On homogeneous P^{N}-bundles over an abelian variety

By Akira Mizuhara

(Received Oct. 19, 1972)
(Revised Sept. 7, 1973)

Let $M=M\left(T, \pi, P^{N}\right)$ be a P^{N}-bundle over an abelian variety $T, G=\mathrm{Aut}^{0} M$ and $H=$ Aut $^{0} T$ the connected components of the complex Lie groups containing the identities of all holomorphic automorphisms of M and T respectively. Then there exists a holomorphic homomorphism π_{*} of G into H canonically induced by π.
M is said to be a homogeneous bundle if π_{*} is surjective. If M is a bundle defined by a homomorphism of the fundamental group Γ of T into $\operatorname{PGL}(N)$, it is called a flat bundle.

In $\S 1$, we shall prove the following proposition.
Proposition. Let M be a P^{N}-bundle over an abelian variety T. Then M is a homogeneous bundle if and only if it is a flat bundle.

Let α be a homomorphism of Γ into $\operatorname{PGL}(N)$. We call α of finite type if $\operatorname{Im} \alpha$ is a finite group. In $\S 2$, we shall prove the following proposition.

Proposition. Let M be a flat P^{N}-bundle over an abelian variety T defined by a homomorphism α. If α is of finite type, then

1) $A \times P^{N}$ is a finite holomorphic covering manifold of M, where $A=$ $C^{n} / \operatorname{ker} \alpha$,
2) there exists a Kähler metric canonically induced by that of $A \times P^{N}$ such that the corresponding Ricci curvature of M is positive semi-definite.

A connected compact complex manifold M is called an almost homogeneous manifold if there exists a complex subgroup G of Aut M such that the G-orbit through some point of M contains an open subset of M.

Corollary. Assume that $N+1$ is a prime number. If the bundle space of a P^{N}-bundle M over an abelian variety T is an almost homogeneous manifold, then there exists a flat vector bundle E over T such that M is the projection of E.

We shall give an example of an almost homogeneous P^{3}-bundle over an abelian variety T which is not the projection of a flat vector bundle over T.

In $\S 3$, we shall classify homogeneous P^{2}-bundles over an abelian variety T and give a necessary and sufficient condition that such a bundle space is an almost homogeneous manifold.

§ 1.

Lemma 1 ([1], Lemma 3.15). Let G be a connected Lie group and B a closed connected normal subgroup of G. Then there exists a maximal compact subgroup K of G such that $B \cap K$ and the image of K in G / B are maximal compact subgroups of B and G / B respectively.

Now let G be a connected complex Lie group, K a maximal compact subgroup of G and the Lie algebra of K. Denote by \tilde{K} the connected complex subgroup of G corresponding to the complex Lie subalgebra $\tilde{\mathfrak{f}}=\mathbb{f}+\sqrt{-1} \%$. Then \hat{K} has the following property:

Lemma 2 ([5], § 2, Proposition). There exist connected closed normal complex subgroups \tilde{S} and \tilde{Z} satisfying the following properties:

1) $\tilde{K}=\tilde{S} \cdot \tilde{Z}, \tilde{S} \cap \tilde{Z}$ is a finite group,
2) \tilde{S} is semi-simple,
3) \tilde{Z} is the connected centre of \tilde{K}.

Lemma 3. If there exists a holomorphic homomorphism π_{*} of a connected complex Lie group G onto a connected compact complex abelian Lie group H such that the number of connected components of the kernel π_{*} is finite, then there exists a holomorphic splitting μ of the induced holomorphic homomorphism π of \mathfrak{g} onto \mathfrak{h}, that is, μ is a holomorphic homomorphism of \mathfrak{h} into \mathfrak{g} such that $\pi \cdot \mu=\mathrm{id}$. on \mathfrak{h}, where \mathfrak{g} and \mathfrak{h} denote the complex Lie algebras of G and H respectively.

Proof. Let I be the kernel of π_{*}. Then we have $G / I \simeq H$. First, assume that I is connected. Then, since H is compact, there exists a maximal compact subgroup K of G such that $\pi_{*}(K)=H$, by Lemma 1. Therefore, the restriction $\pi_{*} \mid \tilde{K}$ of π_{*} to \tilde{K} is a holomorphic surjection of \tilde{K} onto H. Moreover, by Lemma 2, there exist connected closed complex subgroups \tilde{S} and \tilde{Z} of \tilde{K} satisfying $\tilde{K}=\tilde{S} \cdot \tilde{Z}$. Since \tilde{S} is semi-simple and H is abelian, π_{*} induces a holomorphic surjection $\tilde{\pi}_{*}$ of \tilde{Z} onto H. Thus we have a holomorphic homomorphism $\tilde{\pi}$ of \tilde{z} onto \mathfrak{h} induced by $\tilde{\pi}_{*}$, where \tilde{z} is the complex Lie subalgebra corresponding to \tilde{Z}. Moreover, since $\tilde{\mathcal{J}}$ and \mathfrak{G} are both complex abelian Lie algebras, a complex linear splitting of the complex linear mapping $\tilde{\pi}$ of $\tilde{\mathfrak{z}}$ onto \mathfrak{h} as complex vector spaces defines a holomorphic splitting μ of $\tilde{\pi}$ as complex Lie algebras. This is the desired one. Thus we complete the proof in this case.

