Riemannian manifolds of nullity index zero and curvature tensor-preserving transformations

Dedicated to Professor S. Sasaki on his 60th birthday
By Shûkichi TANno

(Received Oct. 27, 1972)

§ 1. Introduction.

Riemannian manifolds (M, g) of constant nullity μ were studied by Rosenthal [8]: Under certain assumptions (M, g) is a direct product manifold of an $(m-\mu)$-dimensional Riemannian manifold and a μ-dimensional Euclidean space, when $m=\operatorname{dim} M$.

In this paper we study Riemannian manifolds of nullity index zero and give local decompositions in $\S 2$. By R we denote the Riemannian curvature tensor. (M, g) is of nullity index zero on M, if at each point x, for a tangent vector Z at $x, R(X, Y) Z=0$ for any tangent vectors X and Y at x implies $Z=0$. Assume that a Riemannian manifold (M, g) is of nullity index zero and admits a (C^{∞}-) distribution D, which is invariant by curvature transformations $R(X, Y)$ for any vector fields X and Y, and $1 \leqq \operatorname{dim} D \leqq m-1$. Denote by D^{\perp} the distribution orthocomplementary to D with respect to the metric g. Then D^{\perp} is invariant by curvature transformations. In Theorem 2.6 we show that D and D^{\perp} are parallel. Hence (M, g) is locally a product manifold.

As one of the results related to the equivalence problem in Riemannian geometry, Nomizu and Yano [7] obtained the following: Let (M, g) be an irreducible, locally symmetric Riemannian manifold with $\operatorname{dim} M=m \geqq 3$; then a curvature tensor-preserving transformation of (M, g) onto another Riemannian manifold (M^{\prime}, g^{\prime}) is homothetic. In §3, we generalize this theorem. A Riemannian manifold (M, g) is locally homogeneous (by definition) if, for any points x and y in M, there is an isometry of some neighborhood of x onto some neighborhood of y which sends x to y.

Theorem A. Let (M, g) be an irreducible, locally homogeneous Riemannian manifold of nullity index zero, $m \geqq 3$. Then, a curvature tensor-preserving transformation of (M, g) onto another Riemannian manifold $\left(M^{\prime}, g^{\prime}\right)$ is homothetic.

In particular, we have
ThEOREM A'. Let (M, g) be an irreducible, locally homogeneous Riemannian manifold, $m \geqq 3$. If the Ricci curvature tensor is non-singular (at some point),
then a curvature tensor-preserving transformation of (M, g) onto another $\left(M^{\prime}, g^{\prime}\right)$ is homothetic.

In proof, Theorem 2.6 and a theorem of Teleman [15] are applied. Teleman's theorem involves the notion of non-divisibility of the Riemannian curvature tensor. In $\S 4$, we generalize his theorem to pseudo-Riemannian manifolds, since this kind of problem is important also in pseudo-Riemannian geometry. In a pseudo-Riemannian manifold (M, g), the Riemannian curvature tensor R is called non-divisible at x, if the connected subgroup G of $G L\left(M_{x}\right)$ of endomorphisms of M_{x} whose Lie algebra is generated by $\{R(X, Y)$, $\left.X, Y \in M_{x}\right\}$ is irreducible.

Theorem B. Let (M, g) be a pseudo-Riemannian manifold of signature (p, q) such that $p \neq q$ and $m \geqq 3$. If non-divisible points of R is dense in M, a curvature tensor-preserving transformation of (M, g) onto another pseudoRiemannian manifold (M^{\prime}, g^{\prime}) is homothetic.

In §5, applications of Theorem 2.6 to Riemannian manifolds satisfying $R(X, Y) \cdot R=0$ or $R(X, Y) \cdot R_{1}=0$ are given, where $R(X, Y)$ acts on the tensor algebra at each point as a derivation and R_{1} denotes the Ricci curvature tensor.

In §6, some remarks are given.
In this paper, manifolds are assumed to be connected and of class C^{∞}. Tensor fields, distributions, etc. are assumed to be of class C^{∞}, if otherwise stated.

§ 2. Distributions which are invariant by curvature transformations.

Let (M, g) be a Riemannian manifold with (positive definite) metric tensor g. The dimension of M is denoted by m. By ∇ and R we denote the Riemannian connection with respect to g and the Riemannian curvature tensor:

$$
R(X, Y) Z=\nabla_{[X, Y]} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z
$$

for vector fields X, Y and Z on M. Let x be a point of M, and let M_{x} be the tangent space at x to M. By $Y, Z \in M_{x}$ we mean that Y and Z are tangent vector at x. We define a subspace N_{x} of M_{x} by

$$
\begin{equation*}
N_{x}=\left\{X \in M_{x} ; R(X, Y) Z=0 \quad \text { for all } Y, Z \in M_{x}\right\} . \tag{2.1}
\end{equation*}
$$

N_{x} is called the nullity space at x, and $\operatorname{dim} N_{x}=\mu(x)$ is called the nullity index at x (or the index of nullity at x) (cf. Chern-Kuiper [1]).

The Riemannian curvature tensor R satisfies

$$
\begin{align*}
R(X, Y)= & -R(Y, X), \quad g(R(X, Y) Z, W)=-g(R(X, Y) W, Z), \tag{2.2}\\
& g(R(X, Y) Z, W)=g(R(Z, W) X, Y), \tag{2.3}
\end{align*}
$$

$$
\begin{gather*}
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \tag{2.4}\\
\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y)=0 \tag{2.5}
\end{gather*}
$$

for vector fields (or tangent vectors) X, Y, Z and W.
Lemma 2.1. Let D be a distribution on (M, g) which is invariant by curvature transformations at each point x :

$$
R(X, Y) W \in D_{x} \quad \text { for all } W \in D_{x}, X, Y \in M_{x}
$$

Then the distribution D^{\perp} orthocomplementary to D with respect to g is invariant by curvature transformations, too.

