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0.0. Let I'=1I"|(N) be the congruence subgroup of level N, i.e. the group
consisting of all two by two integral unimodular matrices r:(z 3) such

that ¢c=0 mod N. X being a multiplicative character modulo N, let S,(I’, {#}, X)
be the space of cusp forms of weight %, and let T(n) be the Hecke operator
acting on Sy(I7, {k}, X) (see 1.1 and 5.5 for the definition).

When N is square free, M. Eichler ([3], gave an explicit formula
for the trace tr T(n) of T(n) on S,(I, {k}, X) with several interesting applica-
tions, and he suggested ([3] p. 168-169) that it might be interesting to refine
the arithmetic of quaternion algebras so that one can handle the square level
cases or principal congruence subgroups. Since then several authors took
up the problem. For example, H. Shimizu generalized I" to be the higher
dimensional (Hilbert modular type) ones (still with square free level), M.
Yamauchi generalized I' to be the ones with level 4N’ (where N’ is odd
and square free).

In this paper, we have again taken up the problem suggested by Eichler.
We can give an explicit formula of tr T(n) for I'o(N) (and its normal sub-
groups of Fricke type) for arbitrary N and for their analogues obtained
from indefinite quaternions. In the following, we shall write down a ‘ready
to compute’ formula of tr T(n) for I'¢(N) and its normal subgroups I°(§) de-
fined as follows. Let M be a divisor of N, let §) be a subgroup of (Z/MZ)~,
and let I'=1'(h) denote the subgroup of I'((N) consisting of the elements

7= (g 3) such that a lies in ) modulo M. (For example, if we take N= M?

and H={1}, then I'(H) is conjugate to the principal congruence subgroup
I'(M).) Let X be a character mod M, also considered as a linear character of

I'() via y= (? §>'—>X(a). Assume 7 is prime to the level N and k=2, then,

for any (M and) b, the trace of T(n) acting on S,(I'(9), &, X) is given by the
following theorem.
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0.1. THEOREM.

tr T = U151 a9 2 bls, Nels, NH+0IT 1— ”p

D1V T (145) T )

Notation is: N= Hp" M= pr‘, n—Hp |9l=the cardinality of b; ¢
is the Euler function,

ie. o(M)=|(Z/MZ)"|,;
5t __{ 1 if k=2 and X is a trivial character
)= 0 otherwise ’

— |1 if nis a square
o(v/n) = ‘ 0 otherwise .
The meaning of s, a(s), f, b(s, f) and c(s, f) are given in the following.
Let s run through all the integers such that s>—4n is not a positive non-
square, hence by some positive integer f, s°>—4n has one of the following
forms which we will call the case (p), (h), (el) or (e23) respectively.

0 e (p)

S dp= <N (h)
ttm 0>m=1 (modd) .- (el) } ©
4m 0>m=2, 3 (mod4) - (€23) )

Let @ X)=@(X)= X%—sX-+n, and let x and y be the solutions of @(X)
=(. Corresponding to the type of s, put:

@M)?*|xf(sgn)* e ()
a(s)=1 Min {lxl, [y la—y|(sgn 0)'n' % e (h)
%(x’“‘1—;V’“")(x——y)“n“’”2 """ OF
For each s fixed, corresponding to its type, let f run as follows:
1,2 -, M ()
- all the positive divisors of ¢ - (h) and (e)
and
T (»)
bs, =1 S o((S—dny™/f) e h)
h(s*—4m)/f2)/w((s*—4n)/f?) et (o)

where ¢ is the Euler function, A(d) (resp. w(d)) denotes the class number of
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primitive ideals (resp. 1/2 of the cardinality of the unit group) of the order

of Q(~/d) with the discriminant d.
For a pair (s, f) fixed and a prime divisor p of N, let p—ord,,(f) and put

= {xe Z| ®(x)=0 (mod p***), 2x=s (mod p*)} ,
={xe A | O(x)=0 (mod p**r+)}

Let A= A(s, f, p) (resp. B=B(s, f, p)) be a complete system of representa-
tives of A (resp. B) modulo p**?, and for each p < (Z/MZ)*, put:

Ay, fp)={x| x€ A, x=7 mod p*}

By(s,f,p)={s—x|x€B, s—x=1 movd p#}

and
the cardinality | A,(s, f, p)] of Ay(s, f, p) if (s*—4n)/f2=0mod p

c’?(sy f’ p) = .
| An(s, £, DI+ By(s, f, p)| if (s*—4n)/f*=0 mod p.
Then

C(S: f) = Z X(y]) H Cﬂ(s! fy p) .
7€h pIN

If we assume that § is a direct product Ilfi[wf)p of §,C(Z/p*Z)* and X,
14
denotes the restriction of X to (Z/p*Z)*, c(s, f) can be given by:
(s, f)=11c(s, f, p)
pIN
with .
= Xp(x)) if (s2—4n)/f?#0 mod p

s, f, )= ,
LA +Z A, if (*—4n)/f*=0 mod p

where x runs over all elements of U A,(s, f, ) and ¥ runs over all elements
of \J B(Gs, f, ) K

=

7705 A proof of 0.1 will be given in the final section. We shall explain
the content of this paper as a way to it. In doing so, although our results
cover the groups obtained from quaternions, for simplicity sake, we pretend
as if we are considering as I' only arithmetic subgroups of GL,(@). In the
first section, a result of Shimizu is recalled (1.2. formula (1)). Let T be
the Hecke operator corresponding to a union & =\JI'a;I" of I'-double cosets.

Neglecting a limit process lim, the main part of tr 7 is given as a sum

$—0
> k(g)A(g) where g is running through the quotient £2/I" of the set £ of all
g i
the elliptic elements, hyperbolic elements fixing a cusp of I' or parabolic
elements in & modulo I'-conjugacy. x# and A are functions on £, and &
depends only on the eigenvalues of g By a simple Remark 1.4, we can
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replace the sum by a .similar one extended over-Q/[* i.e. rc(g)l*(g),
gsQ/T*
where I'* is a group normalizing I” in some nice way For example, putting

R;(NZ Z)’ we can take the un%t group R* as Ix for any I"(b)c:[‘o(N)

in 0.0. Then we observe (3.4) that A*(g)=2*(g’) if g is.locally equivalent to
g’, i.e. for each p, there exists x, € (RQZ,)* such that g’ =x,gx;' (if [*=
R*). Hence it suffices to know the quotient of £ by the local equivalence
and the number #(g) of I'*-conjugacy classes contained in the local equi-
valence class of g. Define an open subgroup 1I* of the adele group GL.(A4)
by U*= 1;[(R®Zp)”, then we have a natural injection

6: £2/local equivalence —> GLQ(A)/ﬁ*,

Using the strong approximation theorem and class field theory (3.5~3.8),
the number #(g) can be written in terms of the class number of the order
RN (Q+Qg) in the Q-algebra Q—I—Qg generated by g (whlch gives the term
b(s, f) in 0.1).

If £ contains no -parabolic elements, or the class number of R is one,
determination of Image @ can be completely localized, and (essentially) it
amounts to determine (up to Rj-equivalence) the optimal embeddings of the
orders of Q,+Q,g into R, for each p. Then, by the theorem of Chevalley-
Hasse- Noether [10], it is enough to consider a finite number of p’s. If R=

<NZ 7 , it suffices to check the p’s d1v1d1ng N, and the optimal embeddings

into the orders of the form ( » Z . Z) are completely determined in § 2, and
P y4

the computation for it corresponds to the term c(s, f) in 0.1.

0.3. The following notation will be used. (Some of them were already
used in 0.0~0.2.)

@ =the vacant set, Z=the ring of integers, @ (resp. R; resp. C)=the
field of rational (resp. real; resp. complex) numbers. For a non-zero real
number x, sgnx=1 (resp. —1) if x>0 (resp. x <0).

Let S be a set, then |S]=the cardinality of S. (However if xC, |[x|=
the ordinary absolute value.) If S is a subset of a group G, {(S)=the sub-
group of G generated by S. .

Let S be a ring with the unity 1. S*=the multiplicative group of the
invertible elements of S. For any positive integer », M,(S)=the ring of »
by r matrices over S, and GL,(S)=M,(S)*. If S is commutative, det s (resp.
tr s) =the determinant (resp. trace) of s for s M,(S). For subsets S;; (1=71,
J=7) of S, (Si;)C M,(S) denotes the set {s=(s;;) € M,(S)|si; € S;;}.

Let G be a group, H be a subgroup of G and Z be a subgroup of the
center of G. We call an element g of G is (H, Z)-equivalent to another ele-
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ment g’ of G, if there exist h< Hand z€ £ such that g=zpgh™'. If Z= {1},
we simply call H-equivalent and write g’r;g, i.e. g’f;g(:) 3he H, g’ =hgh™.

