
J. Math. Soc. Japan
Vol. 26, No. 2, 1974

Riemannian manifolds of nullity index zero and
curvature tensor-preserving transformations

Dedicated to Professor S. Sasaki on his 60th birthday

By Sh\^ukichi TANNO

(Received Oct. 27, 1972)

\S 1. Introduction.

Riemannian manifolds $(M, g)$ of constant nullity $\mu$ were studied by
Rosenthal [8]: Under certain assumptions $(M, g)$ is a direct product manifold
of an $(m-\mu)$ -dimensional Riemannian manifold and a $\mu$ -dimensional Euclidean
space, when $m=\dim M$.

In this paper we study Riemannian manifolds of nullity index zero and
give local decompositions in \S 2. By $R$ we denote the Riemannian curvature
tensor. $(M, g)$ is of nullity index zero on $M$, if at each point $x$, for a tangent
vector $Z$ at $x,$ $R(X, Y)Z=0$ for any tangent vectors $X$ and $Y$ at $x$ implies
$Z=0\ovalbox{\tt\small REJECT}$

’ Assume that a Riemannian manifold $(M, g)$ is of nullity index zero
and admits a $(C^{\infty}-)$ distribution $D$ , which is invariant by curvature transfor-
mations $R(X, Y)$ for any vector fields $X$ and $Y$, and $1\leqq\dim D\leqq m-1$ . Denote
by $D^{\perp}$ the distribution orthocomplementary to $D$ with respect to the metric
$g$. Then $D^{\perp}$ is invariant by curvature transformations. In Theorem 2.6 we
show that $D$ and $D^{\perp}$ are parallel. Hence $(M, g)$ is locally a product manifold.

As one of the results related to the equivalence problem in Riemannian
geometry, Nomizu and Yano [7] obtained the following: Let $(M, g)$ be an
irreducible, locally symmetric Riemannian manifold with dim $M=m\geqq 3$ ; then
a curvature tensor-preserving transformation of $(M, g)$ onto another Rieman-
nian manifold $(M^{\prime}, g^{\prime})$ is homothetic. In \S 3, we generalize this theorem. A
Riemannian manifold $(M, g)$ is locally homogeneous (by definition) if, for any
points $x$ and $y$ in $M$, there is an isometry of some neighborhood of $x$ onto
some neighborhood of $y$ which sends $x$ to $y$ .

THEOREM A. Let $(M, g)$ be an irreducible, locally homogeneous Riemannian
manifold of nullity index zero, $m\geqq 3$ . Then, a curvature tensor-preserving trans-
formation of $(M, g)$ onto another Riemannian manifold $(M^{\prime}, g^{\prime})$ is homothetic.

In particular, we have
THEOREM $A^{\prime}$ . Let $(M, g)$ be an irreducible, locally homogeneous Riemannian

manifold, $m\geqq 3$ . If the Ricci curvature tensor is non-singular (at some point),
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then a curvature tensor-preserving transformation of $(M, g)$ onto another $(M^{\prime}, g^{\prime})$

is homothetic.
In proof, Theorem 2.6 and a theorem of Teleman [15] are applied. Tele-

man’s theorem involves the notion of non-divisibility of the Riemannian cur-
vature tensor. In \S 4, we generalize his theorem to pseudo-Riemannian mani-
folds, since this kind of problem is important also in pseudo-Riemannian
geometry. In a pseudo-Riemannian manifold $(M, g)$ , the Riemannian curva-
ture tensor $R$ is called non-divisible at $x$, if the connected subgroup $G$ of
$GL(M_{x})$ of endomorphisms of $M_{x}$ whose Lie algebra is generated by $\{R(X, Y)$ ,
$X,$ $Y\in M_{x}$ } is irreducible.

THEOREM B. Let $(M, g)$ be a Pseudo-Riemannian manifold of signature
$(p, q)$ such that $p\neq q$ and $m\geqq 3$ . If non-divisible points of $R$ is dense in $M,$ $a$

curvature tensor-preserving transformation of $(M, g)$ onto another pseudO-
Riemannian manifold $(M^{\prime}, g^{\prime})$ is homothetic.

In \S 5, applications of Theorem 2.6 to Riemannian manifolds satisfying
$R(X, Y)\cdot R=0$ or $R(X, Y)\cdot R_{1}=0$ are given, where $R(X, Y)$ acts on the tensor
algebra at each point as a derivation and $R_{1}$ denotes the Ricci curvature
tensor.

In \S 6, some remarks are given.
In this paper, manifolds are assumed to be connected and of class $C^{\infty}$ .

Tensor fields, distributions, etc. are assumed to be of class $C^{\infty}$ , if otherwise
stated.

\S 2. Distributions which are invariant by curvature transformations.

Let $(M, g)$ be a Riemannian manifold with (positive definite) metric tensor
$g$. The dimension of $M$ is denoted by $m$ . By $\nabla$ and $R$ we denote the Rie-
mannian connection with respect to $g$ and the Riemannian curvature tensor:

$R(X, Y)Z=\nabla_{[X,Y]}Z-\nabla_{X}\nabla_{Y}Z+\nabla_{Y}\nabla_{X}Z$

for vector fields $X,$ $Y$ and $Z$ on $M$. Let $x$ be a point of $M$, and let $M_{x}$ be
the tangent space at $x$ to $M$. By $Y,$ $Z\in M_{x}$ we mean that $Y$ and $Z$ are tan-
gent vector at $x$ . We define a subspace $N_{x}$ of $M_{x}$ by

(2.1) $N_{x}=$ { $X\in M_{x}$ ; $R(X,$ $Y)Z=0$ for all $Y,$ $Z\in M_{x}$}.

$N_{x}$ is called the nullity space at $x$, and $\dim N_{x}=\mu(x)$ is called the nullity
index at $x$ (or the index of nullity at x) (cf. Chern-Kuiper [1]).

