On the *l*-class rank in some algebraic number fields

By Shinju KOBAYASHI

(Received May 12, 1973)

§0. Introduction.

The field in question is a non-Galois extension \mathcal{Q} of \mathbf{Q} of prime degree l > 2, with the following three conditions:

(i) The Galois closure K of Ω contains an absolutely cyclic subfield k with [K:k] = l.

(ii) The closure K is abelian over no proper subfield of k.

(iii) The class number h_k of k is prime to l.

Put $d = [k: Q] = [K: \Omega]$. As is shown in [7], §1, the condition (ii) implies that $d \mid l-1$. For each divisor *s* of *d*, denote by Ω_s the intermediate field of K/Ω with $[K: \Omega_s] = s$. Furthermore, let C_K be the ideal class group of *K* and σ be a fixed generator of the Galois group G(K/k). Define the integers $\nu_i \ge 0, i=1, \cdots, l-1$, by $(C_K^{(1-\sigma)^{i-1}}C_K^l: C_K^{(1-\sigma)^i}C_K^l) = l^{\nu_i}$. The aim of this paper is to prove the following results.

THEOREM 1. Notations and assumptions being as above, let $\{p_i\}_{i=1}^t$ be the set of all rational primes totally ramified in Ω , and g_i , $i=1, \dots, t$, be the order of the decomposition group of p_i in k/Q. Then, for each divisor s of $g = (g_1, \dots, g_t)$ (the g. c. d. of g_1, \dots, g_t), we have

$$d^{(l)}C_{Q_{S}} = \sum_{j=1}^{(l-1)/s} \nu_{js}$$
 ,

where $d^{(l)}C_{\mathcal{Q}_{S}}$ denotes the l-rank of the ideal class group $C_{\mathcal{Q}_{S}}$ of \mathcal{Q}_{S} .

If g is equal to d in Theorem 1, we get $d^{(l)}C_g$, and this leads to several consequences. On the one hand, we obtain $d^{(l)}C_g = \nu_{l-1} \leq \nu_1$ in the case g = d = l - 1, and this seems to be a substantial upper bound for $d^{(l)}C_g$. For, in this case, ν_1 can not exceed t-1, and we also know that $d^{(l)}C_g \geq t-r_g$, where r_g denotes the number of infinite primes in Ω (cf. [8]).

On the other hand, we can show that $\nu_1 = \nu_2$ when K is a dihedral extension and g=2. This gives, together with Theorem 1, the exact value of $d^{(3)}C_{\mathcal{Q}}$ for certain non-Galois cubic fields Ω (Theorem 2, §4). It also enables us to get a generalization to the dihedral case of a theorem of Honda in [3], which states that $3 \mid h_{\mathcal{Q}}$ if and only if $3 \mid h_K$ in the pure cubic case (Theorem 3, §5). §§1 and 2 contain preliminary results and Theorem 1 is proved in §3.
We list below some notations used throughout this paper.

- *l*: a fixed prime number > 2.
- F_l : the finite field with l elements.
- C_F : the ideal class group of a field F (we mean by a field exclusively a finite extension of Q).
- h_F : the class number of F.
- $d^{(l)}C_F$: the *l*-rank of C_F .
 - E_F : the unit group of F.
 - $t_{F/E}$: the number of primes in E totally ramified in F (in fact, we use this only when $F/E = \Omega/Q$ or K/k).
 - ζ_n : a primitive *n*-th root of 1.
- $g = (g_1, \dots, g_t)$: as defined in Theorem 1 $(t = t_{\mathcal{Q}/\mathcal{Q}})$.

§1. A reduction step.

Let F/E be a cyclic extension of degree prime to l, and \tilde{F} (resp. \tilde{E}) be the unramified abelian extension of F (resp. E) corresponding to C_F^l (resp. C_E^l) in the sense of class field theory. As $l \nmid [F:E]$, the following Proposition is obvious.