Next we shall prove the general case. By our assumption, I / I^{0} is a finite group, where I^{0} denotes the connected component of I containing the identity. Therefore, G / I^{0} is a finite holomorphic covering group of $G / I \simeq H$. Thus G / H^{0} is also compact. Put $H^{\prime}=G / H^{0}$. We have an exact sequence of complex Lie groups:

$$
\begin{equation*}
0 \longrightarrow H^{0} \longrightarrow G \longrightarrow H^{\prime} \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Now the previous arguments may be applied to the sequence (1). Hence we have a holomorphic splitting μ^{\prime} of $\pi^{\prime}: \mathfrak{g} \rightarrow \mathfrak{h}^{\prime} \rightarrow 0$. But, since $\mathfrak{h}^{\prime} \simeq \mathfrak{h}, \mu^{\prime}$ can be considered as a holomorphic splitting of $\pi: \mathfrak{g} \rightarrow \mathfrak{h} \rightarrow 0$. This completes the proof.

Let $M=M\left(T, \pi, P^{N}\right)$ be a P^{N}-bundle over an abelian variety T, G and H the connected components of the complex Lie groups of all holomorphic automorphisms of M and T containing the identities respectively. Then there exists a holomorphic homomorphism π_{*} of G into H canonically induced by π ([7], Satz 1.3).

Lemma 5. $\quad M=M\left(T, \pi, P^{N}\right)$ is a flat bundle if and only if there exists a connected complex abelian Lie subgroup A of G such that the restriction $\pi_{*} \mid A$ of π_{*} to A is a holomorphic covering homomorphism of A onto H.

Proof. Let $M=C^{n} \times{ }_{\alpha} P^{N}$ be a flat bundle defined by a homomorphism α of the fundamental group Γ of T into $P G L(N)$. For an arbitrary element w of C^{n}, the mapping w of $C^{n} \times P^{N}$ onto itself defined by $(z, \xi) \rightarrow(z+w, \xi)$ induces a holomorphic automorphism of M. By this operation, C^{n} can be considered as a complex Lie group of holomorphic automorphisms of M. Moreover, two elements w and w^{\prime} of C^{n} induce the same operation on M if and only if $w \equiv w^{\prime}(\bmod$. $\operatorname{ker} \alpha)$. Hence $A=C^{n} / \operatorname{ker} \alpha$ can be considered as a connected complex abelian subgroup of G and, by this construction, the restriction $\pi_{*} \mid A$ of π_{*} to A is a holomorphic covering homomorphism of A onto H.

Conversely, assume that there exists a connected complex abelian subgroup A of G satisfying the condition described in Lemma 5, Let $\tilde{\Gamma}$ be the kernel of $\pi_{*} \mid A$ of A onto H. Then, for a fixed point $o \in T, \tilde{\Gamma}$ can be considered as a group of holomorphic automorphisms of the fibre $\pi^{-1}(o) \simeq P^{N}$. Thus there exists a homomorphism $\tilde{\alpha}$ of $\tilde{\Gamma}$ into $\operatorname{PGL}(N)$ corresponding to the operation of $\tilde{\Gamma}$ on $\pi^{-1}(o)$. Moreover, M is clearly the bundle defined by $\alpha=\tilde{\alpha}(\sigma \mid \Gamma)$, where σ is the canonical projection of C^{n} onto A. This completes the proof.

Proposition 1. Let M be a P^{N}-bundle over an abelian variety. Then M is a homogeneous bundle if and only if it is a flat bundle.

Proof. Let $M=M\left(T, \pi, P^{N}\right)$ be a homogeneous bundle. Let $G=\operatorname{Aut}^{0} M$ and $H=$ Aut $^{0} T$ be the connected components of complex Lie groups of all holomorphic automorphisms containing the identities of M and T respectively. By a theorem ([2], Theorem 8), M has a Hodge metric. Moreover, since the irregularity of M equals the complex dimension of T, T can be considered as the Albanese manifold of M. Therefore the component group I / I^{0} of the kernel I of the holomorphic homomorphism π_{*} of G onto H is a finite group
([3], § 8, Proposition). Thus, there exists a holomorphic splitting μ of $\pi: \mathfrak{g} \rightarrow \mathfrak{h}$, by Lemma 4. Denote by A the complex abelian subgroup of G corresponding to the complex abelian Lie algebra $\mu(\mathfrak{h})$. It is easily proved that A satisfies the condition described in Lemma 5. Thus M is a flat bundle.