The Riemannian curvature tensor $R$ satisfies

(2.2) $R(X, Y)=-R(Y, X)$ , $g(R(X, Y)Z,$ $W$ ) $=-g(R(X, Y)W,$ $Z$),

(2.3) $g(R(X, Y)Z,$ $W$ ) $=g(R(Z, W)X,$ $Y$ ) ,
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(2.4) $R(X, Y)Z+R(Y, Z)X+R(Z, X)Y=0$ ,

(2.5) $(\nabla_{X}R)(Y, Z)+(\nabla_{Y}R)(Z, X)+(\nabla_{Z}R)(X, Y)=0$

for vector fields (or tangent vectors) $X,$ $Y,$ $Z$ and $W$.
LEMMA 2.1. Let $D$ be a distribution on $(M, g)$ which is invariant by curva-

ture transformations at each point $x$ :
$R(X, Y)W\in D_{x}$ for all $W\in D_{x},$ $X,$ $Y\in M_{x}$ .

Then the distribution $D^{\perp}$ orthocomPlementary to $D$ with resPect to $g$ is invariant
by curvature transformations, too.

PROOF. It is not difficult to see that $D^{\perp}$ is $C^{\infty}$ , whenever $D$ is $C^{\infty}$ . Let
$U\in D_{x}^{\perp}$ and let $W\in D_{x}$ . By (2.2) we get $g(R(X, Y)U,$ $W$ ) $=-g(R(X, Y)W,$ $U$ )
$=0$ . Therefore $R(X, Y)U\perp D_{x},$ $i$ . $e.,$ $R(X, Y)D^{\perp}\subset D^{\perp}$ . $q$ . $e$ . $d$ .

LEMMA 2.2. We have distributions $D^{1},$ $D^{2},$ $\cdots$ , $D^{k}$ which are invariant by
curvature transformations such that, at each pOint $x$ of $M$,

(2.6) $M_{x}=D_{x}^{1}\oplus D_{x}^{2}\oplus\cdots\oplus D_{x}^{k}$ ,

which is an orthogonal decomposition of $M_{x}$ , and each $D^{\alpha}$ ( $\alpha=1,2$ , – , k) has
no prOper subdistribution which is invariant by curvature transformations (at

each Point) on $M$.
PROOF. Let $D$ and $D^{\perp}$ be distributions invariant by curvature trans-

formations given in Lemma 2.1. If $D$ has a subdistribution $D^{1}$ which is
invariant by curvature transformations on $M$, then $(D^{1})^{\perp}$ is also an invariant
distribution by curvature transformations on M. $D\cap(D^{1})^{\perp}$ is also a distribution
on $M$ and is invariant by curvature transformations on $M$. Continuing this
step, we have Lemma 2.2. $q$ . $e$ . $d$ .

LEMMA 2.3. For $X,$ $Y\in D_{x}^{\alpha}$ and for $\beta\neq\alpha$ ( $\alpha,$ $\beta=1,2,$ $\cdots$ , k)

(2.7) $R(X, Y)D_{x}^{\beta}=0$ .
PROOF. Let $U,$ $V\in D_{x}^{\beta}$ . By (2.4) we get

$g(R(X, Y)U,$ $V$ ) $+g(R(Y, U)X,$ $V$ ) $+g(R(U, X)Y,$ $V$ ) $=0$ .

By $R(Y, U)X\in DX$ and $R(U, X)Y\in D_{x}^{a}$ we have $g(R(X, Y)U,$ $V$ ) $=0$ . Putting
$V=R(X, Y)U$ , we have $R(X, Y)U=0$ .

LEMMA 2.4. For $X\in D_{x}^{\alpha}$ and $U\in D_{x}^{\beta},$ $\beta\neq\alpha$

(2.8) $R(X, U)=0$ .
PROOF. Let $A$ be an arbitrary tangent vector at $x$ . Put $B=R(X, U)A$ .

By (2.3) we have $g(R(X, U)A,$ $B$ ) $=g(R(A, B)X,$ $U$ ) $=0$ . Thus we have
$R(X, U)A=0$ . $q$ . $e$ . $d$ .

Let ( $X_{i},$ $i=1,2,$ $\cdots$ , m) be a local field of orthonormal frames such that

$X_{1},$ $X_{2},$ $\cdots$ , $X_{r}\in D^{1},$ $X_{r+1},$ $\cdots$ , $X_{r+s}\in D^{2},$ $\cdots$ , $X_{r+s+\cdots+t}\in D^{k}$
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where, in general, $X\in D^{\alpha}$ means that $X$ is a (locally defined) vector field
such that at each point $x,$ $X_{x}\in D_{x}^{\alpha}$ . We put

(2.9) $\nabla_{x_{i}}X_{j}=\nabla_{i}X_{j}=\sum_{h}B_{ijh}X_{h}$ , $i,$ $j=1,2,$ $\cdots$ , $m$ .

$B_{ijh}$ is skew-symmetric in $j$ and $h;B_{ijh}=-B_{ihj}$ . By $X\Lambda Y$ we mean that
$(X\wedge Y)Z=g(Y, Z)X-g(X, Z)Y$ . Let $X_{a},$ $X_{b},$ $X_{c},$ $X_{d}\in D^{\alpha}$ and $X_{u}\in D^{\beta}$ . We
put $g(R(X_{a}, X_{b})X_{c},$ $X_{d}$) $=R_{dcab}$ . Then $R_{dcab}$ is skew-symmetric in $d$ and $c$ , and
hence we can put

(2.10) $R(X_{a}, X_{b})=\frac{1}{2}\sum_{d,c}R_{dcab}X_{d}\wedge X_{c}$ ,

(2.11) $R(X_{a}, X_{u})=0$ .
LEMMA 2.5. If $(M, g)$ is of nullity index zero at each point of $M$, then

