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§1. Introduction.

Riemannian manifolds (M, g) of constant nullity ¢ were studied by
Rosenthal [8]: Under certain assumptions (M, g) is a direct product manifold
of an (m—p)-dimensional Riemannian manifold and a ¢-dimensional Euclidean
space, when m=dim M.

In this paper we study Riemannian manifolds of nullity index zero and
give local decompositions in §2. By R we denote the Riemannian curvature
tensor. (M, g) is of nullity index zero on M, if at each point x, for a tangent
vector Z at x, R(X, Y)Z=0 for any tangent vectors X and Y at x implies
Z=0. Assume that a Riemannian manifold (M, g) is of nullity index zero
and admits a (C*-) distribution D, which is invariant by curvature transfor-
mations R(X, Y) for any vector fields X and Y, and 1=<dim D <m—1. Denote
by D+ the distribution orthocomplementary to D with respect to the metric
g. Then D+ is invariant by curvature transformations. In we
show that D and D+ are parallel. Hence (M, g) is locally a product manifold.

As one of the results related to the equivalence problem in Riemannian
geometry, Nomizu and Yano obtained the following: Let (M, g) be an
irreducible, locally symmetric Riemannian manifold with dim M=m =3; then
a curvature tensor-preserving transformation of (M, g) onto another Rieman-
nian manifold (M’, g’) is homothetic. In §3, we generalize this theorem. A
Riemannian manifold (M, g) is locally homogeneous (by definition) if, for any
points x and y in M, there is an isometry of some neighborhood of x onto
some neighborhood of ¥ which sends x to y.

THEOREM A. Let (M, g) be an irreducible, locally homogeneous Riemannian
manifold of nullity index zero, m = 3. Then, a curvature tensor-preserving trans-
formation of (M, g) onto another Riemannian manifold (M, g’) s homothetic,

In particular, we have

THEOREM A’. Let (M, g) be an irreducible, locally homogeneous Riemannian
manifold, m=3. If the Ricci curvature tensor is non-singular (at some point),
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then a curvature tensor-preserving transformation of (M, g) onto another (M, g’)
is homothetic.

In proof, and a theorem of Teleman[15] are applied. Tele-
man’s theorem involves the notion of non-divisibility of the Riemannian cur-
vature tensor. In §4, we generalize his theorem to pseudo-Riemannian mani-
folds, since this kind of problem is important also in pseudo-Riemannian
geometry. In a pseudo-Riemannian manifold (M, g), the Riemannian curva-
ture tensor R is called non-divisible at x, if the connected subgroup G of
GL(M,) of endomorphisms of M, whose Lie algebra is generated by {R(X, V),
X, Y e M.} is irreducible.

THEOREM B. Let (M, g) be a pseudo-Riemannian manifold of signature
(p, @) such that p +q and m=3. If non-divisible points of R is dense in M, a
curvature temsor-preserving transformation of (M, g) onto another pseudo-
Riemannian manifold (M’, g’) is homothetic.

In §5, applications of to Riemannian manifolds satisfying
R(X,Y)R=0 or R(X,Y) -R,=0 are given, where R(X, Y) acts on the tensor
algebra at each point as a derivation and R; denotes the Ricci curvature
tensor.

In § 6, some remarks are given.

In this paper, manifolds are assumed to be connected and of class C*.
Tensor fields, distributions, etc. are assumed to be of class C*, if otherwise
stated.

§ 2. Distributions which are invariant by curvature transformations.

Let (M, g) be a Riemannian manifold with (positive definite) metric tensor

g. The dimension of M is denoted by m. By V and R we denote the Rie-

mannian connection with respect to g and the Riemannian curvature tensor:
R(X, Y)Z:V[X,YJZ_VXVYZ+VYVXZ

for vector fields X, Y and Z on M. Let x be a point of M, and let M, be
the tangent space at x to M. By Y,Z< M, we mean that Y and Z are tan-
gent vector at x. We define a subspace N, of M, by

(2.1) N,={XeM,; R(X,Y)Z=0 for all Y,Ze M,}.

