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Introduction.

Let $M$ be a complete Riemannian n-manifold isometrically imbedded into
a complete Riemannian $(n+1)$ -manifold $W$. Throughout this paper manifolds
are always assumed to be connected and smooth. Furthermore we assume
$n\geqq 2$ , although some of our results are valid even for $n=1$ . For each $x\in M$

there exists, up to parametrization, a unique geodesic $\tau_{x}$ of $W$ which cuts $M$

orthogonally at $x$ . $M$ is called a transnormal hypersurface of $W$ if, for each
pair $x,$ $y\in M$, the relation $\tau_{x}\ni y$ implies that $\tau_{x}=\tau_{y},$

$i$ . $e$ . if each geodesic of
$W$ which cuts $M$ orthogonally at some point cuts $M$ orthogonally at all points
of intersection. As is well-known, every surface of constant width in the
ordinary Euclidean space has this property ([6]), and it is a model of a
transnormal hypersurface.

The order of a transnormal hypersurface, by which the hypersurface is
globally characterized, is introduced in the following way. Define an equi-
valence relation $\sim$ on $M$ by writing $x\sim y$ to mean $y\in\tau_{x}$ . With respect to
this relation, take the quotient space $\hat{M}=M/\sim$ and endow $\hat{M}$ with the quo-
tient topology. We call $M$ an r-transnormal hypersurface if the natural
projection $\psi$ of $M$ onto $\hat{M}$ is an r-fold (topological) covering map. The num-
ber $r$ is called the order of transnormality of $M$. It should be remarked that
$\psi$ is not always a covering map. However, if $W$ is simply connected and of
constant curvature, then $\psi$ is a covering map ([5]).

In [5], we have obtained the following results which determine topological
structures of transnormal hypersurfaces.

THEOREM A. Let $M$ be an n-dimensional transnormal hyPersurface of $W$.
SuppOse that there exists a Point $p$ of $M$ whose cut locus $C(p)$ in $W$ does not
intersect $ M:C(p)\cap M=\emptyset$ . Then the following hold.

(i) If $M$ is l-transnormal, then $M$ is homeomorphic to $a$ Euclidean n-
space $E^{n}$ .

$*)$ This paper was written while the author was at Tokyo Metropolitan University.
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(ii) If $M$ is $comPact$ and 2-transnormal, then $M$ is homeomorphic to a
Euclidean n-sphere $S^{n}$ .

(iii) If $M$ is compact and $r(<+\infty)$ -transnormal, then the Euler charac-
teristic $\chi(M)$ of $M$ is either zero or $r$ .

The main purpose of this paper is to study differential geometric struc-
tures of a compact 2-transnormal hypersurface of a simply connected com-
plete Riemannian manifold of constant curvature (in contrast to Theorem A
(ii) which is of topological nature). In fact, we prove the following theorems.

THEOREM B. Let $M$ be a comPact 2-transnormal hypersurface of $a$ Eucli-
dean $(n+1)$ -sPace $E^{n+1}$ .

(i) Then, at each point of $M$, with respect to the inward unit normal, every
principal curvature of $M$ is greater than 1/1, where $l$ is the diameter of $M$ as
a subset of $E^{n+1}$ .

(ii) Let $k$ be a Positive constant. In (i), if every principal curvature $\lambda$ of
$M$ satisfies

$\lambda\geqq k$ $(resP\cdot 1/l<\lambda\leqq k)$

at each Point of $M$, then
$k\leqq 2/l$ (resp. $k\geqq 2/l$ ).

(iii) In (i), if every Principal curvature $\lambda$ of $M$ satisfies
$\lambda\geqq 2/l$ (or $1/l<\lambda\leqq 2/l$ )

at each pOint of $M$, then $M$ is totally umbilical and hence isometric to $a$ Eucli-
dean n-sphere $S^{n}$ of radius 1/2.