PROPOSITION 1. Let F_0 be a subextention of \tilde{F}/F which is Galois over Eand E_0 be the maximal subextension of \tilde{E}/E contained in F_0 . Then E_0F is the fixed field of the commutator subgroup $[G(F_0/E), G(F_0/E)]$ of $G(F_0/E)$.

Let F_0 be as in Proposition 1 and η be a fixed generator of G(F/E). Then η operates on $H = G(F_0/F)$ through the inner automorphism $\rho \mapsto \eta \rho \eta^{-1}$ and $G(F_0/E) = H \langle \eta \rangle$ (semi-direct product). Since H is a vector space of finite dimension over F_l , η is represented by a matrix X over F_l w.r.t. a suitable basis of H. If we put (by identifying H with the space of column vectors over F_l)

$$\overline{H} = \left\{ \begin{pmatrix} I & \boldsymbol{a} \\ 0 & 1 \end{pmatrix} \middle| \boldsymbol{a} \in H \right\}, \quad \overline{X} = \begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix},$$

we see

$$ar{X}ig(egin{array}{cc} I & oldsymbol{a} \ 0 & 1 \end {A} \e$$

and hence we obtain $H \simeq \overline{H}$, $G(F_0/E) \simeq \overline{H} \cdot \langle \overline{X} \rangle$ (semi-direct product) and

$$\begin{bmatrix} X, \begin{pmatrix} I & \boldsymbol{a} \\ 0 & 1 \end{bmatrix} = \begin{pmatrix} I & (I-X^{-1})\boldsymbol{a} \\ 0 & 1 \end{pmatrix}.$$

It is easy to see that $[G(F_0/E), G(F_0/E)]$ is equal to (X-I)H, so we must know the rank of the matrix X-I. Let X_1 be the Jordan's normal form of

S. Kobayashi

X. Then, as the order of X is prime to l, we see that the elements of X_1 just below the diagonal must be 0, i.e., X_1 is a diagonal matrix. This proves the following

PROPOSITION 2. The rank of the elementary abelian l-group $G(E_0/E)$ is equal to the multiplicity of 1 appearing as an eigenvalue of X.

§2. The descending central series.

Let k be a field with $l \nmid h_k$ and K/k be a cyclic extension of degree l. Fix a generator σ of G(K/k). We have the following sequences of subgroups of C_K and of unramified abelian extensions over K corresponding to these ideal groups:

$$C_K \supset C_K^{1-\sigma} C_K^l \supset \cdots \supset C_K^{(1-\sigma)^{l-1}} C_K^l = C_K^l,$$

$$K \subset K_1 \subset \cdots \subset K_{l-1} = \widetilde{K}.$$

The equality on the right hand side is due to Proposition 1, [4], and K_1 is what we denoted by K_0 in [4]. Put $G = G(\tilde{K}/k)$ and define $G^{(i)}$, $i=1, \dots, l-1$, successively by

$$G^{(1)} = [G, G], \qquad G^{(i+1)} = [G^{(i)}, G].$$

PROPOSITION 3. $G(\tilde{K}/K_i) = G^{(i)}$.

PROOF. $C_{\kappa}/C_{\kappa}^{i}$ is mapped isomorphically onto $G(\tilde{K}/K)$ by the Artin's reciprocity map $\left(\frac{\tilde{K}/K}{K}\right)$, and each $C_{\kappa}^{(i-\sigma)i}C_{\kappa}^{l}/C_{\kappa}^{i}$ corresponds to $G(\tilde{K}/K_{i})$ under this isomorphism. The assertion being verified for i=1 by Proposition 2, [4], we assume inductively that $G(\tilde{K}/K_{i}) = G^{(i)}$. Then for any $c \in C_{\kappa}$, we have

$$\left(\frac{\tilde{K}/K}{c^{(1-\sigma)^{i+1}}}\right) = \left[\tilde{\sigma}, \left(\frac{\tilde{K}/K}{c^{(1-\sigma)^{i}}}\right)\right] \in G^{(i+1)},$$

where we denoted by $\tilde{\sigma}$ an element of $G = G(\tilde{K}/k)$ extending $\sigma \in G(K/k)$. The inclusion $G^{(i+1)} \subset G(\tilde{K}/K_{i+1})$ is equally obvious (note that \tilde{K}/K is abelian and $G^{(1)} \subset G(\tilde{K}/K)$). q. e. d.