$D^{1},$ $D^{2},$ $\cdots$ , $D^{k}$ are parallel.
PROOF. To apply (2.5) we calculate

(2.12) $(\nabla_{u}R)(X_{a}, X_{b})=\nabla_{u}(R(X_{a}, X_{b}))-R(\nabla_{u}X_{a}, X_{b})-R(X_{a}, \nabla X_{ub})$

$=\frac{1}{2}\sum_{d,c}\nabla_{u}R_{dcab}X_{d}\wedge X_{c}+\frac{1}{2}\sum_{a,c}R_{dcab}[(\nabla_{u}X_{d})\Lambda X_{c}+X_{d}\Lambda(\nabla_{u}X_{c})]$

$-\frac{1}{2}\sum_{d.c,e}(B_{uae}R_{dceb}+B_{ube}R_{dcae})X_{d}\wedge X_{c}$ ,

(2.13) $(\nabla_{a}R)(X_{b}, X_{u})=-R(\nabla_{a}X_{b}, X_{u})-R(X_{b}, \nabla_{a}X_{u})$

$=-\frac{1}{2}[\sum_{v,y.w}B_{abv}R_{ywvu}X_{y}\wedge X_{w}+\sum_{d.c.e}B_{aue}R_{dcbe}X_{d}\wedge X_{c}]$ ,

(2.14) $(\nabla_{b}R)(X_{u}, X_{a})=-R(\nabla_{b}X_{u}, X_{a})-R(X_{u}, \nabla_{b}X_{a})$

$=-\frac{1}{2}[\sum_{v.y,w}B_{bav}R_{ywuv}X_{y}\wedge X_{w}+\sum_{d,c.e}B_{bue}R_{dcea}X_{d}\wedge X_{c}]$ ,

where $X_{a},$ $X_{b},$ $X_{c},$ $X_{d},$ $X_{e}\in D^{\alpha}$ and $X_{u},$ $X_{v},$ $X_{y},$ $X_{w}\in D^{\beta}$ . We put

$\nabla_{u}X_{d}=\sum_{e}B_{ude}X_{e}+\sum_{v}B_{udv}X_{v}+\sum_{\theta}B_{ud\theta}X_{\theta}+$
$\cdot$ ..

$+\sum_{\xi}B_{ud\xi}X_{\xi}$ ,

where $X_{\theta}\in D^{\gamma}$ , – , $X_{\xi}\in D^{\delta}$ ; $(\gamma, \cdots, \delta)=(1,2, \cdots , k)-(\alpha, \beta)$ . By (2.5) and $(2.12)\sim$

(2.14), and

$\frac{1}{2}\sum_{d,c}R_{dcab}[(\nabla_{u}X_{d})\Lambda X_{c}+X_{d}\wedge(\nabla_{u}X_{c})]=\sum_{d.c}R_{dcab}(\nabla_{u}X_{d})\wedge X_{c}$ ,

we get (as coefficients of mixed parts $X_{*}\Lambda X_{c}$ )

$\sum_{d}R_{dcab}B_{udv}=\sum_{d}R_{dcab}B_{ud\theta}=...$ $=\sum_{d}R_{dcab}B_{ud\xi}=0$ .

For fixed $u$ and $v$ , we put $B_{d}=B_{udv}$ . Then we have a locally defined vector
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field $B^{*}=\sum B_{d}X_{d}\in D^{\alpha}$ . Let $Y,$ $Z$ be any vector fields. Then, applying Lemmas
2.3 and 2.4, we have

$R(Y, Z)B^{*}=R(\sum_{a}Y^{a}X_{a}, \sum_{b}Z^{b}X_{b})(\sum_{d}B_{d}X_{d})$ ,

where $(Y^{a})$ and $(Z^{b})$ are components of $Y$ and. $Z$ with respect to $(X_{a})$ in $D^{a}$ .
Then $\sum R_{dcab}B_{udv}=0$ implies that $R(Y, Z)B^{*}=0$ . Since $(M, g)$ is of nullity
index zero at each point, we have $B^{*}=0,$ $i$ . $e.,$ $B_{udv}=0$ . Similarly we have

$B_{ud\theta}=\cdots=B_{ud\xi}=0$ .
This implies that, for $X_{u}\in D^{\beta},$ $\beta\neq\alpha$ ,

$\nabla_{u}X_{d}\in D^{\alpha}$ $i$ . $e.,$
$\nabla_{u}D^{\alpha}\subset D^{\alpha}$

Similarly we have $\nabla_{\theta}D^{\alpha}\subset D^{\alpha},$ $\cdots$ , $\nabla_{\xi}D^{\alpha}\subset D^{\alpha}$ . Finally we prove $\nabla_{a}D^{\alpha}\subset D^{\alpha}$ for
$X_{a}\in D^{\alpha}$ . In fact, $B_{udv}=0$ and $B_{ijh}=-B_{ihj}$ give $B_{uvd}=0$ . Changing $D^{\beta}$ and
$D^{\alpha}$ we have $B_{abu}=0$ . This is nothing but $\nabla_{a}D^{\alpha}\subset D^{\alpha}$. Thus, $D^{\alpha}$ is parallel.
Nullity index zero at each point implies dim $D^{\alpha}\geqq 2,$ $\alpha=1,$ $\cdots$ , $k$ . $q$ . $e$ . $d$ .

Summarizing we have
THEOREM 2.6. Let $(M, g)$ be a Riemannian manifold of nullity index zero

at each point.
(i) Let $D$ be a distribution on $(M, g)$ , which is invariant by curvature

transformations $R(X, Y),$ $X,$ $Y\in M_{x}$ at each Point $X$ of M. Denote by $D^{\perp}the$

distribution orthocomplementary to $D$ with respect to $g$. Then $D^{\perp}is$ also in-
variant by curvature transformations at each point.