N, is called the nullity space at x, and dim N, = p(x) is called the nullity
index at x (or the index of nullity at x) (cf. Chern-Kuiper [17).
The Riemannian curvature tensor R satisfies

(2.2) RX,Y)=—R(Y,X), gRX,Y)Z, W)=—g(R(X, Y)W, Z),
(2.3) g(R(X,Y)Z W)=g(R(Z W)X, Y),
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(2.4) R(X,Y)Z+R(Y,Z)X+R(Z, X)Y =0,
(2.5) (VaR)Y, Z)+(VyR)(Z, X)+(VR)(X, Y)=0

for vector fields (or tangent vectors) X, Y, Z and W.
LEMMA 2.1. Let D be a distribution on (M, g) which is invariant by curva-
ture transformations at each point x:

RX, YYWeD, forad WebD, X, YeM,.
Then the distribution D+ orthocomplementary to D with respect to g is invariant
by curvature transformations, too.

PrROOF. It is not difficult to see that D+ is C>, whenever D is C*. Let
Ue D; and let We D,. By[2.2) we get g(R(X, Y)U, W)= —g(R(X, Y)W, U)

=0. Therefore R(X, Y)U L D,, i.e., R(X, Y)D*C D*. q.e.d.
LEMMA 2.2. We have distributions D', D% ---, D* which are invariant by

curvature transformations such that, at each point x of M,

(2.6) M.=D.;®D;® - DDz,

which is an orthogonal decomposition of M,, and each D* (a=1, 2, , k) has
no proper subdistribution which is invariant by curvature transformations (at
each point) on M,

PROOF. Let D and D* be distributions invariant by curvature trans-
formations given in Lemma 2.1 If D has a subdistribution D' which is
invariant by curvature transformations on M, then (D*)* is also an invariant
distribution by curvature transformations on M. DN\(D")* is also a distribution
on M and is invariant by curvature transformations on M. Continuing this

step, we have g.e.d.
LEMMA 23. For X, Ye Dg and for B+a (a, =1,2, -+, k)
2.7 R(X, Y)YD:=0.

Proor. Let U, Ve D8 By we get
g(R(X, Y U, V)+g(R(Y, U)X, V)+g(R(U, X)Y, V)=0.
By R(Y, U)X e D} and R(U, X)Y € D? we have g(R(X, Y)U, V)=0. Putting
V=R(X, Y)U, we have R(X, YU=0.
LEMMA 24. For Xe D? and U Dé, B+«
(2.8) R(X, U)=0.

PROOF. Let A be an arbitrary tangent vector at x. Put B=R(X, U)A.
By we have g(R(X, U)A, B)=g(R(A, B)X,U)=0. Thus we have
R(X, U)A=0. q.e. d.

Let (X;, 1=1,2, ---,m) be a local field of orthonormal frames such that

2 k
le X2v Tty XTE Dly X’r+1) Tty XT+SE D y 7T ‘)(’I‘i-s-f"*~+tE D ’

’
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where, in general, X< D" means that X is a (locally defined) vector field
such that at each point x, X, = DZ. We put

(2.9) VI@X]:V’LX]:;Blthhy 7:, ]:1, 2,"' m.,

b

B;j;n is skew-symmetric in j .and h; B,j=—B;. By XAY we mean that
(XAY)Z=g(Y,Z)X—g(X,Z)Y. Let X,, X,, X,, X, D" and X, = D?. We
put g(R(X,, Xp)X., Xy = Rgeeo. Then Rgy.qp is skew-symmetric in d and ¢, and
hence we can put

(210 R(Xe, X)) = 55 Rucar Xa\ X,
1) R(Xa, X.)=0.

LEMMA 25. If (M, g) is of nullity index zero at each point of M, then
D', D% .- D* are parallel.

PROOF. To apply we calculate

(2.12) (VuR)(Xa, Xo) = Vu(R(Xe, Xo)—R(VuXa, Xo)—R(Xo, VXuy)

= —%—dzg VuRacas Xa N X, +%dzc) RacasL (Vo XOA X A X AV, X)]

"‘“%d;e(BuaeRdceb+BubeRdcae>XdAXc ’
(2.13) (VaR) (X, Xo) = —R(V, Xy, Xy)—R(X,, Vo Xy)
= ——é_[vyszavaywvqu/\Xw+d;e BaueRdcbeXd/\Xc:] y

(2.14) (VoR)(Xu, Xo) = —R(Vy Xy, Xo)—R(Xy, Vo Xo)