The converse is trivial by Lemma 5, This completes the proof.
§ 2. Let Γ be a free abelian group of finite rank and α a homomorphism of Γ into $\operatorname{PGL}(N), \alpha$ is said to be of finite type if $\operatorname{Im} \alpha$ is a finite group.

Lemma 6. If α is of finite type, then every element of $\alpha(\Gamma)$ can be represented by a unitary matrix.

Proof. Let $\left\{\gamma_{1}, \cdots, \gamma_{g}\right\}$ be a system of generators of Γ and $\alpha\left(\gamma_{i}\right)=p\left(A_{i}\right)$, $A_{i} \in G L(N+1)$, for $i=1,2, \cdots, g$, where p is the canonical projection of $G L(N+1)$ onto $P G L(N)$.

We can choose $\left\{A_{i}\right\}$ such that they satisfy the following conditions:

1) for any i, there exists a positive integer m_{i} such that $A_{i}^{m i}=\mathrm{id}$.,
2) for any pair (i, j), there exists a non zero complex number $\rho_{i j}$ such that

$$
A_{i} A_{j}=\rho_{i j} A_{j} A_{i} .
$$

Since

$$
\operatorname{det} A_{i} \operatorname{det} A_{j}=\left(\rho_{i j}\right)^{N+1} \operatorname{det} A_{j} \operatorname{det} A_{i},
$$

we have $\left(\rho_{i j}\right)^{N+1}=1$.
Denote by ρ a primitive $(N+1)$-th root of 1 . Set

$$
\tilde{\Gamma}=\left\{\rho^{k} A_{1}^{e_{1}} \cdots A_{g}^{e_{g}} ; 0 \leqq k \leqq N, 0 \leqq e_{i} \leqq m_{i}-1\right\}
$$

and

$$
\tilde{\Gamma}^{\prime}=\left\{\rho^{k} ; 0 \leqq k \leqq N\right\} .
$$

Then we have a central extension of abstract groups:

$$
0 \longrightarrow \tilde{\Gamma}^{\prime} \longrightarrow \tilde{\Gamma} \xrightarrow{p \mid \tilde{\Gamma}} \alpha(\Gamma) \longrightarrow 0
$$

Therefore $\tilde{\Gamma}$ is a finite nilpotent subgroup of $G L(N+1)$ of class 2 . It is wellknown that a representation of a finite group is equivalent to that of unitary matrices. Thus we have the Lemma.

Proposition 2. Let $M=C^{n} \times{ }_{\alpha} P^{N}$ be a flat P^{N}-bundle over an abelian variety T defined by α. If α is of finite type, then $A=C^{n} / \operatorname{ker} \alpha$ is an abelian variety and we have

1) $A \times P^{N}$ is a finite holomorphic covering manifold of M,
2) there exists a Hodge metric on M canonically induced by that of $A \times P^{N}$ such that the Ricci curvature $R(M)$ of M is positive semi-definite.

Proof. 1) is clear by Lemma 5,

Since α is of finite type, every element of $\alpha(\Gamma)$ can be represented by a unitary matrix, by Lemma 6. Since $A \times P^{N}$ has the standard Hodge metric with $R\left(A \times P^{N}\right) \geqq 0$ and (a translation on $\left.A\right) \times($ a projective transformation defined by a unitary matrix) is an isometry with respect to the above metric, M has a Hodge metric canonically induced by that of $A \times P^{N}$. Moreover, it is clear that $R(M) \geqq 0$. This completes the proof.

Now let $M=C^{n} \times{ }_{\alpha} P^{N}$ be a flat P^{N}-bundle over an abelian variety T defined by a homomorphism α of the fundamental group Γ of T into $\operatorname{PGL}(N)$. Set $G=\operatorname{Aut}^{0} M, A=C^{n} / \operatorname{ker} \alpha$ and $I=\operatorname{ker} \pi_{*}$. Moreover, denote by \tilde{I} the group consisting of holomorphic automorphisms Φ of M satisfying $\pi_{*} \Phi=\mathrm{id}$. on T.

Proposition 3. \tilde{I} contains the centralizer $C(\alpha(\Gamma))$ of $\alpha(\Gamma)$ in $\operatorname{PGL}(N)$.
Moreover, if α is of finite type, then \tilde{I} is isomorphic to $C(\alpha(\Gamma))$.
Proof. Let Φ be an element of \tilde{I}. Since $C^{n} \times P^{N}$ is a holomorphic covering manifold of M, Φ induces a holomorphic automorphism of $C^{n} \times P^{N}$, which we denote by $(z, \xi) \rightarrow\left(\varphi_{1}(z, \xi), \varphi_{2}(z, \xi)\right)$. For a fixed $z \in C^{n}, \xi \rightarrow \varphi_{1}(z, \xi)$ defines a holomorphic mapping of P^{N} into C^{n}, hence $\varphi_{1}\left(z_{1}, \xi\right)$ is a constant mapping, in other words, $\varphi_{1}(z, \xi)=\varphi_{1}(z)$ is independent of $\xi \in P^{N}$. Moreover, since $\pi_{*} \Phi=\mathrm{id}$. on T, there exists an element $\gamma \in \Gamma$ such that $\varphi_{1}(z)=z+\gamma$, for arbitrary $z \in C^{n}$.