PROPOSITION 4. Let ν_i , $i=1, \dots, l-1$, be as defined in Theorem 1. Then l^{ν_i} is equal to the *l*-part of the index $(C_K^{(1-\sigma)^{i-1}}: C_K^{(1-\sigma)^i})$.

PROOF. By Proposition 1, [4], the Sylow *l*-subgroup of $C_K/C_K^{(1-\sigma)^{l-1}}$ is elementary (i.e. of type (l, \dots, l)). So it suffices to show that the map: $C_K^{(1-\sigma)^{l-1}}/C_K^{(1-\sigma)^{l-1}}C_K^{(1-\sigma)^{l-1}}C_K^{(1-\sigma)^{l-1}}C_K^{(l-\sigma)^{l-1}}C_K^{l}$ is an isomorphism. The surjectivity is obvious. So let $c \in C_K^{(1-\sigma)^{l-1}} \cap C_K^l$, $c = c_1^l$, $c_1 \in C_K$. Then putting $a = (C_K^l : C_K^{(1-\sigma)^{l-1}})$, we get $c^a \in C_K^{(1-\sigma)^{l-1}}$, hence by l + a, $c \in C_K^{(1-\sigma)^{l-1}}C_K^{(1-\sigma)^{l}}$. q.e.d.

§ 3. Inertia generators.

Let Ω , K, and k satisfy the conditions (i) to (iii) in §0, and σ and τ be fixed generators of G(K/k) and $G(K/\Omega)$ respectively. We have a relation $\tau \sigma \tau^{-1} = \sigma^r$ for some $r \in \mathbb{Z}$, and the condition (ii) implies that $d = \lfloor k : \mathbb{Q} \rfloor$ is equal to the order of $r \mod l$ (cf. [7], §1). In order to carry out the procedure described in §1, we have to find suitable generators for $H = G(\tilde{K}/K)$. But as we have seen in §2, H has the following sequence of subspaces:

$$H \supset G^{(1)} \supset \cdots \supset G^{(l-1)} = \{1\},\$$

(where we put $G = G(\tilde{K}/k)$), and each $G^{(i)}$ is invariant under τ . So, in fact, it suffices to find convenient generators for each of the factor spaces $G^{(i)}/G^{(i+1)}$.

This is done exactly as in [5]. Namely, $G(K_1/k)$ is an elementary *l*-extension. For each prime \mathfrak{p} in k, ramified in K, denote by $T_{\mathfrak{p}}$ the inertia group of \mathfrak{p} in $G(K_1/k)$. They are all of order l, and by the assumption $l \nmid h_k$, their composite coincides with $G(K_1/k)$. So we can choose a basis $\{\sigma_1, \dots, \sigma_m\}$ of $G(K_1/k)$ such that each σ_i is a generator of some $T_{\mathfrak{p}}$. Extend σ_i to an element of $G = G(\tilde{K}/k)$ and use the same symbol. Then, by the theory of p-groups, $\{\sigma_1, \dots, \sigma_m\}$ is a minimal system of generators of G.

LEMMA 1. $H/G^{(1)}$ is generated by $\sigma_j \sigma_{j+1}^{-1}$, $j=1, \dots, m-1$ (with a suitable choice of σ_j 's).

PROOF. The same as we stated in [5], § 3. $H/G^{(1)}$ is an (m-1)-dimensional subspace of $G(K_1/k)$ and is defined by a linear equation $\sum_{j=1}^{m} c_j x_j \equiv 0 \pmod{l}$ for the exponents x_j of σ_j . Each $c_j \equiv 0 \pmod{l}$, so replacing σ_j by a suitable power of it, we can assume that $c_j \equiv 1 \pmod{l}$, $j=1, \cdots, m$. q. e. d.