= _%[ E BbavRywquy/\Xw"‘_d;EBbueRdceaXd/\XC] ’

v, Y, W
where X,, X,, X,, X4 X.€ D" and X,, X,, X,, X, € D?. We put
VuXd: E BudeXe+ E Budev+ % Bud0X6+ et Eé Budé‘Xf )
where Xy D7, --- , X € D?; (y,--,0)=(,2, -+, k)—(a, B). By and (2.12) ~
(2.14), and

5 Racal T XIAXAXATXI]= 2 RacasTuXI A X,

d,c
we get (as coefficients of mixed parts XxAX,)

EdJ RdcabBudv — % Rdcamew _ = % RdcabBudf =0.

For fixed v and v, we put By=B,4. Then we have a locally defined vector
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field B¥*=3 B;X,= D% Let Y, Z be any vector fields. Then, applying Lemmas
and 24 we have

R(Y, Z)B*=R(ZY*Xo, T Z°X)(Z BaXa)

where (Y'%) and (Z°) are components of Y and.Z with respect to (X,) in D%
Then 3 RicapBugy =0 implies that R(Y, Z)B*=0. Since (M, g) is of nullity
index zero at each point, we have B*=0, i.e., B,4, =0. Similarly we have

Budl]: :Budé"__o-
This implies that, for X, € D?, 8+ «,
v.X,eD*, ie,V,D*CD".

Similarly we have V,D*C D?, --- , Ve:D*C D*. Finally we prove V,D*C D" for
X, D% In fact, B,g =0 and B, = —Bi; give B,,,=0. Changing D? and
D* we have B,,,=0. This is nothing but V,D*C D*. Thus, D* is parallel.
Nullity index zero at each point implies dim D*=2, a=1, ---, k. q.e.d.

Summarizing we have

THEOREM 2.6. Let (M, g) be a Riemannian manifold of nullity index zero
at each point.

(i) Let D be a distribution on (M, g), which is invariant by curvature
transformations R(X,Y), X, Y& M, at each point x of M. Denote by D* the
distribution orthocomplementary to D with respect to g. Then D* is also in-
variant by curvature transformations at each point.

(i) Therefore we have distributions D, D? ---, D* which are invariant by
curvature transformations at each point, such that at each point x e M, we
have the orthogonal decomposition M,=D.PDLPH --- PDE and that each D
has no proper subdistribution which is invariant by curvature transformations.

(ili) If k=1, the homogeneous holonomy group is irreducible.

(iv) If k=2, D, D? ---, D* are parallel.

(v) Hence, for k=2, (M, g) is locally a product manifold of Riemannian
manifolds (W,, g,), a=1,2, -, k.

In (v) of each (W,, g.) is not necessarily irreducible. But,
for any fixed a, we have some point x of M such that, in local decomposi-
tion of a neighborhood of x, (W,, g.) is irreducible.

§ 3. Curvature tensor-preserving transformations.

The Riemannian curvature tensor R of a Riemannian manifold (M, g) is
called regular at x, if R(X,Y)+#0 for linearly independent X and Y at x,
and R is called regular if it is regular at each point (Kowalski [4]). Let x
be a point of M. Denote by %R, the set of curvature transformations at x,
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i.e.,
(3.1) R, ={R(X,Y), X, Ye M},

which is a subset of gl(M,), more of o(M,) (=the Lie algebra of skew-
symmetric endomorphisms of M,). Let G(R,) be the connected subgroup of
GL(M,) (or O(M,)=the orthogonal group acting on M,) whose Lie algebra
is generated by %,. A Riemannian manifold or the Riemannian curvature
tensor R is called non-divisible at x, if G(®R,) is irreducible, and (M, g) or R
is called non-divisible if it is non-divisible at each point (Teleman [15], p.
109). Regularity at x implies non-divisibility at x (Kowalski [5]). Since the
Lie algebra generated by R, is contained in the holonomy algebra at x (cf.
for example, Kobayashi-Nomizu [3]), non-divisibility implies irreducibility of
the restricted homogeneous holonomy group.

THEOREM 3.1 (Teleman [15], cf. also, Kowalski [4, 5]). Let (M, g) be a
Riemannian manifold with m =3 and with non-divisible R (more precisely, the
set of non-divisible points of R is dense). Then, a curvature tensor-preserving
transformation of (M, g) onto another (M’, g’) is homothetic.

