitrary now, we can apply Lemma 2.4. Therefore
we only have to prove our theorem for each irreducible component. First
assume that $p_{\lambda}$ is hyperbolic with respect to $(0, \cdots , 0,1)$ . Let $C$ be the prop-
agation cone of $p_{\lambda}$ . Let $K^{\prime}$ be the closure in $H$ of the following set

$a\equiv KU(a+C)\cap H$ .

Assume that $U$ is of the form $U=(a+C_{0})\cap H$ for some $a=(0, \cdots, 0, a_{n})\in H$,

where $C_{0}$ is an open convex cone with its vertex at the origin, containing $C\backslash \{0\}$ ,
and properly contained in the upper half space. We have obviously $U\supset K^{\prime}$ .
Thus by Corollary 1.7 we have $\mathcal{B}_{p_{\lambda}}(U\backslash K^{\prime})/\mathcal{B}_{p_{\lambda}}(U)=0$ . Hence by Remark 8
we have $d_{p_{\lambda}}(U\backslash K^{\prime})/\cup q_{p_{\lambda}}(U)=0$ . By the uniqueness of analytic continuation
we have the obvious inclusion $d_{p_{\lambda}}(U\backslash K)/\cup q_{p_{\lambda}}(U)\subset d_{p_{\lambda}}(U\backslash K^{J})/d_{p_{\lambda}}(U)$ induced
from the restriction mapping. Thus we conclude that $\cup q_{p_{\lambda}}(U\backslash K)/\cup l_{p_{\lambda}}(U)=0$ .
Due to Lemma 2.5, this holds for any $U$.

Next we consider the general case. Put $H_{k}=\{x\in R^{n} ; \langle\theta\}^{k)},$ $ x\rangle$ $<-\delta_{k}$},

where $\delta_{k}$ is a suitable sequence of positive numbers tending to zero such
that $H_{k}$ does not contain any point of $L\backslash K$. We apply the above result to
each set $K_{k}=K\cap H_{k}$ and $U_{k}=U\cap H_{k}$ , taking a suitable direction as the $x_{n^{-}}$

axis. Thus we obtain $d_{p_{\lambda}}(U_{k}\backslash K_{k})/\mathcal{A}_{p_{\lambda}}(U_{k})=0$ . Therefore if $u\in \mathcal{A}_{p_{\lambda}}(U\backslash K)$ ,

then we have $u\in d_{p_{\lambda}}(U_{k})$ for any $k$ . If we let $k\rightarrow\infty,$ $K_{k}$ aPproaches $K$ and
$U_{k}$ approaches $U$. Thus by the uniqueness of analytic continuation we finally
conclude that $u\in \mathcal{A}_{p_{\lambda}}(U)$ . $q$ . $e$ . $d$ .

REMARK 10. The condition of Theorem 2.5 depends on the lower order
terms. In fact the polynomial $(\zeta_{1}^{2}-\zeta_{2}\zeta_{n})(\zeta_{1}^{2}+\zeta_{2}\zeta_{n})(n=3)$ satisfies it, but the
perturbed one

$(\zeta_{1}^{2}-\zeta_{2}\zeta_{n})(\zeta_{1}^{2}+\zeta_{2}\zeta_{n})+1$

does not. For it is irreducible, hence it does not contain any hyperbolic
factor.

Now we give results really depending on the analyticity of the solutions,
$i$ . $e.$ , employing Proposition 2.3.

THEOREM 2.7. Assume that each irreducible comPonent $p_{\lambda}$ of $p$ satisfies
either of the following two conditions.

1) The same condition as Theorem 2.6.
2) There exists a non-characteristic direction $(\theta_{\lambda}, 0)\in R^{n-1}\times R$ such that

$K\subset\{(x^{\prime}, x_{n});\langle\theta_{\lambda}, x^{\prime}\rangle=0\}$ and that the roots $\tau$ of $p(\zeta^{\prime}+\tau\theta_{\lambda}, \zeta_{n})=0$ for fixed
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$\zeta^{\prime}\in C^{n-1}$ satisfy the following eslimate for ${\rm Im}\zeta_{n}\geqq 0$ : There exists a constant
$b$ (possibly dePending. on $\zeta^{\prime}$ ) such that given any $\epsilon>0$ we have

(2.9) lIm $\tau|\leqq\epsilon|\zeta_{n}|+b|{\rm Im}\zeta_{n}|\perp C_{\zeta^{l},\text{\’{e}}}$ ,

with some constant $C_{\zeta,\epsilon}>0$ depending on $\zeta^{\prime}$ and $\epsilon$ . Then $\mathcal{A}_{p}(U\backslash K)/A_{p}(U)=0$ .
PROOF. Put $JC=\{[K+(0, \cdots , 0, \delta)]\cap H;\delta\geqq 0\}$ . Then $JC$ satisfies the

condition of Lemma 2.4, and each element of $JC$ also satisfies the condition
in our theorem. Therefore, again we can prove the theorem separately for
each irreducible component. For the components satisfying the condition 1),

the proof is already given. Now let $p_{\lambda}$ satisfy the second condition. Here-
after we simPly write $P$ for this component. By a suitable change of the
coordinate system in the $x^{\prime}$ -space we can assume that $(\theta_{\lambda}, 0)=(1,0, \cdots , 0)$ .
Then, we can assume without loss of generality that

$K=\{(0, x^{\prime\prime}, x_{n}) ; -c_{n}\leqq x_{n}<0, |x_{j}|\leqq c, j=2, \cdots n-1\}$ ,

where $x^{\prime\prime}=$ $(x_{2}, \cdots , x_{n-1})$ . (This reduction is just the same as that made in
the proof of Theorem 2.6. This time we employ a cylinder as $C_{0}$ in Lemma
2.5.) This means that

$H_{L}(\zeta)=c$ lIm $\zeta^{\prime\prime}|+\max\{c_{n}{\rm Im}\zeta_{n}, 0\}$ ,

where $\zeta=(\zeta_{1}, \zeta^{\prime\prime}, \zeta_{n})$ and $|{\rm Im}\zeta^{\prime\prime}|=\Sigma_{j=2}^{n-1}|{\rm Im}\zeta_{f}|$ . Thus for each $\zeta^{\prime\prime}$ fixed. the
algebraic equation in $\zeta_{1}$ :

$p(\zeta_{1}, \zeta^{\prime}, \zeta_{n})=0$

has $m$ roots $\zeta_{1}=\tau_{f}(\zeta^{\prime\prime}, \zeta_{n}),$ $j=1,$ $\cdots$ , $m$ , each satisfying (2.9) with $C_{\zeta^{\prime},\epsilon}$ replaced
by $C_{\zeta^{\prime}:}$ , where $m$ is the order of $p$ . Let $\Delta(\zeta^{\prime\prime}, \zeta_{n})$ be the discriminant of this
equation. Since $P$ is irreducible, $\Delta$ is not identically equal to zero. Hence,
when $\zeta^{\prime\prime}$ is fixed, either $\Delta$ is identically equal to zero as a polynomial in $\zeta_{n}$ ,

or $\Delta$ is different from zero for $|\zeta_{n}|\geqq\delta(\zeta^{\prime\prime})$ . Here, $\delta(\zeta^{\prime\prime})$ is the largest modulus
of the roots of the equation $\Delta(\zeta^{\prime\prime}, \zeta_{n})=0$ in $\zeta_{n}$ . As for the case $\Delta\equiv 0$ , we
can factorize $p$ and make the same argument to the irreducible components.
Thus, \’in any case, there exists $\delta(\zeta^{\prime\prime})$ such that $\tau_{f}$ are holomorphic in $\zeta_{n}$ on
${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$ or on ${\rm Im}\zeta_{n}\leqq-\delta(\zeta^{\prime\prime})$ . The variety $N(p)$ is covered in the follow-
ing way:

(2.10) $N(P)=[\{|{\rm Im}\zeta_{n}|\leqq\delta(\zeta^{\prime})\}\cap N(p)]\cup N_{+}^{(1)}\cup N_{-}^{(1)}\cup\cdots\cup N_{+}^{(m)}\cup N_{-}^{(m)}$ ,

where
$N_{\pm}^{(f)}=\{\zeta_{1}=\tau_{j}(\zeta^{\prime\prime}, \zeta_{n});\pm{\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})\}$ .

