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Let $M=M(T, \pi, P^{N})$ be a $P^{N}$-bundle over an abelian variety $T,$ $G=Aut^{0}M$

and $H=Aut^{0}T$ the connected components of the complex Lie groups contain-
ing the identities of all holomorphic automorphisms of $M$ and $T$ respectively..
Then there exists a holomorphic homomorphism $\pi_{*}$ of $G$ into $H$ canonically
induced by $\pi$ .

$M$ is said to be a homogeneous bundle if $\pi_{*}$ is surjective. If $M$ is a
bundle defined by a homomorphism of the fundamental group $\Gamma$ of $T$ into
$PGL(N)$ , it is called a flat bundle.

In \S 1, we shall prove the following proposition.
PROPOSITION. Let $M$ be a $P^{N}$ -bundle over an abelian variety T. Then $M$

is a homogeneous bundle if and only if it is a flat bundle.
Let a be a homomorphism of $\Gamma$ into $PGL(N)$ . We call $\alpha$ of finite $tyPe$ .

if ${\rm Im}\alpha$ is a finite group. In \S 2, we shall prove the following proposition.
PROPOSITION. Let $M$ be a flat $P^{N}$ -bundle over an abelian variety $T$ defined

by a homomorphism $\alpha$ . If $\alpha$ is of finite type, then
1) $A\times P^{N}$ is a finite holomorphic covering manifold of $M$, where $A=$

$ C^{n}/ker\alpha$ ,
2) there exists a Kahler metric canonically induced by that of $A\times P^{N}$ such

that the corresPonding Ricci curvature of $M$ is positive semi-definite.
A connected compact complex manifold $M$ is called an almost homogeneous

manifold if there exists a complex subgroup $G$ of Aut $M$ such that the G-orbit
through some point of $M$ contains an open subset of $M$.

COROLLARY. Assume that $N+1$ is a prime number. If the bundle space of
a $P^{N}$ -bundle $M$ over an abelian variety $T$ is an almost homogeneous manifold,
then there exists a flat vector bundle $E$ over $T$ such that $M$ is the projection
of $E$ .

We shall give an example of an almost homogeneous $P^{3}$ -bundle over an
abelian variety $T$ which is not the projection of a flat vector bundle over $T$.

In \S 3, we shall classify homogeneous $P^{2}$-bundles over an abelian variety
$T$ and give a necessary and sufficient condition that such a bundle space is
an almost homogeneous manifold.
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\S 1.

LEMMA 1 ([1], Lemma 3.15). Let $G$ be a connected Lie group and $B$ a
closed connected normal subgroup of G. Then there exists a maximal comPact
subgroup $K$ of $G$ such that $B\cap K$ and the image of $K$ in $G/B$ are maximal
compact subgroups of $B$ and $G/B$ resPecPively.

Now let $G$ be a connected complex Lie group, $K$ a maximal compact sub-
group of $G$ and $f$ the Lie algebra of $K$. Denote by $\tilde{K}$ the connected complex

subgroup of $G$ corresponding to the complex Lie subalgebra $\sim \mathfrak{k}=f+\sqrt{-1}\mathfrak{k}$ .
Then $\tilde{K}$ has the following property:

LEMMA 2 ([5], \S 2, Proposition). There exist connected closed normal com-
plex subgrouPs \S and $\tilde{Z}$ satisfying the following Properties:

1) $K=S\cdot \mathcal{Z},$ $\S_{\cap}Z$ is a finite group,
2) $S$ is semi-simple,
3) $\tilde{Z}$ is the connected centre of $\tilde{K}$.
LEMMA 3. If there exists a holomorphic homomorphism $\pi_{*}$ of a connected

complex Lie group $G$ onto a connected compact complex abelian Lie group $H$

such that the number of connected components of the kernel $\pi_{*}$ is finite, then
there exists a holomorphic splitting $\mu$ of the induced holomorphic homomorphism
$\pi$ of $\mathfrak{g}$ onto $\mathfrak{h}$ , that is, $\mu$ is a holomorphic homomorphism of $\mathfrak{h}$ into $\mathfrak{g}$ such that
$\pi\cdot\mu=id$ . on $\mathfrak{h}$ , where $\mathfrak{g}$ and $\mathfrak{h}$ denote the complex Lie algebras of $G$ and $H$

respectively.
PROOF. Let $I$ be the kernel of $\pi_{*}$ . Then we have $G/I\simeq H$. First,

assume that $I$ is connected. Then, since $H$ is compact, there exists a maximal
lcompact subgroup $K$ of $G$ such that $\pi_{*}(K)=H$, by Lemma 1. Therefore,
the restriction $\pi_{*}|\tilde{K}$ of $\pi*$ to $\tilde{K}$ is a holomorphic surjection of $\tilde{K}$ onto $H$.
Moreover, by Lemma 2, there exist connected closed complex subgroups $\tilde{S}$