Proof. It is not difficult to see that D^{\perp} is C^{∞}, whenever D is C^{∞}. Let $U \in D_{x}^{\perp}$ and let $W \in D_{x}$. By (2.2) we get $g(R(X, Y) U, W)=-g(R(X, Y) W, U)$ $=0$. Therefore $R(X, Y) U \perp D_{x}$, i. e., $R(X, Y) D^{\perp} \subset D^{\perp}$. q. e.d.

Lemma 2.2. We have distributions $D^{1}, D^{2}, \cdots, D^{k}$ which are invariant by curvature transformations such that, at each point x of M,

$$
\begin{equation*}
M_{x}=D_{x}^{1} \oplus D_{x}^{2} \oplus \cdots \oplus D_{x}^{k} \tag{2.6}
\end{equation*}
$$

which is an orthogonal decomposition of M_{x}, and each $D^{\alpha}(\alpha=1,2, \cdots, k)$ has no proper subdistribution which is invariant by curvature transformations (at each point) on M.

Proof. Let D and D^{\perp} be distributions invariant by curvature transformations given in Lemma 2.1. If D has a subdistribution D^{1} which is invariant by curvature transformations on M, then $\left(D^{1}\right)^{\perp}$ is also an invariant distribution by curvature transformations on $M . D \cap\left(D^{1}\right)^{\perp}$ is also a distribution on M and is invariant by curvature transformations on M. Continuing this step, we have Lemma 2.2.
q. e.d.

Lemma 2.3. For $X, Y \in D_{x}^{\alpha}$ and for $\beta \neq \alpha(\alpha, \beta=1,2, \cdots, k)$

$$
\begin{equation*}
R(X, Y) D_{x}^{\beta}=0 \tag{2.7}
\end{equation*}
$$

Proof. Let $U, V \in D_{x}^{\beta}$. By (2.4) we get

$$
g(R(X, Y) U, V)+g(R(Y, U) X, V)+g(R(U, X) Y, V)=0
$$

By $R(Y, U) X \in D_{x}^{x}$ and $R(U, X) Y \in D_{x}^{\alpha}$ we have $g(R(X, Y) U, V)=0$. Putting $V=R(X, Y) U$, we have $R(X, Y) U=0$.

Lemma 2.4. For $X \in D_{x}^{\alpha}$ and $U \in D_{x}^{\beta}, \beta \neq \alpha$

$$
\begin{equation*}
R(X, U)=0 \tag{2.8}
\end{equation*}
$$

Proof. Let A be an arbitrary tangent vector at x. Put $B=R(X, U) A$. By (2.3) we have $g(R(X, U) A, B)=g(R(A, B) X, U)=0$. Thus we have $R(X, U) A=0$.
q. e. d.

Let ($X_{i}, i=1,2, \cdots, m$) be a local field of orthonormal frames such that

$$
X_{1}, X_{2}, \cdots, X_{r} \in D^{1}, X_{r+1}, \cdots, X_{r+s} \in D^{2}, \cdots, X_{r+s+\cdots+t} \in D^{k},
$$

where, in general, $X \in D^{\alpha}$ means that X is a (locally defined) vector field such that at each point $x, X_{x} \in D_{x}^{\alpha}$. We put

$$
\begin{equation*}
\nabla_{x_{i}} X_{j}=\nabla_{i} X_{j}=\sum_{h} B_{i j h} X_{h}, \quad i, j=1,2, \cdots, m \tag{2.9}
\end{equation*}
$$

$B_{i j h}$ is skew-symmetric in j and $h ; B_{i j n}=-B_{i n j}$. By $X \wedge Y$ we mean that $(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y$. Let $X_{a}, X_{b}, X_{c}, X_{d} \in D^{\alpha}$ and $X_{u} \in D^{\beta}$. We put $g\left(R\left(X_{a}, X_{b}\right) X_{c}, X_{d}\right)=R_{\text {dcab }}$. Then $R_{\text {dcab }}$ is skew-symmetric in d and c, and hence we can put

$$
\begin{gather*}
R\left(X_{a}, X_{b}\right)=\frac{1}{2} \sum_{d, c} R_{d c a b} X_{d} \wedge X_{c} \tag{2.10}\\
R\left(X_{a}, X_{u}\right)=0 \tag{2.11}
\end{gather*}
$$

Lemma 2.5. If (M, g) is of nullity index zero at each point of M, then $D^{1}, D^{2}, \cdots, D^{k}$ are parallel.

Proof. To apply (2.5) we calculate

$$
\begin{align*}
& \left(\nabla_{u} R\right)\left(X_{a}, X_{b}\right)=\nabla_{u}\left(R\left(X_{a}, X_{b}\right)\right)-R\left(\nabla_{u} X_{a}, X_{b}\right)-R\left(X_{a}, \nabla X_{u b}\right) \tag{2.12}\\
& \quad=\frac{1}{2} \sum_{d, c} \nabla_{u} R_{d c a b} X_{d} \wedge X_{c}+\frac{1}{2} \sum_{d, c} R_{d c a b}\left[\left(\nabla_{u} X_{d}\right) \wedge X_{c}+X_{d} \wedge\left(\nabla_{u} X_{c}\right)\right] \\
& \quad-\frac{1}{2} \sum_{d, c, e}\left(B_{u a e} R_{d c e b}+B_{u b e} R_{d c a e}\right) X_{d} \wedge X_{c}, \\
& \left(\nabla_{a} R\right)\left(X_{b}, X_{u}\right)=-R\left(\nabla_{a} X_{b}, X_{u}\right)-R\left(X_{b}, \nabla_{a} X_{u}\right) \tag{2.13}\\
& \quad=-\frac{1}{2}\left[\sum_{v, y, w} B_{a b v} R_{y w v u} X_{y} \wedge X_{w}+\sum_{d, c, e} B_{a u e} R_{d c b e} X_{d} \wedge X_{c}\right] \\
& \left(\nabla_{b} R\right)\left(X_{u}, X_{a}\right)=-R\left(\nabla_{b} X_{u}, X_{a}\right)-R\left(X_{u}, \nabla_{b} X_{a}\right) \tag{2.14}\\
& \quad=-\frac{1}{2}\left[\sum_{v, y, w} B_{b a v} R_{y w u v} X_{y} \wedge X_{w}+\sum_{d, c, e} B_{b u e} R_{d c e a} X_{d} \wedge X_{c}\right]
\end{align*}
$$