Let $u\in \mathcal{A}_{p}(U\backslash K)$ and let $F(\zeta)$ be a component of a representative of $\tilde{d}\cdot u$ .
$F(\zeta)$ satisfies the following estimate corresponding to the space $\mathcal{B}[L]\sim\{p, d\}$ :
given any $\epsilon>0$ there exists $C_{\epsilon}>0$ such that
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(2.11) $|F(\zeta)|\leqq C_{\text{\’{e}}}\exp(\epsilon|\zeta|+H_{L}(\zeta))$ .
On the other hand, $F(\zeta)$ satisfies the condition in Proposition 2.3. By this
fact we are going to prove that $F(\zeta)$ satisfies the following estimate cor-
responding to the space $\mathcal{B}[L\backslash K]\sim\{p, d\}$ : given any $\epsilon>0$ there exists $C_{\epsilon}>0$

such that

\langle 2.12) $|F(\zeta)|\leqq C_{\epsilon}\exp(\epsilon|\zeta|+H_{L\backslash K}(\zeta))$ .
Due to Proposition 1.4 and Remark 8, that will complete the proof. When
${\rm Im}\zeta_{n}\leqq 0,$ $(2.11)$ clearly implies(2.12), since in our case

$H_{L}(\zeta)=c$ lIm $\zeta^{\prime\prime}|+\max\{c_{n}{\rm Im}\zeta_{n}, 0\}$ and $H_{L\backslash K}(\zeta)=c|{\rm Im}\zeta^{\prime\prime}$ .
Therefore no difficulty occurs on $N_{-}^{(j)}$ . From now on we consider a Pxed
$N_{+}^{(j)}$ and simply write $\tau$ for $\tau_{j}$ . Thus for $\zeta^{\prime\prime}$ fixed, the holomorphic function
$C(\zeta_{n})=F(\tau(\zeta^{\prime\prime}, \zeta_{n}),$ $\zeta^{\prime\prime},$ $\zeta_{n}$) of one variable $\zeta_{n}$ satisfies the following condition:
for any infra-exponential entire function $J(\zeta_{n})$ and for any $\epsilon>0$ , we have
the decomposition $J(\zeta_{n})G(\zeta_{n})=f_{J,\epsilon}(\zeta_{n})+g_{J,\epsilon}(\zeta_{n})$ , where $f_{J,\epsilon},$

$g_{J,\text{\’{e}}}$ are holomorphic
in ${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$ and satisfy

\langle 2.13) $|f_{J,\epsilon}(\zeta_{n})|\leqq C_{J,\epsilon}$ exp $(\epsilon|\zeta_{n}|+\epsilon|\zeta^{\prime\prime}|+\epsilon|\tau(\zeta^{\prime\prime}, \zeta_{n})|$

$+\epsilon|{\rm Im}\tau(\zeta^{\prime\prime}, \zeta_{n})|+(c+\epsilon)|{\rm Im}\zeta^{\prime/}|)$ ,

\langle 2.14) $|g_{J,\epsilon}(\zeta_{n})|\leqq C_{J,\epsilon}$ exp $(\epsilon$ lIm $\tau(\zeta^{\prime\prime}, \zeta_{n})|$

$+(c_{n}+\frac{\epsilon}{2}){\rm Im}\zeta_{n}+(c+\epsilon)|{\rm Im}\zeta^{\prime\prime}|)$ .

(We put $\eta=\epsilon$ in (2.1) and $k=0$ in (2.2).)
Now we prePare a few lemmas.
LEMMA 2.8. Let $b$ be a fixed constant. Assume that the function $u(t)$ of

one variable $t\geqq 0$ satisfies the following condition: given any function $\varphi(t)>0$ ,
monotone increasing to infinity when $t$ tends to infinity, there exist a positive
constant $C_{\varphi}$ depending on $\varphi$ such that

$|u(t)|\leqq C_{\varphi}$ exp $(bt-\frac{t}{\varphi(t)})$ .
Then, there exist a constant $b^{\prime}<b$ and a constant $C>0$ such that

$|u(t)|\leqq C\exp(b^{\prime}t)$ .
PROOF. Assume the contrary. Then, for any positive $N$ we can find

another positive number $\psi(N)$ so that

$sup|u(t)|$ exp $(-bt+\frac{1}{N}t)\geqq N$ .
$0\leqq c\leqq\psi(N)$

Clearly we can assume that $\psi(N)$ is monotone increasing to infinity when $N$
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tends to infinity. Therefore the inverse function $s=\varphi(t)$ of $t=\psi(s)$ is also
monotone increasing to infinity, and we have

$\sup_{0\leqq t\leqq N}|u(t)|\exp(-bt+\frac{t}{\varphi(t)})\geqq\sup_{0\leqq\iota\leqq N}|u(t)|$ exp $(-bt+\frac{t}{\varphi(t)})$

$\geqq\sup_{0\leqq t\leqq\psi(w}|u(t)|\exp(-bt+\frac{1}{M}t)$

$\geqq M$ .
Here we put $M=\varphi(N)$ . $M$ increases infinitely when $N$ does. This contradicts
the assumption. $q$ . $e$ . $d$ .

LEMMA 2.9. Assume that the holomorphic function $G(z)$ of one variable for
${\rm Im} z\geqq 0$ satisfies the following condition: There exist positive constants $a,$ $b,$ $\epsilon$ ,
and $q<1$ such that for any infra-exponential entire function $J(z)$ we have a
decomposition $JG=f_{J}+g_{J}$ , where $f_{J},$ $g_{J}$ are holomorPhic in ${\rm Im} z\geqq 0$ and satisfy

$|f_{J}(z)|\leqq C_{J}$ exp $(\epsilon|z|+a{\rm Re}(-\sqrt{-1}z)^{q})$ ,
\langle 2.15)

$|g_{J}(z)|\leqq C_{J}^{\prime}\exp$ (a ${\rm Re}(-\sqrt{-1}z)^{q}+b|{\rm Im} z|$ ) ,

with some constants $C_{J}$ and $C_{J}^{\prime}$ . Here $($ $)^{q}$ denotes the principal branch of the
Power function. Then $G$ satisfies

$|G(z)|\leqq C_{1}\exp(\epsilon|z|+a{\rm Re}(-\sqrt{-1}z)^{q})+C_{1}^{\prime}\exp$ (a ${\rm Re}(-\sqrt{}^{\prime}\overline{-1}z)^{q}+\epsilon|{\rm Im} z|$ ),

where $C_{1}(C_{1}^{\prime})$ is the constant $C_{J}(C_{J}^{\prime})$ in (2.15) correspOnding to $J=1$ .
PROOF. Put $z=x+\sqrt{-1}y$ . We have for $y>0$

\langle 2.16) $|J(\sqrt{-1}y)G(\sqrt{-1}y)|\leqq C_{J}e^{\epsilon y+ay^{q}}+C_{J}^{\prime}e^{by+ay^{q}}$

Now assume that $\epsilon<b$ . Given a function $\varphi$ which is monotone increasing
to $infiJnity$ , choose $J$ so that

$|J(\sqrt{-1}y)|\geqq C\cdot\exp(\frac{y}{\varphi(y)}+ay^{q})$ for $y\geqq 0$ .