and $\tilde{Z}$ of $\tilde{K}$ satisfying $\tilde{K}=\tilde{S}\cdot\tilde{Z}$. Since $\tilde{S}$ is semi-simple and $H$ is abelian, $\pi_{*}$

induces a holomorphic surjection $\tilde{\pi}_{*}$ of $\tilde{Z}$ onto $H$. Thus we have a holo-
morphic homomorphism $\tilde{\pi}$ of $\mathfrak{z}\sim$ onto $\mathfrak{h}$ induced by $\tilde{\pi}_{*}$ , where $\mathfrak{z}\sim$ is the complex
Lie subalgebra corresponding to $\tilde{Z}$ . Moreover, since $\tilde{\mathfrak{z}}$ and $\mathfrak{h}$ are both complex
abelian Lie algebras, a complex linear splitting of the complex linear mapping
$\tilde{\pi}$ of $\mathfrak{z}$ onto $\mathfrak{h}$ as complex vector spaces defines a holomorphic splitting $\mu$ of
$\tilde{\pi}$ as complex Lie algebras. This is the desired one. Thus we complete the
proof in this case.

Next we shall prove the general case. By our assumption, $I/I^{0}$ is a finite
group, where $I^{0}$ denotes the connected component of $I$ containing the identity.

Therefore, $G/I^{0}$ is a finite holomorphic covering group of $G/I\simeq H$. Thus
$G/H^{0}$ is also compact. Put $H^{\prime}=G/H^{0}$ . We have an exact sequence of com-
plex Lie groups:
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\langle 1) $0\rightarrow H^{0}\rightarrow G\rightarrow H^{\prime}\rightarrow 0$ .
Now the previous arguments may be applied to the sequence (1). Hence

we have a holomorphic splitting $\mu^{\prime}$ of $\pi^{\prime}$ : $\mathfrak{g}\rightarrow \mathfrak{h}^{\prime}\rightarrow 0$ . But, since $\mathfrak{h}^{\prime}\simeq \mathfrak{h},$ $\mu^{\prime}$ can
be considered as a holomorphic splitting of $\pi:\mathfrak{g}\rightarrow \mathfrak{h}\rightarrow 0$ . This completes the
proof.

Let $M=M(T, \pi, P^{N})$ be a $P^{N}$ -bundle over an abelian variety $T,$ $G$ and $H$

the connected components of the complex Lie groups of all holomorphic auto-
morphisms of $M$ and $T$ containing the identities respectively. Then there
exists a holomorphic homomorphism $\pi_{*}$ of $G$ into $H$ canonically induced by
$\pi$ ([7], Satz 1.3).

LEMMA 5. $M=M(T, \pi, P^{N})$ is a flat bundle if and only if there exists a
connected complex abelian Lie subgroup $A$ of $G$ such that the restriction $\pi_{*}|A$

of $\pi_{*}$ to $A$ is a holomorphic covering homomorphism of $A$ onto $H$.
PROOF. Let $M=C^{n}\times {}_{\alpha}P^{N}$ be a flat bundle defined by a homomorphism $\alpha$

of the fundamental group $\Gamma$ of $T$ into $PGL(N)$ . For an arbitrary element
$w$ of $C^{n}$ , the mapping $w$ of $C^{n}\times P^{N}$ onto itself defined by $(z, \xi)\rightarrow(z+w, \xi)$

induces a holomorphic automorphism of $M$. By this operation, $C^{n}$ can be
considered as a complex Lie group of holomorphic automorphisms of $M$.
Moreover, two elements $w$ and $w^{\prime}$ of $C^{n}$ induce the same operation on $M$ if
and only if $w\equiv w^{\prime}$ ($mod$ . ker $\alpha$ ). Hence $ A=C^{n}/ker\alpha$ can be considered as a
connected complex abelian subgroup of $G$ and, by this construction, the re-
striction $\pi_{*}|A$ of $\pi_{*}$ to $A$ is a holomorphic covering homomorphism of $A$

onto $H$.
Conversely, assume that there exists a connected complex abelian sub-

groupA of $G$ satisfying the condition described in Lemma 5. Let $\tilde{\Gamma}$ be the
kernel of $\pi_{*}|A$ of $A$ onto $H$. Then, for a fixed point $0\in T,\tilde{\Gamma}$ can be con-
sidered as a group of holomorphic automorphisms of the fibre $\pi^{-1}(0)\simeq P^{N}$ .
Thus there exists a homomorphism a of $\tilde{\Gamma}$ into $PGL(N)$ corresponding to the
operation of $\tilde{\Gamma}$ on $\pi^{-1}(0)$ . Moreover, $M$ is clearly the bundle defined by
$\alpha=\tilde{\alpha}(\sigma|\Gamma)$ , where $\sigma$ is the canonical projection of $C^{n}$ onto $A$ . This completes
the proof.