For a subset X of G, and an equivalence relation ~ in G, let X/~ denote
the quotient of X by ~, and sometimes let it denote also a complete system
of representatives of X modulo ~. If ~ is the relation ¥ defined above, we
write X/H instead of X/~.

1.0. Let n be a positive integer. Let & be a direct product of n copies
of GL,(R). Let $ denote the complex upper half plane, 9. the union of the
upper and lower half plane, and " (resp. 92 ) be the product of n copies of

) ORX)
9 (resp. .). For an element g (resp. z) of & (resp. ), let gP = Z‘“ Z‘“)
€ GL,(R) (resp. ¥ € §.) be its i-th ceordinate for i=1, -+, n. & acts on H*

] a(i)z(i)+b(i)
by g(z)(”:m, as an analytic transformation group. The connected
component of the identity &* of & consists of elements g=(g) such that
det g >0 for all i, and it is acting on . The center 3 of & conmsists of
elements g=(g%) such that all g are scalars, it acts on 92 trivially, and
it can be identified with the direct product of n-copies of R*. Let ¢: 8—@/3
denote the canonical projection.

Following the formulation of Shimizu we consider a triple {I', &, X}
satisfying the following three conditions.

(I'l) I' is a subgroup of & Put I'*=8G*N1I", then ¢«(I™*) is irredueible
and acting discontinuously on 9" in the sense of [7], and it has a funda-
mental domain of finite volume satisfying the condition (F) in p. 48.

(I'2) & is a finite union of distinct double cosets ['a;[’, a;€® (1=j=w).
a;I"a;' is commensurable with I' for any J.

(I'3) 2:<{&E>—GL,(C) is a unitary representation of the group (&) gen-
erated by &, such that the kernel /'y of X in I’ is of finite index in I.

1.1. Let {%&} = {ky, -, k,} be a n-tupple of positive integers. For a triple
(I, {k;}, X), the space of cusp forms S=S(I, {k;}, X) is the C-vector space of
functions f: 1 — C" satisfying the following three conditions.

(S1) f(2) is holomorphic on each connected component of 2.

(82) fra)=iy, 27 X()f(2) for any y<I', where

(g, 2)= T (cPzP+dP)*|det g9 |*”  for g .
) i=1

(S3) In case $"/I'* is not compact, f(z) is regular at every parabolic
point z of I'y, and the constant term in the Fourier expansion of f at z
vanishes. As is easily seen, S(I', {k:}, X) + {0} only if the following condition
(X-k) is satisfied.
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(X-k) X(e)= f[ sgn (ke for any e 3N 1.
i=1
Hence without any important loss of generality, we may and shall assume
that (X-k) is satisfied by (I, {&;}, X).
. d X .
Let ac &, I'al’=\J B,I" be the disjoint union, where d is called the
y=1

degree of I'al’. The Hecke operator T(I'al’) is a linear map on S defined
by

ey (T al’ )f)(2)=§11'(.3;1, 2X(BI(Br'2) .

For a formal sum 1}:;2 c;Fa,I"), c;eC, a,c &£, define T(n)=Xc,Ta;I").
=1

7 is called simple if each ¢; is 1. The purpose of this paper is to compute
the trace tr 7(). It is enough to do that when % is simple. Hence in the
following, we assume

(2 &‘:‘é I'a;l’ is simple, and E:j\jjll’ajl“.

By the general method of Selberg or Eichler, to compute the trace tr T(§)
is to compute a certain integral, and under certain cifcumstances the integral
is expressible by a sum extended over some conjugacy classes induced by I'.
We have such a kind of formula in the following cases; by Eichler [4] where
n=1 k;=2 and X is real; by Shimizu where k; > 2 (in case n=2, under
the mild assumption (F) on the shape of the fundamental domain of I'); and
by Saito [6] where n=1, k=2, r=deg X =1.

1.2. It reads:

Q) tr TE)=t+t/+t",
=31,
J=1
{ vol (92 /I") tr X(¢) I (sgn e<i>)ki(—%_—1) if ee3nTa,l +0
t.,f: i=1 s
0 if 3nTa,l'=0,
ZéEF: aj'l'a;\I'] if k=2, n=1 and ¥ trivial

" =2degé&= { J
0 otherwise,

t=—lims 3 k(g)A(g),
s—0 g=Q2/4
where vol (92 /") denots the volume of the fundamental domain 2 /I rela-

tive to the measure induced by dz, s in the formula of f is a complex vari-
able, the meaning of 2/.L, #(g) and A’(g) shall be given later on.
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Let £, (resp. 2,; resp. £,) denote the set of all elliptic elements (resp.
hyperbolic elements fixing the cusps of I"; resp. parabolic elements) in Z.
Put =4, if n>1, and =0,V 2,J 2, if n=1. Then in the terminology
of 0.3, L means the (I', 3 I")-equivalence, i.e.

glg e eednl’, rel’ st g=ergr,
and £/ denote a complete system of representatives of £ modulo L. Put
I'gy={rel'|%ce3nl st yrgr'=cg}.

Let {; and 7; be eigen values of g°. If n=1, g2, and x is a fixed
point of g, we can find t €@ such that #(x) =co. Then any parabolic element
u of & fixing x acts on 9. as t~'uf(z) = z+m(u) by some positive real m(u).
Finally let d(g) be the least positive value of m(x) when u runs through
I''(g). Then we put: ‘

- I — (=) (det g@)Hin it g 2,
1= . .
(2) k(g)=1 2Min {4, In} 17—, (det g)"M%(sgn {)F if g€,

_%A(Sgn Ykt ' if gef,,

sTitr X(g)tf’(g):SmF]-’ if g, g 2,
(d(g)/m(g))"** tr X(g) if ge2,.

We have tried to unify the expression of ¢ for the convenience of later
use. The following way is easier to understand:

(g =

t, if n>1
te+th+tp if n:1,
te=— 3 w(QU"(:3NI] 7 tr (g,

&g/~

3) 1=

== % (UL (g): 3NTT 7 trX(g),

Z8ln/L

b=tims, 3 @) e,

To replace L by something easier to deal with, let us introduce the
following subgroup 3, of 3.

@ Bi={e=(")3eV>0.

Then 3 is a direct product of {+1} and 3,, consequently [3NI": 3, ["] is
either 2 or 1 according as 3; contains 3 I or not.

1.3. LEMMA. Suppose 5 satisfies the following condition (I"4).
(r'y) G) If n=1, «(I'’(g) is commensurable with the group {«(g)) generated
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by «(g) for any g€ 2,. (i) If ee 3NT and =1, then e=1 or —1.
Put I'(@)={rel |ygr'=g} and
sTtr X(QU(8: B3N] if ge 2, g Ly

) BA:3nTxg=1"
Ce((2): (@1 M tr X(g) if g€y,

where [(I'(g): <(@P1=[c(I'(g): HIK«(&)y: HI™ with H=(I'(8)N<K(g.
Then

(2 t=—lims 3 #(2)(g),
0 g=Q/~

where ~ denote (I', 3, I")-equivalence.

PrOOF. By (I'4) (i), we have d(g)/m(g)="[cl""(g)): <«(g)>]1™*. Since xgx!
=cg, g€®, e 3 implies det e =(eP)2=1, the assumption (I'4) (ii) implies
e==+1. We separate the case (I) where there exists yel s.t. ygr'=—g,

and the case (II) where there is no y= 1’ s.t. ygr '=—g. Then we have
. [BNT:3,nI'] - Case (D
[(@): T = |
-+ Case (II).

If the trace trg of g is not zero, we can only have the case (II). In
particular, if ge 2,, then I'(g)=1I"(g). Consider the natural projection
p: 92/~ —8/. and let c(g) denote the cardinality of p~(g) for g€ 2/, then

1 .-~ Case (1)
BN :38,~A1 - Case (II).

Since  X(g) =[I"(): LI BNT:8:NTIX) and 3 w()X(g) =
3 c(@7'r(9)X'(g), we get the desired formula (2). i |

C(g)={

1.4. REMARK. Both of the assumptions (i) and (ii) of (/'4) are, as is
readily seen, automatically satisfied by all arithmetic groups I’ in which we
are mainly interested. The first of them might be satisfied by any I, but
we do not have a proof.

Now we briefly discuss the situation where I' is contained in the con-
nected component &* of G.

Let D, (0=v=2"—1) denote the connected compoment of 2, and D,=H".
Let S.=S.I", {k:}, X) denote the subspace of S(I, {k;}, X) consisting of the
functions f(z) having its support only on D,. If £ are contained in &*, S is
a direct sum of S,’s, and each S, is invariant by T(£). Let T,(€) denote the
restriction of T(¢) on S,. In general, there is no reason to expect that tr 7,(£)
is equal to tr Tw(§). However if there exists g&® such that gl'g'=I", g&g!
=&, X(gxg )= 1A(x) for any x=<&) and gD,=D,, then as a representation
of & T,(€) is equivalent to T.(é), and they have the same trace. Hence sup-
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pose {[', &, 1} satisfies the following.