\langle For the construction of such $J$ see [5], Lemma 1.2.) Dividing the both sides
of (2.16) by $J$ we have

$|G(\sqrt{-1}y)|\leqq C_{\varphi}\exp(by-\frac{y}{\varphi(y)})$ for $y\geqq 0$ .

Thus by Lemma 2.8 we have, with some $b^{\prime}<b$

$|G(\sqrt{-1}y)|\leqq C\exp(b^{\prime}y)$ .
Therefore, for any $J$, the function $g_{J}$ appearing in the decomposition $JG=$

$f_{J}+g_{J}$ has the following two estimates:
$|g_{J}(z)|\leqq C_{J}^{\prime}\exp$ (a ${\rm Re}(-\sqrt{-1}z)^{q}+b$ lIm $z|$ );
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and for any $\eta>0$ ,

$|g_{J}(\sqrt{-1}y)|\leqq|J(y)G(y)|+|f_{J}(\sqrt{-1}y)|$

$\leqq C_{\eta}\exp(\max(\epsilon, b^{\prime})y+\eta y)$ ,

with some $C_{\eta}>0$ . Now consider the function

$h(z)=g_{J}(z)\exp(\max(\epsilon, b^{\prime})\sqrt{-1}z-a(-\sqrt{-1}z)^{q})$ .
$h(z)$ is bounded on the real axis by the constant $C_{J}^{\prime}$ ; of exponential growth

on $Im,\vee\geqq 0$ ; and on the imaginary axis satisfies, for any $\eta>0$ ,

$|h(\sqrt{-1}y)|\leqq C_{\eta}$ exp $(\eta y)$ ,

with some $C_{\eta}>0$ . Therefore, by the Phragm\’en-Lindel\"of theorem $h(z)$ is
bounded on ${\rm Im} z\geqq 0$ by the same constant $C_{J}^{\prime}$ . Thus $g_{J}(z)$ satisfies the new
estimate

$|g_{J}(z)|\leqq C_{J}^{\prime}\exp$ (a ${\rm Re}(-\sqrt{-1}z)^{q}+\max(\epsilon,$ $b^{\prime})|{\rm Im} z|$ ),

with $b^{\prime}<b$ . When $\epsilon<b^{\prime}$ , we can apply the same argument and replace $b^{\prime}$

by another smaller one. Repeating this process we can finally replace $b$ by
$\epsilon$ . For, assume the contrary. Then we have the following situation: There
exists some $ b_{0}\geqq\epsilon$ such that $g_{J}$ has the following estimate for any $\eta>0$ ,

$|g_{J}(z)|\leqq C_{J,\eta}$ exp (a ${\rm Re}(-\sqrt{-1}z)^{q}+(b_{0}+\eta)|{\rm Im} z|$ ),

with some $C_{\eta}>0$ , but $g_{J}$ does not satisfy the following one

$|g_{J}(z)|\leqq C_{J}^{\prime}\exp$ (a ${\rm Re}(-\sqrt{-1}z)^{q}+b_{0}|{\rm Im} z|$ ).

APplying, however, the Phragm\’en-Lindel\"of theorem to

$g_{J}(z)$ exp $(b_{0}\sqrt{-1}z-a(-\sqrt{-1}z)^{q})$

we can show that the first inequality implies the second one. This is absurd,
hence we have proved that $g_{J}$ satisfies

$|g_{J}(z)|\leqq C_{J}^{\prime}$ exp (a ${\rm Re}(-\sqrt{-1}z)^{q}+\epsilon|{\rm Im} z|$ ).

Thus, choosing $J=1$ , we have proved that $G(z)=f_{1}(z)+g_{1}(z)$ satisfies the
desired estimate. $q$ . $e$ . $d$ .

REMARK 11. Let $\varphi(r)$ be a function of $r\geqq 0$ monotone increasing to
infinity. Assume that $\sum_{m=1}^{\infty}1/m\varphi(m)<\infty$ . Then we have the following variant
of Lemma 2.9:

Assume that the holomorphic function $G(z)$ of one variable for ${\rm Im} z\geqq 0$

satisfies the following condition: There exist positive constants $b,$ $\epsilon$ such
that for any infra-exponential entire function $J(z)$ we have a decomposition
$JG=f_{J}+g_{J}$ , where $f_{J},$ $g_{J}$ are holomorphic in ${\rm Im} z\geqq 0$ and satisfy
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$|f_{J}(z)|\leqq C_{J}$ exp $(\epsilon|z|+\frac{|{\rm Re} z|}{\varphi(|{\rm Re} z|)})$ ,

$|g_{J}(z)|\leqq C_{J}^{\prime}$ exp $(\frac{|{\rm Re} z|}{\varphi(|{\rm Re} z|)}+b|{\rm Im} z|)$

,

with some $C_{J}$ and $C_{J}^{f}$ . Then $G$ satisfies

$|G(z)|\leqq C_{1}$ exp $(\epsilon|z|+\frac{|z|}{\psi(|z|)})+C_{1}^{f}$ exp $(\frac{|z|}{\psi(|z|)}+\epsilon|{\rm Im} z|)$ ,

where $\psi(r)$ is another function of $r\geqq 0$ monotone increasing to infinity.
In fact we can find an infra-exponential entire function $a(z)$ which does

not vanish in ${\rm Im} z\geqq 0$ and satisfies ${\rm Re}[\log a(x)]\geqq|x|/\varphi(|x|)$ for real $X$ .
(Cf. [5], Proof of Theorem 2.6.) Therefore we can apply the proof of
Lemma 2.9 replacing the power function $(-\sqrt{-1}z)^{q}$ by log $a(z)$ . Finally we
can find $\psi$ such that ${\rm Re}[\log a(z)]\leqq|z|/\psi(|z|)$ (cf. [5], Lemma 1.1).

LEMMA 2.10. Assume that an entire function $F(z, w)$ of the variables
$z\in C,$ $w\in C^{l}$ satisfies the following two estimates: For any $\epsilon>0$ and for any
fixed $w\in C^{l}$ , we have, with some $C_{\epsilon,w}>0$ ,

(2.17) $|F(z, w)|\leqq C_{\text{\’{e}},w}\exp(\epsilon|z|)$ .

There exist fixed constants $a>0,$ $b>0$ such that for any $\epsilon>0$ we have, with
some $C.>0$ ,

(2.18) $|F(z, w)|\leqq C_{\text{\’{e}}}\exp$ ($\epsilon(|z|+|w|)+a$ lIm $z|+b$ lIm $w|$ ).