PROPOSITION 1. Let $M$ be a $P^{N}$ -bundle over an abelian variety. Then $M$

is a homogeneous bundle if and only if it is a flat bundle.
PROOF. Let $M=M(T, \pi, P^{N})$ be a homogeneous bundle. Let $G=Aut^{0}M$

and $H=Aut^{0}T$ be the connected components of complex Lie groups of all
holomorphic automorphisms containing the identities of $M$ and $T$ respectively.
By a theorem ([2], Theorem 8), $M$ has a Hodge metric. Moreover, since the
irregularity of $M$ equals the complex dimension of $T,$ $T$ can be considered
as the Albanese manifold of $M$. Therefore the component group $I/I^{0}$ of the
kernel $I$ of the holomorphic homomorphism $\pi_{*}$ of $G$ onto $H$ is a finite group
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([3], \S 8, Proposition). Thus, there exists a holomorphic splitting $\mu$ of $\pi:\mathfrak{g}\rightarrow \mathfrak{h}$ ,
by Lemma 4. Denote by $A$ the complex abelian subgroup of $G$ corresponding
to the complex abelian Lie algebra $\mu(\mathfrak{h})$ . It is easily proved that $A$ satisfies
the condition described in Lemma 5. Thus $M$ is a flat bundle.

The converse is trivial by Lemma 5. This completes the proof.

\S 2. Let $\Gamma$ be a free abelian group of finite rank and $\alpha$ a homomorphism
of $\Gamma$ into $PGL(N)$ . $\alpha$ is said to be of finite type if ${\rm Im}\alpha$ is a finite group.

LEMMA 6. If $\alpha$ is of finite type, then every element of $\alpha(\Gamma)$ can be repre-
sented by a unitary matrix.

PROOF. Let $\{\gamma_{1}, \cdots, \gamma_{g}\}$ be a system of generators of $\Gamma$ and $\alpha(\gamma_{i})=p(A_{i})$ ,
$A_{i}\in GL(N+1)$ , for $i=1,2,$ $\cdots,$ $g$, where $p$ is the canonical projection of
$GL(N+1)$ onto $PGL(N)$ .

We can choose $\{A_{i}\}$ such that they satisfy the following conditions:
1) for any $i$ , there exists a positive integer $m_{i}$ such that $A_{t}^{m_{i}}=id.$ ,

2) for any pair $(i, j)$ , there exists a non zero complex number $\rho_{ij}$ such
that

$A_{i}A_{j}=\rho_{ij}A_{j}A_{i}$ .
Since

det $A_{i}$ det $A_{j}=(\rho_{ij})^{N+1}$ det $A_{j}$ det $A_{i}$ ,

we have $(\rho_{if})^{N+1}=1$ .
Denote by $\rho$ a primitive $(N+1)$ -th root of 1. Set

$\tilde{\Gamma}=\{\rho^{k}A_{1}^{e_{1}}\ldots A_{g}^{e_{g}} ; 0\leqq k\leqq N, 0\leqq e_{i}\leqq m_{i}-1\}$

and
$\tilde{\Gamma}^{\prime}=\{\rho^{k} ; 0\leqq k\leqq N\}$ .

Then we have a central extension of abstract groups:

$0\rightarrow\tilde{\Gamma}^{\prime}\rightarrow\tilde{\Gamma}\rightarrow\alpha(\Gamma)p|\tilde{\Gamma}\rightarrow 0$

.

Therefore $\tilde{\Gamma}$ is a finite nilpotent subgroup of $GL(N+1)$ of class 2. It is well-
known that a representation of a finite group is equivalent to that of unitary
matrices. Thus we have the Lemma.

PROPOSITION 2. Let $M=C^{n}\times {}_{\alpha}P^{N}$ be a flat $P^{N}$ -bundle over an abelian
variety $T$ defined by $\alpha$ . If $\alpha$ is of finite type, then $ A=C^{n}/ker\alpha$ is an abelian
variety and we have

1) $A\times P^{N}$ is a finite holomorphic covering manifold of $M$,

2) there exists a Hodge metric on $M$ canonically induced by that of $A\times P^{N}$

such that the Ricci curvature $R(M)$ of $M$ is positive semi-definite.
PROOF. 1) is clear by Lemma 5.
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Since $\alpha$ is of finite type, every element of $\alpha(\Gamma)$ can be represented by
a unitary matrix, by Lemma 6. Since $A\times P^{N}$ has the standard Hodge metric
with $R(A\times P^{N})\geqq 0$ and (a translation on $A$ ) $\times(a$ projective transformation
dePned by a unitary matrix) is an isometry with respect to the above metric,
$M$ has a Hodge metric canonically induced by that of $A\times P^{N}$ . Moreover, it
is clear that $R(M)\geqq 0$ . This completes the proof.

Now let $M=C^{n}\times {}_{\alpha}P^{N}$ be a flat $P^{N}$ -bundle over an abelian variety $T$ defined
by a homomorphism $\alpha$ of the fundamental group $\Gamma$ of $T$ into $PGL(N)$ . Set
$G=Aut^{0}M,$ $ A=C^{n}/ker\alpha$ and $I=ker\pi_{*}$ . Moreover, denote by $I^{\sim}$ the group
consisting of holomorphic automorphisms $\Phi$ of $M$ satisfying $\pi_{*}\Phi=id$ . on $T$ .