where $X_{a}, X_{b}, X_{c}, X_{d}, X_{e} \in D^{\alpha}$ and $X_{u}, X_{v}, X_{y}, X_{w} \in D^{\beta}$. We put

$$
\nabla_{u} X_{d}=\sum_{e} B_{u d e} X_{e}+\sum_{v} B_{u d v} X_{v}+\sum_{\theta} B_{u d \theta} X_{\theta}+\cdots+\sum_{\xi} B_{u d \hat{\xi}} X_{\hat{\xi}},
$$

where $X_{\theta} \in D^{\tau}, \cdots, X_{\hat{\xi}} \in D^{\delta} ;(\gamma, \cdots, \delta)=(1,2, \cdots, k)-(\alpha, \beta)$. By (2.5) and (2.12)~ (2.14), and

$$
\frac{1}{2} \sum_{d, c} R_{d c a b}\left[\left(\nabla_{u} X_{d}\right) \wedge X_{c}+X_{d} \wedge\left(\nabla_{u} X_{c}\right)\right]=\sum_{d, c} R_{d c a b}\left(\nabla_{u} X_{d}\right) \wedge X_{c},
$$

we get (as coefficients of mixed parts $X_{*} \wedge X_{c}$)

$$
\sum_{d} R_{d c a b} B_{u d v}=\sum_{d} R_{d c a b} B_{u d \theta}=\cdots=\sum_{d} R_{d c a b} B_{u d \hat{\kappa}}=0 .
$$

For fixed u and v, we put $B_{d}=B_{u d v}$. Then we have a locally defined vector
field $B^{*}=\Sigma B_{d} X_{d} \in D^{\alpha}$. Let Y, Z be any vector fields. Then, applying Lemmas 2.3 and 2.4 we have

$$
R(Y, Z) B^{*}=R\left(\sum_{a} Y^{a} X_{a}, \sum_{b} Z^{b} X_{b}\right)\left(\sum_{d} B_{d} X_{d}\right),
$$

where $\left(Y^{a}\right)$ and (Z^{b}) are components of Y and Z with respect to $\left(X_{a}\right)$ in D^{a}. Then $\Sigma R_{\text {dcab }} B_{u d v}=0$ implies that $R(Y, Z) B^{*}=0$. Since (M, g) is of nullity index zero at each point, we have $B^{*}=0$, i. e., $B_{u d v}=0$. Similarly we have

$$
B_{u d \theta}=\cdots=B_{u d \hat{\xi}}=0 .
$$

This implies that, for $X_{u} \in D^{\beta}, \beta \neq \alpha$,

$$
\nabla_{u} X_{d} \in D^{\alpha}, \quad \text { i. e., } \nabla_{u} D^{\alpha} \subset D^{\alpha} .
$$

Similarly we have $\nabla_{\theta} D^{\alpha} \subset D^{\alpha}, \cdots, \nabla_{\bar{\xi}} D^{\alpha} \subset D^{\alpha}$. Finally we prove $\nabla_{a} D^{\alpha} \subset D^{\alpha}$ for $X_{a} \in D^{\alpha}$. In fact, $B_{u d v}=0$ and $B_{i j h}=-B_{i n j}$ give $B_{u v d}=0$. Changing D^{β} and D^{α} we have $B_{a b u}=0$. This is nothing but $\nabla_{a} D^{\alpha} \subset D^{\alpha}$. Thus, D^{α} is parallel. Nullity index zero at each point implies $\operatorname{dim} D^{\alpha} \geqq 2, \alpha=1, \cdots, k$. q.e.d.

Summarizing we have
THEOREM 2.6. Let (M, g) be a Riemannian manifold of nullity index zero at each point.
(i) Let D be a distribution on (M, g), which is invariant by curvature transformations $R(X, Y), X, Y \in M_{x}$ at each point x of M. Denote by D^{\perp} the distribution orthocomplementary to D with respect to g. Then D^{\perp} is also invariant by curvature transformations at each point.
(ii) Therefore we have distributions $D^{1}, D^{2}, \cdots, D^{k}$, which are invariant by curvature transformations at each point, such that at each point $x \in M_{x}$ we have the orthogonal decomposition $M_{x}=D_{x}^{1} \oplus D_{x}^{2} \oplus \cdots \oplus D_{x}^{k}$, and that each D^{α} has no proper subdistribution which is invariant by curvature transformations.
(iii) If $k=1$, the homogeneous holonomy group is irreducible.
(iv) If $k \geqq 2, D^{1}, D^{2}, \cdots, D^{k}$ are parallel.
(v) Hence, for $k \geqq 2,(M, g)$ is locally a product manifold of Riemannian manifolds (W_{α}, g_{α}), $\alpha=1,2, \cdots, k$.

In (v) of Theorem 2.6, each $\left(W_{\alpha}, g_{\alpha}\right)$ is not necessarily irreducible. But, for any fixed α, we have some point x of M such that, in local decomposition of a neighborhood of $x,\left(W_{\alpha}, g_{\alpha}\right)$ is irreducible.