Then $F$ satisfies another estimate: For any $\epsilon>0$ we have, with some $C_{\epsilon}>0$ ,

$|F(z, w)|\leqq C_{\epsilon}$ exp ($\epsilon(|z|+|w|)+b$ lIm $w|$ ).

Note that we emPloy the notation $|w|=\sum_{j=1}^{\iota}|w_{j}|$ and $|{\rm Im} w|=\sum_{j=1}^{l}|{\rm Im} w_{j}|$ .
PROOF. Estimate (2.18) shows that $F$ is the Fourier transform of a

hyperfunction $v(s, t)$ whose suPport is contained in the real compact set

$L_{a,b}=\{(s, t)\in R\times R^{l} ; |s|\leqq a, |t_{j}|\leqq b, j=1, \cdots , l\}$ .
On the other hand, Proposition1.13’ of Martineau [12], Chapitre II shows
that the two estimates (2.17), (2.18) imply, for any $\epsilon>0$ ,

$|F(z, w)|\leqq C_{\epsilon}\exp(\epsilon|z|+K_{\text{\’{e}}}|w|)$ ,

with some $C_{\epsilon}>0$ and $K$. $>0$ . This shows that the function $v(s, t)$ , considered
as an analytic functional, has its porter in the polydisk

$D_{\epsilon}=\{(\sigma, \tau)\in C\times C^{l} ; |\sigma|\leqq\epsilon, |\tau_{f}|\leqq K_{\epsilon}, j=1, \cdots\prime l\}$ .
Combining these two informations with Th\’eor\‘eme 3.3 b) in [12], Chapitre I,
we conclude that $v$ has its support in $L_{\epsilon,b}=L_{a,b}\cap D_{\epsilon}$ . Since $\epsilon$ is arbitrary,
we finally conclude that supp $v\subset L_{0,b}$ , by the uniqueness of the supports of
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real analytic functionals. This obviously implies the desired estimate.
$q$ . $e$ . $d$ .

END OF PROOF OF THEOREM 2.7. From our assumption that $(1, 0, \cdots , 0)$

is non-characteristic with respect to $p$ , we have

(2.19) $|\tau(\zeta^{\prime\prime}, \zeta_{n})|\leqq M(|\zeta_{n}|+|\zeta^{\prime\prime}|)$ ,

with a constant $M>0$ . On the other hand, from (2.9) we have, due to Seiden-
berg’s theorem, for ${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$ ,

$|{\rm Im}\tau(\zeta^{\prime\prime}, \zeta_{n})|\leqq a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+b$ lIm $\zeta_{n}|+C_{\zeta}$ . ,

where $a,$ $b,$ $q$ are constants possibly depending on $\zeta^{\prime\prime}$ , and $q<1$ . (Note that
for ${\rm Im} z\geqq 0$ we have $|z|^{q}\leqq\mu{\rm Re}(-\sqrt{-1}z)^{q}$ with $\mu=1/\cos(q/2)\pi.)$ Putting
these estimates into (2.13), (2.14), we obtain for ${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$

$|f_{J,\text{\’{e}}}(\zeta_{n})|$

$\leqq C_{J,\text{{\it \’{e}}}}$ exp $\{\epsilon(M+1)|\zeta_{n}|+\epsilon a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+\epsilon b|{\rm Im}\zeta_{n}|+C_{\zeta^{\prime}}\}$ ,
(2.20)

$\ovalbox{\tt\small REJECT} g_{J,e}(\zeta_{n})|$

$\leqq C_{J,\epsilon}$ exp $\{\epsilon a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+\epsilon b|{\rm Im}\zeta_{n}|+(c_{n}+\frac{\epsilon}{2})|{\rm Im}\zeta_{n}|+C_{\zeta}.\}$ .

Thus we can apply Lemma 2.9 to the function $G(\zeta_{n})\exp(\sqrt{-1}\epsilon b\zeta_{n})$ for the
region ${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$ and conclude that

(2.21) $|F(\zeta)|=|G(\zeta_{n})|$

$\leqq C_{\zeta’\text{\’{e}}}$ exp $(\epsilon(M+1)|\zeta_{n}|+a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+\epsilon b|{\rm Im}\zeta_{n}|)$

$\leqq C_{\zeta^{\prime},\text{\’{e}}^{\prime}}^{\prime}$ exp $(\epsilon^{\prime}|\zeta_{n}|)$ ,

for $\zeta\in_{J=1}^{n}UN_{\dashv-}^{(j)}$ , where $\epsilon^{\prime}$ is another arbitrary positive number and $C_{\zeta}^{\prime}$ is a

constant depending on $\zeta^{\prime\prime}$ and $\epsilon^{\prime}$ . Since this tyPe of estimate trivially holds

on $\{|{\rm Im}\zeta_{n}|\leqq\delta(\zeta^{\prime})\}\cap N(p)$ and on $\bigcup_{J=1}^{n}N_{-}^{(f)}$ , we conclude that given any $\epsilon>0$ ,

(2.22) $|F(\zeta)|\leqq C_{\zeta}$ exp $(\epsilon|\zeta_{n}|)$ for $\zeta\in N(P)$ .

On the other hand, we have, directly from (2.11) and (2.9), (2.19), for any $\epsilon>0$ ,

\langle 2.23) $|F(\zeta)|\leqq C_{\epsilon}\exp(\epsilon|\zeta^{\prime\prime}|+|\zeta_{n}|)+c$ lIm $\zeta^{\prime\prime}|+c_{n}$ lIm $\zeta_{n}|$ ).

\langle Here we used the assumption $K\subset\{x_{1}=0\}$ . Otherwise, the right hand side
would have contained the variable $|{\rm Im}\zeta_{1}|$ to a more great extent.) Now
consider the functions

$F_{j}(\zeta^{\prime\prime}, \zeta_{n})=\sigma_{j}(F(\tau_{1}(\zeta^{\prime\prime}, \zeta_{n}),$ $\zeta^{\prime\prime},$ $\zeta_{n}$ )
$,$

$\cdots\prime F(\tau_{m}(\zeta^{\prime\prime}, \zeta_{n}),$ $\zeta^{\prime\prime},$ $\zeta_{n}$)),
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where $\sigma_{j}$ is the i-th fundamental symmetric polynomial and $\tau_{k},$ $k=1,$ $\cdots$ , $m$

are the roots of equation $p(\zeta_{1}, \zeta^{\prime\prime}, \zeta_{n})=0$ in $\zeta_{1}$ . $F_{j}$ are well defined as single-
valued functions and entire on $C^{n-1}$ , since the set $\{\Delta=0\}$ is a removable
$singu]aJ_{\llcorner}^{\prime ity}$ for them. $F_{j}$ satisfy the estimates similar to (2.22), (2.23) with
the constants $c$ and $c_{n}$ replaced by $jc$ and $jc_{n}$ . Thus we can apply Lemma
2.10 to $F_{j}$ and conclude that

$|F_{j}(\zeta^{\prime\prime}, \zeta_{n})|\leqq C_{\epsilon}$ exp $(\epsilon(|\zeta^{\prime\prime}|+|\zeta_{n}|)+jc|{\rm Im}\zeta^{\prime\prime}|)$ .
As the roots of

$\lambda^{m}-F_{1}(\zeta^{\prime}, \zeta_{n})\lambda^{m-1}+\cdots+(-1)^{m}F_{m}(\zeta^{\prime}, \zeta_{n})=0$ ,

the original function $F$ satisfies the similar estimate

(2.24) $|F(\zeta)|\leqq C_{\epsilon}$ exp ( $\epsilon(|\zeta^{\prime\prime}|+|\zeta_{n}|)+c$ lIm $\zeta^{\prime\prime}$ )

\langle see, $e$ . $g.$ , Malgrange [11], Lemma 2.3). This is nothing but the desired
estimate (2.12). Thus, on account of Proposition 1.4, $u$ can be extended as a
hyperfunction solution to the whole $U$ . Due to Remark 8 after Theorem 2.1,
the extended solution is real analytic. $q$ . $e$ . $d$ .