(I'5) There exists a subgroup 4 of &, which normalizes I', & and ¥,
and permutes D, (0 <y =<2"—1) transitively.

Then tr T,(§) is equal to tr T,.(€), and any ef them, say tr T,(§) is given
by the following

@ trT&=2"trT().
1.5. LEMMA. Let {I', E, X, {k:i}, ['*} satisfy the conditions (I'1)~(I'3)
1.0, (I'4) 1.3, (X-k) 1.1 and the following (I'*) and (X-k*).

(I'*): I'* is a subgroup of @, which normalizes I', 5 and tr X(gxg™) = tr X(x)
for any x<{&) and ge I'*.

(X-k*) X(e)-——iInI(sgn ek for any e 3NT*.
=1
If [I'*:I'] is finite, then t in 1.2 is given by the following:

t:_lff;‘ SEF*:F][S/\F*:SJ\F*]"&,EZ £(8)A*(g),

/2

where X denotes (I'*, 3, N\ I'*)-equivalence, i.e. gX g @33, NT* rel*
such that g’ =ey~'gy, and 2*%(g) is defined by:

Ustr X(QII*(g): BN ¥ if gef, g 2,
Ce(*(2): (@I M trA(g) if g€ 82,.

PROOF. From the assumptions, it is easy to see that g X g’ implies
£(QA(g)=r(g)A(g’). Hence, let ¢(g) denote the number of ~ classes con-
tained in the £ class of g, thén %; #(QAL) = % c(QE(QA(8).

g< /i

= Q)

()=

To compute c(g), pick up two elements &;0,80;' (¢, € 3, N\ ['*, §; € ['*) from
A class of g and observe: &,6,8071~¢,0,80;' © *e€3;N\I", *r I’ such that
ee1'e,07'y 0,807y 0, =g s (8, N1), 6, I'6,1'*(g). Indeed, the first & is
obvious from the definitions. The second one holds because sei'e, € {1} N
B:NI'*) = {1}.

Now c(g)=[B.N\IT*: B.NT'1|I\I'*/T'*(g)|, and |'\I'*/T'*(g)|=[I"*:I"]-
[I'T*g): I '=[I'*: I'I[I'*(g): I'(g)]"*. If g is parabelic, [['*(g): I'(g)l=
[e(l*(g): (@B NT*:3NT]. Hence ¢(gA(g)=L[I*: T3 TI*:
B.NT'*]%(g), as wanted.

2.0. Let r be a Dedekind domain, and % be its quotient field. Let B be
a finite dimensional algebra over k.. A subset R of B is an r-order if firstly
it is a finitely generated r-module such that K@ k=B, and secondly it is a
subring of B containing the unity. Let K be another k-algebra and A4 be its
r-order. An embedding (=injéctivé k-homomorphism) ¢: K—B is called
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optimal with respect to R/A if ¢(K)N\R=¢(A). Since the restriction of ¢
to A determines ¢, it may be called, as Eichler’s original usage, optimal em-
bedding of A into R. We are particularly interested in the case where K is
a subalgebra of B generated by a single element, so let g be an element of
B which 'generates K as a k-algebra. Let C(g) denote the B conjugacy class
of g, i.e. C(g = {xgx'|x=B*} and for any r-order 4 of K, put C(g, 4)
={xgx | xeB*, xKx " R=xAx"'}. Then C(g) is the disjoint union \/{C(g, A)

where A runs through all the orders of K. Let I” be a subgroup of B* nor-
malizing R i.e. yRy™'=R for any y€I'. Two elements g€ B (1=1, 2) are
called I'-equivalent if there exists y €I" such that ygyr '=4g. Two embed-
dings ¢;: K—B (i=1,2) are called I'-equivalent if there exists y €I such
that @,(rgr=") = ¢.(9).

If furthermore, B is a quaternion algebra over %, i.e. B is central simple
over k and [B: k]=4, and g is not in the center &, then K= k+kg is exactly
the centralizer of g in B, and K is isomorphic to K’ =k-+kg’ if and only if
g is conjugate to g’ in B.

Let & be a subset of R, which is normalized by I'. Then assuming B
to be a quaternion over k, as is easily seen from the definitions, the follow-
ing assertions hold.

2.1. (i) Let Emb(g, £) be the set of all the embeddings ¢: K— B such
that (g € &. For g’ C(g) NE, define an embedding ¢, : K—B by ¢,(g)
=g/, then g'—¢, gives a bijective correspondence: C(g) \& =~ Emb (g, £).

(ii) Let Emb(g, £, R/A) denote the set of optimal embeddings ¢: A—R
such that ¢(g) . Then the above correspondence g’+— ¢, induces a bijec-
tion C(g, AA)N\E =Emb (g, &, R/A). v

(iii) Each Emb(g, &, R/A) is normalized by I', and the correspondence
g’ ¢, induces a bijection: C(g, A)NE/I ~Emb(g, &, R/A)/I.

- 2.2, In the rest of this section 2.2~2.7, we assume, besides the assump-
tions and notation in 2.0, that r is a discrete valuation ring, p=nr is its
maximal ideal, and B is a 2 by 2 total matrix algebra M,(k) over k. (i) For
an 7-order R of B, the following four conditions are equivalent.

(1) R contains a subset which is B*-conjugate to (6 ?,)::Kg 2) € R|
a, de r}

(2) R is B*-conjugate to (;v :) for some non-negative integer .

(3) R is the intersection of at most two maximal orders of B.

(4) R is either maximal or there exists a uniquely determined pair {R,,
R,} of distinct orders such that R=R, N\ R,.

If R satisfies one of the above conditions, it will be called a split order.
(ii) Let N(R) denote the mormalizer of R in B*, N(R)= {x= B*|xRx"'=R}.
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If R is split and v >0, then [N(R): k*R*]=2. If R has the form R=(;,, )

N(R) is generated by (2,, (1)) and k*R*,

PrOOF. (i) (2)= () and (4)= (3) are obvious from definitions. To see
3)=(2), let Ri=x;M,(r)x;' (i=1,2) be maximal orders, and R=R,NR.,.
Then x7'Rx, = M,(r) N\ x7'x,M,(r)x7'x,. By the elementary divisors theorem,

y2]
there exist u, v & M,(r)* such that xi'x,=u g grw,,)v with some integer p

and a non-negative integer v. Hence u‘lx;‘Rxlu:(;,, :) To see (1)=(4),

a.
suppose RD(S 2) Then, as is easily seen, R has the form R:(;,, P r)
with integers a, b such that y=a+b=0. Let R’ be a maximal order con-

C
taining R, then since it contains r 0 , it has the form R’/'= r_c p with
0 r p° r

a a—-y
some integer ¢ suchthat a—v=c=<a. Set Rl:<;—a f ) and R,= (;,,_a 5 .

Then R,\R,=R. If we replace any of R;, say R,, by some R’, then R, R’
is strictly bigger than R, that means the pair {R,, R,} is uniquely determined
by R.

(ii) Let R=R, "R, and x= B* be in the normalizer of R. Then x per-
mutes {R,, R,}, hence we have a homomorphism from N(R) to the cyclic
group of order 2. Since N(R;)=Fk*R; for maximal orders R;, the kernel is
obviously 2*R*.

Since (2_,, (1)> permutes (;,, ‘3 ») and M,(r), the above map is surjective.

2.3. THEOREM. Let r, k and B be as in 2.2, and R:(;v :) Let g be

an integral element of B not in the center k, K=Fk+kg and A be an r-order
of K containing g. Then there is a uniquely determined non-negative integer
o such that [A:r+rgl=T[r:plr. Let f(X)=X*—sX+necr[X] bethe minimal
polynomial of g over k. Put F= {Eer] f(E)=0 mod p*** and 2& =smod p°}.
Let F be a complete system of representatives of F modulo p*+%°, and put F' =
0
(S F /) =0mod p*07).. Define ge: KB, by 0= (Lt sTe) o
&eF and ¢y : K—B by %(g):(jr;?z -7 ) Pf(’?)) for ne F',

If n=%°(s®—4n) is a unit of v or y=0 (resp. not a unit of r and y>0) the
set {pe| E F} (rvesp. {pe | E€ F}\J{py| n= F'}) gives a complete system of
representatives of Emb (g, R, R/A)/R* defined in 2.1.

PROOF. It is a consequence of the following two Lemmas 2.4 and 2.5.

2.4. LEMMA. Under the same assumptions and notation of 2.3, let ¢: K—B

S

be an injective k-algebra homomorphism. Let ¢(g)= g 3) € R. Then tr ¢(g)
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=a+d=s and det (g =ad—bc=mn, ¢ induces an embedding of r+rg into R.
For such ¢, the following four conditions are equivalent.

(1) ¢ ts optimal with respect to R/A.

2) (r+e(@)Na’R+0 and (r+e(g)Na*'R=40.