Next we may assume that $\varphi_{2}(z, \xi)=\varphi_{2}(z) \xi$, for arbitrary $z \in C^{n}$ and $\xi \in P^{N}$, where φ_{2} is a holomorphic mapping of C^{n} into $\operatorname{PGL}(N)$. Moreover the condition that $\pi_{*} \Phi=\mathrm{id}$. on T implies that

$$
\begin{equation*}
\varphi_{2}\left(z+\gamma^{\prime}\right)=\alpha\left(-\gamma^{\prime}\right) \varphi_{2}(z) \alpha\left(\gamma^{\prime}\right), \quad \text { for arbitrary } z \in C^{n} \text { and } \gamma^{\prime} \in \Gamma . \tag{2}
\end{equation*}
$$

Hence, if $\varphi_{2}(z)=\varphi_{2}$ is a constant element in $C(\alpha(\Gamma))$, (2) is always satisfied, in other words, id. $\times \varphi_{2}$ belongs to \tilde{I}, for $\varphi_{2} \in C(\alpha(\Gamma))$.

Next, assume that α is of finite type. Then $A=C^{n} / \operatorname{ker} \alpha$ is an abelian variety. Since φ_{2} can be considered as a holomorphic mapping of A into $P G L(N)$ and $P G L(N)$ is a Stein manifold, φ_{2} is a constant mapping. Therefore, by (2), φ_{2} is contained in $C(\alpha(\Gamma))$. Thus we get

$$
\left\{\left(\operatorname{id} . \times \varphi_{2}\right), \varphi_{2} \in C(\alpha(\Gamma))\right\} \simeq \widetilde{I} .
$$

This completes the proof.
A homomorphism α of Γ into $\operatorname{PGL}(N)$ is said to be non proper, if there exists a homomorphism $\tilde{\alpha}$ of Γ into $G L(N+1)$ such that $\alpha=p \tilde{\alpha}$, where p is the canonical projection of $G L(N+1)$ onto $\operatorname{PGL}(N)$.

Proposition 4. Assume that $N+1$ is a prime number. If α is proper, then

1) α is of finite type and $\alpha(\Gamma) \simeq Z_{N+1} \times Z_{N+1}$,
2) $C(\alpha(\Gamma))=\alpha(\Gamma)$.

Corollary 1. Assume that $N+1$ is a prime number. If α is proper, then
$M=C^{n} \times{ }_{\alpha} P^{N}$ is not an almost homogeneous manifold.
Corollary 2. Assume that $N+1$ is a prime number. If a P^{N}-bundle M over an abelian variety T is an almost homogeneous manifold, then there exists a flat vector bundle E over T such that $M=$ proj. E.

Let $A^{r}(\alpha)$ be a complex r-square matrix of the form:

$$
A^{r}(\alpha)=\left[\begin{array}{cccc}
\alpha, 1, & & & \\
\alpha, & 1 & & \\
& \ddots & \ddots & \\
0 & & \ddots & 1 \\
& & & \alpha
\end{array}\right], \quad \alpha \in C^{*}
$$

Denote by $\Delta(r, s ; \rho)$ the set of complex $r \times s$-matrices of the form :

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{1}, & a_{2}, \cdots \cdots \cdots, & a_{s} \\
\rho a_{1}, \cdots \cdots \cdots, \rho a_{s-1} \\
\cdot & \cdot & \vdots \\
0 & & \cdot \\
\rho^{s-1} a_{1}
\end{array}\right] \text { for } r \geqq s,} \\
& {\left[\begin{array}{cccc}
a_{1}, & a_{2}, \cdots \cdots \cdots & a_{r} \\
\rho a_{1}, & \cdots & \cdots, & \rho a_{r-1} \\
& \cdot & \vdots \\
0 & & \cdot & \rho^{r-1} a_{1}
\end{array}\right] \text { for } r<s .}
\end{aligned}
$$

Lemma 7. For given $A^{r}(\alpha), A^{s}(\beta)$ and $\rho \in C^{*}$, a complex $r \times s$-matrix B satisfying
(3)

$$
A^{r}(\alpha) B=\rho B A^{s}(\beta)
$$

is the following form:

1) if $\alpha \neq \rho \beta$, then $B=(0)$,
2) if $\alpha=\rho \beta$, then B is contained in $\Delta(r, s ; \rho)$.