REMARK 12. As the above proof shows (see, especially, (2.21)), it is
probable that we can replace $b$ in the assumption (2.9) by $b_{\epsilon}$ satisfying
$\epsilon b_{\epsilon}\rightarrow 0$ when $\epsilon\rightarrow 0$ .

REMARK 13. The condition $K\subset\{\langle\theta, x^{\prime}\rangle=0\}$ is essential. In fact, we
have tlne following example. Consider the wave operator $P(D)=\partial^{2}/\partial x_{1}^{2}-\partial^{2}/\partial x_{2}^{2}$

$-\partial^{2}/\partial x_{n}^{2}(n=3)$ . Put $\theta=(1,0)$ . Then the roots $\tau$ of the equation $p(\tau+\zeta_{1}, \zeta_{2}, \zeta_{n})$

$=0$ obviously satisfy the condition (2.9). Thus we can aPply Theorem 2.7
if $K\subset\{x_{1}=0\}$ . On the other hand, we have the following solution $u$ of
$P(D)u=0$ .

$1-k^{2}$

$u(x_{1}, x_{2}, x_{n})=--\sqrt{v}1\log\{(\frac{X_{2}}{v})^{2}+\frac{1}{1-k^{2}}(\frac{x_{n}+kx_{1}-\overline{2k}}{v}+k)^{2}\}$ ,

where,

$v=v(x_{1}, x_{2}, x_{n})=-(\chi_{1}+\frac{1}{2})^{2}+\chi_{2}^{2}+(x_{n}-\frac{1}{2k})^{2}$

.and $k$ is a constant satisfying $0<k<1$ . The singularity of $u$ agrees with
the following hyperbola near its vertex $(0,0, \sqrt{1-k^{2}}/2k)$ ,

$\left\{\begin{array}{l}x_{2}=0\\\chi_{n^{-X_{1}^{2}=\frac{1-k^{2}}{4k^{2}}}}^{2}\end{array}\right.$

Therefore if $L\backslash K$ has an interior in $\partial H$, we can construct a non-trivial element
ef $cl_{p}(U\backslash K)/d_{p}(U)$ modifying this solution. This example is obtained from
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the solution log $(x_{2}^{2}+x_{n}^{2})$ by means of the Lorenz transformation and the
conformal transformation combined with suitable translations. We can give
similar example also for ultrahyperbolic equations. For example, for $P(D)=$

$\partial^{2}/\partial x_{1}^{2}+\partial^{2}/\partial x_{2}^{2}-\partial^{2}/\partial x_{3}^{2}-\partial^{2}/\partial x_{n}^{2}(n=4\rangle$ , we can also aPply Theorem 2.7 if
$K\subset\{x_{1}=0\}$ . But we have the following solution

$u(x_{1}, x_{2}, x_{3}, x_{n})=\frac{1}{v}$ log $\{(\frac{\chi_{3}}{v}+\frac{1}{2})^{2}+\frac{1}{1-k^{2}}(\frac{x_{n}+kx_{1}}{v}+k)^{2}\}$ ,

where $v=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-\chi_{n}^{2}$ and $0<k<1$ . The singularity of $u$ contains the
following two dimensional variety defined by the equations

$\left\{\begin{array}{l}2x_{3}+(\chi_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{n}^{2})=0\\\frac{1}{k}x_{n}+x_{1}+(\chi_{1}^{2}+x_{2}^{2}-X_{3}^{2}-x_{n}^{2})=0.\end{array}\right.$

After an elementary calculation we can see that it has the following “ minimal
point”.

$(\frac{7a2}{3k3},0,$ $\frac{2a1}{3k3}a)$

where

$a=\frac{k(2+\sqrt{3(1-k^{2})})}{1+3k^{2}}$

I thank Professor K. Aomoto for his advice on these subjects.
We give a simple consequence of Theorem 2.7.
COROLLARY 2.11. Assume that the principal part of $p$ does not contain $\zeta_{n}$

and let $K=$ $\{(0, \cdots , 0, x_{n});-c_{n}\leqq x_{n}<0\}$ . Then we have $\mathcal{A}_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ .
PROOF. Obviously, every irreducible component of $p$ has the same

Property, and the condition on $K$ is compatible with that in Lemma 2.4. Thus
we can take as $(\theta_{\lambda}, 0)$ any direction which is non-characteristic with respect
to the component to aPply Theorem 2.7. In fact we have $d_{p}(U\backslash K)/d_{p}(U)=0$

if only $K$ is contained in a hyPerplane Perpendicular to a non-characteristic
direction $(\theta, 0)$ of $p$ . Thus we have proved a stronger assertion. $q$ . $e$ . $d$ .

REMARK 14. In spite of the above examples in Remark 13, we expect
that we can generalize Corollary 2.11 to those $K$ which may have interior
points. For some class of operators we can really do it employing Theorem
2.12 below.

To avoid unnecessary complication, we give the result in the fixed co-
ordinate system and for an irreducible $p$ . Recall that we put $\zeta=(\zeta^{\prime}, \zeta_{n})$

$=(\zeta_{1}, \zeta^{\prime}, \zeta_{n})$ .
THEOREM 2.12. Let $p$ be an irreducible pOlynOmial. Assume that $(1, 0, \cdots , 0)$

is a non-characteristic direction of $p(D)$ . Let $I\subset\{2, \cdots , n-1\}$ be a subset of
indices. We write $|{\rm Re}\zeta^{I}|=\Sigma_{i\in I}|{\rm Re}\zeta_{i}|$ . Assume that there exist positive
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constants $A,$ $b$ and $B$ such that we have the following estimates for $\zeta\in N(p)$ :
Given any $\epsilon>0$ there exists some constant $C_{\epsilon}>0$ such that

(2.25) $|{\rm Im}\zeta_{1}|\leqq\epsilon|\zeta^{\prime\prime}|+\epsilon|\zeta_{n}|+A|{\rm Re}\zeta^{I}|+b|{\rm Im}\zeta^{\prime\prime}|+C_{\epsilon}$ ,

(2.26) $|{\rm Re}\zeta^{I}|\leqq\epsilon|\zeta|+B|{\rm Im}\zeta^{\prime}|+C_{\epsilon}$ .
Then we have $d_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ .

PROOF. Let us employ the notations in the proof of Theorem 2.7. This
time without loss of generality we can assume that

$K=\{(x_{1}, \cdots x_{n-1}, x_{n})\in R^{n} ; -c_{n}\leqq x_{n}<0, |x_{f}|\leqq c, j=1, \cdots n-1\}$ .
Due to Seidenberg’s theorem and (2.25), we have, for the roots $\tau=\zeta_{1}$ of
$P(\zeta)=0$ ,

$|{\rm Im}\tau(\zeta^{\prime\prime}, \zeta_{n})|\leqq a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+C_{\zeta^{\prime}}$ if ${\rm Im}\zeta_{n}\geqq\delta(\zeta^{\prime\prime})$ ,

with some positive constants $a$ and $q$ satisfying $q<1$ and possibly depending

on $\zeta^{\prime\prime}$ . (Recall that for ${\rm Im} z\geqq 0$ we have $|z|^{q}\leqq\mu{\rm Re}(-\sqrt{-1}z)^{q}$ with $\mu=$

$1/\cos(q/2)\pi.)$ Thus in place of (2.20) we obtain

$|f_{F,\epsilon}(\zeta_{n})|\leqq C_{J,\epsilon}\exp(\epsilon(M+1)|\zeta_{n}|+(c+\epsilon)a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+C_{\zeta^{\prime}})$ ,

$|g_{J,\epsilon}(\zeta_{n})|\leqq C_{J,\text{\’{e}}}$ exp $((c+\epsilon)a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q}+(c_{n}+\frac{\epsilon}{2})$ lIm $\zeta_{n}|+C_{\zeta}.)$ .

Thus we can apply Lemma 2.9 and conclude that for any $\epsilon>0$ ,

$|F(\zeta)|\leqq C_{\zeta}$ exp $(\epsilon(M+1)|\zeta_{n}|+(c+\epsilon)a{\rm Re}(-\sqrt{-1}\zeta_{n})^{q})$ ,

with some constant $C_{\zeta^{\prime},\epsilon}>0$ . Thus we again obtain (2.22). On the other
hand, instead of (2.23) we have, for any $\epsilon>0$ ,

(2.27) $|F(\zeta)|\leqq C_{\epsilon}$ exp $(\epsilon(|\zeta^{\prime\prime}|+|\zeta_{n}|)$

$+cA|{\rm Re}\zeta^{I}|+c(b+1)|{\rm Im}\zeta^{\prime\prime}|+c_{n}|{\rm Im}\zeta_{n}|)$ ,

with some $C_{\epsilon}>0$ . Since the right hand side of (2.27) contains ${\rm Re}\zeta^{I}$ , we
cannot apply Lemma 2.10. Therefore we prepare another lemma.

LEMMA 2.13. Assume that an entire function $F(z, w, v)$ of the variables
$z\in C,$ $w\in C^{l},$ $v\in C^{k}$ , satisfies the following two estimates: For any $\epsilon>0$ , and
for any fixed $w\in C^{l},$ $v\in C^{k}$ , we have, with some $C_{\epsilon,w,v}>0$ ,

(2.28) $|F(z, w, v)|\leqq C_{\epsilon,w,v}\exp(\epsilon|z|)$ .
There exist Positive constants $a,$

$b$ and $A$ such that for any $\epsilon>0$ , we have, with
some $C>0$ ,

(2.29) $|F(z, w, v)|\leqq C_{\text{\’{e}}}$ exp ($\epsilon(|z|+|w|+|v|)+a$ lIm $z|+b$ lIm $w|+A|v|$ ).

Then $F$ satisfies another estimate: For any $\epsilon>0$ , we have, with some $C.>0$ ,
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(2.30) $|F(z, w, v)|\leqq C_{\epsilon}\exp(\epsilon(|z|+|w|+|v|)+b|{\rm Im} w|+A|v|)$ .
PROOF. (2.29) shows that $F$ is the Fourier-Laplace transform of an

analytic functional $\mu(Z, W, V)$ which admits the following set as a porter

$M=\{(Z, W, V)\in C\times C^{l}\times C^{k}$ ; ${\rm Im} Z=0,$ $|{\rm Re} Z|\leqq a$ ,

${\rm Im} W_{f}=0,$ $|{\rm Re} W_{j}|\leqq b,$ $j=1,$ $\cdots$ , 1, $|V_{t}|\leqq A,$ $i=1,$ $\cdots$ , $k$ }.

On the other hand, Proposition1.13’ of [12], Chapitre II shows that $(2.28)\mathfrak{l}$

and (2.29) imPly for any $\epsilon>0$ ,

$|F(z, w, v)|\leqq C_{\epsilon}\exp(\epsilon(|z|+|w|+|v|)+K_{\epsilon}(|w|+|v|))$ ,

with some $C$. $>0$ and $K_{\epsilon}>0$ . This means that $\mu$ also admits the following
sets as porters

$M_{\epsilon}=\{(Z, W, V)\in C\times C^{l}\times C^{k}$ ;

$|Z|\leqq\epsilon,$ $|W_{j}|\leqq K_{\epsilon},$ $j=1,$ $\cdots$ , 1, $|V_{i}|\leqq K,$ $i=1,$ $\cdots,$
$k$ }.

Without loss of generality we can assume that $\epsilon\leqq a$ , $K.\geqq b$ , and $K_{\epsilon}\geqq A$ . In
the following we will show that for any fixed $\epsilon>0,$ $M\cup M_{e}$ is polynomially
convex. Assuming this for a moment, we can prove the lemma in the
following way. By Th\’eor\‘eme 2.2 of [12], Chapitre I, we conclude that $\mu$ has
its porter in the intersection $M\cap M_{\epsilon}$ :

$M\cap M_{\epsilon}=\{(Z, W, V)\in C\times C^{l}\times C^{k}$ ; ${\rm Im} Z=0,$ $|{\rm Re} Z|\leqq\epsilon$ ,

${\rm Im} W_{f}=0,$ $|{\rm Re} W_{j}|$ $ $b,$ $j=1,$ $\cdots,$
$l,$ $|V_{i}|\leqq A,$ $i=1,$ $\cdots,$

$k$}.

This means that $F=\tilde{\mu}$ satisfies the estimate (2.30) with $\epsilon$ replaced, $e$ . $g.$ , by
$ 2\epsilon$ . Since $\epsilon>0$ is arbitrary, the proof will be completed.

Now it remains to show that $M\cup M_{\epsilon}$ is polynomially convex. Let
$P=(Z^{0}, W^{0}, V^{0})\not\in M\cup M_{\epsilon}$ . We give a polynomial which vanishes at $P$, but
does not on $M\cup M_{\text{\’{e}}}$ . Put

$N=\{(Z, W)\in C\times C^{l}$ ; ${\rm Im} Z=0,$ $|{\rm Re} Z|\leqq a$ ,

${\rm Im} W_{j}=0,$ $|{\rm Re} W_{j}|\leqq b,$ $j=1,$ $\cdots$ , $l$ },

$N_{\epsilon}=\{(Z, W)\in C\times C^{l} ; |Z|\leqq\epsilon, |W_{j}|\leqq K_{\epsilon}, j=1, \cdots , l\}$ .
Then, the complement $C(M\cup M_{\epsilon})$ is covered in the following way:

$C(M\cup M_{\epsilon})=CM\cap CM_{\epsilon}=S_{0}\cup S_{1}\cup S_{2}$ ,

where
$S_{0}=\{(Z, W, V);(Z, W)\not\in N\cup N_{\epsilon}\}$ ,

$S_{1}=$ { $(Z,$ $W,$ $V);|V_{i}|>K_{\epsilon}$ for some $i$ } ,

$S_{2}=$ { $(Z,$ $W,$ $V);(Z,$ $W)\not\in N_{\epsilon},$ $|V_{i}|>A$ for some $i$ }.
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First, let $P\in S_{1}$ . Assume, $e$ . $g.$ , that $|V_{i}^{0}|>K_{\text{\’{e}}}$ . Then the linear function
$V_{i}-V_{i}^{0}$ obviously fits our Purpose. Next assume that $P\in S_{0}$ . This time the
problem reduces to that in the space $C\times C^{l}$ of the variables $(Z, W)$ . In fact,
we will prove below that $N\cup N_{\epsilon}$ is polynomially convex in $C\times C^{l}$ . Assuming
this for a moment, we have a polynomial $\phi(Z, W)$ vanishing at $(Z^{0}, W^{0})$ but
not on $N\cup N_{\epsilon}$ . This $\phi$ is the desired one for our $P$. Now let $P\in S_{2}$ . We
can assume at the same time that $P\not\in S_{0}$ , hence $P\in N$. Thus we have
especiallly

${\rm Im} Z^{0}=0$ and $|Z^{0}|>\epsilon$ ; $|V_{i}^{0}|>A$ for some $i$ .
Without loss of generality we can assume that $Z^{0}=|Z^{0}|$ . We employ the
polynomial

$\phi(Z, V)=(\frac{Z}{|Z^{0}|})^{p}(\frac{\alpha V_{i}-A}{|V_{i}^{0}|-A})-1$ ,

where $\alpha=\overline{V}_{i}^{0}/|V_{i}^{0}|$ and $p$ is a positive integer specified later. Clearly
$\phi(Z^{0}, V^{0})=0$ . Assume that $\phi(Z, V)=0$ for some point $(Z, W, V)\in M\cup M_{\epsilon}$ .
If $|Z|\leqq\epsilon$ , then we have

$1<(\frac{\epsilon}{|Z^{0}|})^{p}|\frac{\alpha V_{t}-A}{|V_{i}^{0}|-A}|$ .

Therefore if we choose $p$ so large that

$(\frac{|Z^{0}|}{\epsilon})^{p}(|V_{t}^{0}|-A)>K_{\epsilon}+A$ ,

(which is possible because $|Z^{0}|/\epsilon>1$), then we have

$|V_{i}|>K_{\epsilon}$ .
Thus $\phi$ does not vanish at such points. If $|Z|>\epsilon$ , then the assumption
$(Z, W, V)\in M\cup M_{\epsilon}$ implies $(Z, W, V)\in M$. Hence $Z$ is real and $|V_{l}|<A$ .
Since we can assume that $p$ is even, the identity $\phi(Z, W, V)=0$ implies

$\alpha V_{i}-A>0$ , hence $|V_{i}|>A$ .
This is a contradiction. Thus $\phi$ does not vanish on $M\cup M_{\epsilon}$ .

Lastly we show that $N\cup N_{\epsilon}$ is polynomially convex. The complement
$C(N\cup N_{\epsilon})$ is covered in the following way:

$C(N\cup N_{\epsilon})=CN\cap CN_{\epsilon}=S_{00}\cup S_{01}\cup S_{02}\cup S_{03}$ ,

where
$S_{00}=$ { $(Z,$ $W);|Z|>\epsilon,$ ${\rm Im} W_{j}\neq 0$ for some $j$ },

$S_{01}=$ { $(Z,$ $W);|W_{j}|>K_{\text{\’{e}}}$ for some $i$ } ,

$S_{02}=$ { $(Z,$ $W);|Z|>\epsilon,$ ${\rm Im} W_{j}=0,$ $j=1,$ $\cdots$ , 1, $|{\rm Re} W_{j}|>b$ for some $j$ },

$S_{03}=\{(Z, W);|Z|>\epsilon, {\rm Im} Z\neq 0\}\cup\{(Z, W);|{\rm Re} Z|>a\}$ .
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The sets $S_{01}$ and $S_{03}$ are treated in the same way as $S_{1}$ employing linear
functions. The set $S_{02}$ is treated in the same way as $S_{2}$ . In fact, we can
assume at the same time that $P=(Z^{0}, W^{0})\not\in S_{03}$ , hence that $Z^{0}=|Z^{0}|$ and
$W_{f}^{0}={\rm Re} W_{j}^{0}>b$ . Thus we can employ

$\phi(Z, W)=(\frac{Z}{|Z^{0}|})^{p}(\frac{W_{j}-b}{|W_{j}^{0}|-b})-1$ ,

where $P$ is a positive even integer such that

$(\frac{|Z^{0}|}{\epsilon})^{p}(|W_{j}^{0}|-b)>K_{\epsilon}+b$ .

Finally assume that $P\in S_{00}$ . Assume ${\rm Im} W_{f}^{0}\neq 0$ . Then we can employ

$\phi(Z, W)=(\frac{Z}{Z^{0}})^{p}\frac{W_{j}}{W_{f}^{0}}1$ .

$\phi$ does not vanish on $N$ if we choose $p$ so that

$p$ arg $Z^{0}+\arg W_{j}^{0}\not\equiv 0$ mod $\pi$ .
Since arg $W_{j}^{0}\not\equiv 0$ mod $\pi$ , there exist inPnitely many such $p’ s$ . On the other
hand, if $\phi(Z, W)=0$ for some $(Z, W)\in N_{\text{\’{e}}}$ , then we have

$|W_{j}|=|W_{j}^{0}|(\frac{|Z^{0}|}{|Z|})^{p}\geqq|W_{j}^{0}|(\frac{|Z^{0}|}{\epsilon})^{p}$

Therefore if we choose $p$ so large that

$|W_{j}^{0}|(\frac{|Z^{0}|}{\epsilon})^{p}>K_{\epsilon}$ ,

(which is posSible because $|Z^{0}|/\epsilon>1$), then $\phi$ also does not vanish on N\’e.
Thus the proof of Lemma 2.13 is completed.

END OF PROOF OF THEOREM 2.12. We again employ the symmetric poly-
nomials and define $F_{j}$ in the same way. On account of (2.22) and (2.27) we
can aPply Lemma 2.13 to $F_{j}$ . Thus we Obtain: for any $\epsilon>0$ ,

$|F(\zeta)|\leqq C_{\epsilon}$ exp $(\epsilon(|\zeta^{\prime\prime}|+|\zeta_{n}|)+c(A+b+1)|\zeta^{I}|+c(b+1)|{\rm Im}\zeta^{\prime\prime} )$ ,

with some $C_{\epsilon}>0$ . Substituting the right hand side of the assumption (2.26),

we finally obtain: for any $\epsilon>0$ ,

\langle 2.31) $|F(\zeta)|\leqq C_{\epsilon}$ exp $(\epsilon|\zeta|+c(A+b+1)(B+1)|{\rm Im}\zeta^{\prime} )$ , for $\zeta\in N(p)$ ,

with another $C_{\text{{\it \’{e}}}}>0$ . Now put

$K^{\prime}=\{(x_{1}, \cdots x_{n-1}, x_{n})\in R^{n}$ ;

$-c_{n}\leqq x_{n}<0,$ $|x_{j}|\leqq c(A+b+1)(B+1),$ $j=1,$ $\cdots$ , $n-1$}.