(3) b, a—d e p®, c<= p* and furthermore, one of the following three con-
ditions holds: (I) be z°r*, (1) ce =***r*, (1II) neither (I) nor (II) holds, 1i.e.
be pott, ce ptt and a—d € nfr-.

(4) There exists u e N(R), such that ugp(g)u”:(__i_pf(é) STS) by some

solution £ 7 of f(§)=0mod p**?* such that s—2&=0mod p*.

PROOF. The first statement and the equivalence (1) & (2) & (3) are obvious.
‘Since (4) implies (3), it suffices to show (3)= (4).

Assume (I), i.e. be nr", put u:((l) n‘(-?’b> and up(gu = (x;;) € My(k).
‘Then u€ R* and x,=7r°. Put &=xy, then tr(x;;)=s implies x,,=s—§&, and
det (x;;) =n implies x,, = —x Pf(£), as desired. Assume (II), i.e. ¢ € z**°r*, put
o=(Y, ;) and op(go~ =(x,;). Then o€ N(R), xy=7"c € zr", hence (x;,)
satisfies the condition (). Finally assume (I, and put u=(J 1), ug(gu"
=(x;;). Then ue R*, and x;,,= —(a-+¢)+b+d = z°r* by the assumptions, again
reducing the problem to the case ().

2.5. LEMMA. Under the same assumptions and notation as 2.3, let ¢, ¢’ =
Emb (g, R, R/A) and o= <?r" (1)) Define °¢ by ‘p(g) =o¢@(g)o™'. Then we have
the following.

(1) ¢ is N(R)-equivalent to ¢’ if and only if ¢ is R*-equivalent to either
@' or °¢'. If v=0, N(R)-equivalence is identical with R*-equivalence.

(ii) Let &, S’eﬁ and @¢, @z be asin 2.3. Then ¢z is R*-equivalent to ¢
if and only if £=¢& mod p*+e.

(iii) Suppose n~*°(s’—4n) is a unit in v (vesp. not a unit in r), then @z is
R*-equivalent to °pz if and only if &§=s—& modp*** (resp. & =s—& mod p***
and f(&)=£0 mod prr2ett),

PROOF. (i) is obvious from (ii) 2.2. (ii): Suppose &=¢&’ mod p**°. Put
t=nrPE-&)ep’, u= (} 2) and u@(gu'=(x;;). Then ue R*, and direct
-computation shows that x,;=§’, x;,=n° hence (x;;) = ¢:(g) showing the if
part of (ii). To see the only if part, suppose ¢: is R*-equivalent to ¢g.
Since every element of R is upper triangular mod p*, if ue R*, n7°(upe(gu '—¢)
has the same diagonal entries as 7 °(¢:(g)—&) modulo p*, in particular £ =&’
mod p***. (iii): Suppose = **2f(£’) is a unit, then “¢q(g) satisfies the con-

dition (I) of (3) 2.4, and it is R*-equivalent to (—f;é,(?) 7;) Hence by the
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above (ii), ¢ is R*-equivalent to %¢;, if and only if § =s5—&’ mod p”**. Suppose
a~*OF(E) is not a unit. Let =7 and put u= <(1) D, wWoe(Qu ™t =(x;)).

Then u € R*, x,, =s5—& mod p**?, x,,= —a~“*Pf(£)+(28’—s)t mod p**°. Hence
if =7%°(s®*—4n) is a unit or equivalently =~?(2&’—s) is a unit, by a proper choice

s—&/ 7r">.

of t, #™?x;, can be a unit, then (x;;) is again R*-equivalent to (__n_pf(e,) %
Thus ¢g is R*-equivalent to %¢pe if and only if &=s—& mod p*** as above.

Finally' suppose neither 7~ ®*2f(£’) nor =~%°(s®*—4n) is a unit. Then again
looking everything modulo M,(p*), R* is generated by the elements of the

form uz((l) D and diagonal ones. Hence if veE R*, v’¢z(gv ™" =(3:;), the

above x,, = —n @*Of(&)+(26’—s)t mod p*** implies that #~°y,, can not be a
unit, thus ?¢s can not be R*-equivalent to ¢e.

2.6. COROLLARY. Under the same assumptions and notation as in 2.3, let
¢ denote a regular representation of K by some base of A.

(i) Suppose R is maximal, then o=Emb(g, R, R/4), and Emb(g, R, R/ A)/ R~
consists of a single element represented by ¢. —

(ii) Suppose v <1, then Emb (g, R, R/A)/N(R) is either vacant or consists
of a single element.

The analogue of the first statement is valid for more general (not neces-
sarily quaternion) algebras if we assume K to be a maximal field and 4 to
be its maximal order, as shown by Chevalley, Hasse and Noether. (ii)
is proved in Eichler [2], and which makes his ideal theoretic approach to
optimal embeddings possible.

PrROOF. (i) If A=r+rg,, then as mappings K—B, Emb (g, R, R/A) can be
identified with Emb (g, R, R/A). Hence without any important loss of gen-
erality, we may assume that p=0, and that ¢ is a regular representation by
the base {1, g} of 4. If R is maximal, i.e. v=0, then any £ €7 gives a solu-
tion of f(§)=0 p*, and any &’ is equal to & modulo »*. Taking £=0, we get
pe=e. (ii) If R is maximal N(R)=R*. Suppose v=1, and f(X)=0mod p”
has a solution. If s*—4n=0mod p, then f(X)=0 mod p has only one solution.
If s?>—4n=*=0mod p, then f(X)=0modp has two solutions. But in this case,
@e is N(R)-equivalent to ¢g by (iii) 2.5.

2.7. COROLLARY. Let H be a subset of v defined modulo p*, namely H is
a full inverse of some subset H of r/p*. Put Ex= {(x;)eR | xy, H}. Let g,
and F=F(g,v) be as in 23. If the discriminant s*—4n of f is a unit of r, or
v=0 (resp. not a unit of r and v>0), the set {ps| Ec FNH} (resp. {ps | £
FNH}YVY{py | ne F', s—y< H}) gives a complete system of representatives of
Emb (g, Ex, R/A)/R*.

PROOF. As we have already observed in the proof of 2.5, if (x;;)E R,
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ue R* and u(x;;)u"'=(y;;), then x,, =y;, mod p*. Hence (x;;) € &y if and only
if (¥:;) € &n, thus this corollary is an immediate consequence of 2.3.

2.8. Let k be a p-field in the sense of and B be the division qua-
ternion over k. Let v (resp. R) be the maximal compact subring of %2 (resp.
B). Let K=k+kg be a k-algebra of rank 2 generated by g, and 4 be a
maximal r-order of K. Obviously g is embeddable in R if and only if K is
a field and g is integral over 7, if that is so, since B* normalizes R, Emb (g,
R, R/A)/N(R) consists of a single point (identical representation). Hence, as
is well known and as is easily seen, Emb (g, R, R/A4)/B* consists of a single
point corresponding to the identical representation (resp. two points corre-
sponding to the identical representation and its transform by the prime ele-
ment of B) if K is ramified (resp. unramified).

3.0. In the rest of this paper, let 2 be a totally real algebraic number
field, and 7(k) be the ring of integers of k. For any place v of %, let k(v)
denote the completion of 2 with respect to v. If v is non-archimedian, let
r(v) and p(v) denote the ring of integers of k(v) and its maximal ideal. If
v is archimedian, let us use the convention that #(v)=%{%). Let m be the
absolute degree of k, i.e. [k:@]=m. Let B be a quaternion algebra con-
taining k as its center, and n be the number of archimedian places of %
where B k(v) is split. Assume B to be indefinite, i.e. n>0, and we can
arrange the set of all archimedian places {v(1), ---, v(m)} in such a way that
there is an isomorphism

7;: BQERw() — M,(R) for each 1 (1<i<n),

and B® k(v(1)) is isomorphic to the Hamilton quaternion for each : (n+1=1
<m). Let G denote a k-algebraic group such that the group of L-rational
points G is canonically identified with (B L)* for any field L containing k.
In particular G,w, is identified with (B® k(v))* for any v, and G,, is isomor-
phic to M,(r(v))* for almost all v. Let A=~%, denote the adele ring of &,
and G, (resp. B,) denote the adelization of G (resp. B). The center of B,

will be identified with k4, and G, will be identified with B}. Let G.= ﬁ Greviy
=1

and GZ be its topological connected component of the identity. As usual, we
consider G, as a subgroup of G4 (or of a partial product like G.) by the
diagonal embedding.

n
By the isomorphism 7;, II Grway is isomorphic to the direct product of
=1

n copies of GL,(R) which we write ® in §1. We shall identify ]fn[ka(i»
1=1
with & by z;, and consider G, as a subgroup of ®&. Then, for g=G,, gP=
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7,(Q) for i=1, ---, n. For example, let 3, be asin 1.2, and put k= {xesk* |
7.(x) >0} then B, G, =k;.