§ 3. Curvature tensor-preserving transformations.

The Riemannian curvature tensor R of a Riemannian manifold (M, g) is called regular at x, if $R(X, Y) \neq 0$ for linearly independent X and Y at x, and R is called regular if it is regular at each point (Kowalski [4]). Let x be a point of M. Denote by \Re_{x} the set of curvature transformations at x,
i. e.,

$$
\begin{equation*}
\Re_{x}=\left\{R(X, Y), X, Y \in M_{x}\right\}, \tag{3.1}
\end{equation*}
$$

which is a subset of $\mathfrak{g l}\left(M_{x}\right)$, more of $\mathfrak{p}\left(M_{x}\right)$ (=the Lie algebra of skewsymmetric endomorphisms of $\left.M_{x}\right)$. Let $G\left(\Re_{x}\right)$ be the connected subgroup of $G L\left(M_{x}\right)$ (or $O\left(M_{x}\right)=$ the orthogonal group acting on M_{x}) whose Lie algebra is generated by \Re_{x}. A Riemannian manifold or the Riemannian curvature tensor R is called non-divisible at x, if $G\left(\Re_{x}\right)$ is irreducible, and (M, g) or R is called non-divisible if it is non-divisible at each point (Teleman [15], p. 109). Regularity at x implies non-divisibility at x (Kowalski [5]). Since the Lie algebra generated by \Re_{x} is contained in the holonomy algebra at x (cf. for example, Kobayashi-Nomizu [3]), non-divisibility implies irreducibility of the restricted homogeneous holonomy group.

Theorem 3.1 (Teleman [15], cf. also, Kowalski [4, 5]). Let (M, g) be a Riemannian manifold with $m \geqq 3$ and with non-divisible R (more precisely, the set of non-divisible points of R is dense). Then, a curvature tensor-preserving transformation of (M, g) onto another $\left(M^{\prime}, g^{\prime}\right)$ is homothetic.

We say that R is C^{∞}-divisible on an open set W, if there is a distribution D on W such that $1 \leqq \operatorname{dim} D \leqq m-1$ and

$$
\begin{equation*}
R(X, Y) D_{x} \subset D_{x} \quad \text { for all } x \in W, X, Y \in M_{x} \tag{3.2}
\end{equation*}
$$

Then Theorem 2.6 has the following
Corollary 3.2. If a Riemannian manifold (M, g) is of nullity index zero at each point and if R is C^{∞}-divisible on a connected open set W of M, then ($W, g \mid W$) is reducible.

Analytically Corollary 3.2 implies that C^{∞}-divisibility (3.2) gives for $s=0,1, \cdots$,

$$
\begin{equation*}
\left(\nabla_{V}^{s} R\right)(X, Y) D_{x} \subset D_{x}, \quad x \in W \tag{3.3}
\end{equation*}
$$

where $X, Y, V_{1}, V_{2}, \cdots, V_{s} \in M_{x}, \nabla^{0} R=R$, and $\nabla_{V}^{s} R$ has components:

$$
\begin{equation*}
\left(\nabla_{V}^{s} R\right):\left(V_{1}^{i} V_{2}^{j} \cdots V_{s}^{l} \nabla_{i} \nabla_{j} \cdots \nabla_{l} R_{w x y}^{e}\right) \tag{3.4}
\end{equation*}
$$

Remark. An example of irreducible Riemannian manifold whose Riemannian curvature tensor R is C^{∞}-divisible is given by Takagi [13]. In fact, let R_{1} be the Ricci curvature tensor. If a 3-dimensional Riemannian manifold (M, g) satisfies $R(X, Y) \cdot R_{1}=0$ and R_{1} has rank 2 on an open set W, then we have a local field of orthonormal frames X_{1}, X_{2}, X_{3} such that $R\left(X_{1}, X_{2}\right)$ $=K X_{1} \wedge X_{2}$ and $R\left(X_{3}, X_{1}\right)=R\left(X_{3}, X_{2}\right)=0$.

A theorem of Nomizu and Yano is as follows:
Theorem 3.3 (Nomizu-Yano [7]). Let (M, g) be an irreducible, locally symmetric Riemannian manifold, $m \geqq 3$. Then, a curvature tensor-preserving
transformation of (M, g) onto another $\left(M^{\prime}, g^{\prime}\right)$ is homothetic.
If (M, g), $m \geqq 2$, is locally symmetric and irreducible, we see that the nullity index is zero at each point. In fact, $\nabla R=0$ implies that the nullity distribution $x \rightarrow N_{x}$ is parallel.

If (M, g) is locally symmetric, then it is locally homogeneous.
To give generalization of Theorem 3.3 above, the essential point is the relation between non-divisibility and irreducibility, or by Theorem 2.6, the relation between divisibility and C^{∞}-divisibility.

Our generalization is as follows:
Theorem 3.4. Let (M, g) be an irreducible, locally homogeneous Riemannian manifold of nullity index zero, $m \geqq 3$. Then, a curvature tensor-preserving transformation of (M, g) onto $\left(M^{\prime}, g^{\prime}\right)$ is homothetic.

To state a Lemma (due to Singer) we prepare some definition. A Riemannian manifold (M, g) is curvature homogeneous if for every x and y in M, there exists an isometry f of the tangent space M_{x} onto the tangent space M_{y} such that f preserves the Riemannian curvature tensor, i. e., $f^{-1} R(f X, f Y) f$ $=R(X, Y), X, Y \in M_{x}$. A locally homogeneous Riemannian manifold is curvature homogeneous.

Let $F(M)$ be the bundle of orthonormal frames. For an orthonormal frame $b=\left(x, e_{1}, e_{2}, \cdots, e_{m}\right)$ we put $R_{i j k l}(b)=g_{x}\left(R\left(e_{k}, e_{l}\right) e_{j}, e_{i}\right)$.