PROPOSITION 3. $ I\sim$ contains the centralizer $C(\alpha(\Gamma))$ of $\alpha(\Gamma)$ in $PGL(N)$ .
Moreover, if $\alpha$ is of finite type, then $I\sim is$ isomorphic to $C(\alpha(\Gamma))$ .
PROOF. Let $\Phi$ be an element of $ I\sim$. Since $C^{n}\times P^{N}$ is a holomorphic

covering manifold of $M,$ $\Phi$ induces a holomorphic automorphism of $C^{n}\times P^{N}$ ,

which we denote by $(z, \xi)\rightarrow(\varphi_{1}(z, \xi),$ $\varphi_{2}(z, \xi))$ . For a Pxed $z\in C^{n},$ $\xi\rightarrow\varphi_{1}(z, \xi)$

defines a holomorphic mapping of $P^{N}$ into $C^{n}$ , hence $\varphi_{1}(z_{1}, \xi)$ is a constant
mapping, in other words, $\varphi_{1}(z, \xi)=\varphi_{1}(z)$ is independent of $\xi\in P^{N}$ . Moreover,
since $\pi_{*}\Phi=id$ . on $T$, there exists an element $\gamma\in\Gamma$ such that $\varphi_{1}(z)=z+\gamma$ ,

for arbitrary $z\in C^{n}$ .
Next we may assume that $\varphi_{2}(z, \xi)=\varphi_{2}(z)\xi$ , for arbitrary $z\in C^{n}$ and

$\xi\in P^{N}$ , where $\varphi_{2}$ is a holomorphic mapping of $C^{n}$ into $PGL(N)$ . Moreover
the condition that $\pi_{*}\Phi=id$ . on $T$ implies that

(2) $\varphi_{2}(z+\gamma^{\prime})=\alpha(-\gamma^{\prime})\varphi_{2}(z)\alpha(\gamma^{\prime})$ , for arbitrary $z\in C^{n}$ and $\gamma^{\prime}\in\Gamma$ .
Hence, if $\varphi_{2}(z)=\varphi_{2}$ is a constant element in $C(\alpha(\Gamma)),$ (2) is always satisfied,

in other words, id. $\times\varphi_{2}$ belongs to $ I\sim$, for $\varphi_{2}\in C(\alpha(\Gamma))$ .
Next, assume that $\alpha$ is of finite type. Then $ A=C^{n}/ker\alpha$ is an abelian

variety. Since $\varphi_{2}$ can be considered as a holomorphic mapping of $A$ into
$PGL(N)$ and $PGL(N)$ is a Stein manifold, $\varphi_{2}$ is a constant mapping. There-
fore, by (2), $\varphi_{2}$ is contained in $C(\alpha(\Gamma))$ . Thus we get

$\{(id.\times\varphi_{2}), \varphi_{2}\in C(\alpha(\Gamma))\}\simeq I\sim$ .
This completes the proof.

A homomorphism $\alpha$ of $\Gamma$ into $PGL(N)$ is said to be non Proper, if there
exists a homomorphism $\tilde{\alpha}$ of $\Gamma$ into $GL(N+1)$ such that $\alpha=p_{\tilde{\alpha}}$ , where $p$ is
the canonical projection of $GL(N+1)$ onto $PGL(N)$ .

PROPOSITION 4. Assume that $N+1$ is a prime number. If $\alpha$ is proper, then
1) $\alpha$ is of finite type and $\alpha(\Gamma)\simeq Z_{N+1}\times Z_{N+1}$ ,
2) $C(\alpha(\Gamma))=\alpha(\Gamma)$ .
COROLLARY 1. Assume that $N+1$ is a prime number. If $\alpha$ is proper, then
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$M=C^{n}\times {}_{\alpha}P^{N}$ is not an almost homogeneous manifold.
COROLLARY 2. Assume that $N+1$ is a prime number. If a $P^{N}$-bundle $M$

over an abelian variety $T$ is an almost homogeneous manifold, then there exis $ts$

a flat vector bundle $E$ over $T$ such that $M=proj$ . $E$.
Let $A^{r}(\alpha)$ be a complex r-square matrix of the form:

$A^{r}(\alpha)=\left\{\begin{array}{llll}\alpha, & 1, & & \\ & \alpha, & 1, & \\ & & & 1\\ & 0 & & \alpha\end{array}\right\}$ , $\alpha\in C^{*}$ .

Denote by $\Delta(r, s;\rho)$ the set of complex $r\times s$-matrices of the form:

$\left\{\begin{array}{llll}a_{1}, & a_{2}, & \cdots & a_{s}\\\cdots & \rho a_{1},. \cdots & \cdots & \rho a_{s-1}\\ & & & \vdots\\ & 0 & & \rho^{s- 1}a_{1}\end{array}\right\}$
for $r\geqq s$ ,

$\left\{\begin{array}{llll}a_{1}, & a_{2}, & \prime & a_{r}\\\cdots & \rho a_{1},. \cdots & \cdots & \rho a_{r-1}\\ & & & \vdots\\ & 0 & & \rho^{r-1}a_{1}\end{array}\right\}$ for $r<s$ .