(ii) Therefore we have distributions $D^{1},$ $D^{2},$ $\cdots$ , $D^{k}$ , which are invariant by
curvature transformations at each point, such that at each pOint $x\in M_{x}$ we
have the orthogonal decomPosition $M_{x}=D_{x}^{1}\oplus D_{x}^{2}\oplus\cdots\oplus D_{x}^{k}$ , and that each $D^{\alpha}$

has no proper subdistribution which is invariant by curvature transformations.
(iii) If $k=1$ , the homogeneous holonomy group is irreducible.
(iv) If $k\geqq 2,$ $D^{1},$ $D^{2},$ $\cdots$ , $D^{k}$ are parallel.
(v) Hence, for $k\geqq 2,$ $(M, g)$ is locally a product manifold of Riemannian

manifolds $(W_{\alpha}, g_{\alpha}),$ $\alpha=1,2,$ $\cdots$ , $k$ .
In (v) of Theorem 2.6, each $(W_{\alpha}, g_{\alpha})$ is not necessarily irreducible. But,

for any fixed $\alpha$ , we have some point $x$ of $M$ such that, in local decomposi-
tion of a neighborhood of $x,$ $(W_{\alpha}, g_{\alpha})$ is irreducible.

\S 3. Curvature tensor-preserving transformations.

The Riemannian curvature tensor $R$ of a Riemannian manifold $(M, g)$ is
called regular at $x$ , if $R(X, Y)\neq 0$ for linearly independent $X$ and $Y$ at $x$ ,

and $R$ is called regular if it is regular at each point (Kowalski [4]). Let $x$

be a point of $M$. Denote by $\Re_{x}$ the set of curvature transformations at $x$ ,
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$i$ . $e.$ ,

(3.1) $\Re_{x}=\{R(X, Y), X, Y\in M_{x}\}$ ,

which is a subset of $\mathfrak{g}l(M_{x})$ , more of $\mathfrak{o}(M_{x})$ ($=the$ Lie algebra of skew-
symmetric endomorphisms of $M_{x}$). Let $G(\Re_{x})$ be the connected subgroup of
$GL(M_{x})$ (or $O(M_{x})=the$ orthogonal group acting on $M_{x}$) whose Lie algebra
is generated by $\Re_{x}$ . A Riemannian manifold or the Riemannian curvature
tensor $R$ is called non-divisible at $x$, if $G(\Re_{x})$ is irreducible, and $(M, g)$ or $R$

is called non-divisible if it is non-divisible at each point (Teleman [15], $p$ .
109). Regularity at $x$ implies non-divisibility at $x$ (Kowalski [5]). Since the
Lie algebra generated by $\Re_{x}$ is contained in the holonomy algebra at $x$ (cf.

for example, Kobayashi-Nomizu [3]), non-divisibility implies irreducibility of
the restricted homogeneous holonomy group.

THEOREM 3.1 (Teleman [15], cf. also, Kowalski [4, 5]). Let $(M, g)$ be a
Riemannian manifold with $m\geqq 3$ and with non-divisible $R$ (more precisely, the
set of non-divisible points of $R$ is dense). Then, a curvature tensor-preserving
transformation of $(M, g)$ onto another $(M^{\prime}, g^{\prime})$ is homothetic.

We say that $R$ is $C^{\infty}$-divisible on an open set $W$, if there is a distribution
$D$ on $W$ such that $1\leqq\dim D\leqq m-1$ and

(3.2) $R(X, Y)D_{x}\subset D_{x}$ for all $x\in W,$ $X,$ $Y\in M_{x}$ .
Then Theorem 2.6 has the following

COROLLARY 3.2. If a Riemannian manifold $(M, g)$ is of nullity index zero
at each pOjnt and if $R$ is $C^{\infty}$-divisible on a connected open set $W$ of $M$, then
$(W, g|W)$ is reducible.

Analytically Corollary 3.2 implies that $C^{\infty}$ -divisibility (3.2) gives for
$s=0,1,$ $\cdots$

(3.3) $(\nabla_{V}^{s}R)(X, Y)D_{x}\subset D_{x}$ , $x\in W$ ,

where $X,$ $Y,$ $V_{1},$ $V_{2},$ $\cdots$ , $V_{s}\in M_{x},$ $\nabla^{0}R=R$ , and $\nabla_{V}^{s}R$ has components:

(3.4) $(\nabla_{V}^{s}R)$ : (V‘ $Vf\cdots V_{s}^{l}\nabla_{i}\nabla_{j}\cdots\nabla_{l}R_{wxy}^{z}$).

REMARK. An example of irreducible Riemannian manifold whose Rie-
mannian curvature tensor $R$ is $C^{\infty}$-divisible is given by Takagi [13]. In fact,
let $R_{1}$ be the Ricci curvature tensor. If a 3-dimensional Riemannian manifold
$(M, g)$ satisfies $R(X, Y)\cdot R_{1}=0$ and $R_{1}$ has rank 2 on an open set $W$, then
we have a local field of orthonormal frames $X_{1},$ $X_{2},$ $X_{3}$ such that $R(X_{1}, X_{2})$

$=KX_{1}\wedge X_{2}$ and $R(X_{3}, X_{1})=R(X_{3}, X_{2})=0$ .
A theorem of Nomizu and Yano is as follows:
THEOREM 3.3 (Nomizu-Yano [7]). Let $(M, g)$ be an irreducible, locally

symmetric Riemannian manifold, $m\geqq 3$. Then, a curvature tensor-preserving
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transformation of $(M, g)$ onto another $(M^{\prime}, g^{\prime})$ is homothetic.
If $(M, g),$ $m\geqq 2$ , is locally symmetric and irreducible, we see that the

nullity index is zero at each point. In fact, $\nabla R=0$ implies that the nullity
distribution $x\rightarrow N_{x}$ is parallel.

If $(M, g)$ is locally symmetric, then it is locally homogeneous.
To give generalization of Theorem 3.3 above, the essential point is the

relation between non-divisibility and irreducibility, or by Theorem 2.6, the
relation between divisibility and $C^{\infty}$ -divisibility.