Lemma 3.5 (Singer [12], § 2). (M, g) is curvature homogeneous if and only if there exists a principal subbundle of $F(M)$ over M on which the functions $R_{i j k l}$ are constant.

The fact we need is existence of local cross sections of this subbundle. We denote a local cross section by ($x, X_{i}, i=1, \cdots, m$).

Proof of Theorem 3.4. If the Riemannian curvature tensor R is divisible at some point z, we have subspaces $D_{z}^{\alpha}, \alpha=1, \cdots, k$, of M_{z}, which are invariant by curvature transformations at z and M_{z} has the orthogonal decomposition

$$
M_{z}=D_{2}^{1} \oplus D_{2}^{2} \oplus \cdots \oplus D_{z}^{k},
$$

where D_{z}^{α} has no proper subspace which is invariant by curvature transformations at z. Using a local field of orthonormal frames $\left(x, X_{i}\right)$ given by Lemma 3.5, we take a basis:

$$
\left(\Sigma a_{1}^{2}\left(X_{i}\right)_{z}, \Sigma a_{2}^{i}\left(X_{i}\right)_{z}, \cdots, \Sigma a_{r}^{i}\left(X_{i}\right)_{z}\right)
$$

of D_{2}^{1}, a_{u}^{i} being real numbers. Then

$$
\left(\Sigma a_{1}^{i} X_{i}, \Sigma a_{2}^{i} X_{i}, \cdots, \Sigma a_{r}^{i} X_{i}\right)
$$

defines a distribution D^{1} on an open set $W(\ni z)$ on which our local cross section $\left(x, X_{i}\right)$ is defined. Hence, we have distributions D^{1}, \cdots, D^{k}. These
distributions are C^{∞} and invariant by curvature transformations, since $g\left(R\left(X_{k}, X_{l}\right) X_{j}, X_{i}\right)$ are constant on W. Since (M, g) is locally homogeneous, Theorem 2.6 implies that (M, g) is locally a Riemannian product manifold. Therefore R must be non-divisible at each point of M. By Theorem 3.1, we have Theorem 3.4.

Theorem 3.4 is also stated as follows:
Theorem 3.4'. Let (M, g) be an irreducible, locally homogeneous Riemannian manifold of nullity index zero, $m \geqq 3$. For another Riemannian metric g^{*} on M, if the both Riemannian curvature tensors are identical, then g and g^{*} are homothetic.

§ 4. Pseudo-Riemannian manifolds.

Let (M, g) be a pseudo-Riemannian manifold with metric tensor g of signature (p, q). That is, for a fixed point x, we have a local coordinate neighborhood ($W, x^{i}, i=1, \cdots, m$) such that

$$
g=\left(d x^{1}\right)^{2}+\cdots+\left(d x^{p}\right)^{2}-\left(d x^{p+1}\right)^{2}-\cdots-\left(d x^{m}\right)^{2}
$$

holds at x. Let \boldsymbol{R} be the field of real numbers.
Lemma 4.1 (Kobayashi-Nomizu [3], p. 277). Let G be a subgroup of $G L(m, \boldsymbol{R})$ which acts irreducibly on \boldsymbol{R}^{m}. Let A be a linear transformation of \boldsymbol{R}^{m} which commutes with every elements of G. Then

$$
A=a I_{m}, \quad \text { or } \quad A=a I_{m}+b J
$$

where a, b are real numbers, I_{m} the identity transformation of \boldsymbol{R}^{m} and $J a$ linear transformation such that $J^{2}=-I_{m}$.

Lemma 4.2 (cf. Tanno [16]). Let G be a subgroup of $G L(m, \boldsymbol{R})$ which acts irreducibly on \boldsymbol{R}^{m}. Let g be symmetric, non-degenerate bilinear form with signature (p, q) which is invariant by G. Assume

$$
\begin{equation*}
[m=\text { odd or } m=2] \text { or }[m=\text { even } \geqq 4 \text { and } p \neq q] . \tag{1}
\end{equation*}
$$

Then, for a symmetric bilinear form g^{*} which is invariant by G, we have a real number a such that $g^{*}=a g$.

Proof. Define A by $g^{*}(X, Y)=g(A X, Y)$ for $X, Y \in \boldsymbol{R}^{m}$. Since g is nondegenerate, A is a well defined linear transformation of \boldsymbol{R}^{m}. Since g and g^{*} are invariant by G, A commutes with every element of G. By Lemma 4.1, we have $A=a I_{m}$, or $A=a I_{m}+b J$. If $m=2$ we see that $b=0$, and if $b \neq 0$ we see that $p=q$ (cf. Tanno [16], p. 246-247).
q. e. d.

Let \mathbb{Z} be a set of linear endomorphisms of a vector space V. By $S^{2}(V)$ we denote the space of all symmetric bilinear forms on V. Put

$$
\Theta(\mathfrak{Z})=\left\{h \in S^{2}(V): h(L X, Y)+h(X, L Y)=0, X, Y \in V, L \in \mathfrak{Z}\right\} .
$$

By $G(\mathfrak{Z})$ we denote the connected subgroup of $G L(V)$ whose Lie algebra is generated by $\mathfrak{2}$. The following Proposition for positive definite case was proved by Kowalski [5].

Proposition 4.3. Let V be a vector space with symmetric, non-degenerate bilinear form g of signature (p, q), and let G be a subgroup of $G L(V)$ which is irreducible and leaves g invariant. Let \mathbb{Z} be a set of linear endomorphisms generating the Lie algebra of G. Assume (1) of Lemma 4.2. Then,
(i) $\operatorname{dim} \Theta(\mathfrak{Z})=1$, i.e., $\Theta(\mathfrak{R})=(g)$.
(ii) If $X \in V$ and $L X=0$ for any $L \in \mathfrak{Z}$, then $X=0$.