LEMMA 7. For given $A^{r}(\alpha),$ $A^{s}(\beta)$ and $\rho\in C^{*}$ , a complex $r\times s$ -matrix $B$

satisfying

(3) $A^{r}(\alpha)B=\rho BA^{s}(\beta)$

is the following form:
1) if $\alpha\neq\rho\beta$ , then $B=(O)$ ,
2) if $\alpha=\rho\beta$ , then $B$ is contained in $\Delta(r, s;\rho)$ .
PROOF. We may assume that $r\geqq s$ . If $r=s=1$ , then the above state-

ments are clear.
Next we assume that $r>s=1$ . Let $B=(b_{i1})$ , then (3) is equivalent to

(3.1) $\alpha b_{i1}+b_{i+11}=\rho\beta b_{i1}$ for $1\leqq i\leqq r-1$ ,

(3.2) $\alpha b_{r1}=\rho\beta b_{r1}$ .

Therefore, if $\alpha\neq\rho\beta$ , then we get $B=(O)$ and if $\alpha=\rho\beta$ , then we get
${}^{t}B=$ $(b_{11},0, \cdots , 0)$ , where $b_{11}$ is an arbitrary complex number.

Now we assume that $r\geqq s>1$ . Let $B=(b_{ij})$ , then (3) is equivalent to
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(3.1) $\alpha b_{i1}+b_{i+11}=\rho\beta b_{i1}$ for $1\leqq i<r$ ,

(3.2) $\alpha b_{r1}=\rho\beta b_{\gamma 1}$
,

(3.3) $\alpha b_{ij}+b_{i+1j}=\rho b_{ij-1}+\rho\beta b_{ij}$ for $i\neq r$ and $1<j\leqq s$ ,

(3.4) $\alpha b_{rj}=\rho b_{rj- 1}+\rho\beta b_{rj}$ for $1<j\leqq s$ .
1) Assume that $\alpha\neq\rho\beta$ . Since we have $b_{r1}=0$ by (3.2)“, the r-th column

vector is zero. If we assume that the k-th column vector is zero for $k=$

$i+1,$ $\cdots,$
$r$ , then (3.1) and (3.3) are equivalent to

$\alpha b_{ij}=\rho b_{ij- 1}+\rho\beta b_{ij}$ for $1<j\leqq s$ ,

$\alpha b_{i1}=\rho\beta b_{i1}$ for $1\leqq i<r$ .

Thus the i-th column vector is also zero. Hence we have $B=(O)$ by the
induction method on $i$ .

2) Assume that $\alpha=\rho\beta$ . Then we have that, by (3.1), $b_{11}$ is arbitrary
and $b_{l1}=0$ , for $i>1$ . If we assume that, for a fixed $j,$ $b_{1j}$ is arbitrary, $b_{ij}=$

$\rho b_{i-1j- 1}$ , for $1<i\leqq j$ and $b_{ij}=0$ , for $i>j$ , then we have that $b_{1j+1}$ is arbitrary,
$b_{i+1j+1}=\rho b_{ij}$ , for $1\leqq i\leqq j$ and $b_{i+1j+1}=0$ , for $i>j$ .

Thus we complete the proof by the induction method on $j$ .
PROOF OF PROPOSITION 4. Now we assume that $N+1$ is a prime number.

Let $\gamma$ be one of generators of $\Gamma$ satisfying $\alpha(\gamma)\neq id$ . and $\alpha(\gamma)=p(A),$ $ A\in$

$GL(N+1)$ . Denote by $\{\alpha_{1}, \cdots, \alpha_{k}\}$ all distinct eigen values of $A$ . If there
exist $B\in GL(N+1)$ and $\rho\in C^{*},$ $\rho\neq 1$ , satisfying $AB=\rho BA$ , then, by Lemma
7, $A,$ $B$ and $\rho$ must satisfy the following conditions:

$k=N+1$
and

$\rho\alpha_{i}=\alpha_{i+1}$ for $1\leqq i\leqq N$ ,

$\rho\alpha_{N+1}=\alpha_{1}$ .
Thus we may assume that

$A=\left\{\begin{array}{lll}\rho & \rho^{2}. & 0\\ & 0 & \rho^{N+1}\end{array}\right\}$ and $B=\left\{\begin{array}{lll} & & b_{1}\\b_{2}. & 0 & \\0 & b_{N+1} & \end{array}\right\}$

where $\rho$ is a $(N+1)$ -th root of 1, $\rho\neq 1$ and $b_{1},$ $b_{2},$ $\cdots$ , $b_{N+1}$ are non zero complex
numbers.