Proof. We may assume that $r \geqq s$. If $r=s=1$, then the above statements are clear.

Next we assume that $r>s=1$. Let $B=\left(b_{i 1}\right)$, then (3) is equivalent to

$$
\begin{align*}
& \alpha b_{i 1}+b_{i+11}=\rho \beta b_{i 1} \quad \text { for } \quad 1 \leqq i \leqq r-1, \tag{3.1}\\
& \alpha b_{r 1}=\rho \beta b_{r 1} . \tag{3.2}
\end{align*}
$$

Therefore, if $\alpha \neq \rho \beta$, then we get $B=(0)$ and if $\alpha=\rho \beta$, then we get ${ }^{t} B=\left(b_{11}, 0, \cdots, 0\right)$, where b_{11} is an arbitrary complex number.

Now we assume that $r \geqq s>1$. Let $B=\left(b_{i j}\right)$, then (3) is equivalent to

$$
\begin{align*}
& \alpha b_{i 1}+b_{i+11}=\rho \beta b_{i 1} \quad \text { for } \quad 1 \leqq i<r, \tag{3.1}\\
& \alpha b_{r 1}=\rho \beta b_{r 1}, \\
& \alpha b_{i j}+b_{i+1 j}=\rho b_{i j-1}+\rho \beta b_{i j} \quad \text { for } i \neq r \text { and } 1<j \leqq s, \\
& \alpha b_{r j}=\rho b_{r j-1}+\rho \beta b_{r j} \quad \text { for } \quad 1<j \leqq s .
\end{align*}
$$

1) Assume that $\alpha \neq \rho \beta$. Since we have $b_{r 1}=0$ by (3.2)", the r-th column vector is zero. If we assume that the k-th column vector is zero for $k=$ $i+1, \cdots, r$, then (3.1)" and (3.3)" are equivalent to

$$
\begin{aligned}
& \alpha b_{i j}=\rho b_{i j-1}+\rho \beta b_{i j} \quad \text { for } 1<j \leqq s, \\
& \alpha b_{i 1}=\rho \beta b_{i 1} \quad \text { for } 1 \leqq i<r .
\end{aligned}
$$

Thus the i-th column vector is also zero. Hence we have $B=(0)$ by the induction method on i.
2) Assume that $\alpha=\rho \beta$. Then we have that, by (3.1)", b_{11} is arbitrary and $b_{i 1}=0$, for $i>1$. If we assume that, for a fixed $j, b_{1 j}$ is arbitrary, $b_{i j}=$ $\rho b_{i-1 j-1}$, for $1<i \leqq j$ and $b_{i j}=0$, for $i>j$, then we have that $b_{1 j+1}$ is arbitrary, $b_{i+1 j+1}=\rho b_{i j}$, for $1 \leqq i \leqq j$ and $b_{i+1 j+1}=0$, for $i>j$.

Thus we complete the proof by the induction method on j.
Proof of Proposition 4. Now we assume that $N+1$ is a prime number. Let γ be one of generators of Γ satisfying $\alpha(\gamma) \neq \mathrm{id}$. and $\alpha(\gamma)=p(A), A \in$ $G L(N+1)$. Denote by $\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ all distinct eigen values of A. If there exist $B \in G L(N+1)$ and $\rho \in C^{*}, \rho \neq 1$, satisfying $A B=\rho B A$, then, by Lemma 7, A, B and ρ must satisfy the following conditions:

$$
k=N+1
$$

and

$$
\begin{aligned}
& \rho \alpha_{i}=\alpha_{i+1} \quad \text { for } \quad 1 \leqq i \leqq N, \\
& \rho \alpha_{N+1}=\alpha_{1} .
\end{aligned}
$$

Thus we may assume that

$$
A=\left[\begin{array}{lll}
\rho & & \\
\rho^{2} & & 0 \\
& \ddots & 0 \\
& & \ddots \\
0 & & \rho^{N+1}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
b_{2} & & \\
& \ddots & 0 \\
0 & \ddots & \\
& & b_{1} \\
& & \\
b_{N+1}
\end{array}\right]
$$

where ρ is a $(N+1)$-th root of $1, \rho \neq 1$ and $b_{1}, b_{2}, \cdots, b_{N+1}$ are non zero complex numbers.

Denote by K the subgroup of $P G L(N)$ generated by $p(A)$ and $p(B)$. We can easily prove that $K \simeq Z_{N+1} \times Z_{N+1}$ and $C(K)=K$.

Since α is proper, $\alpha(\Gamma)$ is not cyclic. Hence the arguments described above show that $\alpha(\Gamma) \simeq Z_{N+1} \times Z_{N+1}$ and $C(\alpha(\Gamma))=\alpha(\Gamma)$.

Corollaries 1 and 2 are clear by Propositions 3 and 4.
Remark. If $N+1$ is not a prime number, then there exists an almost homogeneous P^{N}-bundle M over an abelian variety T which is not the projection of a flat vector bundle E over T.