3.1. Let’s consider a quadruplet {ii, E, i, U*} satisfying the following
four conditions (Ul)~ (U3) and (U*).

(Ul) U is an open subgroup of G, (hence it contains GZ), and /(R N\N)GL
is compact.

(U2) £ is a union of a finite number of distinct U-double cosets Uall
(a € Gy).

(U3) %: (B>—GL,(C) is a unitary representation of the group (&) gener-
ated by & such that [I1: Ker A\ 1] is finite.

(U*) U* is an open subgroup of G, containing UG.. with the following
properties. [W*: U] <oco. If geW* then gllg™'=1, gég‘l =& and tr 72(gxg“)
=tr X(x) for any x & <E>.

Set I'=UNGy, I'*=U*~G,, &=25G,and X to be the restriction of X
to (&). Then, if & is not vacant, {I’, &, X, I'*} satisfies (I'1), (I'2), (I'3) in
1.1, (I'4) in 1.3 and (I'*) in 1.5. ‘

PROOF. [ is commensurable with G, If B is a division quaternion,
$*/I'* is compact. If not, I'* is commensurable with the Hilbert modular
group for which the condition (F) is well-known. (I'2), (I'3) and (I'*) follow
directly from (U2), (U3) and (U*) respectively. As for (I'4), we may assume
n=1 and $*/I'* non-compact, hence B= M,(@). Then [ is commensurable
with SL,(Z) where (I'4) is certainly true.

3.2. Let k; be n-tuple of positive integers, and we again assume the con-
dition (X-k) in 1.1 and (X-k*) in 1.5 for the above {7, {&}, X, I'*}. Now &
being the union &=\ I'a;l" and é=X1"a;l’, T(§) is operating on S(I', {&;},
X). Note however that the number of I'-double cosets in & is not nessecarily
equal to that of U-double cosets in E. The condition for HallNGy=Tal’
will be discussed in 3.7. By 1.4, to compute tr 7(£) is to compute X £(2)A*(g)
with g running through 2/%. £

To reduce the sum ijc(g)l*(g) to some easier form, we introduce a k-
equivalence relation ~ in G, by: gy g e3xe G, ec3,NI'* such that
g’ =exgx~'. For any subgroup B of G, we call g is B-equivalent (or B-
conjugate) to g/, if there exists x =% such that g’=xgx™'. For any subset
X of G,, let X/B denote the quotient set. Let Clg(g) denote the B-conjugacy
class of g i.e. Clg(g) = {xgx~'| x=B}. For simplicity, we write Clg,(g) = C(g)
and CIGA(g)”:C(g) in the following.

3.3. LEMMA. Q/% is a disjoint union of 5 NC(g)/I'* with g running
through .Q/rkv. Consequently, the sum %}/c(g)l*(g) appeared n 1.5 is given by:
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2 e(QA¥g = Zg) (&) § A*(g’)

where g is running through .Q/f; and for each g, g’ is running through
ENC(e)/T*.

PROOF. The equality & N\C(g)=2C(g) is obvious. Since g, is I'*-
eqgivalent to g, only if g, £ g,, and g, X g, only if g, is k-equivalent to g, it
is obvious that \UE NC(g)/I* covers 2/% and C(g)/[* is disjoint to
C(gz)/f’* if g, g, R2/k and g, #g, It suffices to show that two distinct
elements of \JC(g)/I'* is not £ equivalent. Let x'g,x, £ x7'g,%,, then they
are k-equivalent and g, =4g,. Thus there exists e€3,\I™* and y = '* such
that x7'g,x, =ey 'xi'gix,7. Hence €< {1} N3, = {1}, they are I *-equivalent.

3.4. LEMMA. Let g8, and T be the centralizer of g, in G. Let
6 : C(go)/I'*—C(gy)/l* be a map defined by: 0: Clp(g)—Clu(g). Let §=xgx"
e C(gy), x<€ Gy

(i) Cly(@) is in the image of 6 if and only if G,N\WxT,+0. Let #(9)
denote the cardinality of 0 '(Cly(8)), then

Q) =I"\WxTyNG,/T,|.

(ii) If g, is either elliptic or hyperbolic (resp. parabolic) put A(Cly(8))=4(8)
=57 Tunx W s B Nx W] tr 1(8) (resp. [i(Tena™ %) : <e( o)y tri(8)).
It is well defined. Looking 2* as a function on C(go)/I'*, we have 2*=2108.

(ili) Consequently, > A*(g’) in 3.2 is given by: gZ x(ghH= gﬁ(g)z(g) where

F:4

<
g runs through Emé(g)/ﬁ*.

PROOF. Let g=x80x7" &= 18x:'<€ C(g,). Clp(g)=Cle(g,) if and only
if xeWxxT, If x, x,€G;, Clp(g)=Clp(gy) if and only if x,&'xT,.
Hence (i) is obvious. Let g, £2.\J2;. If we replace x in [T,Nnx"U*x:
ENnxU*x] by some element x/ in W*xT,, then the value does not change.
Hence 1 is well defined as a function on C(gy)/il*. If Cly(8)=0(Cl(g) with
g=xg,x"Y, x& G, then [TyNx Wkx: XN\ x " Wex]=[xT x ' NN X N\U¥] =
XTx NG N BNG AW =[T*2): 3N I'*]. Hence A(g)=1*(g) i.e. A*
=406, If g, 2,, the proof is similar. (iii) is immediate from (i) and (ii).

3.5. Let N denote the reduced norm map N:G—GL,;, and also the in-
duced map N: G,—(GL,),=Fk}; of adele groups. Let G° be the kernel of N,
then the strong approximation theorem holds in G [1], namely GP’GY is
dense in G9. If B is an open subgroup of G, containing G&, then G,B con-
tains G¥P, hence G,B is a normal subgroup of G, and G,/GB=
N(GL)/N(G,)NB). NG, consists of all the ideals a=(a,) =k} such that
Gy > 0 for all 1>n, and N(G,)=k* N\ NG, [1].

For any algebraic group G and an open subgroup ¥ of G, the number
of (G;, B)-double cosets |G,\G./B| is finite (Finiteness of class number!).
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We put he(B)=|G,\G,/B|, and abbreviate G if it is fixed. Thus A(B) = hs(B)
=[N(GL): MG)NB)]. | )

3.6. LEMMA. Let B be an open subgroup of G, containing G.. Let H be
a subgroup of G4 and H be a normal subgroup ofﬁ contained in G,. Suppose
|B\BH/H| is finite, then

|Ge NB\BH N Gi/ H| = ho(B)7 [k : k* N(BH)] | B\BH/ H|.

PROOF. Since BG, is a normal subgroup of Gy, %Gkﬁ is a subgroup nor-
malizing BG,. The index r:[Gk%ﬁ: G.8B] is given by; r=[G,: GBI Gy:
G, BHT = h®)[ky: i*NBH)I . Let {g, -, g} be elements of A which
generate %ﬁGk over BG,. Since BH, and any of G,Bg;, hence %ﬁm G.Bg;,
is a union of (B, H)-double cosets, %\%ﬁ/H is bijective with the disjoint

union O %\%ﬁ NG.Bg;/H. Now, the following two bijective correspondences
imply :):r formula.
B\BA NG, Bg./H= B\BANGB/H =~ G nB\BANG,/H.
3.7. COROLLARY. (i) In the notation of 3.4, if #(8) +0, then:
#(8) = ho(TaN x " WDhWM*)'[k7 : B NU*T,)].

(ii) If B’ is an open subgroup of G, and B is a subgroup of B’ of finite
index, then:
(B NGy BNG,]=h(B)h(B)[V": B].

(iii) Let a< G, Then we have (1) & (3) & (4) & (5) = (2).
1) UNall=Ual’, 2) G.n\Uall=Tal’,

(3)  degI'al =deglall, @ hW)=hUNaUa),
(5) ENW)=kFNUNaUa).

Proor. (i) If #(8) +#0 i.e. W*xT, NG, +0, we may assume x< G,. Then
#(8) = | T\UW*ATy N Go/ Ti| = | T\U*xT s~ N Go/xTyx"*|.  Apply 3.6, by taking
P=1* A=1T,x* and H=xT,x"".

(i) In 3.6, take =%’ and H={1}. (iii) By the definition, deg I'al =
[I':T'"a'Ta], degllall=[U: U a Ua], hence ‘(1) = (3)’ is obvious. ‘(3)
& (4)’ is a special case of (ii) above. ‘(4) & (5)’ is by the definition. To see
‘)=(2)’, we have: (1) e |[M\Uall/I'|=1, 2) = |['\UallNG,/I"| in one hand,
and: 1| MN\Uall NG/ T | =M\ Uall N UG,/ T < |[M\Uall/I'|, hence (1) = (2).