Denote by $K$ the subgroup of $PGL(N)$ generated by $p(A)$ and $p(B)$ . We
can easily prove that $K\simeq Z_{N+1}\times Z_{N+1}$ and $C(K)=K$.

Since $\alpha$ is proper, $\alpha(\Gamma)$ is not cyclic. Hence the arguments described
above show that $\alpha(\Gamma)\simeq Z_{N+1}\times Z_{N+1}$ and $C(\alpha(\Gamma))=\alpha(\Gamma)$ .
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Corollaries 1 and 2 are clear by Propositions 3 and 4.
REMARK. If $N+1$ is not a prime number, then there exists an almost

homogeneous $P^{N}$ -bundle $M$ over an abelian variety $T$ which is not the pro-
jection of a flat vector bundle $E$ over $T$.

Let $\{\gamma_{1}, \cdots , \gamma_{2n}\}$ be a system of generators of the fundamental group $\Gamma$

of $T$, where $n$ is the complex dimension of $T$. Let $a$ be a proper homo-
morphism of $\Gamma$ into $PGL(3)$ defined by

$\alpha(\gamma_{1})=p(A)$ , $\alpha(\gamma_{2})=p(B)$

and
$\alpha(\gamma_{i})=id$ . for $3\leqq i\leqq 2n$ ,

where

$A=\left\{\begin{array}{llll}1 & & & \\ & & 1 & 0\\ & & & -1\\ & 0 & & -1\end{array}\right\}$ and $B=\left\{\begin{array}{llllll} & & & 1 & & 1\\ & 0 & & & & \\ & & & & & 1\\1 & & -1 & & & \\ & & 1 & & 0 & \end{array}\right\}$

Set

$K=\{p(D)\in PGL(3)$ ;

$D=\left\{\begin{array}{ll}D_{1} & 0\\0 & D_{2}\end{array}\right\},$ $D_{2}=[_{0}^{1}-11]D_{1}[10$ $11],$ $D_{1}\in GL(2)\}$ .

It is clear that $K\subseteq C(\alpha(\Gamma))$ and $K$ acts on $P^{3}$ almost transitively. Hence
$M=C^{n}\times {}_{\alpha}P^{3}$ is an almost homogeneous manifold which is not the projection
’of a flat vector bundle over $T$ .

\S 3. Let $\Gamma$ be the fundamental group of an abelian variety $T$. A homo-
morphism $\tilde{\alpha}$ of $\Gamma$ into $GL(N+1)$ is said to be a unip0tent representati0n $(a$

special unip0tent representation) if $\tilde{a}$ is equivalent to a homomorphism of $\Gamma$

into $N(\tilde{N})$ , where $N(\tilde{N})$ is a subgroup of $GL(N+1)$ consisting of matrices
of the $f$ orm:

$\left\{\begin{array}{llll}1 & & & \\ & 1 & * & \\ & 0 & & 1\end{array}\right\}$ $(\left\{\begin{array}{llll}1 & a_{1} & a_{2} & a_{N}\\ & 1 & a_{1} & \\ & & & a_{1}\\ & 0 & & 1\end{array}\right\})$ .

LEMMA 8. An indecomp0sable unip0tent representati0n $a$ of $\Gamma$ into $GL(3)$

is equivalent to one of the following:
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1) a special unipotent $\left\{\begin{array}{lll}1 & a & b\\ & 1 & a\\0 & & 1\end{array}\right\}$ , where $a:\Gamma\rightarrow C$ is non trivial,

2) $\left\{\begin{array}{lll}1 & 0 & b\\ & 1 & a\\0 & & 1\end{array}\right\}$ , where $a$ and $b$ are homomorphisms of $\Gamma$ into $C$ which

are linearly independent over $C$,

3) $\left\{\begin{array}{lll}1 & a & b\\ & 1 & 0\\0 & & 1\end{array}\right\}$ , where $a$ and $b$ are homomorphisms of $\Gamma$ into $C$ which

are linearly independent over $C$ .

PROOF. Let $\tilde{a}=[^{1}0a_{1}1$ $a_{2}b1]$ , then $a_{1}$ and $a_{2}$ are homomorphisms of $\Gamma$

into $C$ which are linearly dependent over $C$ . If $a_{1}$ and $a_{2}$ are both non trivial,
then there exists a non zero complex number $\lambda$ such that $a_{2}=\lambda a_{1}$ . Therefore
$we\backslash -$have

$\tilde{a}\sim\left\{\begin{array}{lllll}\lambda & & & 0 & \\ & & 1 & & \\ & 0 & & & 1\end{array}\right\}\left\{\begin{array}{llll}1 & & a_{1} & b\\ & & 1 & a_{2}\\ & 0 & & 1\end{array}\right\}\left\{\begin{array}{llll}1/\lambda & & 0 & \\ & 1 & & \\0 & & & 1\end{array}\right\}=\left\{\begin{array}{llll}1 & & a_{2} & b\\ & & 1 & a_{2}\\ & 0 & & 1\end{array}\right\}$ .