We say that R is C>-divisible on an open set W, if there is a distribution
D on W such that 1=<dim D<m—1 and

(3.2) R(X,Y)D,cD, forallxeW, X,YeM,.

Then has the following

COROLLARY 3.2. If a Riemannian manifold (M, g) is of nullity index zero
at each point and if R is C=-divisible on a connected open set W of M, then
(W, gl W) is reducible.

Analytically [Corollary 3.2 implies that C=-divisibility gives for
5=0,1, -,

(3.3) (Vs R)(X,Y)D,CD,, xeW,
where X, Y, V,, V,, -+, V,e M,, VVR=R, and V{,R has components:
(3.4) (VyR): (ViV{-- VIV,V,---V,R2, ).

REMARK. An example of irreducible Riemannian manifold whose Rie-
mannian curvature tensor R is C>-divisible is given by Takagi [13]. In fact,
let R, be the Ricci curvature tensor. If a 3-dimensional Riemannian manifold
(M, g) satisfies R(X,Y)-R,=0 and R, has rank 2 on an open set W, then
we have a local field of orthonormal frames X,, X,, X, such that R(X,, X,)
=KX,ANX, and R(X,, X,)=R(X;, X,)=0.

A theorem of Nomizu and Yano is as follows:

THECOREM 3.3 (Nomizu-Yano [7]). Let (M, g) be an irreducible, locally
symmetric Riemannian manifold, m=3. Then, a curvature tensor-preserving
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transformation of (M, g) onto another (M, g’) is homothetic.

If (M, g), m=2, is locally symmetric and irreducible, we see that the
nullity index is zero at each point. In fact, VR =0 implies that the nullity
distribution x— N, is parallel.

If (M, g) is locally symmetric, then it is locally homogeneous.

To give generalization of above, the essential point is the
relation between non-divisibility and irreducibility, or by the
relation between divisibility and C=-divisibility.

Our generalization is as follows:

THEOREM 3.4. Let (M, g) be an irreducible, locally homogeneous Rieman-
nian manifold of nullity index zero,m=3. Then, a curvature tensor-preserving
transformation of (M, g) onto (M, g’) is homothetic.

To state a Lemma (due to Singer) we prepare some definition. A Rie-
mannian manifold (M, g) is curvature homogeneous if for every x and y in M,
there exists an isometry f of the tangent space M, onto the tangent space
M, such that f preserves the Riemannian curvature tensor, i.e., f'R(fX, fY)f
=R(X,Y), X, Ye M,. A locally homogeneous Riemannian manifold is cur-
vature homogeneous.

Let F(M) be the bundle of orthonormal frames. For an orthonormal
frame b=(x, e, e;, -+, e,) wWe put R;;u(b) =g.(R(es, e)ey, e,).

LEMMA 3.5 (Singer [12], §2). (M, g) is curvature homogeneous if and only
if there exists a principal subbundle of F(M) over M on which the functions
Rijn are constant.

The fact we need is existence of local cross sections of this subbundle.

We denote a local cross section by (x, X;, i=1, -+, m).
PrROOF OF THEOREM 3.4. If the Riemannian curvature tensor R is divisible
at some point z, we have subspaces D% a=1, ---, k, of M,, which are in-

variant by curvature transformations at z and M, has the orthogonal decom-
position

M,=D;®D;® - BD:,

where DZ has no proper subspace which is invariant by curvature trans-
formations at z. Using a local field of orthonormal frames (x, X;) given by
we take a basis:

(2 a(Xy),, Za(Xy),, -, Za:(Xy).)
of D!, @i, being real numbers. Then
(2 a71:Xiy EaéXiy Tty Za;XI)

defines a distribution D' on an open set W (= 2) on which our local cross
section (x, X;) is defined. Hence, we have distributions D!, ---, D®.  These



Riemannian manifolds of nullity index zero 265

distributions are C*® and invariant by curvature transformations, since
g(R(X,, X)X;, X;) are constant on W. Since (M, g) is locally homogeneous,

implies that (M, g) is locally a Riemannian product manifold.
Therefore R must be non-divisible at each point of M. By [Theorem 3.1, we

have

is also stated as follows:

THEOREM 3.4/, Let (M, g) be an irreducible, locally homogeneous Riemannian
manifold of nullity index zero, m=3. For another Riemannian metric g* on
M, if the both Riemannian curvature tensors are identical, then g and g* are
homothetic.