Our generalization is as follows:
THEOREM 3.4. Let $(M, g)$ be an irreducible, locally homogeneous Rieman-

nian manifold of nullity index zero, $m\geqq 3$ . Then, a curvature tensor-preserving
transformation of $(M, g)$ onto $(M^{\prime}, g^{\prime})$ is homothetic.

To state a Lemma (due to Singer) we prepare some definition. A Rie-
mannian manifold $(M, g)$ is curvature homogeneous if for every $x$ and $y$ in $M$,
there exists an isometry $f$ of the tangent space $M_{x}$ onto the tangent space
$M_{y}$ such that $f$ preserves the Riemannian curvature tensor, $i$ . $e.,$ $f^{-1}R(fX, fY)f$

$=R(X, Y),$ $X,$ $Y\in M_{x}$ . A locally homogeneous Riemannian manifold is cur-
vature homogeneous.

Let $F(M)$ be the bundle of orthonormal frames. For an orthonormal
frame $b=$ $(x, e_{1}, e_{2}, \cdots , e_{m})$ we put $R_{ijkl}(b)=g_{x}(R(e_{k}, e_{l})e_{j},$ $e_{i}$).

LEMMA 3.5 (Singer [12], \S 2). $(M, g)$ is curvature homogeneous if and only
if there exists a Principal subbundle of $F(M)$ over $M$ on which the functions
$R_{ijkl}$ are constant.

The fact we need is existence of local cross sections of this subbundle.
We denote a local cross section by $(x, X_{i}, i=1, \cdots , m)$ .

PROOF OF THEOREM 3.4. If the Riemannian curvature tensor $R$ is divisible
at some point $z$, we have subspaces $D_{z}^{\alpha},$ $\alpha=1,$ $\cdots$ , $k$ , of $M_{z}$ , which are in-
variant by curvature transformations at $z$ and $M_{z}$ has the orthogonal decom-
position

$M_{z}=D_{z}^{1}\oplus D_{z}^{2}\oplus\cdots\oplus D_{z}^{k}$ ,

where $D_{z}^{a}$ has no proper subspace which is invariant by curvature trans-
formations at $z$. Using a local field of orthonormal frames $(x, X_{i})$ given by
Lemma 3.5, we take a basis:

$(\Sigma a_{1}^{l}(X_{i})_{z}, \Sigma a_{2}^{i}(X_{i})_{z},$ $\cdots$ , $\Sigma a_{r}^{i}(X_{i})_{z})$

of $D_{z}^{1},$ $a_{u}^{i}$ being real numbers. Then

$(\sum a_{1}^{f}X_{t}, \sum a_{2}^{i}X_{i}, \cdots , \sum a_{r}^{i}X_{i})$

defines a distribution $D^{1}$ on an open set $W(\ni z)$ on which our local cross
section $(x, X_{i})$ is defined. Hence, we have distributions $D^{1},$ $\cdots$ , $D^{k}$ . These
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distributions are $C^{\infty}$ and invariant by curvature transformations, since
$g(R(X_{k}, X_{l})X_{j},$ $X_{i}$ ) are constant on $W$. Since $(M, g)$ is locally homogeneous,
Theorem 2.6 implies that $(M, g)$ is locally a Riemannian product manifold.
Therefore $R$ must be non-divisible at each point of $M$. By Theorem 3.1, we
have Theorem 3.4.

Theorem 3.4 is also stated as follows:
THEOREM 3.4’. Let $(M, g)$ be an irreducible, locally homogeneous Riemannian

manifold of nullity index zero, $m\geqq 3$ . For another Riemannian metric $g^{*}$ on
$M$, if the both Riemannian curvature tensors are identical, then $g$ and $g^{*}$ are
homothetic.

\S 4. Pseudo-Riemannian manifolds.

Let $(M, g)$ be a pseudo-Riemannian manifold with metric tensor $g$ of
signature $(p, q)$ . That is, for a fixed point $x$ , we have a local coordinate
neighborhood ( $W,$ $x^{i},$ $i=1,$ $\cdots$ , m) such that

$g=(dx^{1})^{2}+\cdots+(dx^{p})^{2}-(dx^{p+1})^{2}-\cdots-(dx^{m})^{2}$

holds at $\chi$. Let $R$ be the Peld of real numbers.
LEMMA 4.1 (Kobayashi-Nomizu [3], p. 277). Let $G$ be a subgroup of

$GL(m, R)$ which acts irreducibly on $R^{m}$ . Let $A$ be a linear transformation of
$\dot{R}^{m}$ which commutes with every elements of G. Then

$A=aI_{m}$ , or $A=aI_{m}+bJ$ ,

where $a,$
$b$ are real numbers, $I_{m}$ the identity transformation of $R^{m}$ and $J$ a

linear transformation such that $J^{2}=-I_{m}$ .
LEMMA 4.2 (cf. Tanno [16]). Let $G$ be a subgroup of $GL(m, R)$ which acts

irreducibly on $R^{m}$ . Let $g$ be symmetric, non-degenerate bilinear form with
signature $(P, q)$ which is invariant by G. Assume

(1) [$m=odd$ or $m=2$] or [$m=even\geqq 4$ and $p\neq q$].

Then, for a symmetric bilinear form $g^{*}$ which is invariant by $G$ , we have a
real number $a$ such that $g^{*}=ag$.

PROOF. Define $A$ by $g^{*}(X, Y)=g(AX, Y)$ for $X,$ $Y\in R^{m}$ . Since $g$ is non-
degenerate, $A$ is a well defined linear transformation of $R^{m}$. Since $g$ and $g^{*}$

are invariant by $G,$ $A$ commutes with every element of $G$ . By Lemma 4.1,
we have $A=aI_{m}$ , or $A=aI_{m}+bJ$. If $m=2$ we see that $b=0$ , and if $b\neq 0$ we
see that $p=q$ (cf. Tanno [16], p. 246-247). $q$ . $e$ . $d$ .