This is the case 1).

Next we assume that $a_{1}$ and $a_{2}$ are both trivial. Then we have

$\tilde{\alpha}=\left\{\begin{array}{llll}1 & & 0 & b\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\}\sim\left\{\begin{array}{lll}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{array}\right\}\left\{\begin{array}{llll}1 & & 0 & b\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\}\left\{\begin{array}{lll}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{array}\right\}$

$=\left\{\begin{array}{llll}1 & & b & 0\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\}$ .

But this contradicts to the fact that $\tilde{a}$ is indecomposable. Thus one of $\{a_{i}\}$

is non trivial. Moreover, if $a_{1}$ is trivial and $a_{2}$ and $b$ are linearly dependent
over $C$, then there exists a complex number $\lambda$ such that $b=\lambda a_{2}$ . And we
have
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$\tilde{\alpha}=\left\{\begin{array}{llll}1 & & 0 & b\\ & & 1 & a_{2}\\ & 0 & & 1\end{array}\right\}\sim\left\{\begin{array}{llll}1 & & -\lambda & 0\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\}\left\{\begin{array}{llll}1 & & 0 & b\\ & & 1 & a_{2}\\ & 0 & & 1\end{array}\right\}\left\{\begin{array}{llll}1 & & \lambda & 0\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\}$

$=\left\{\begin{array}{llll}1 & & 0 & 0\\ & & 1 & a_{2}\\ & 0 & & 1\end{array}\right\}$ .

This contradicts to the fact that $\tilde{\alpha}$ is indecomposable. Thus if $a_{1}$ is trivial,
$a_{2}$ and $b$ are linearly independent over $C$ . This completes the proof.

Denote by $M_{\alpha}$ the $P^{2}$-bundle over $T$ defined by a homomorphism $\alpha$ of $\Gamma$

into $PGL(2)$ and by $E_{\overline{\alpha}}$ the vector bundle over $T$ defined by a homomorphism
$\tilde{a}$ of $\Gamma$ into $GL(3)$ .

LEMMA 9 ([4], Th\’eor\‘eme 3). For an indecomp0sable flat vector bundle $E$

over a complex toms, there exist a flat line bundle $L$ and a unip0tent represen-
tation $a$ of the fundamental group of the complex torus such that $E$ is equivalent
to $L\otimes E_{\partial}$ .

PROPOSITION 5. A homogeneous $P^{2}$ -bundle $M$ over an abelian variety $T$ is
equivalent to one of the following:

1) $M_{\alpha}$ , where $\alpha$ is proper,
2) proj. $E_{\overline{a}}$ ,

a) $\tilde{a}=\tilde{a}_{1}\oplus\tilde{\alpha}_{2}\oplus\tilde{a}_{3}$ , where $\tilde{a}_{i}$ is a homomorphism of $\Gamma$ into $C^{*}$ , for
$i=1,2,3$,

b) $\tilde{a}=\tilde{\alpha}_{1}\oplus\tilde{\alpha}_{2}$ , where $\tilde{a}_{1}$ is a homomorphism of $\Gamma$ into $C^{*}$ and $\tilde{\alpha}_{2}$ is
an indecomp0sable unip0tent representati0n of $\Gamma$ of degree 2,

c) $a$ is an indecomp0sable unip0tent representati0n of degree 3 of the
forms 1), 2) or 3) described in Lemma 8.
Moreover, $M$ is an almost homogeneous manifold if and only if $M$ is

equivalent to one of 2, a), 2, b), 2, $c,$
$1$ ) and 2, $c,$

$2$).

PROOF. If $a$ is proper, then, by Corollary 1 of Proposition 4, $M_{\alpha}$ is not
almost homogeneous.

Next we assume that $\alpha$ is non proper. Then there exists a flat vector
bundle $E_{\overline{a}}$ such that $M=proj$ . $E_{\overline{a}}$ .

Decompose $\tilde{a}$ into indecomposable components, then we have three cases
a), b) and c). Moreover, we can easily prove that, for the cases a), b), $c,$

$1$ )

and $c,$
$2$), the corresponding manifold $M=proj$ . $E_{\tilde{a}}$ is almost homogeneous ([6]).

Therefore, to prove Proposition 5, it is sufficient to show that, for the
case $c,$

$3$), the corresponding manifold $M=proj$ . $E_{\overline{\alpha}}$ is not almost homogeneous.
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Let $\mathfrak{U}=\{U_{i}\}$ beasufficiently fine open covering ofTand $\{f_{ij}=\left\{\begin{array}{llll}1 & & a_{ij} & b_{ij}\\ & & 1 & 0\\ & 0 & & 1\end{array}\right\})$

a system of transition functions of the bundle $M=proj$ . $E_{\overline{\alpha}}$ with respect to $\mathfrak{n}$ ,
where $\tilde{\alpha}$ is of type $c,$

$3$).