THEOREM C. Let $M$ be a 2-transnormal hypersurface of $a$ Euclidean $(n+1)-$

sphere $S^{n+1}$ of radius 1. $SuPPose$ the diameter 1 of $M$ as a subset of $S^{n+\}}$

satisfies $ 0<1<\pi$ .
(i) Then, at each point of $M$, with respect to the inward unit normal vector

( $cf$ \S 1 for defnition), every principal curvature of $M$ is greater than cot 1.
(ii) Let $k$ be a constant. In (i), if every principal curvature $\lambda$ of $M$ satisfies

$\lambda\geqq k$ ($resP$ cot $l<\lambda\leqq k$)

at each Point of $M$, then

$k\leqq(1+\cos l)/\sin 1$ $(resPk\geqq(1+\cos l)/\sin 1)$ .
(iii) In (i), if every Principal curvature $\lambda$ of $M$ satisfies

$\lambda\geqq(1+\cos l)/\sin l$ (or cot $l<\lambda\leqq(1+\cos l)/\sin 1$ )

at each point of $M$, then $M$ is totally umbilical and hence isometric to $a$ Eucli-
dean n-sphere $S^{n}$ of radius sin $(l/2)$ .

THEOREM D. Let $M$ be a compact 2-transnormal hypersurface of a $hyper-$

bolic $(n+1)$ -space $H^{n+1}$ of constant curvature $-1$ .
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(i) Then, at each point of $M$, with respect to the inward unit normal vec-
$tor$ , every principal curvature of $M$ is greater than coth 1, where 1 is the $dia$ .
meter of $M$ as a subset of $H^{n+1}$ .

(ii) Let $k$ be a positive constant. In (i), if every principal curvature $\lambda oJ$

$M$ satisfies
$\lambda\geqq k$ (resp. coth $l<\lambda\leqq k$ )

at each point of $M$, then

$k\leqq(1+\cosh l)/\sinh 1$ (resp. $k\geqq(1+\cosh l)/\sinh 1$).

(iii) In (i), if every prjncipal curvature $\lambda$ of $M$ satisfies
$\lambda\geqq(1+\cosh l)/\sinh l$ (or coth $1<\lambda\leqq(1+\cosh l)/\sinh l$ )

at each point of $M$, then $M$ is totally umbilical and isometric to $a$ Euclidean
$n$ -sphere $S^{n}$ of radius sinh $(l/2)$ .

The proofs of these theorems will be given separately in \S \S 2, 3 and 4.
I would like to express my hearty thanks to Professor M. Obata for his
constant encouragement during the preparation of this paper.

\S 1. Preliminaries.

This section is devoted to a brief survey of the concepts and formulas
used throughout the paper. Let $W$ be a complete Riemannian $(n+1)$ -manifold
with $n\geqq 2$ . We denote by $T_{x}W$ the tangent space of $W$ at $x$ and by $\langle, \rangle$ the
inner product on the tangent space. Let $M$ and $P$ be Riemannian submani-
folds of $W$ and $\tau$ a geodesic segment perpendicular to $M$ and $P$ at its end
points $\tau(0)$ and $\tau(b)$ . Denote the Riemannian curvature tensor of $W$ and the
second fundamental form of the submanifold under consideration by $R$ and
$S$ respectively. Then the second variation of the arc length $1(\tau)$ of $\tau$ is given
by the formula

\langle 1.1) $l$ “(0) $=\int_{0}^{b}(\langle V^{\prime}, V^{\prime}\rangle(u)-\langle R(V, \tau_{*})\tau_{*}, V\rangle(u))du+\langle\tau_{*}, \nabla_{v}V\rangle]_{0}^{b}$

$=-\int_{0}^{b}\langle V‘‘ +R(V, \tau_{*})\tau_{*}, V\rangle(u)du$

$+\langle S_{\tau,(b)}V(b)+V^{\prime}(b), V(b)\rangle-\langle S_{r.(0)}V(0)+V^{\prime}(0), V(O)\rangle$ ,

where $V$ is the associated variation vector field along $\tau$ whose values are
everywhere orthogonal to the tangent vector $\tau_{*}$ of $\tau$ , and $V^{\prime}$ denotes the
covariant derivative with respect to $\tau_{*}$ (cf. [1]).