3.8. LEMMA. In the same notation as 3.4, put K="k+kg, (i) Then K is
the centralizer of g, in B, hence T,=K* and T,=K} Put d(g,)=[k}:
BXN(K)NW*)]. (i) If g, is either elliptic or hyperbolic, then d(g,) =1. Hence
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£(8) = he(W®) he (T, N xW*x), and 6: C(g)/['*—C(g)/T* is surjective. (iii)
Assume g, is parabolic, and NW*) contains r(v)* for any v, then d(g,) =<
Cka: (R)RTIr(v)*]. If the class number h(k) of k is odd, d(g,)=1, and 6 is
surjective. In general, 6 is not surjective.

PROOF. (i) g, is elliptic if and only if K is a totally imaginary quadratic
extension of k. Suppose that is so, then by class field theory, the Galois
group Gal (K/k) is isomorphic to k5/k*N(K %), hence d(g,) =1 or 2. If d(g,) =2,

k*N(K ;) D NU*) D N(G.,) D ﬁ k%q. Hence v(1) is unramified in K for i=1, -+, n
=1

(cf. Proposition 14, p. 277). It is a contradiction to our assumption that
K is totally imaginary. g, is hyperbolic and fixing a cusp of I" if and only
if B is isomorphic to M,(k) and K is isomorphic to kB k. Suppose that is so,
then T is a split torus over k, hence the restriction of N to T, is already
surjective to kj. Finally g, is parabolic if and only if B is isomorphic to

M,(k) and g, is B*-conjugate to (8 z), hence K==Fk+kg, is conjugate to
k+k(8 3) Then N(K ) =N(k3) =Fk;%. Thus we have d(g,) =Lk} : (k3)%* NUI#)]

as wanted.

4.0. Let %, r(k), B be as in §3, and R be an 7r(k)-order of B. Letabe an
integral two-sided ideal of R, i.e. ais a finitely generated 7(k)-module in R such
that a® k=B and RaRCa. Let S(a) denote the set of all the non-archimedian
places where a,=a@r(v) is not equal to R,. Then the quotient ring R/a is
canonically isomorphic to vE];[(a)R,,/a,,, and we shall identify the one with the

other. Let o0: R—R/a (resp. 0,: Ry—R,/a, for vES(a); resp. osw: vel_Imon

— TI R,/a,=R/a) denote the canonical homomorphism. Let X°:(R/a)*—

veS(a)
GL.(C) be a unitary representation of the unit group (R/a)* and X) be its
restriction to (R,/a,)*. For g=(g,) € G, with d,(g,) € (R,/a,)*, we put 1*(g)
= H)Xﬁ’,o oo(go). We put I* =TI Ry and let £* be a finite union of U*-double

veS(a
cosets.

Suppose there are given a normal subgroup b of (R/a)* and a subgroup
b Of Go/GE Let © =&Y, b“):@S‘“’Xué}(a)@” X &, be a multiplicative semi-
group in B, defined by: &g, =g:h), &, =R, for non-archimedian v & S(a)
and ©,=0:'(Y) where 0.: G.— G./G% is the canonical homomorphism.

Now we put U=U*"\&, E=Fx* NS and % to be the restriction of X* to
<§ >. Then, as is easily seen, the quadruplet {ll, g , JZ, *} satisfy the condi-
tion (U.1)~(U.3) and (U*) in 3.1. Finally we put I'=UNG;, =5 NG, I'*
=1* G, and X to be the restriction of ¥ to <(Z>. Then {I, &, %, I'*} satisfy
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(I't)y~(I'4) and (I'*) in § 1.

4.1. For x=(x,)e G, let x"'Rx denote the 7(k)-order of B determined
by (x"*Rx), = x3'R,x, for any v. Let g€ 2, K=~Fk+kgand C(g) ={xgx ! |xEG,}.
Noticing the fact (x 'RxN\K),=x;'R,x, N K, for x€ G,, it is easy to esta-
blish the following.

(i) For g=zxgx'e C‘(g)mg, the r(k)-order x"*Rx "\ K of K is independent
of the choice of x, so we write 4(g")=x"'RxnK. A(g’) is an r(k)-order of
K containing g&. For an 7(k)-order 4 of K, put C(g, )= {g’ = C(g) | A(g") = A}.
It is normalized by U* and it is vacant if g& A.

(i) C(g HNC(g)=C(g A= {xgx |x€ Gy, x ' RxnK=4}. &N C(g)/li*
(resp. & NC(g)/I*) is a disjoint union &Aj & nC(g A)/T* (resp. & NC(g, A))T'*)
where /A runs through all the r(k)-orders of K containing g.

(iii) Since Emé(g, A) is normalized by I1*, we can consider the restric-
tion of # in 3.4,

0: 5NC(g A)/I* —> 5 NC(g, A)/li*.
Let g £ C(g A). If g is either elliptic or hyperbolic, i(g’) is given
by:
Ag)=s[A*: r(R) ] tr X(g’).
By 3.7 (i) and 3.8, #(g’) is given by:
MA)/HR) if g is either elliptic or hyperbolic,
WA)/h(k) if g is parabolic, N(R;) Dr(v)* and h(k) is odd.

4.2. (i) There exists a finite set S of non-archimedian places with the
following property. If ve S, then a,=R,= M,(r(v)), (hence &,=R,, X, is
trivial) and ¥ N\ Co(g) =R, Co(g) where E¥ (resp. Co(2)) is the projection
of &* (resp. C(2)) to G

(ii) Let = (resp. Cs(g, A); resp. %) denote the projection of & (resp.
C(g, A); resp. U*) to Gg= HSG“”" Then, by (i) 2.6, the projection g’'—gs=

#e)=

Hsgv induces the following bijection :
ve

Q) ENC(g A)/*x = EsnCs(g A)/1%.

(ili) Suppose &5 is a direct product Sg= Hs@”’ we have a natural bijec-
tion (2) and, by 2.1, another bijection (3):

A

@ EsnCs(g D/ T(EENS.NColg D)/ER;,

B E5n6,NCulg, N/R; = Emb (g, 55 NGy, Ry/A2)/B; .
Combining, the above (1), (2) and (3), if g—g5—(&gs)ves— (Yu)ves, then



Explicit formula of the traces of Hecke operators 75

X(g’) is given by:
@  Ug)= II X00,00,8).
veS(a)

(IV) FOI‘ ”Ef), put @77 = @Z'(a) >< 651,_3](: )Rv X @W, @gv(a) = a_l(v). Then @g —= ];.!:363

and &= Ur)@” is a disjoint union. Suppose ) is in the center of (R/a)*, then
n<
each ©” is normalized by U*.

Hence we have:

() &snCs(g A/ U T Emb (8, F¥NGL R/40)/R; .
ﬂt

vES
Let c(n, v) denote the cardinality of Emb (g, £ \&7, R,/A4,)/R;, then
©®  Strig)=3 tr (- ()
s v=

where g’ runs through E'mé(g, A/,

4.3. If g is either elliptic or hyperbolic, then there are only a finite
number or r(k)-orders containing g in K. If gis parabolic, there are infinitely
many of them. We shall see that it is enough to consider only a finite number
of them. We may assume that 2=, B::Mz(Q)"and ECRCM,Z). Since ~ is
simply the GL,(Q)-conjugacy, we have gr;g’ if and only if det g=det g’ for
any g, g < £2,, and the deternimation of .Qp/f;/ is trivial. Let g £, then
its determinant is a square of its eigen value {, det g={% Put y:(g (1) )

and z=2z()=C¢+y, then g is GL,Q)-conjugate to z. A Z-order 4 of K=
Q-+Qy contains z if and only if it has the form A=4,=Z+Z(y/t) by some
natural number f. Hence & N C(g)/I’* is a disjoint union of &NCZ(Q), 4,)/R*
for t=1,2,---. Put

(1) E=Emb(y, R, R/A)/R*, E,=E)=Emb(z(Q), Z, R/A)/R"
and
E;{=E{Q)=Emb (2(Q), R, R/A)/R*  for t=1,2, .

Our purpose here is to determine E,({) for any { (det £,)® and any ¢,
then ENC(g, A,)/B* = {o(2); p=E;}. Let’s take any { and fix it for a moment.
For any ¢ € E, define the embedding ¢;: K—B as

2 D =L+1d(y).

Then ¢; < E; and, as is easily seen from definitions, the map ¢—¢; induces
a bijection EXE;, i.e. E;={¢;; 4= E}. Hence, as a principle, if we can
determine E, then we can determine Ef, and E, ={p € E;; ¢(z) € 5} as a subset
of E;. In particular, if g€ £ N\C(g, 4,), then g={+t)(y) by some ¢<E,
hence I'*(g)=@Q+QNR*=(Q+QY(M)NR*=(A;) =1+, (8>
= A+ (). e
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@) [™*(g): d(gHI=1|C]".