LEMMA 2. For $i \ge 2$, $G^{(i-1)}/G^{(i)}$ is generated by the elements of the form

$$[\sigma_{j_1}, \cdots, \sigma_{j_i}].$$

PROOF. As G is generated by $\sigma_1, \dots, \sigma_m$ and $G(\tilde{K}/K)$ is abelian, we have only to show that the *i*-variable function $[x_1, \dots, x_i] \mod G^{(i)}$ is "multilinear". The assertion being verified easily by a direct computation for i=2, we assume it to be valid for i-1. Then

$$[x_1, \cdot, x_i x_i'] = [[x_1, \cdot, x_{i-1}], x_i'] [[x_1, \cdot, x_{i-1}], x_i] [[x_1, \cdot, x_{i-1}], x_i, x_i']$$
$$\equiv [x_1, \cdot, x_i] [x_1, \cdot, x_i'] \mod G^{(i)}.$$

For a < i, by the induction hypothesis,

$$\begin{bmatrix} x_{1}, \cdot, x_{a}x'_{a}, \cdot, x_{i} \end{bmatrix}$$

= $\begin{bmatrix} x_{1}, \cdot, x_{a}x'_{a}, \cdot, x_{i-1} \end{bmatrix}, x_{i} \end{bmatrix}$
= $\begin{bmatrix} x_{1}, \cdot, x_{a}, \cdot, x_{i-1} \end{bmatrix} \begin{bmatrix} x_{1}, \cdot, x'_{a}, \cdot, x_{i-1} \end{bmatrix} y, x_{i} \end{bmatrix}$

S. Kobayashi

$$= [[\cdot, x_a, \cdot][\cdot, x'_a, \cdot], x_i][[\cdot, x_a, \cdot][\cdot, x'_a, \cdot], x_i, y][y, x_i]$$

$$\equiv [[\cdot, x_a, \cdot], x_i][[\cdot, x_a, \cdot], x_i, [\cdot, x'_a, \cdot]][[\cdot, x'_a, \cdot], x_i]$$

$$\equiv [\cdot, x_a, \cdot, x_i][\cdot, x'_a, \cdot, x_i] \mod G^{(i)},$$

q. e d.

where $y \in G^{(i-1)}$.

PROOF OF THEOREM 1. Put d = sn. Then $G(K/\mathcal{Q}_S) = \langle \tau^n \rangle$ and we can apply the procedure given in §1 to $F/E = K/\mathcal{Q}_S$, $F_0 = \tilde{K}$. By the assumption that $s \mid g, g = (g_1, \dots, g_t), \tau^n \langle \sigma_j \rangle \tau^{-n} = \langle \sigma_j \rangle$ in $G(K_1/k)$, hence we can put $\tau^n \sigma_j \tau^{-n} = \sigma_j^{a_j} x_j, x_j \in G^{(1)}$. Apply this on K. Since σ_j is non-trivial on K, the relation $\tau^n \sigma \tau^{-n} = \sigma^{\tau^n}$ implies the same for σ_j and we get $a_j = r^n$. Now on $H/G^{(1)}$,

$$\tau^{n}(\sigma_{j}\sigma_{j+1}^{-1})\tau^{-n} \equiv (\sigma_{j}\sigma_{j+1}^{-1})^{r^{n}} \mod G^{(1)}$$

On $G^{(i-1)}/G^{(i)}, i \ge 2$,

$$\tau^{n}[\sigma_{j_{1}}, \cdots, \sigma_{j_{i}}]\tau^{-n} \equiv [\sigma_{j_{1}}, \cdots, \sigma_{j_{i}}]^{r^{i_{n}}} \mod G^{(i)}.$$

For this we note that the function $[\cdot, \dots, \cdot]$ is "multilinear" and $[x_1, \cdot, [y, y'], \cdot, x_i] \equiv [[x_1, \cdot, y, \cdot, x_i], [x_1, \cdot, y', \cdot, x_i]] \equiv 1 \mod G^{(i)}$. On each $G^{(i-1)}/G^{(i)}$, therefore, τ^n is represented by a scalar matrix and its eigen-value is r^{in} , which is $\equiv 1 \pmod{l}$ if and only if $i \equiv 0 \pmod{s}$. q. e. d.