Proof. In the proof of the positive definite case, Kowalski [5] used Theorem 1 in [3], p. 277. If we replace this by Lemma 4.2, the proof is similar to that given in [5].
q. e.d.

Also in a pseudo-Riemannian manifold (M, g), R is said to be non-divisible at x, if the connected subgroup G of $G L\left(M_{x}\right)$ whose Lie algebra is generated by $\left\{R(X, Y), X, Y \in M_{x}\right\}=\Re_{x}$ is irreducible.

Proposition 4.4. Let g, g^{*} be pseudo-Riemannian metrics on a manifold M with the same curvature tensors $R=R^{*}$. If,

$$
\begin{gathered}
{[m=\text { odd or } m=2] \text { or }[} \\
\\
\text { of } g \text { satisfies } p \neq q],
\end{gathered}
$$

then g and g^{*} are conformal on the closure of the set of all non-divisible points of R.

Proof. $R=R^{*}$ implies $\Re_{x}=\Re_{x}^{*}$. By (2.2) and Proposition 4.3 (where $\left.\Re_{x}=\mathbb{Z}\right)$ we have $g_{x}^{*}=a_{x} g_{x}$ for some real number a_{x}. Since $a=\left(g^{i j} g_{i j}^{*}\right) / m, a$ is a C^{∞}-function on the closure of the set of non-divisible points of R.
q. e. d.

Corresponding to Theorem 2^{\prime} in [4], we have
Theorem 4.5. Let (M, g) be a pseudo-Riemannian manifold of signature (p, q), such that $p \neq q, m \geqq 3$. If the set of all non-divisible points of R is dense in M, a curvature tensor-preserving transformation of (M, g) onto another (M^{\prime}, g^{\prime}) is homothetic.

We give an outline of the proof. We denote the induced metric $\varphi^{*} g^{\prime}$ on M by g^{*}, where $\varphi: M \rightarrow M^{\prime}$ is the given curvature tensor-preserving transformation. By Proposition 4.4, we have $g^{*}=e^{2 \alpha} g$ for some function α on M. Then the classical formula gives:

$$
R_{j k l}^{* i}=R_{j k l}^{i}+\delta_{k}^{i} \beta_{j l}-\delta_{i l}^{i} \beta_{j k}+\beta_{k}^{i} g_{j l}-\beta_{l}^{i} g_{j k},
$$

where, putting $\alpha_{i}=\nabla_{i} \alpha$,

$$
\beta_{j l}=\nabla_{j} \alpha_{l}-\alpha_{j} \alpha_{l}+\frac{1}{2} \alpha_{r} \alpha^{r} g_{j l} .
$$

$R^{*}=R$ and $m \geqq 3$ imply $\beta_{j l}=0$. Then calculating $\nabla_{j} \nabla_{k} \alpha_{l}-\nabla_{k} \nabla_{j} \alpha_{l}$ and using the Ricci identity, we have $R_{l j k}^{r} \alpha_{r}=0$. Non-divisibility (on a dense set) implies $\alpha_{r}=0$. That is, α is constant.

Corollary 4.6 (cf. Vranceanu [18]). Let (M, g) be a pseudo-Riemannian manifold of signature $(p, q), p \neq q$, and $m \geqq 3$. Assume that on a coordinate neighborhood $U\left(x^{i}\right), R$ is non-divisible. Let g^{*} be another metric on $U\left(x^{i}\right)$. If the Christoffel's symbols satisfy

$$
\Gamma_{j k}^{i}=\Gamma_{j k}^{* i} \quad \text { on } U,
$$

then g and $g *$ are homothetic.
§ 5. The conditions $R(X, Y) \cdot R=0$ and $R(X, Y) \cdot R_{1}=0$.
For tangent vectors X and Y at $x, R(X, Y)$ acts on the tensor algebra at x as a derivation. The condition (*) is

$$
\begin{equation*}
R(X, Y) \cdot R=0 \quad \text { for any } X, Y \in M_{x}, x \in M . \tag{}
\end{equation*}
$$

The condition (*) implies in particular

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \quad \text { for any } X, Y \in M_{x}, x \in M \tag{**}
\end{equation*}
$$

Denoting the Ricci transformation by $R^{1},\left({ }^{(* *)}\right.$ is equivalent to $R(X, Y) \cdot R^{1}$ $=0$. i. e.,

$$
\begin{equation*}
R(X, Y)\left(R^{1} Z\right)-R^{1}(R(X, Y) Z)=0 \tag{5.1}
\end{equation*}
$$

Lemma 5.1. Assume (**). If R^{1} has a simple eigenvalue λ at x, then $\lambda=0$. In this case, the nullity index at x is 1 .

Proof. Let λ_{i}, e_{i} be eigenvalues, orthonormal eigenvectors such that $R^{1} e_{i}=\lambda_{i} e_{i}$ at $x, i=1,2, \cdots, m$. By (**), we have

$$
\begin{gathered}
R_{1}\left(R\left(e_{i}, e_{j}\right) e_{k}, e_{l}\right)+R_{1}\left(e_{k}, R\left(e_{i}, e_{j}\right) e_{l}\right)=0, \text { i. e., } \\
\left(\lambda_{l}-\lambda_{k}\right) R_{l k i j}=0 .
\end{gathered}
$$

Let λ_{m} be a simple eigenvalue. Then, we get $R_{m k i j}=0$. By $R_{m j}=\Sigma g^{k i} R_{m k i j}$ $=0$, we have $R^{1} e_{m}=0$. Hence, $\lambda_{m}=0$. Let X be in N_{x}. Then $R_{1}(X, Y)=0$ for any $Y \in M_{x}$ (cf. § 6 Remark (3)). Therefore, only eigenvectors corresponding to 0 can be in N_{x}, and $\mu(x)=1$.