§4. Pseudo-Riemannian manifolds.

Let (M,g) be a pseudo-Riemannian manifold with metric tensor g of
signature (p, g). That is, for a fixed point x, we have a local coordinate
neighborhood (W, xt i=1, ---, m) such that

g=(dx")*+ - +(dx?) —(dxP*')*— - —(dx™)’

holds at x. Let R be the field of real numbers.

LEMMA 4.1 (Kobayashi-Nomizu [3], p. 277). Let G be a subgroup of
GL(m, R) which acts irreducibly on R™ Let A be a linear transformation of
R™ which commutes with every elements of G. Then

A=al,, or A=ual,+bJ,

where a, b are real numbers, I, the identity transformation of R™ and [ a
linear transformation such that J?= —1I,.

LEMMA 4.2 (cf. Tanno [16]). Let G be a subgroup of GL(m, R) which acts
irreducibly on R™ Let g be symmetric, non-degenerate bilinear form with
signature (p, q) which is invariant by G. Assume

¢)) [m=odd or m=2] or [m=cven=4 and p #q].

Then, for a symmetric bilinear form g* which is tnvariant by G, we have a
real number a such that g* = ag.

PROOF. Define Aby g*(X, Y)=g(AX,Y) for X, Y € R™ Since g is non-
degenerate, A is a well defined linear transformation of R™ Since g and g*
are invariant by G, A commutes with every element of G. By [Lemma 4.1
we have A=ual,, or A=al,+bJ. If m=2 we see that b=0, and if b+0 we
see that p=¢ (cf. Tanno [16], p. 246-247). q.e.d.

Let € be a set of linear endomorphisms of a vector space V. By S*V)
we denote the space of all symmetric bilinear forms on V. Put

Q) = (he S¥V): hLX, Y)+h(X,LY)=0, X,Ye V, Lcg}.
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By G(8) we denote the connected subgroup of GL(V) whose Lie algebra is
generated by ¥ The following Proposition for positive definite case was
proved by Kowalski

PROPOSITION 4.3. Let V be a vector space with symmetric, non-degenerate
bilinear form g of signature (p, q), and let G be a subgroup of GL(V) which
is irreducible and leaves g invariant, Let & be a set of linear endomorphisms
generating the Lie algebra of G. Assume (1) of Lemma 4.2. Then,

(i) dimO®) =1, i.e., OR)=(g).

(ii) If XeV and LX=0 for any L8, then X=0.

PrROOF. In the proof of the positive definite case, Kowalski [5] used
Theorem 1 in [3], p. 277. If we replace this by the proof is
similar to that given in [5]. g.e.d.

Also in a pseudo-Riemannian manifold (M, g), R is said to be non-divisible
at x, if the connected subgroup G of GL(M,) whose Lie algebra is generated
by {R(X,Y), X,Ye M,} =%, is irreducible.

PROPOSITION 4.4. Let g, g* be pseudo-Riemannian metrics on a manifold
M with the same curvature tensors R= R*. If,

[m=odd or m=2] or [m=-ceven=4 and the signature (p, q)
of g satisfies p #+4q7],

then g and g* are conformal on the closure of the set of all non-divisible
points of R.

PROOF. R=R* implies %,=%%. By and [Proposition 4.3 (where
R.=2L) we have g¥=a,g, for some real number a,. Since a=(g%gk)/m, a
is a C*-function on the closure of the set of non-divisible points of R.

q. e. d.

Corresponding to Theorem 2’ in [4], we have

THEOREM 4.5. Let (M, g) be a pseudo-Riemannian manifold of signature
(p, @), such that p+q, m=3. If the set of all non-divisible points of R is
dense in M, a curvature tensor-preserving transformation of (M, g) onto another
(M, g’) is homothetic.

We give an outline of the proof. We denote the induced metric ¢*g’ on
M by g* where ¢: M— M’ is the given curvature tensor-preserving trans-
formation. By [Proposition 4.4, we have g*=¢%g for some function a on M.
Then the classical formula gives:

R*f}‘kl = R}'-kﬁ@}; ﬁjz*afﬁjk‘f'ﬁfegjz—,@fgjk ;
where, putting a; =V;a,

1 r
ﬁjl :Vjal_ajal_i“*zvara gjl .