§4. Calculation of ν_1 and ν_2 in the dihedral case.

In this section, we assume d=2 in the conditions (i) to (iii), so G(K/Q) is a dihedral group of order 2l and k is a quadratic field. Define the integer δ by $(E_k: E_k \cap N_{K/k}(K^{\times})) = l^{\delta}$. Then we have two cases:

Case (A): $\delta = 0$, i. e., k is real and the fundamental unit ε_0 of k belongs to $N_{K/k}(K^{\times})$, or l=3, $k=\mathbf{Q}(\sqrt{-3})$ and $\zeta_3 \in N_{K/k}(K^{\times})$, or k is imaginary and either $l \neq 3$ or $k \neq \mathbf{Q}(\sqrt{-3})$.

Case (B): $\delta = 1$.

Then by Satz 13, [2], we get

PROPOSITION 5. $\nu_1 = t_{K/k} - 1 - \delta$.

As for ν_2 , by Proposition 4, § 2, it is equal to the exponent of the *l*-part of the index $(C_K^{1-\sigma}: C_K^{(1-\sigma)^2}) = |C_K^{1-\sigma} \cap C_K^{\sigma}|$, where C_K^{σ} is the subgroup of G = G(K/k)-invariant classes in K. So we must find the Sylow *l*-subgroup of $C_K^{1-\sigma} \cap C_K^{\sigma}$. As we have seen in [5], an ideal \mathfrak{a} in K belongs to $C_K^{1-\sigma}$ if and only if $N_{K/k}(\mathfrak{a})$ is a principal ideal generated by an element of $N_{K/k}(K^{\times})$.

From now on, we assume $g = (g_1, \dots, g_t) = 2$. We first study the subgroup D_K of C_K^q generated by G-invariant ideals in K. Let $p_1, \dots, p_t, t = t_{g/q} = t_{K/k}$, be the rational primes totally ramified in Ω . If l is among them, we put $p_t = l$. For each p_i , let \mathfrak{P}_i be the prime factor of p_i in K. If $p_t = l$, denote

the prime factors of l in k and K by l and \mathfrak{L} respectively, and put $\mathfrak{P}_t = \mathfrak{L}^e$, where e is the ramification index of l in k/Q. Then the Sylow *l*-subgroup of D_K is generated by $\mathfrak{P}_1, \dots, \mathfrak{P}_t$ (cf. [7], Satz V, VI).

LEMMA 3. If g=2, \mathfrak{P}_i , $i=1, \dots, t$, belong to $C_K^{1-\sigma}$.

PROOF. We take p_i as a generator of $N_{K/k}(\mathfrak{P}_i)$. Put $\mathbf{Q}' = \mathbf{Q}(\zeta_l)$, $k' = k(\zeta_l)$, $K' = K(\zeta_l)$, and $K' = k' (\sqrt[k]{\alpha})$, $\alpha \in k'^{\times}$. By virtue of the results in [1], Chapter III, $p_i \in N_{K/k}(K^{\times})$ if and only if $p_i \in N_{K'/k'}(K'^{\times})$, and furthermore, the Hilbert's norm residue symbol $\left(\frac{p_i, \alpha}{\mathfrak{P}'}\right)$ defined in k' depends only on the prime in k under \mathfrak{P}' . In particular, we have only to check the symbol for those \mathfrak{P}' 's in k' not dividing l (the number of prime factors of l in k' is either 1 or 2). Since (p_i) is a norm from K, the symbol equals to 1 except for the \mathfrak{P}' 's ramified in K'/k', i. e., $\mathfrak{P}' \mid p_j$ for some j. Note that $p_i \equiv -1 \pmod{l}$ if $p_i \neq l$ (Satz V, VI, [7]). Now we have three cases :

- a) k is not contained in Q'.
- b) $l \equiv 3 \pmod{4}$ and $k = Q(\sqrt{-l}) \subset Q'$.
- c) $l \equiv 1 \pmod{4}$ and $k = Q(\sqrt{l}) \subset Q'$.