Let $\left\{\gamma_{1}, \cdots, \gamma_{2 n}\right\}$ be a system of generators of the fundamental group Γ of T, where n is the complex dimension of T. Let α be a proper homomorphism of Γ into $P G L(3)$ defined by

$$
\alpha\left(\gamma_{1}\right)=p(A), \quad \alpha\left(\gamma_{2}\right)=p(B)
$$

and

$$
\alpha\left(\gamma_{i}\right)=\text { id. } \quad \text { for } \quad 3 \leqq i \leqq 2 n,
$$

where

$$
A=\left[\begin{array}{ccc}
1 & & \\
& 1 & 0 \\
& & -1 \\
0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
& 1 & 1 \\
0 & & 1 \\
1 & -1 & 0
\end{array}\right]
$$

Set

$$
\begin{aligned}
K=\{p(D) & \in P G L(3) ; \\
D & \left.=\left[\begin{array}{cr}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], D_{2}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] D_{1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], D_{1} \in G L(2)\right\} .
\end{aligned}
$$

It is clear that $K \subseteq C(\alpha(\Gamma))$ and K acts on P^{3} almost transitively. Hence $M=C^{n} \times{ }_{\alpha} P^{3}$ is an almost homogeneous manifold which is not the projection of a flat vector bundle over T.
§ 3. Let Γ be the fundamental group of an abelian variety T. A homomorphism $\tilde{\alpha}$ of Γ into $G L(N+1)$ is said to be a unipotent representation (a special unipotent representation) if $\tilde{\alpha}$ is equivalent to a homomorphism of Γ into $N(\tilde{N})$, where $N(\tilde{N})$ is a subgroup of $G L(N+1)$ consisting of matrices of the form:

$$
\left[\begin{array}{ccccc}
1 & & & \\
& 1 & & * \\
& & \ddots & \\
& 0 & & \ddots & \\
& & & 1
\end{array}\right]\left(\left(\begin{array}{cccc}
1 & a_{1} & a_{2} & a_{N} \\
& 1 & a_{1} & \\
& & \ddots & \ddots \\
& 0 & & \ddots
\end{array}\right)\right)
$$

Lemma 8. An indecomposable unipotent representation $\tilde{\alpha}$ of Γ into $G L(3)$ is equivalent to one of the following:

1) a special unipotent $\left[\begin{array}{lll}1 & a & b \\ & 1 & a \\ 0 & & 1\end{array}\right]$, where $a: \Gamma \rightarrow C$ is non trivial,
2) $\left[\begin{array}{lll}1 & 0 & b \\ & 1 & a \\ 0 & & 1\end{array}\right]$, where a and b are homomorphisms of Γ into C which are linearly independent over C,
3) $\left[\begin{array}{lll}1 & a & b \\ & 1 & 0 \\ 0 & & 1\end{array}\right]$, where a and b are homomorphisms of Γ into C which are linearly independent over C.

PROOF. Let $\tilde{\alpha}=\left(\begin{array}{ccc}1 & a_{1} & b \\ & 1 & a_{2} \\ 0 & & 1\end{array}\right]$, then a_{1} and a_{2} are homomorphisms of Γ into C which are linearly dependent over C. If a_{1} and a_{2} are both non trivial, then there exists a non zero complex number λ such that $a_{2}=\lambda a_{1}$. Therefore we have

$$
\tilde{\alpha} \sim\left[\begin{array}{ccc}
\lambda & & 0 \\
& 1 & \\
0 & & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & a_{1} & b \\
& 1 & a_{2} \\
0 & & 1
\end{array}\right]\left[\begin{array}{ccc}
1 / \lambda & & 0 \\
& 1 & \\
0 & & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a_{2} & b \\
& 1 & a_{2} \\
0 & & 1
\end{array}\right] .
$$

This is the case 1).
Next we assume that a_{1} and a_{2} are both trivial. Then we have

$$
\begin{aligned}
\tilde{\alpha} & =\left(\begin{array}{lll}
1 & 0 & b \\
& 1 & 0 \\
0 & & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & b \\
& 1 & 0 \\
0 & & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & b & 0 \\
& 1 & 0 \\
0 & & 1
\end{array}\right) .
\end{aligned}
$$

But this contradicts to the fact that $\tilde{\alpha}$ is indecomposable. Thus one of $\left\{a_{i}\right\}$ is non trivial. Moreover, if a_{1} is trivial and a_{2} and b are linearly dependent over C, then there exists a complex number λ such that $b=\lambda a_{2}$. And we have

$$
\begin{aligned}
\tilde{\alpha} & =\left(\begin{array}{lll}
1 & 0 & b \\
& 1 & a_{2} \\
0 & & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -\lambda & 0 \\
& 1 & 0 \\
0 & & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & b \\
& 1 & a_{2} \\
0 & & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & \lambda & 0 \\
& 1 & 0 \\
0 & & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
& 1 & a_{2} \\
0 & & 1
\end{array}\right) .
\end{aligned}
$$

This contradicts to the fact that $\tilde{\alpha}$ is indecomposable. Thus if a_{1} is trivial, a_{2} and b are linearly independent over C. This completes the proof.