Riemannian manifolds of nullity index zero 267

R*=R and m=3 imply 8, =0. Then calculating V,V,a;—V,V,a, and using
the Ricci identity, we have Rja,=0. Non-divisibility (on a dense set) implies
a,=90. That is, « is constant.

COROLLARY 4.6 (cf. Vranceanu [18]). Let (M, g) be a pseudo-Riemannian
manifold of signature (p,q), p+q, and m=3. Assume that on a coordinate
neighborhood U(x%), R is non-divisible. Let g* be another metric on U(x%). If
the Christoffel’s symbols satisfy

Ly =T on U,

then g and g* are homothetic.

§5. The conditions R(X, Y)-R=0 and R(X, Y)-R,=0.

For tangent vectors X and Y at x, R(X, Y) acts on the tensor algebra
at x as a derivation. The condition (*) is

* R(X,Y) R=0 for any X, Ye M, xe M.

The condition (*) implies in particular

**) R(X,Y) R, =0 for any X, Ye M, xe M.

Denoting the Ricci transformation by R!, (**) is equivalent to R(X, Y)-R!
=0. i.e,

(5.1 R(X, Y)R'Z)-R'(R(X,Y)Z)=0.

LEMMA 5.1. Assume (**). If R' has a simple eigenvalue A at x, then 2=0.
In this case, the nullity index at x is 1.

PROOF. Let A;, ¢; be eigenvalues, orthonormal eigenvectors such that
Rle;=2;e; at x, 1=1,2,---, m. By (*¥), we have

RI(R(ei’ ej)eky el)+R1(eky R(eiy ej)el) - O) i' €.,
(Zl_zk)leij =0.

Let 4, be a simple eigenvalue. Then, we get R,,;:;,=0. By R,; =28 Ruij
=0, we have R'e,, =0. Hence, 1,,=0. Let X be in N,. Then R;(X,Y)=0
for any Y M, (cf. §6 Remark (3)). Therefore, only eigenvectors corre-
sponding to 0 can be in N, and pu(x)=1.

LEMMA 5.2. Assume (**). Let A, 2%, ---, A* be distinct eigenvalues of R!
at x, and let D%, a=1,2,---,k, be eigenspaces. Then D% are invariant by
curvature transformations.

PrOOF. Let (X;, 1=1,2, ---, m) be an orthonormal basis at x such that

le ) XTE D.Il‘y XT+1’ Tty )(7'+3e Diy Tty e XT+$+'-'+tE D‘,‘i"
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Let X,eD;. Put R(X,, X;)=1/2)Z Ru:;XsANX,. Then, putting X=X,
Y=X; and Z= X, in [5.1), we have

2 % Ry j Xe N X)Xy = RY(( % Ry XeNX)X,), ie,

Zalil RlainL:/v éRuainu—*" e 2% % REainE-
= u=1

E=rtstAt—t+1
Since A%, 2% ---, A* are distinct, we have
Rygiy=0, -+, A% o+, Reqi;=0,
where A“ means that (R,,;;-part) is removed. That is,
R(X,Y)D:cC D2. q.e.d.
We easily see that non-trivial components in (R,;;) are

(szuv; Tty Rcdaby ) RIEXE”) ’

components with mixed indices being zero. Hence, we have

PROPOSITION 5.3. Let (M, g) be a Riemannian manifold with (*%).

(i) If R is non-divisible at x, then R, is proportional to g at x.

(ii) If R is non-divisible on a dense subset of M, then (M,g) is an Ein-
stein space. ’

PROPOSITION 5.4. Let (M, g) be a Riemannian manifold with (*) and m=4.
If R is non-divisible on a dense subset of M, then (M, g) is locally symmetric.

PROOF. An Einstein space with (*) and m =4 is locally symmetric by a
result of Sekigawa [10]. Thus [Proposition 5.4 follows from [Proposition 5.3

PROPOSITION 5.5. Let (M, g) be a Riemannian manifold with (**) and with
nullity index zero at each point. If R' has distinct eigenvalues 2* > A2+ > 2*
on a connected open set W and if eigenvalues are differentiable on W, then
(W, g\ W) is locally a product manifold of Einstein spaces.