But in c), $p_i \neq l$ are necessarily decomposed in k and hence we can exclude this case (if no $p_i \neq l$ exists, we have t=1, $C_K^q = \{1\}$, and the assertion is trivial). In case a), let $k = Q(\sqrt{m})$ and put $\tilde{k} = Q((\zeta_l - \zeta_l^{-1})\sqrt{m})$. In case b), put $\tilde{k} = Q(\zeta_l + \zeta_l^{-1})$. In both cases, we can find $\alpha \in \tilde{k}^{\times}$ such that $K' = k'(\sqrt[l]{\alpha})$ (cf. [6], Chapter IV). Apply the automorphism of $G(k'/\tilde{k})$ on $(\frac{p_i, \alpha}{\mathfrak{B}'})$, $\mathfrak{B}' \mid p_j$. Then it leaves invariant p_i, α and also \mathfrak{B}' . In fact, by the assumption g=2, we can easily see that \mathfrak{B}' is inert in k'/\tilde{k} . But the automorphism maps ζ_l to ζ_l^{-1} . Hence we must have $(\frac{p_i, \alpha}{\mathfrak{B}'}) = 1$.

PROPOSITION 6. If G(K/Q) is a dihedral group of order 2l and g=2, we have $\nu_1 = \nu_2$.

PROOF. If $C_K^q = D_K$, the assertion is already proved by Lemma 3. By the formula (7) in the proof of Satz 13, [2], $(C_K^q : D_K) = 1$ or l, and it is equal to l if and only if k is real, $\delta = 0$ and $\varepsilon_0 \in N_{K/k}(E_K)$, or l=3, $k=Q(\sqrt{-3})$, $\delta = 0$ and $\zeta_3 \in N_{K/k}(E_K)$. The latter case has already been finished in [5], and the former is done exactly by the same argument. Namely, let c be an element of C_K^q not contained in D_K and choose an ideal \mathfrak{a} in c. Since $N_{K/k}(\mathfrak{a}^{1+\tau}) = N_{K/q}(\mathfrak{a})$ is generated by a rational number, we have only to show that $\mathfrak{b} = \mathfrak{a}^{1+\tau}$ again belongs to C_K^q but not to D_K (cf. Proof of Lemma 3). Put $\mathfrak{a}^{1-\sigma} = (\beta)$, $\beta \in K^{\times}$. Then $N_{K/k}(\beta) = \pm \varepsilon_0^s$, $x \equiv 0 \pmod{l}$. If we can write $\mathfrak{b} = \mathfrak{b}_1 \beta_1$ with $\mathfrak{b}_1^{1-\sigma} = (1)$, $\beta_1 \in K^{\times}$, we get $\beta^{1+(1+\sigma+\dots+\sigma^{l-2})\tau} = \varepsilon \beta_1^{1-\sigma}$, $\varepsilon \in E_K$, hence $N_{K/k}(\beta)^{1+(l-1)\tau} = N_{K/k}(\varepsilon)$, which is a contradiction, since $\varepsilon_0^\tau = \pm \varepsilon_0^{-1}$.

THEOREM 2. If G(K/Q) is isomorphic to the symmetric group of degree 3,

 $3 + h_k$ and $g = (g_1, \cdots, g_t) = 2$, we have

 $d^{(3)}C_{Q} = \nu_{1}, \qquad d^{(3)}C_{K} = 2\nu_{1}.$

PROOF. Immediate from Theorem 1 and Proposition 6.

REMARK. In the course of preparation of this paper, Mr. G. Gras has communicated to me another proof of Theorem 2. His proof is based on a more general study of *l*-class groups in dihedral extensions (without the assumption (iii) in \S 0).

§5. A generalization of a Theorem of Honda.

We first assume that Ω , K, and k satisfy only the conditions (i) and (ii) in §0.