Denote by M_{α} the P^{2}-bundle over T defined by a homomorphism α of Γ into $P G L(2)$ and by $E_{\tilde{\alpha}}$ the vector bundle over T defined by a homomorphism $\tilde{\alpha}$ of Γ into $G L(3)$.

Lemma 9 ([4], Théorème 3). For an indecomposable flat vector bundle E over a complex torus, there exist a flat line bundle L and a unipotent representation $\tilde{\alpha}$ of the fundamental group of the complex torus such that E is equivalent to $L \otimes E_{\tilde{\alpha}}$.

Proposition 5. A homogeneous P^{2}-bundle M over an abelian variety T is equivalent to one of the following:

1) M_{α}, where α is proper,
2) proj. $E_{\tilde{\alpha}}$,
a) $\tilde{\alpha}=\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2} \oplus \tilde{\alpha}_{3}$, where $\tilde{\alpha}_{i}$ is a homomorphism of Γ into C^{*}, for $i=1,2,3$,
b) $\tilde{\alpha}=\tilde{\alpha}_{1} \oplus \tilde{\alpha}_{2}$, where $\tilde{\alpha}_{1}$ is a homomorphism of Γ into C^{*} and $\tilde{\alpha}_{2}$ is an indecomposable unipotent representation of Γ of degree 2 ,
c) $\tilde{\alpha}$ is an indecomposable unipotent representation of degree 3 of the forms 1), 2) or 3) described in Lemma 8.
Moreover, M is an almost homogeneous manifold if and only if M is equivalent to one of $2, \mathrm{a}), 2, \mathrm{~b}), 2, \mathrm{c}, 1$) and $2, \mathrm{c}, 2$).

Proof. If α is proper, then, by Corollary 1 of Proposition 4, M_{α} is not almost homogeneous.

Next we assume that α is non proper. Then there exists a flat vector bundle $E_{\tilde{\alpha}}$ such that $M=\operatorname{proj} . E_{\tilde{\alpha}}$.

Decompose $\tilde{\alpha}$ into indecomposable components, then we have three cases a), b) and c). Moreover, we can easily prove that, for the cases a), b), c, 1) and $\mathrm{c}, 2$), the corresponding manifold $M=\operatorname{proj} . E_{\tilde{\alpha}}$ is almost homogeneous ([6]).

Therefore, to prove Proposition 5, it is sufficient to show that, for the case $\mathrm{c}, 3$), the corresponding manifold $M=\operatorname{proj} . E_{\tilde{\alpha}}$ is not almost homogeneous.

Let $\mathfrak{H}=\left\{U_{i}\right\}$ be a sufficiently fine open covering of T and $\left\{f_{i j}=\left(\begin{array}{ccc}1 & a_{i j} & b_{i j} \\ & 1 & 0 \\ 0 & & 1\end{array}\right]\right\}$ a system of transition functions of the bundle $M=\operatorname{proj} . E_{\tilde{\alpha}}$ with respect to \mathfrak{U}, where $\tilde{\alpha}$ is of type $\mathrm{c}, 3$).

Let π be the bundle projection of M onto T and $\Phi \in \operatorname{ker} \pi_{*}$. Then there exists a system $\left\{\varphi_{i}\right\}$ of holomorphic mappings φ_{i} of U_{i} into $G L(3)$ satisfying

$$
\begin{equation*}
\varphi_{i} f_{i j}=\rho_{i j} f_{i j} \varphi_{j} \quad \text { for } \quad U_{i} \cap U_{j}=\emptyset \tag{4}
\end{equation*}
$$

where $\rho_{i j}$ is a holomorphic mapping of $U_{i} \cap U_{j}$ into C^{*}. Moreover, by (4), $\rho=\left\{\rho_{i j}\right\}$ defines a system of transition functions of a complex line bundle L over T. Since, by (4), $\operatorname{det} \varphi_{i} \operatorname{det} f_{i j}=\left(\rho_{i j}\right)^{3} \operatorname{det} f_{i j} \operatorname{det} \varphi_{j}$, we have $L^{3}=1$.

Conversely, if there exists a system $\left\{\varphi_{i}\right\}$ satisfying (4), then we can construct an element Φ of Aut M satisfying $\pi_{*} \Phi=\mathrm{id}$. on T.

LEMMA 10. Let L be a non trivial complex line bundle over T. If there exists a positive integer m such that $L^{m}=1$, then we have $H^{0}(T, \Omega(L))=0$, where $\Omega(L)$ denotes the sheaf of germs of holomorphic sections of L.