Hence substituting [3N1*:3,\1']J=2 and the above (3) into the formula
(3) in 1.2 (modified by 1.5) we get

= p/~

@ fp=—lims[I™: F][Smf*:&mF]‘*g > w(g)ax(g)

=—[R*: 1] ?!Cl((sgn OF/4) lims 3347 3 ol Xool+y)

¢=£t
where { runs over (det £2,)"%
To make the sum 3 finite, we choose an integer m with the following
13
properties.

(5) If g=g" modm, then “X(g) =X(g")” and “g< ¥ if and only if g/ &".

Since W* is open, it is certainly possible to find such m, (for example, we
have chosen M in 1.0 as m here) and we fix it for once for all. Then if
t=umodm, and ¢ <E, then ¢, E, if and only if ¢, E,, in particular

= 3 ,and
PSEUL) @CEu(])

6)  t,=—[R: IISICI6en VA 3 triopl+y).
14 1=1 ¢=E¢({)

If (RY=1, N(R;)Dr{), 0: C(g)/f*aé(g)/ﬁ* is surjective by (iii) 3.8, or
if X is a trivial representation then by an obvious reason, we can replace
the global sum >} by the following local sum. If &s=1I&,,

¢

vES

(7 %) tr X(¢(£) = h(R)“DEIS ; tr X350 0,0 ()

where ¢, is running through Emb (g, £¥ "\ S,, R,/ A,/ Rz:.
If b is in the center of (R/a)*, then

®  Strle@)= Tt 1’0 ILIEmb (g 5F N0y (n), R/AN/RS|.

4.4. LEMMA. For a subgroup B of G4, and an element a < G,, let B(a)
denote the subgroup BN\ a 'Ba.
(1) If a« =@, then the following four conditions are equivalent for U=Ux &,

1 MW=u*a)l, (2 Wall*NS=Uall,
(3) Wrall*=U*all, 4) [ Uxa)]=[U:Wa)].

(i) If a =SNG, satisfies one of the above (1)~(4), and if h(N)= hW(a)),
then any of the following holds.

5 WWaUNSNGy=TIal’, 6)  A*)=hUxa)),
) deg I'al’ =[11*: ¥(a)].
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-

Consequently putting E* =W*I"al'U*, we can recover I'al as B, i.e. E*N\SNG,
=lal. '

PROOF. (i) is elementary. (ii) (1) implies UW*all* A& =Uall by (i). By 3.7
(iii), ‘A() = h(W(a))’ implies Wall NG, =T"al’, and deg ['al’ =[U1: W(a)] which
is equal to [*: U*(a)] by (4).

Since deg ['al <deg R*aR* <[U*: W¥a)], (7) implies (6).

4.5. LEMMA. Let h(r(k) (resp. D(k/Q); resp. {,) denote the class number
(resp. discriminant over Q; resp. zeta function) of k. Let S(B) denote the set
of all non-archimedian places where BRk(v) is a division algebra, and n(v)
denote the cardinality of r(v)/p(v). Finally let R, be any maximal order con-
taining R, then the volume of the fundamental domain of R* is given by:

1) vol (9% /R*) = (n®*™ "h(R))™122"*=™ 1 D(k/Q)*/*h(r(k))Z ,(2)
xvels‘{m(n(w—l)H[(Ro)s t R3]

If h() = h(*)(=h(R)), then vol (H:/I)=[R*: I']vol (HL/R*) is given by:
(2 vol(9z/[N=[U*:UJvol (P2/R").
PROOF. By Appendix,

vol (9L /R§) = (a*""h(R,))~ 122"~ ™*1 D(k/Q)**h(r(k)){ k(Z)%EB)(n(v)—l) .

We simply multiply it by [Rs : R] which is equal to A(R)'A(R)II[(R,)s : R]
by 3.7 (ii). (2) is immediate by 3.7 (ii).
4.6. THEOREM. Let everything be as in 4.0. Let {l'a;[" |j=1, -+, u} be

the set of distinct double cesets contained in 5 and let &€= Zu)FaJT’. Suppose
J=1

B is not isomorphic to M,Q). Then the trace tr T(E) of the Hecke operator
T(&) on the space of cusp forms S(I', {k}, X) is a sum tr T(E)=t+t as in 1.2,
and the each term is given as follows.

»  r=34,
CR*: I vol (91 /R*) tr 2(e) T (sgn eys( B~ 1
i=1 T
tj= if Lo, +0
0 if k* Ao, =0

and vol (% /R*) has been given in 4.5.

i-

A _ X . 1 Cf ! fi-l IN1=-k;/2 h(A) C(gy A)
2 t=[R*:1 B o VR N1~ kil
@ : ]gegzli' 2 = Ci—m (det g°) %3 WR) [A*:r(k)]

and c(g, A= tr X(g') where g’ is running through Er\(f‘(g, A)/ﬁ*.
gl
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S being a finite set of non-archimedian places defined in (i) 4.2, if Ss=
1'[861, as in (iii) 4.2, (in particular if §=(R/a)* and I' = R*"), then:

® g H=tr IL TR0 pi8),

where @, is running through the set Emb (g, £¥NS,, R,/A)/R:. If % is in
the center of (R/a)* as in (iv) 4.2, then

@ g A= Ztr x°(7) I |Emb (&, £¥ N 05'(n), Ro/ A,)/R; ).

All the notations have been given, we will briefly repeat the ones not
appearing in 4.0. 7, (k)= {esr(k)* | P >0} ; £2.=the set of elliptic elements
in &; g~g e leer(k), FxeG,, g =exgx™t; {{i, 7} is the set of eigen values
of g°. A is running through the 7(k)-orders of k+kg containing g. h(A4) (resp.
h(R)) denotes the class number of A (resp. R). Emb (g, Ef¥N\&,, R,/ A,/ R
denotes as in 2.1 (ii), a complete system of representatives of R;-equivalence
of the optimal embeddings ¢; A4,— R, such that ¢(g) € £¥ N S,.

PROOF. (1) is a repetition of (1) in 1.2. ¢ in 1.2 can be converted to the
right hand side of (2), by 1.4, 3.3, 3.4 (iii), 4.1 and 4.2 (i) applied in this order.
(3) (resp. (4)) is a consequence of (ii) (resp. (iii)) 4.2.

4.7. THEOREM. Let everything be as in 4.6, except that here we assume B
is isomorphic to M,(Q), hence the argument of 4.3 is applicable. Then tr T(§)

=+ +t7, ' is giwen by the same formula (1) in 4.6, t”deegE———f}[F:
=1

I' nej'I'a;], and t ts given as follows. t=t,+t,+1,, t, is given by the formula
(2) in 4.6, t, is given by the same formula as t, if we replace 2, by the set of
hyperbolic element $2,, in 2, and t,is given by (4) or (6) in 4.3. If either h(R)
=1 or X is a trivial representation, we can put them together in the following
form,

() =R :1] 2 a(@Zb()e(g, 4),
g:.Q/;' A

%—(Ck‘l—nk'l)(C—v)‘l(det g1k if g is elliptic
(2) a(@=7 Min {IZ], \71})*L—n"*(sgn O*(det &)*"** if g is hyperbolic
41—M [£1(sgn O)* if g parabolic,

WR)“RALA* - vk T if g is elliptic or hyperbolic
h(R)*h(A) = h(R)™* if g is parabolic,

where, for each g, c(g, A) has the same meaning as in 4.6, and it can be written
as (3) (resp. (4)) 4.6, if ©=T116, (resp. § is in the center of (R/a)*).

@) D=
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Most of the notations are the same as in 4.6, we only explain the new
ones. £ is the set of elliptic or hyperbolic fixing a cusp of I" or parabolic
elements in &; A is running through all the orders (resp. the orders such
that [4: Z+Zg)< M) of Q+Qg containing g, if g is either elliptic or hyper-
bolic (resp. parabolic); {{, n} is the set of eigen values of g; M is a natural
number such that g’ =g” mod M implies g—g’ €.

PrROOF. To get (1), we only need 4.3 besides the results which are needed
for 4.6.

4.8. REMARK. (i) In the setting of 4.6 or 4.7, suppose Y.= {1}. Then
I’ is acting on $*. Furthermore assume [R*: R* "\®&*]=2" then the condi-
tion (I'5) 1.3 is satisfied with 4= R*. Hence we have:

tr Ty(&)=2"tr T(§).

(ii) In the formula of f in 4.6 or 4.7, it is not necessary to precisely
determine ,Q/,;, by the following reason. If gis either elliptic or hyperbolic,
then by 3.8, Emb(g, 5, R/A) is not vacant if and only if Emb (g, &,, R,/4,)

is not vacant for all v. Hence in > we can let g run through some bhigger
g

set than .Q/r;J (for example the set of all elliptic elements g with N(g) e
N(&)"), provided that we understand the term ) represents zero if Emb (g,
Po

5,, R,/ A,) is vacant. For parabolic points, as is seen in 4.3, we can take
1 - .
{(g C) e N(&')} instead of £,/~.