PROPOSITION 7. If a prime number $p \neq l$ totally ramified in Ω is completely decomposed in k, h_{Ω} is divisible by l.

PROOF. By Satz V, [7], we have $p \equiv 1 \pmod{l}$. Let M_p be the unique cyclic extension of Q of degree l contained in $Q(\zeta_p)$. Then $\Omega M_p/\Omega$ is an unramified cyclic extension of degree l. In fact, $\Omega M_p/\Omega$ is unramified outside p. So let \mathfrak{P} be a prime factor of p in M_pK . Then \mathfrak{P} is ramified in $\Omega M_p/\Omega \iff \mathfrak{P}$ is ramified in M_pK/K . But \mathfrak{P} is already ramified in K/k and it can not be totally ramified in M_pK/k . Hence \mathfrak{P} is unramified in $\Omega M_p/\Omega$. q.e.d.

Now we can prove the announced result.

THEOREM 3. If G(K/Q) is a dihedral group of order 2l and $l + h_k$, $l | h_Q$ if and only if $l | h_K$.

PROOF. The "only if" part is obvious and we show that $l \mid h_{\mathcal{G}}$ if $l \mid h_{K}$. If either $g = (g_{1}, \dots, g_{l}) = 2$, or there exists a rational prime $p \neq l$ which is totally ramified in \mathcal{Q} and decomposed in k, Theorem 1 with Proposition 6 or Proposition 7 proves the assertion. So assume that p_{1}, \dots, p_{t-1} and l are totally ramified in \mathcal{Q} and only l is decomposed in k, and put $l = \mathfrak{l}_{1}\mathfrak{l}_{2}$ in k. In particular, $k \neq \mathcal{Q}(\sqrt{-3})$ if l=3. In case (A) (cf. § 4), we apply the Propositions 1 and 2 to $F/E = K/\mathcal{Q}$ and $F_{0} = K_{1}$. Let σ and τ be generators of G(K/k) and $G(K/\mathcal{Q})$ as before. We have $\tau \sigma \tau^{-1} = \sigma^{-1}$. Denote generators of the inertia groups of p_{1}, \dots, p_{t-1} , \mathfrak{l}_{1} , \mathfrak{l}_{2} in $G(K_{1}/k)$ by $\sigma_{1}, \dots, \sigma_{t-1}, \rho_{1}, \rho_{2} = \tau \rho_{1}^{-1}\tau^{-1}$. They make a basis of $G(K_{1}/k)$ and we can assume that $G(K_{1}/K)$ is generated by $\sigma_{1}\sigma_{2}^{-1}, \dots, \sigma_{t-1}\rho_{1}^{-1}, \rho_{1}\rho_{2}^{-1}$ (cf. Lemma 1. Note that if $G(K_{1}/K)$ is defined by the linear equation $\sum_{i=1}^{t-1} c_{i}x_{i} + ay + bz \equiv 0 \pmod{l}$ for the exponents x_{i}, y, z of $\sigma_{i}, \rho_{1}, \rho_{2}$, we have $a \equiv b \pmod{l}$. In fact, we can assume that $\rho_{1}|K = \sigma$, which gives $\rho_{2}|K = \sigma$. By the equation above, we see $\rho_{1}^{b}\rho_{2}^{-a} \in G(K_{1}/K)$, hence $\sigma^{b-a} = id$.). The matrix X representing τ w. r. t. this basis has the form

$$\begin{vmatrix} -1 & & & \\ & \ddots & & \\ & & -1 & & \\ \hline & & & -1 & & 0 \\ & & & & -1 & & 1 \\ \end{vmatrix}$$

So by Proposition 2, we get $l \mid h_{\mathcal{Q}}$.