Lemma 5.2. Assume (**). Let $\lambda^{1}, \lambda^{2}, \cdots, \lambda^{k}$ be distinct eigenvalues of R^{1} at x, and let $D_{x}^{\alpha}, \alpha=1,2, \cdots, k$, be eigenspaces. Then D_{x}^{α} are invariant by curvature transformations.

Proof. Let ($X_{i}, i=1,2, \cdots, m$) be an orthonormal basis at x such that

$$
X_{1}, \cdots, X_{r} \in D_{x}^{1}, X_{r+1}, \cdots, X_{r+s} \in D_{x}^{2}, \cdots, \cdots X_{r+s+\cdots+t} \in D_{x}^{k} .
$$

Let $\quad X_{a} \in D_{x}^{\alpha} . \quad$ Put $R\left(X_{i}, X_{j}\right)=(1 / 2) \sum R_{k l i j} X_{k} \wedge X_{l}$. Then, putting $X=X_{i}$, $Y=X_{j}$ and $Z=X_{a}$ in (5.1), we have

$$
\begin{aligned}
& \lambda^{\alpha}\left(\sum_{k, l} R_{k l i j} X_{k} \wedge X_{l}\right) X_{a}=R^{1}\left(\left(\sum_{k, l} R_{k l i j} X_{k} \wedge X_{l}\right) X_{a}\right), \quad \text { i. e., } \\
& \lambda^{\alpha} \sum_{l=1}^{m} R_{l a i j} X_{l}=\lambda^{1} \sum_{u=1}^{r} R_{u a i j} X_{u}+\cdots+\lambda^{k} \sum_{\xi=r+s+\cdots+t-t+1}^{m} R_{\xi, j i j} X_{\hat{\xi}}
\end{aligned}
$$

Since $\lambda^{1}, \lambda^{2}, \cdots, \lambda^{k}$ are distinct, we have

$$
R_{u a i j}=0, \cdots, \wedge^{\alpha}, \cdots, R_{\tilde{\xi} a i j}=0
$$

where \wedge^{α} means that ($R_{b a i j}$-part) is removed. That is,

$$
R(X, Y) D_{x}^{\alpha} \subset D_{x}^{\alpha} . \quad \text { q. e. d. }
$$

We easily see that non-trivial components in $\left(R_{k l i j}\right)$ are

$$
\left(R_{w x u v}, \cdots, R_{c d a b}, \cdots, R_{\kappa \lambda \hat{\xi} \eta}\right)
$$

components with mixed indices being zero. Hence, we have
Proposition 5.3. Let (M, g) be a Riemannian manifold with (**).
(i) If R is non-divisible at x, then R_{1} is proportional to g at x.
(ii) If R is non-divisible on a dense subset of M, then (M, g) is an Einstein space.

PROPOSITION 5.4. Let (M, g) be a Riemannian manifold with $\left(^{*}\right)$ and $m=4$. If R is non-divisible on a dense subset of M, then (M, g) is locally symmetric.

Proof. An Einstein space with $\left(^{*}\right)$ and $m=4$ is locally symmetric by a result of Sekigawa [10]. Thus Proposition 5.4 follows from Proposition 5.3,

PROPOSITION 5.5. Let (M, g) be a Riemannian manifold with $\left(^{* *}\right)$ and with nullity index zero at each point. If R^{1} has distinct eigenvalues $\lambda^{1}>\lambda^{2} \cdots>\lambda^{k}$ on a connected open set W and if eigenvalues are differentiable on W, then ($W, g \mid W$) is locally a product manifold of Einstein spaces.

Proof. Since $\lambda^{\alpha}, \alpha=1,2, \cdots, k$, are distinct, we have continuous distributions D^{α} on W. To show that D^{α} are differentiable, for $x \in W$, let $X \in D_{x}^{\alpha}$. We extend X to a vector field X^{*} on W. Then

$$
\left(R^{1}-\lambda^{1} I\right)\left(R^{1}-\lambda^{2} I\right) \cdots\left(\wedge^{\alpha}\right) \cdots\left(R^{1}-\lambda^{k} I\right) X^{*}
$$

belongs to D^{α} and differentiable. Thus, D^{α} is differentiable. Then, Theorem 2.6 shows that D^{α} are parallel. Each integral manifold of D^{α} is an Einstein space. By Lemma 5.1, $\operatorname{dim} D^{\alpha} \geqq 2$.

Proposition 5.6. Let (M, g) be a 5-dimensional Riemannian manifold with (**) and with nullity index zero at each point. Then there is a subset V such that $M-V$ is dense and any point $x \in M-V$ has a neighborhood W which is an Einstein space or a product manifold of Einstein spaces.

PROOF. Since the multiplicity of each non-zero eigenvalue of R^{1} at x is
$\geqq 2$ (by Lemma 5.1) and 0 is not a simple eigenvalue (by Lemma 5.1 and nullity index zero at each point), we have possibilities of eigenvalues of R^{1} : $(0,0,0, \lambda, \lambda),(0,0, \lambda, \lambda, \lambda),(\gamma, \gamma, \lambda, \lambda, \lambda)$ and $(\lambda, \lambda, \lambda, \lambda, \lambda)$ at x (where in first 3 cases, $\lambda, \gamma \neq 0$; in the last case $\lambda \neq 0$ or $=0$).
(i) The case ($0,0,0, \lambda, \lambda$). By Lemma 5.2 and by the statement just above Proposition 5.3, ($R_{w y u v} ; w, y, u, v=1,2,3$) can be considered as components of a Riemannian curvature tensor of a 3-dimensional Riemannian manifold, algebraically at x. Since a 3 -dimensional Riemannian manifold with the vanishing Ricci tensor at x has the vanishing Riemannian curvature tensor at x, we have $R_{w y u v}=0$. Hence, the nullity index at x is 3 , and this can not occur.
(ii) The case ($0,0, \lambda, \lambda, \lambda$) can not occur, too.
(iii) The case ($\gamma, \gamma, \lambda, \lambda, \lambda$). Since only two γ and λ are distinct, γ and λ are differentiable on some neighborhood W of x (cf. for example, Ryan [9], p. 371). Then we apply Proposition 5.5
(iv) The case ($\lambda, \lambda, \lambda, \lambda, \lambda$). If this holds on a neighborhood W of x, then ($W, g \mid W$) is an Einstein space. If x has no open neighborhood where $R^{1}=$ ($\lambda, \lambda, \lambda, \lambda, \lambda$), then the set V of points of this type is of measure zero, i.e., $M-V$ is dense.