PROOF. Let $\left\{\rho_{i j}\right\}$ be a system of transition functions of L with respect to a sufficiently fine open covering $\mathfrak{l}=\left\{U_{i}\right\}$ of T. Let $h=\left\{h_{i}\right\} \in H^{0}(T, \Omega(L))$, then we have $h_{i}=\rho_{i j} h_{j}$, for every pair (i, j) satisfying $U_{i} \cap U_{j} \neq \emptyset$. Since $L^{m}=1$, we may assume that $\rho_{i j}{ }^{m}=1$, for every pair (i, j). Therefore $h^{m}=h_{i}^{m}$ is a global holomorphic function on T. Thus h_{i} is a constant on U_{i}, for every i. Since L is non trivial, we have $h=0$.

For the case $c, 3$), (4) is equivalent to

$$
\begin{align*}
& a_{31}^{i}=\rho_{i j} a_{31}^{j}, \tag{4.1}\\
& a_{31}^{i} a_{i j}+a_{32}^{i}=\rho_{i j} a_{32}^{j}, \tag{4.2}\\
& a_{31}^{i} b_{i j}+a_{33}^{i}=\rho_{i j} a_{33}^{j}, \tag{4.3}\\
& a_{21}^{i}=\rho_{i j} a^{j}{ }_{21}, \tag{4.4}\\
& a_{21}^{i} a_{i j}+a_{22}^{i}=\rho_{i j} a_{22}^{j}, \tag{4.5}\\
& a_{21}^{i} b_{i j}+a_{23}^{i}=\rho_{i j} a^{j}{ }_{23}, \tag{4.6}\\
& a_{11}^{i}=\rho_{i j}\left(a_{11}^{j}+a^{j}{ }_{21} a_{i j}+a_{31}^{j} b_{i j}\right), \tag{4.7}\\
& a_{11}^{i} a_{i j}+a_{12}^{i}=\rho_{i j}\left(a^{j}{ }_{11}+a_{{ }_{21}}^{j} a_{i j}+a^{j} b_{i 1}\right), \tag{4.8}\\
& a_{11}^{i} b_{i j}+a_{13}^{i}=\rho_{i j}\left(a^{j}{ }_{13}+a^{j}{ }_{23} a_{i j}+a_{33}^{j} b_{i j}\right), \tag{4.9}
\end{align*}
$$

where $\varphi_{i}=\left(a^{i}{ }_{A B}\right)$.
If $\rho=\left\{\rho_{i j}\right\}$ is non trivial, then, by Lemma 10, (4.1), (4.2) and (4.3), we get $a^{i}{ }_{31}=a^{i}{ }_{32}=a^{i}{ }_{33}=0$. If ρ is trivial, then $a^{i}{ }_{31}=a^{j}{ }_{31}$ is a constant by (4.1).

Since $\left\{a_{i j}\right\}$ and $\left\{b_{i j}\right\}$ are non trivial C-bundles, we have $a_{31}=\left\{a^{i}{ }_{31}\right\}=0$ and $a_{32}=\left\{a^{i}{ }_{32}\right\}$ and $a_{33}=\left\{a_{33}^{i}\right\}$ are constants by (4.2) and (4.3). The similar arguments show that, for every $i, \varphi_{i}=\left(\begin{array}{lll}a & b & c \\ & a & 0 \\ 0 & & a\end{array}\right)$ is a constant element in $G L(3)$. Thus we have

$$
\operatorname{ker} \pi_{*} \simeq I=\left\{\left(\begin{array}{ccc}
a & b & c \\
& a & 0 \\
0 & & a
\end{array}\right) \in G L(3) ; a \in C^{*}, b, c \in C\right\} .
$$

It is easily proved that I does not act on P^{2} almost transitively. Hence M is not an almost homogeneous manifold. This completes the proof of proposition.

References

[1] K. Iwasawa, On some types of topological groups, Ann. of Math., 50 (1949).
[2] K. Kodaira, On Kähler varieties of restricted type, Ann. of Math., 60 (1954).
[3] A. Lichnerowicz, Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de ricci généralisee non negative, J. Differential Geometry, 6 (1971).
[4] Y. Matsushima, Fibrés holomorphes sur un tore complexe, Nagoya Math. J., 14 (1959).
[5] Y. Matsushima, Espaces homogenes de Stein des groupes de Lie complexes, Nagoya Math. J., 16 (1960).
[6] A. Mizuhara, On a P^{1}-bundle over an abelian variety which is almost homogeneous, Math. Japon., 16 (1971).
[7] R. Remmert and A. Van de Ven, Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten, Topology, 2 (1963).

Akira Mizuhara
Department of Mathematics
Faculty of Science
Kyoto Sangyo University
Kamigamo, Kita-ku
Kyoto, Japan