In case (B), we can use the same procedure if ρ_1 and ρ_2 are linearly independent in $G(K_1/k)$. If not, we can apply the argument used in the proof of Theorem 1, and we have to show that $\nu_2 > 0$ if $\nu_1 > 0$, i.e., if $t \ge 2$. Let $\mathfrak{P}_1, \cdots, \mathfrak{P}_{t-1}, \mathfrak{L}_1, \mathfrak{L}_2$ be the prime factors of $p_1, \cdots, p_{t-1}, \mathfrak{l}_1, \mathfrak{l}_2$ in K, and let e be the order of \mathfrak{l}_i in C_k . Then the Sylow *l*-subgroup of $C_K^{\mathfrak{a}} = D_K$ is generated by $\mathfrak{P}_1, \cdots, \mathfrak{P}_{t-1}, \mathfrak{L}_i^{\mathfrak{e}}, \mathfrak{L}_2^{\mathfrak{e}}$. Just as in Lemma 3, $\mathfrak{P}_1, \cdots, \mathfrak{P}_{t-1}, \mathfrak{L}_i^{\mathfrak{e}} \mathfrak{L}_2^{\mathfrak{e}}$ belong to $C_K^{\mathfrak{L},\sigma}$ (since *l* is decomposed in *k*, *k* is not contained in $Q(\zeta_l)$ and we are in case a) of Lemma 3). So if $\mathfrak{L}_i^{\mathfrak{e}} \mathfrak{L}_2^{\mathfrak{e}} \not\sim 1$ in *K*, we get $\nu_2 > 0$. Suppose $\mathfrak{L}_i^{\mathfrak{e}} \mathfrak{L}_2^{\mathfrak{e}} \sim 1$. Then the Sylow *l*-subgroup of $C_K^{\mathfrak{a}}$ is generated by $\mathfrak{P}_1, \cdots, \mathfrak{P}_{t-1}$ and $\mathfrak{L}_i^{\mathfrak{e}}$. Hence some \mathfrak{P}_i must be non-principal if $t \ge 3$. If t=2, put $\mathfrak{l}_i^{\mathfrak{e}} = (\lambda), \lambda \in k^{\times}$. Case (B) means that *k* is real and $\varepsilon_0 \notin N_{K/k}(K^{\times})$. Then we can choose a power of ε_0 such that $\varepsilon_0^{\mathfrak{e}} \lambda \in N_{K/k}(K^{\mathfrak{e}})$ (because the only norm residue symbol to be checked is $\left(\frac{\varepsilon_0^{\mathfrak{e}} \lambda, \alpha}{\mathfrak{P}'}\right), \mathfrak{P}' \mid p_1$ in k' and we have $\left(\frac{\varepsilon_0, \alpha}{\mathfrak{P}'}\right) \neq 1$ by $\delta = 1$). Hence \mathfrak{P}_1 and $\mathfrak{L}_i^{\mathfrak{e}}$ belong to $C_K^{\mathfrak{l}-\sigma}$ and $\nu_2 > 0$.

REMARK. As $\nu_1 \ge \cdots \ge \nu_{l-1}$, we see that $l \mid h_K$ if and only if $\nu_1 > 0$.

References

- [1] G. Gras, Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier *l*, to appear in Ann. Inst. Fourier.
- [2] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Ia, Jber. Deutsch. Math.-Verein., **36** (1927), 231-311.
- [3] T. Honda, Pure cubic fields whose class numbers are multiples of 3, J. Number Theory, 3 (1971), 7-12.
- [4] S. Kobayashi, On the *l*-dimension of the ideal class groups of Kummer extensions of a certain type, J. Fac. Sci. Univ. Tokyo Sec. IA, 18 (1971), 399-404.
- [5] S. Kobayashi, On the 3-rank of the ideal class groups of certain pure cubic fields, to appear ibid.
- [6] J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier, 19 (1969), 1-80.
- [7] J. Porusch, Die Arithmetik in Zahlkörpern, deren zugehörige Galoissche Körper spezielle metabelsche Gruppen bezitzen, auf klassenkörpertheoretischer Grundlage, Math. Z., 37 (1933), 134-160.

S. Kobayashi

[8] P. Roquette and H. Zassenhaus, A class rank estimate for algebraic number fields, J. London Math. Soc., 44 (1969), 31-38.

Shinju Kobayashi

Department of Mathematics Faculty of Science Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo, Japan