PROOF. Since 1%, a=1, 2, ---, k, are distinct, we have continuous distri-
butions D* on W. To show that D" are differentiable, for x= W, let X D2
We extend X to a vector field X* on W. Then

(R— 1) (R — J2I) -+ (A®) -+ (R\—AF[) X *

belongs to D* and differentiable. Thus, D is differentiable. Then,
2.6 shows that D are parallel. Each integral manifold of D® is an Einstein
space. By Lemma 5.1, dim D*=2.

PROPOSITION 5.6. Let (M, g) be a 5-dimensional Riemannian manifold with
(**) and with nullity index zero at each point. Then there is a subset V such
that M—V 1is dense and any point x M—YV has a neighborhood W which is
an Einstein space or a product manifold of Einstein spaces.

PROOF. Since the multiplicity of each non-zero eigenvalue of R' at x is
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=2 (by and 0 is not a simple eigenvalue (by and
nullity index zero at each point), we have possibilities of eigenvalues of R':
(0,0,0,4,4), (0,0,2, 4 ), (,7, 4 4 A) and (4, 4, 4, 4, ) at x (where in first 3
cases, 4, y #0; in the last case 1+ 0 or =0).

(i) The case (0,0,0, 4, 2). By and by the statement just
above Proposition 5.3, (Ryyuv; W, ¥, 4, v=1,2,3) can be considered as com-
ponents of a Riemannian curvature tensor of a 3-dimensional Riemannian
manifold, algebraically at x. Since a 3-dimensional Riemannian manifold
with the vanishing Ricci tensor at x has the vanishing Riemannian curvature
tensor at x, we have R,,,, =0. Hence, the nullity index at x is 3, and this
can not occur. _

(ii) The case (0,0, 2, 2, 2) can not occur, too.

(iii) The case (7,7, 4, 4, 4). Since only two 7y and A are distinct, y and
A are differentiable on some neighborhood W of x (cf. for example, Ryan [9],
p. 371). Then we apply Proposition 5.5

(iv) The case (4, 4, 4, 2, A). If this holds on a neighborhood ¥ of x, then
(W, g| W) is an Einstein space. If x has no open neighborhood where R'=
(4, 4, 4, 4, 2), then the set V of points of this type is of measure zero, i.e.,
M—YV is dense.

REMARK. For the case m=3, or 4, cf. Sekigawa [11]

§ 6. Remarks.

(1) Let (M, g) be a conformally flat and non-flat Riemannian manifold.
"~ If the restricted homogeneous holonomy group is not the special orthogonal
group SO(m), then the Ricci transformation R® has just two distinct eigen-
values 2 and ¢ on some open set W (Kurita [6]). Denote by D' and D? the
distributions on W defined by

(6.1) Di={XeM,: R"RX=2X},
Di={UeM,: RU=pU}.
Then D' and D* are differentiable. If dim D*=2 and dim D*= 2, we have
R(X,Y)=KXA\Y, X, Ye D!,
R(U, V)=—=KUAV, U, Ve D?,
R(X,U)=0, Xe D', Ue D>,

Theorem 2.6 is applicable.
(2) Let (M, g,J) be a Kihlerian manifold with the vanishing Bochner
curvature tensor, where J denotes (the almost) complex structure tensor and
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g denotes the Kéhlerian metric tensor. If the restricted homogeneous holo-
nomy group is not the unitary group U(n), m =2n, then the Ricci transforma-
tion R' has just two distinct eigenvalues A and ¢ on some open set (cf.
Takagi-Watanabe [14]). On this open set we have D' and D* defined similarly
by [6.1). Then

R(X, Y)Z= %[(X/\ Y)Z+-(JXNJY)Z—28(JX, Y)]Z],

RU, VW= —JZ—[(U/\ VYW+(JUANJVIW—2g(JU, VYW,
R(X, U)=0

for X, Y, Z D! and U, V, We D is applicable: (M, g) is
locally a product manifold of two Kédhlerian manifolds of constant holomor-
phic sectional curvature H and —H. ,

(3) As for A’ in the introduction, we notice that if R, is non-
singular at x, then the nullity index at x is zero. Let X N,. For any
orthonormal basis (e¢;) at x, we have

R(X,Y)=3g(R(X, e)Y, e;)=0
for any Y = M,. Hence, X=0.
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