Let $\pi$ be the bundle projection of $M$ onto $T$ and $\Phi\in ker\pi_{*}$ . Then there
exists a system $\{\varphi_{i}\}$ of holomorphic mappings $\varphi_{i}$ of $U_{i}$ into $GL(3)$ satisfying

(4) $\varphi_{i}f_{ij}=\rho_{ij}f_{ij}\varphi_{j}$ for $ U_{i}\cap U_{j}=\emptyset$ ,

where $\rho_{if}$ is a holomorphic mapping of $U_{i}\cap U_{j}$ into $c*$ . Moreover, by (4),
$\rho=\{\rho_{ij}\}$ defines a system of transition functions of a complex line bundle
$L$ over $T$. Since, by (4), det $\varphi_{i}$ det $f_{ij}=(\rho_{ij})^{3}$ det $f_{ij}$ det $\varphi_{j}$ , we have $L^{3}=1$ .

Conversely, if there exists a system $\{\varphi_{i}\}$ satisfying (4), then we can con-
struct an element $\Phi$ of Aut $M$ satisfying $\pi_{*}\Phi=id$ . on $T$.

LEMMA 10. Let $L$ be a non trivial complex line bundle over T. If there
exists a positive integer $m$ such that $L^{m}=1$ , then we have $H^{0}(T, \Omega(L))=0$ ,
where $Q(L)$ denotes the sheaf of germs of holomorphic sections of $L$ .

PROOF. Let $\{\rho_{ij}\}$ be a system of transition functions of $L$ with respect

to a sufficiently fine open covering $\mathfrak{U}=\{U_{i}\}$ of $T$. Let $h=\{h_{i}\}\in H^{0}(T, \Omega(L))$ ,

then we have $h_{i}=\rho_{ij}h_{j}$ , for every pair $(i, j)$ satisfying $ U_{i}\cap U_{j}\neq\emptyset$ . Since
$L^{m}=1$ , we may assume that $\rho_{ij}^{m}=1$ , for every pair $(i, j)$ . Therefore $h^{m}=h^{m_{i}}$

is a global holomorphic function on $T$. Thus $h_{i}$ is a constant on $U_{i}$ , for
every $i$ . Since $L$ is non trivial, we have $h=0$ .

For the case $c,$
$3$), (4) is equivalent to

(4.1) $a_{\$ 1}^{i}=\rho_{ij}a_{31}^{j}$ ,

(4.2) $a_{31}^{l}a_{ij}+a_{32}^{i}=\rho_{ij}a_{32\prime}^{j}$

(4.3) $a_{31}^{i}b_{ij}+a_{33}^{i}=\rho_{ij}a_{33}^{j}$ ,

(4.4) $a_{21}^{i}=\rho_{ij}a_{21}^{j}$ ,

(4.5) $a_{21}^{i}a_{tj}+a_{22}^{i}=\rho_{ij}a_{22}^{f}$ ,

(4.6) $a_{21}^{i}b_{ij}+a_{23}^{i}=\rho_{ij}a_{23}^{j}$ ,

(4.7) $a_{11}^{i}=\rho_{ij}(a_{11}^{j}+a_{21}^{j}a_{ij}+a_{31}^{j}b_{if})$ ,

(4.8) $a_{11}^{i}a_{ij}+a_{12}^{i}=\rho_{ij}(a_{11}^{j}+a_{21}^{j}a_{ij}+a_{31}^{j}b_{ij})$ ,

(4.9) $a_{11}^{i}b_{ij}+a_{13}^{i}=\rho_{ij}(a_{13}^{j}+a_{23}^{j}a_{ij}+a_{33}^{j}b_{ij})$ ,

where $\varphi_{i}=(a_{AB}^{i})$ .
If $\rho=\{\rho_{ij}\}$ is non trivial, then, by Lemma 10, (4.1), (4.2) and (4.3), we get

$a_{31}^{i}=a_{32}^{i}=a_{33}^{i}=0$ . If $\rho$ is trivial, then $a_{31}^{i}=a_{31}^{j}$ is a constant by (4.1).
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Since $\{a_{ij}\}$ and $\{b_{ij}\}$ are non trivial C-bundles, we have $a_{31}=\{a_{31}^{t}\}=0$ and
$a_{32}=\{a_{32}^{i}\}$ and $a_{33}=\{a_{33}^{i}\}$ are constants by (4.2) and (4.3). The similar

arguments show that, for every $i,$ $\varphi_{i}=\left\{\begin{array}{lll}a & b & c\\ & a & 0\\0 & & a\end{array}\right\}$ is a constant element in

$GL(3)$ . Thus we have

ker $\pi_{*}\simeq I=\{\left\{\begin{array}{lll}a & b & c\\ & a & 0\\0 & & a\end{array}\right\}\in GL(3);a\in C^{*},$ $b,$ $c\in C\}$ .

It is easily proved that $I$ does not act on $P^{2}$ almost transitively. Hence
$M$ is not an almost homogeneous manifold. This completes the proof of
proposition.
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