Remark. For the case $m=3$, or 4, cf. Sekigawa [11].

§6. Remarks.

(1) Let (M, g) be a conformally flat and non-flat Riemannian manifold. If the restricted homogeneous holonomy group is not the special orthogonal group $S O(m)$, then the Ricci transformation R^{1} has just two distinct eigenvalues λ and μ on some open set W (Kurita [6]). Denote by D^{1} and D^{2} the distributions on W defined by

$$
\begin{align*}
& D_{x}^{1}=\left\{X \in M_{x}: R^{1} X=\lambda X\right\}, \tag{6.1}\\
& D_{x}^{2}=\left\{U \in M_{x}: R^{1} U=\mu U\right\} .
\end{align*}
$$

Then D^{1} and D^{2} are differentiable. If $\operatorname{dim} D^{1} \geqq 2$ and $\operatorname{dim} D^{2} \geqq 2$, we have

$$
\begin{array}{ll}
R(X, Y)=K X \wedge Y, & X, Y \in D^{1}, \\
R(U, V)=-K U \wedge V, & U, V \in D^{2}, \\
R(X, U)=0, & X \in D^{1}, U \in D^{2} .
\end{array}
$$

Theorem 2.6 is applicable.
(2) Let (M, g, J) be a Kählerian manifold with the vanishing Bochner curvature tensor, where J denotes (the almost) complex structure tensor and
g denotes the Kählerian metric tensor. If the restricted homogeneous holonomy group is not the unitary group $U(n), m=2 n$, then the Ricci transformation R^{1} has just two distinct eigenvalues λ and μ on some open set (cf. Takagi-Watanabe [14]). On this open set we have D^{1} and D^{2} defined similarly by (6.1). Then

$$
\begin{aligned}
& R(X, Y) Z=\frac{H}{4}[(X \wedge Y) Z+(J X \wedge J Y) Z-2 g(J X, Y) J Z], \\
& R(U, V) W=-\frac{H}{4}[(U \wedge V) W+(J U \wedge J V) W-2 g(J U, V) J W], \\
& R(X, U)=0
\end{aligned}
$$

for $X, Y, Z \in D^{1}$ and $U, V, W \in D^{2}$. Theorem 2.6 is applicable: (M, g) is locally a product manifold of two Kählerian manifolds of constant holomorphic sectional curvature H and $-H$.
(3) As for Theorem A^{\prime} in the introduction, we notice that if R_{1} is nonsingular at x, then the nullity index at x is zero. Let $X \in N_{x}$. For any orthonormal basis (e_{i}) at x, we have

$$
R_{1}(X, Y)=\Sigma g\left(R\left(X, e_{i}\right) Y, e_{i}\right)=0
$$

for any $Y \in M_{x}$. Hence, $X=0$.

Bibliography

[1] S.S. Chern and N.H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in euclidean space, Ann. of Math., 56 (1952), 422430.
[2] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Intersci. Publ., 1963, 1969.
[4] O. Kowalski, On regular curvature structures, Math. Z., 125 (1972), 129-138.
[5] O. Kowalski, A note on the Riemann curvature tensor, Commentat. Math. Univ. Carolinae, 13 (1972), 257-263.
[6] M. Kurita, On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955), 161-171.
[7] K. Nomizu and K. Yano, Some results related to the equivalence problem in Riemannian geometry, Proc. U. S.-Japan Seminar in Differential Geometry, Kyoto, 1965, 95-100.
[8] A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J., 14 (1967), 469-480.
[9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 22 (1969), 363-388.
[10] K. Sekigawa, On 4-dimensional connected Einstein space satisfying the condition $R(X, Y) \cdot R=0$, Sci. Rep. Niigata Univ., 7 (1969), 29-31.
[11] K. Sekigawa, Notes on some 3- and 4-dimensional Riemannian manifolds, to

appear.

[12] I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math., 13 (1960), 685-697.
[13] H. Takagi, An example of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$ but not $\nabla R=0$, Tôhoku Math. J., 24 (1972), 105-108.
[14] H. Takagi and Y. Watanabe, On the holonomy groups of Kählerian manifolds with vanishing Bochner curvature tensor, Tôhoku Math. J., 25 (1973), 185-195.
[15] К. Телеман, Об одной теореме бореля-лихнеровича, Rev. Roumaine Math. Pures Appl., 3 (1958), 107-115.
[16] S. Tanno, Strongly curvature-preserving transformations of pseudo-Riemannian manifolds, Tôhoku Math. J., 19 (1967), 245-250.
[17] S. Tanno, Transformations of pseudo-Riemannian manifolds, J. Math. Soc. Japan, 21 (1969), 270-281.
[18] G. Vranceanu, Sur la représentation géodésique des espaces de Riemann, Rev. Roumaine Math. Pures Appl., 1, no. 3 (1956), 147-165.

Shukichi TANNO
Mathematical Institute
Tôhoku University
Katahira, Sendai
Japan