Let $\mathfrak{L}$ be a set of linear endomorphisms of a vector space $V$. By $S^{2}(V)$

we denote the space of all symmetric bilinear forms on $V$. Put

$\Theta(\mathfrak{L})=\{h\in S^{2}(V):h(LX, Y)+h(X, LY)=0, X, Y\in V, L\in \mathfrak{L}\}$ .
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By $G(\mathfrak{L})$ we denote the connected subgroup of $GL(V)$ whose Lie algebra is
generated by $\mathfrak{L}$ . The following Proposition for positive dePnite case was
proved by Kowalski [5].

PROPOSITION 4.3. Let $V$ be a vector space with symmetric, non-degenerate
bilinear form $g$ of signature $(p, q)$ , and let $G$ be a subgroup of $GL(V)$ which
is irreducible and leaves $g$ invariant. Let $\mathfrak{L}$ be a set of linear endomorphisms
generating the Lie algebra of G. Assume (1) of Lemma 4.2. Then,

(i) dim $\Theta(\mathfrak{L})=1,$ $i$ . $e.,$ $\Theta(\mathfrak{L})=(g)$ .
(ii) If $X\in V$ and $LX=0$ for any $L\in \mathfrak{L}$ , then $X=0$ .
PROOF. In the proof of the positive definite case, Kowalski [5] used

Theorem 1 in [3], p. 277. If we replace this by Lemma 4.2, the proof is
similar to that given in [5]. $q$ . $e$ . $d$ .

Also in a pseudo-Riemannian manifold $(M, g),$ $R$ is said to be non-divisible
at $\chi$ if the connected subgroup $G$ of $GL(M_{x})$ whose Lie algebra is generated
by $\{R(X, Y), X, Y\in M_{x}\}=\Re_{x}$ is irreducible.

PROPOSITION 4.4. Let $g,$ $g^{*}$ be pseudo-Riemannian metrics on a manifold
$M$ with the same curvature tensors $R=R^{*}$ . If,

[$m=odd$ or $m=2$] or [$m=even\geqq 4$ and the signature $(p, q)$

of $g$ satisfies $p\neq q$],

then $g$ and $g^{*}$ are conformal on the closure of the set of all non-divisible
$P^{oints}$ of $R$ .

PROOF. $R=R^{*}$ implies $\Re_{x}=\Re_{x}^{*}$ . By (2.2) and Proposition 4.3 (where
$\Re_{x}=\mathfrak{L})$ we have $g_{x}^{*}=a_{x}g_{x}$ for some real number $a_{x}$ . Since $a=(g^{ij}g_{ij}^{*})/m,$ $a$

is a $C^{\infty}$-function on the closure of the set of non-divisible points of $R$ .
$q$ . $e$ . $d$ .

Corresponding to Theorem 2’ in [4], we have
THEOREM 4.5. Let $(M, g)$ be a pseudo-Riemannian manifold of signature

$(p, q)$ , such that $p\neq q,$ $m\geqq 3$ . If the set of all non-divisible Points of $R$ is
dense in $M$, a curvature tensor-preserving transformation of $(M, g)$ onto another
$(M^{\prime}, g^{\prime})$ is homothetic.

We give an outline of the proof. We denote the induced metric $\varphi^{*}g^{\prime}$ on
$M$ by $g^{*}$ , where $\varphi:M\rightarrow M^{\prime}$ is the given curvature tensor-preserving trans-
formation. By Proposition 4.4, we have $g^{*}=e^{2\alpha}g$ for some function $\alpha$ on $M$.
Then the classical formula gives:

$R_{fkl}^{*i}=R_{jkl}^{t}+\delta_{k}^{t}\beta_{jl}-\delta_{\iota}^{i}\beta_{jk}+\beta_{k}^{t}g_{jl}-\beta_{l}^{t}g_{jk}$ ,

where, putting $\alpha_{i}=\nabla_{i}\alpha$ ,

$\beta_{jl}=\nabla_{j}\alpha_{l}-\alpha_{j}\alpha_{l}+^{1}--\alpha_{r}\alpha^{r}g_{jl}2$
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$R^{*}=R$ and $m\geqq 3$ imply $\beta_{jl}=0$ . Then calculating $\nabla_{j}\nabla_{k}\alpha_{l}-\nabla_{k}\nabla_{j}\alpha_{l}$ and using
the Ricci identity, we have $R_{ljk}^{r}\alpha_{r}=0$ . Non-divisibility (on a dense set) implies
$\alpha_{\gamma}=0$ . That is, $\alpha$ is constant.

COROLLARY 4.6 (cf. Vranceanu [18]). Let $(M, g)$ be a pseudo-Riemannian
manifold of signature $(p, q),$ $p\neq q$ , and $m\geqq 3$ . Assume that on a coordinate
neighborhood $U(x^{i}),$ $R$ is non-divisible. Let $g^{*}$ be another metric on $U(x^{i})$ . If
the Christoffel’s symbols satisfy

$\Gamma_{jk}^{i}=\Gamma_{jk}^{*i}$ on $U$ ,

then $g$ and $g^{*}$ are homothetic.

\S 5. The conditions $R(X, Y)\cdot R=0$ and $R(X, Y)\cdot R_{1}=0$ .
For tangent vectors $X$ and $Y$ at $x,$ $R(X, Y)$ acts on the tensor algebra

at $x$ as a derivation. The condition $(^{*})$ is

$(^{*})$ $R(X, Y)\cdot R=0$ for any $X,$ $Y\in M_{x},$ $x\in M$ .
The condition $(^{*})$ implies in particular

$(^{**})$ $R(X, Y)\cdot R_{1}=0$ for any $X,$ $Y\in M_{x},$ $x\in M$ .
Denoting the Ricci transformation by $R^{1},$ $(^{**})$ is equivalent to $R(X, Y)\cdot R^{1}$

$=0$ . $i$ . $e.$ ,

(5.1) $R(X, Y)(R^{1}Z)-R^{1}(R(X, Y)Z)=0$ .
LEMMA 5.1. Assume $(^{**})$ . If $R^{1}$ has a simple eigenvalue $\lambda$ at $x$ , then $\lambda=0$ .