Due to Lemma 2.5, we can assume that $U$ is a rectangular parallelepiped
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containing $K^{\prime}$ . Then, on account of Proposition 1.4, the obtained inequality
(2.31) $sh_{\lfloor}ows$ that every solution $u\in d_{p}(U\backslash K)$ can be extended as a hyper-
function solution to the whole $U$ , if $u$ is modified on $K^{\prime}\backslash K$. By Remark 8
after $T$ ]$beorem2.1$ and by the uniqueness of analytic continuation, we conclude
that $u\in d_{p}(U)$ . $q$ . $e$ . $d$ .

REMARK 15. The condition (2.25) obviously implies that the highest term
of $p$ does not contain $\zeta_{n}$ . But the latter condition does not imply(2.25) and
(2.26) in general. In fact $P(\zeta)=(\zeta_{1}+\zeta_{2})(\zeta_{1}+\sqrt{-1}\zeta_{2})+1(n=3)$ is a counter-
example. This example also shows that the condition of Theorem 2.12 posed on
every irreducible component is not stable under perturbation by lower order
terms. (Cf. Remark 10 after Theorem 2.6. I do not know whether the pertur-
bation by lower order terms really destroys the identity $\mathcal{A}_{p}(U\backslash K)/d_{p}(U)=0$

or not. In the case $K\Subset U$ the necessary and sufficient condition for
$\mathcal{A}_{p}(U\backslash K)/d_{p}(U)=0$ really depends on the lower order terms of $p$ . Therefore
we must be careful.)

We give a typical example satisfying (2.25) and (2.26).

COROLLARY 2.14. Consider the operator $P(D)=\partial^{2}/\partial x_{1}^{2}+\cdots+\partial^{2}/\partial x_{n-1}^{2}-\partial/\partial x_{n}$

correspOnding to the heat equation. Then we have $\mathcal{A}_{p}(U\backslash K)/\mathcal{A}_{p}(U)=0$ .
PROOF. We only have to verify the conditions (2.25), (2.26) on the poly-

nomial $p(\zeta)$ . We choose $I=\{2, \cdots , n-1\}$ . Then (2.25) is easily verified. We
are going to show that there exists a constant $B$ such that for any $\epsilon>0$ we
have with some $C_{\epsilon}>0$ ,

(2.32) $|{\rm Re}\zeta_{f}|\leqq\epsilon|\zeta|+B$ lIm $\zeta^{\prime}|+C_{\epsilon}$ , if $\zeta_{1}^{2}+\cdots+\zeta_{n-1}^{2}-\sqrt{-1}\zeta_{n}=0$ ,

for $j=2,$ $\cdots$ , $n-1$ . For the convenience of the notation we put $j=n-1$ .
We have

Put $\zeta_{j}=\xi_{j}+\sqrt{-1}\eta_{j},$ $j=1,$ $\cdots$ , $n$ . First assume that
$\xi_{1}^{2}+\cdots+\xi_{n-2}^{2}\leqq 3(\eta_{1}^{2}+\cdots+\eta_{n-2}^{2})+2(|\xi_{n}|+|\eta_{n}|)$ .

Then we have directly

$|{\rm Re}\zeta_{n-1}|\leqq|\zeta_{n-1}|$

$\leqq\sqrt{\sum_{j--1}^{n-2}|\zeta_{f}|^{2}}+\sqrt{|\zeta_{n}|}$

$\leqq\sqrt{4\sum_{j^{--1}}^{n-2}|\eta_{j}|^{2}+2\sqrt{2}|\zeta_{n}|}+\sqrt{|\zeta_{n}|}$

$\leqq 2\sum_{j=1}^{n-2}|\eta_{f}|+(\sqrt{2\sqrt{}\overline{2}}+1)\sqrt{|\zeta_{n}|}$

Thus (2.32) is satisfied with $B\geqq 2$ .
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Conversely assume that

$\xi_{1}^{2}+\cdots+\xi_{n-2}^{2}\geqq 3(\eta_{1}^{2}+\cdots+\eta_{n-2}^{2})+2(|\xi_{n}|+|\eta_{n}|)$ .
Let $a$ be a positive real number and $b$ be a real number. Then we have
obviously

$|{\rm Im}\$^{/}\overline{a+\sqrt{-1}b}|=\sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{2}}=\frac{|b|}{\sqrt{2(\sqrt{a^{2}+b^{2}}+a)}}\leqq\frac{|b|}{2\sqrt{a}}$ .

We apply this inequality, employing

$a=\xi_{1}^{2}+\cdots+\xi_{n-2}^{2}-\eta_{1}^{2}-\cdots-\eta_{n-2}^{2}+\eta_{n}$

$\geqq\frac{1}{2}(\xi_{1}^{o}\sim+\cdots+\xi_{n-2}^{2}+\eta_{1}^{2}+\cdots+\eta_{n-2}^{2})+|\xi_{n}|+|\eta_{n}|+\eta_{n}$

$>0$ .
Thus we have

$|{\rm Re}\zeta_{n-1}|$

$=|{\rm Im}_{1n-2n}\sqrt{\zeta^{2}++\zeta^{2}-\sqrt{-1}\zeta}|$

$=|{\rm Im}_{\Lambda}\sqrt{(\xi_{1}^{2}+}\cdots+\xi_{n-2}^{2}-\eta_{1}^{2}-\cdots-\eta_{n-2}^{2}+\eta_{n})+2\sqrt{-1}(\xi_{1}\eta_{1}+\cdots+\xi_{n-2}\eta_{n-2}-\frac{\ovalbox{\tt\small REJECT}_{1}}{2}\xi_{n})|$

$\leqq\frac{|\xi_{1}\eta_{1}+\cdots+\xi_{n-2}\eta_{n-2}\frac{1}{2}\xi_{n}|}{\sqrt{\xi_{1}^{2}++\xi_{n-2}^{2}-\eta_{1}^{2}--\eta_{n-2}^{2}+\eta_{n}}}$

$\leqq\sqrt{2}\frac{\sqrt{\xi_{1}^{2}++\xi_{n-2}^{2}}\sqrt{\eta_{1}^{2}++\eta_{n-2}^{2}}+\frac{1}{2}|\xi_{n}|}{\sqrt{\xi_{1}^{2}+}\overline{+\xi_{n-2}^{2}+\eta_{1}^{2}+\cdots+\eta_{n-2}^{2}+2(|\xi_{n}|+|\eta_{n}|+\eta_{n})}}$

$\leqq\sqrt{2}\sqrt{\eta_{I}^{2}++\eta_{n-2}^{2}}+\frac{\frac{1}{2}|\xi_{n}|}{\sqrt{|\xi_{n}|+|\eta_{n}|+\eta_{n}}}$

$\leqq\sqrt{2}\sum_{J=\iota}^{n-2}|\eta_{f}|+\frac{1}{2}\sqrt{|\xi_{n}|}$ .

Thus (2.32) is also satisfied if $B\geqq 2$ . $q$ . $e$ . $d$ .
Summing up, we have proved the following result: Assume that each

irreducible component of $p$ satisfies one of
I) the assumption of Theorem 2.6;

II) that of Theorem 2.7, 2); and
III) that of Theorem 2.12 (for a suitable coordinate system in $x^{\prime}$ -space).

Then we have $\cup q_{p}(U\backslash K)/A_{p}(U)=0$ . At this time, the more the number of
the components corresponding to II), the thinner the set $K$ must be.
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