5.0. Let %, 7(k) and B be as in §3 and §4. Let S(B) denote the set of
all non-archimedian places v of 2 where BXk(v) is a division quaternion.
An r(k)-order R of B will be called split if R, is split in the sense of 2.2
whenever ve& S(B) and R, is maximal whenever v & S(B). Let S(R) denote
the set of all the non-archimedian places where R, is not maximal. Then,
by the definition, there is a natural number v(v) and an isomorphism

R”:,(;((Z)),,@) :gzg) for each v=S(R). Let p(v) be a non-negative integer

not greater than v(v). Identifying R, with (;%})))ym :83) by the above iso-

. VP (v
morphism, let a”:(ggvg”“” rgvb for ve S(R), a,=R, for ve& S(R) and a=
MNolay N B). Then, as is easily seen, a is a two sided ideal of R, S(a) C S(R)
and R,/a, is isomorphic to r(v)/p(¥)** by the map ((cl Z)Ha mod p(v)*™,

Hence if X°: (R/a)*—GL,(C) is irreducible, then r =1, and it can be identified
with a linear character of 1;[( )(r(v)/p(v)”“’))*. For this {R, a, X"}, we consider
v&S(a

S=6,h.), W*=TIR:, U=& \U* etc. as in §4. If a =S, a double coset



80 H. HijikaTa

Uall meets with G, if and only if N(a)r is a principal ideal ar of 7 such that
a2 > (0 for any archimedian places v(i), n <1< m where B k(v(3)) is division.

Indeed, by 3.5, Uall meets with G, if and only if N(«) is contained in
N(GW). Since &.=1U., the archimedian part a. of a is contained in U,
hence Ma) is contained in N(G,W) if and only if the non-archimedian part
N(a); of N(a) is contained in N(G,W);. Since NI),= NW*),=TIr)*, Na) is
contained in N(G,W) if and only if M), is contained in 2*[I7r(v)*, i.e. N(a)r
is a principal ideal ar of the required property. Let us call a double coset
W*all* is diagonalizable if it satisfies the following condition (D).

(D) Wra, ¥ contains a diagonal element for any v < S(R).

5.1. LEMMA. Let U*aU* be diagonalizable, and o & N*all*,

(1) Then W*=U*a)ll and hW(a))=hW) for any N=U* &,

(ii) If furthermore either Y. = G./G%, or r(R)* contains an element of any
preassigned signature distribution, 1. e. for any IC {1, ---, n}, there exists ecr(k)*
such that € >0 for il and e <0 for i I. Then h(l(a))= h(R).

PROOF. (i) If we prove the assertions for one «, then it obviously im-
plies the assertions for any a« € 1*all*, Hence we may assume «, is diagonal

for any ve S(B). If ve S(B), Wiay) = R: N ag'Ria, D (g(”)xr(v)ﬂ)). Hence
Wity o (7, DY DR,

Since 1,(a,) contains ((1) r(v)9> for any &, N, (a,) = N(Ry). If veS(B),

then «, normalizes R} and we have trivially Wa,) =¥ (ii) AW (a))=W(R)
if and only if 2*NW(«a))=k*NU*). Let k%, be the connected component of
ks. Since B*NW(a)) D kT r(v)* k%, if Yo = Go/GE, B* NU(@)) obviously contains
NQUI*), Suppose, r(k) satisfies the assumption, then k*TI7(v)*k%, D kik*TIr(v)*
D R NUI*).
5.2. Let b be an integral ideal of %2, and assume b®7(v)=r(v) for any
ve S(R). Put E*= {acILR, | Ma)r(k)=5}.
(i) &*is a union of diagonalizable 1*-double cosets. If b is principal, each
of the double cosets in &* meets with &, hence meets with & NG, by the
last remark in 50. Thus S*= I, I* with a;€ 8 =8*N\GNG, & is
=1 :

the set of all a€ RN\& such that N(a)r=b. By 5.1, &=\Ul'a;I’. Let
j=1

E= Zlfajf, then again by 5.1, deg &= g[u* s WHa,)]=| %/ | =11 | E¥/0¥.

J= j= v
Then, as is easily seen, deg & =TI (n(v)*—1)(n(v)—1)"*, where bQ»(v) =p(v)*®,
n(w)=[r(): p(v)] and v runs through all the v’s such that z(v) > 0 and v$S(B).

(“) If gE Gk? Ordv(N(g»: T(v>7 then Emb (gy E‘f’ Rv/Av) = Emb (gv R’vy

R,/4,), consequently Emb (g ¥ N oy'(7), Ro/Ay)=Emb (g, 6;'(n), Ro/4s) for
any v, any 7 < (R/a)* and any order 4 of k+kg. Put S=S(B)\YS(R), then
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S satisfies the condition of 4.2 (i).
5.3. Let v, be a non-archimedian place outside of S(B) corresponding a

principal prime ideal (m,) of 7(k). Let a =G, be defined by avo:((l) rr(z)’

a,=1 for v=xuv, and put Z*=U*all*, W*all* is certainly diagonalizable and
meets with &\ G,, hence by 5.1, there exists a, € G, & such that &=1Ta,l .
Let é=TIa,0", then degé=|&*/U*|=|5%/W%|=ny)=[rwy): pwy)]. (i) If
v, & S(R), then this £* is a special case of 5.2, hence we assume v, € S(R). If
g€ Gy, ord(N(g)=ord,(m,) for any v+ v,, then Emb (g, £¥, R,/4,)=Emb (g,
Ry, Ry/Ay). For v=u,, &% ={x=(x;;) €R, | ordy,(N(x))=1 and x,; %0 mod p(v,)}.
S=S8(B)\U S(R) satisfies the condition 4.2 (i).

5.4. THEOREM. Let & be as in 52 or 5.3. Suppose B is not isomorphic to
M, Q). To compute tr T(E), it is sufficient to know the right-hand side of (3) or
(4) in 4.6. It is certainly possible by 2.3 (and 2.7 for the latter &) for ve S(R),
and by 2.8 for ve S(B). Indeed, it is enough to solve a finite number of qua-
dratic congruence equations.

If B is isomorphic to M,Q), we have h(R)=1. Hence we can compute
tr T(€) in the similar way.

5.5. Let £=Q, 7(k)=Z and B= M,Q). Then any split order of B is

. VA
conjugate to <1%/Z g) for certain natural number N. So let R:(ﬁz Z)

Z

and a=<%z g) with some divisor M of N, and X:(Z/MZ)*—C* be a

character mod M, such that X(—1)=(—1)* If & =89, §..) with j=(R/a)* and
b= {1}, then as I' we have a group customarily written as I'((N). Then,

in this case 2(g)=2x%a) for g=( g) =8N B*, and we identified X with X° in

§0. In the following, we assume Y. = {1}, then I is operating on §, and
since Z* has an element of any preassigned signature distribution, tr (T4(£))

:—é—tr T(§) by 4.8. Let £ be the one defined in 5.2, and b is generated by a

natural number n. Explicitly, § =3 I'al’ where I'al’ runs through all the
distinct double cosets such that a=(a;;)E R, deta=n and a;; €)mod M.
We put T(n)= T,(&).

Let & be the one defined in 5.3, and n,=n be a prime divisor of N, i.e.

5=F((1) 2)1” we put T(1, n)=Ty(&). Note that T(n) or T(l, n) is defined

for each Y C(R/a)*=(Z/MZ)".

5.6. THEOREM. (i) Let n be relatively prime to the level N, then tr T(n)
is given by the formula in 0.1. (ii) Let n be a prime divisor of the level N.
Then a formula for tr T(1, n) can be obtained from the formula for tr T(n) in
0.1 by the following two modifications. Firstly in the second term, replace
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__HT+1 ~
H% by n. Secondly in the definition of A (with p=n), add one more
pin

condition that x=%= 0 mod n.
5.7. Proof of 0.1 (resp. 5.6) is immediate from 4.7 and 5.2 (resp. 5.3), we
can take S to be the set of all prime divisors of N, and M (in 4.7)= M (in 5.5).

The first term represents —é—t’ and the third term represents t”/2=deg &.

To see that the first term represents ¢/2, we will give the correspondence of
notations in 4.7 and that of 0.1.

s<>g by ‘the minimal polynomial of g=X?—sX+n’ and a(g) =a(s); f—A
by [4: Z+Zg]=f and b(/l) = b(s, f). Finally define the embedding ¢,: 4,—R,,

by ‘Pz(g)'—‘<__f,-pf(x) s ) if xr€ A and Sox(g)”—<n.p+;—n " ”f(x)) if xes—B.

Then, Emb (g, R,, R,/4,)/R; is given by {o, | x€ A} if (s°—4n)/f*#=0mod p
and by the disjoint union {¢, | x€ A} U {¢, | x= s—B} if (s*—4n)/f*=0mod p.
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