In this case, the nullity index at $x$ is 1.
PROOF. Let $\lambda_{i},$

$e_{i}$ be eigenvalues, orthonormal eigenvectors such that
$R^{1}e_{i}=\lambda_{t}e_{i}$ at $x,$ $i=1,2,$ $\cdots$ , $m$ . By $(^{**})$ , we have

$R_{1}(R(e_{i}, e_{j})e_{k},$ $e_{l}$ ) $+R_{1}(e_{k}, R(e_{i}, e_{j})e_{l})=0,$ $i$ . $e.$ ,

$(\lambda_{l}-\lambda_{k})R_{lkij}=0$ .
Let $\lambda_{m}$ be a simple eigenvalue. Then, we get $R_{mkij}=0$ . By $R_{mj}=\sum g^{ki}R_{mkij}$

$=0$ , we have $R^{1}e_{m}=0$ . Hence, $\lambda_{m}=0$ . Let $X$ be in $N_{x}$ . Then $R_{1}(X, Y)=0$

for any $Y\in M_{x}$ (cf. \S 6 Remark (3)). Therefore, only eigenvectors corre-
sponding to $0$ can be in $N_{x}$ , and $\mu(x)=1$ .

LEMMA 5.2. Assume $(**)$ . Let $\lambda^{1},$ $\lambda^{2},$ $\cdots$ , $\lambda^{k}$ be distinct eigenvalues of $R^{1}$

at $x$, and let $D_{x}^{a},$ $\alpha=1,2,$ $\cdots$ , $k$ , be eigenspaces. Then $D_{x}^{\alpha}$ are invariant by
curvature transformations.

PROOF. Let ( $X_{t},$ $i=1,2,$ $\cdots$ , m) be an orthonormal basis at $x$ such that

$X_{1},$ $\cdots$ , $X_{r}\in D_{x}^{1},$ $X_{r+1},$ $\cdots$ , $X_{r+s}\in D_{x}^{2},$ $\cdots$ $X_{r+s+\cdots+t}\in D_{x}^{k}$ .
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Let $X_{a}\in D_{x}^{\alpha}$ . Put $R(X_{i}, X_{j})=(1/2)\Sigma R_{klij}X_{k}\wedge X_{l}$ . Then, putting $X=X_{i}$ ,
$Y=X_{j}$ and $Z=X_{a}$ in (5.1), we have

$\lambda^{\alpha}$ (
$\sum_{k,l}R_{klij}X_{k}$ A $X_{l}$ ) $X_{a}=R^{1}$ ((

$\sum_{k,l}R_{klij}X_{k}$ A $X_{l}$) $X_{a}$) , $i$ . $e.$ ,

$\lambda^{\alpha}\sum_{l=1}^{m}R_{laij}X_{l}=\lambda^{1}\sum_{u=1}^{f}R_{uq\ell j}X_{u}+$ $\cdot$ .. $+\lambda^{k}\sum_{\xi=r+s+\cdot+t-l+1}^{m}R_{\xi atj}X_{\xi}$ .

Since $\lambda^{1},$ $\lambda^{2},$ $\cdots$ , $\lambda^{k}$ are distinct, we have

$R_{uaij}=0,$ $\cdots$ $\wedge^{\alpha},$ $R_{\xi aij}=0$ ,

where $\Lambda^{\alpha}$ means that ( $R_{baij}$ -part) is removed. That is,

$R(X, Y)D_{x}^{\alpha}\subset D_{x}^{\alpha}$ . $q$ . $e$ . $d$ .

We easily see that non-triviaI components in $(R_{klij})$ are
$(R_{wxuv}, R_{cdab}, R_{\kappa\lambda\xi\eta})$ ,

components with mixed indices being zero. Hence, we have
PROPOSITION 5.3. Let $(M, g)$ be a Riemannian manifold with $(^{**})$ .
(i) If $R$ is non-divisible at $x$ , then $R_{1}$ is Proportional to $g$ at $x$ .
(ii) If $R$ is non-divisible on a dense subset of $M$, then $(M, g)$ is an Ein-

stein space.
PROPOSITION 5.4. Let $(M, g)$ be a Riemannian manifold with $(^{*})$ and $m=4$ .

If $R$ is non-divisible on a dense subset of $M$, then $(M, g)$ is locally symmetric.
PROOF. An Einstein space with $(^{*})$ and $m=4$ is locally symmetric by a

result of Sekigawa [10]. Thus Proposition 5.4 follows from Proposition 5.3.
PROPOSITION 5.5. Let $(M, g)$ be a Riemannian manifold with $(^{**})$ and with

nullity index zero at each point. If $R^{1}$ has distinct eigenvalues $\lambda^{1}>\lambda^{2}\cdots>\lambda^{k}$

on a connected open set $W$ and if eigenvalues are differentiable on $W$, then
$(W, g|W)$ is locally a product manifold of Einstein sPaces.

PROOF. Since $\lambda^{\alpha},$ $\alpha=1,2,$ $\cdots$ , $k$ , are distinct, we have continuous distri-
butions $D^{\alpha}$ on $W$. To show that $D^{\alpha}$ are differentiable, for $x\in W$, let $X\in D_{x}^{a}$ .
We extend $X$ to a vector field $X^{*}$ on $W$. Then

$(R^{1}-\lambda^{1}I)(R^{1}-\lambda^{2}I)\cdots(\wedge^{\alpha})\cdots(R^{1}-\lambda^{k}I)X^{*}$

belongs to $D^{\alpha}$ and differentiable. Thus, $D^{\alpha}$ is differentiable. Then, Theorem
2.6 shows that $D^{\alpha}$ are parallel. Each integral manifold of $D^{\cap}$ is an Einstein
space. By Lemma 5.1, dim $D^{\alpha}\geqq 2$ .

PROPOSITION 5.6. Let $(M, g)$ be a 5-dimensional Riemannian manifold with
$(^{**})$ and with nullity index zero at each pOjnt. Then there is a subset $V$ such
that $M-V$ is dense and any Point $x\in M-V$ has a neighborhood $W$ which is
an Einstein sPace or a product manifold of Einstein sPaces.

PROOF. Since the multiplicity of each non-zero eigenvalue of $R^{1}$ at $x$ is



Riemannian manifolds of nullity index zero 269

$\geqq 2$ (by Lemma 5.1) and $0$ is not a simple eigenvalue (by Lemma 5.1 and
nullity index zero at each point), we have possibilities of eigenvalues of $R^{1}$ :
$(0,0,0, \lambda, \lambda),$ $(0,0, \lambda, \lambda, \lambda),$ $(\gamma, \gamma, \lambda, \lambda, \lambda)$ and $(\lambda, \lambda, \lambda, \lambda, \lambda)$ at $x$ (where in first 3
cases, $\lambda,$ $\gamma\neq 0$ ; in the last case $\lambda\neq 0$ or $=0$).

(i) The case $(0,0,0, \lambda, \lambda)$ . By Lemma 5.2 and by the statement just
above Proposition 5.3, $(R_{wyuv} ; w, y, u, v=1,2,3)$ can be considered as com-
ponents of a Riemannian curvature tensor of a 3-dimensional Riemannian
manifold, algebraically at $\chi$. Since a 3-dimensional Riemannian manifold
with the vanishing Ricci tensor at $x$ has the vanishing Riemannian curvature
tensor at $x$ , we have $R_{wyuv}=0$ . Hence, the nullity index at $x$ is 3, and this
can not occur.

(ii) The case $(0,0, \lambda, \lambda, \lambda)$ can not occur, too.
(iii) The case $(\gamma, \gamma, \lambda, \lambda, \lambda)$ . Since only two $\gamma$ and $\lambda$ are distinct, $\gamma$ and

$\lambda$ are differentiable on some neighborhood $W$ of $x$ (cf. for example, Ryan [9],

p. 371). Then we apply Proposition 5.5.
(iv) The case $(\lambda, \lambda, \lambda, \lambda, \lambda)$ . If this holds on a neighborhood $\uparrow V$ of $x$ , then

$(W, g|W)$ is an Einstein space. If $x$ has no open neighborhood where $R^{1}=$

$(\lambda, \lambda, \lambda, \lambda, \lambda)$ , then the set $V$ of points of this type is of measure zero, $i$ . $e.$ ,
$M-V$ is dense.

REMARK. For the case $m=3$ , or 4, cf. Sekigawa [11].

\S 6. Remarks.

(1) Let $(M, g)$ be a conformally flat and non-flat Riemannian manifold.
If the restricted homogeneous holonomy group is not the special orthogonal
group $SO(m)$ , then the Ricci transformation $R^{1}$ has just two distinct eigen-
values $\lambda$ and $\mu$ on some open set $W$ (Kurita [6]). Denote by $D^{1}$ and $D^{2}$ the
distributions on $W$ defined by

(6.1) $D_{x}^{1}=\{X\in M_{x} : R^{1}X=\lambda X\}$ ,

$D_{x}^{2}=\{U\in M_{x} : R^{1}U=\mu U\}$ .
Then $D^{1}$ and $D^{2}$ are differentiable. If $\dim D^{1}\geqq 2$ and $\dim D^{2}\geqq 2$ , we have

$R(X, Y)=KX\wedge Y$ , $X,$ $Y\in D^{1}$

$R(U, V)=-KU\Lambda V$ , $U,$ $V\in D^{2}$

$R(X, U)=0$ , $X\in D^{1},$ $U\in D^{2}$

Theorem 2.6 is applicable.
(2) Let $(M, g, J)$ be a K\"ahlerian manifold with the vanishing Bochner

curvature tensor, where $J$ denotes (the almost) complex structure tensor and
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$g$ denotes the K\"ahlerian metric tensor. If the restricted homogeneous holo-
nomy group is not the unitary group $U(n),$ $m=2n$ , then the Ricci transforma-
tion $R^{1}$ has just two distinct eigenvalues $\lambda$ and $\mu$ on some open set (cf.
Takagi-Watanabe [14]). On this open set we have $D^{1}$ and $D^{2}$ defined similarly
by (6.1). Then

$R(X, Y)Z=\frac{H}{4}[(X\Lambda Y)Z+(JX\Lambda JY)Z-2g(JX, Y)JZ]$ ,

$R(U, V)W=-\frac{H}{4}[(U\Lambda V)W+(]U\Lambda JV)W-2g(JU, V)JW]$ ,

$R(X, U)=0$

for $X,$ $Y,$ $Z\in D^{1}$ and $U,$ $V,$ $W\in D^{2}$ . Theorem 2.6 is applicable: $(M, g)$ is
locally a product manifold of two K\"ahlerian manifolds of constant holomor-
phic sectional curvature $H$ and $-H$.

(3) As for Theorem $A^{\prime}$ in the introduction, we notice that if $R_{1}$ is non-
singular at $x$ , then the nullity index at $x$ is zero. Let $X\in N_{x}$ . For any
orthonormal basis $(e_{i})$ at $x$, we have

$R_{1}(X, Y)=\sum g(R(X, e_{i})Y,$ $e_{i}$ ) $=0$

for any $Y\in M_{x}$ . Hence, $X=0$ .
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