A smooth vector field $Y(t)$ along $\tau$ is called a Jacobi field if it satisfies
the Jacobi equation
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$Y^{\prime\prime}+R(Y, \tau_{*})\tau_{*}=0$ .
A Jacobi field arises from the variation of $\tau$ whose longitudinal curves are
always geodesics. A Jacobi field $Y$ along $\tau$ which is perpendicular to $\tau$ is
said to be an $(M, \tau(0))$ -Jacobi field when it satisfies the boundary conditions

(1.2) $Y(0)\in T_{\tau(0)}M$ and $S_{\tau,(0)}Y(0)+Y^{\prime}(0)\in T_{r(0)}M^{\perp}$

where $\perp$ means orthogonal complement in $T_{T(0)}W$. Geometrically, an $(M, \tau(0))-$

Jacobi field is precisely the associated vector field of the variation of $\tau$ all
of whose longitudinal curves are geodesics starting orthogonally from $M$ and
parametrized by arc length ([1]).

Let $e$ be the restriction of the exponential map of $W$ to the normal
bundle $(TM)^{\perp}$ of $M$ in $W$ . Then a focal point of $M$ at $x$ is, by definition, a
point $\eta\in T_{x}M^{\perp}$ at which the differential map of $e$ is singular, and $e(\eta)$ is
called a focal point of $M$ along the geodesic $e(t\eta),$ $t>0$ . For a given geodesic
$\tau$ starting orthogonally from $M,$ $\tau(b)$ is known to be a focal point of $M$ along
$\tau$ if and only if there exists an $(M, \tau(0))$ -Jacobi field which vanishes at $b$ .
In particular, if $W$ is a Euclidean $(n+1)$ -space $E^{n+1}$ , then for a unit normal
vector $\xi$ of $M$ at $x$ the point $ e(t\xi)=x+t\xi$ is a focal point of $M$ at $x$ if and
only if $t$ is a principal radius of curvature of $M$ at $x$ with respect to $\xi$ ([4]).

Suppose $M$ is an $r(<+\infty)$ -transnormal hypersurface of $W$ and $p\in M$

satisfies the condition $ C(p)\cap M=\emptyset$ , where $C(p)$ denotes the cut locus of $p$ in
$W$ (for the definition of $C(p)$ , if necessary, see [3]). In the following, unless
otherwise mentioned, we always assume that there exists at least one such
a point $p$ for each transnormal $M$. By the distance function $\Lambda_{p}$ of $M$ we
mean the real valued smooth function on $M$ dePned by

$\Lambda_{p}(x)=d(p, x)^{2}$ $x\in M$ ,

where $d(, )$ denotes the distance in $W$ . Note that $d(P, x)^{2}$ is nothing but the
square of the length of the unique minimizing geodesic segment $\tau(p, x)$ of $W$

joining $p$ with $x$ . Furthermore, a point $x\in M$ is a critical point of $\Lambda_{p}$ if and
only if $\tau(p, x)$ is perpendicular to $M$ at $x$ and then at $p$ due to the trans-
normality of $M$. It is known that $\Lambda_{p}$ is a Morse function and the number of
its critical points coincides with the order $r$ of transnormality of $M$ ([5]).

Theorem A is an implication of this property together with elementary parts
of the Morse theory.

If, in particular, $M$ is compact and 2-transnormal, and $W$ is a simply
connected complete Riemannian manifold of constant curvature, then for each
$x\in M$ there exists exactly one point $\tilde{x}\in M$ such that the length of the mini-
mizing geodesic segment $\tau(x,\tilde{x})$ joining $x$ with $\tilde{x}$ equals the diameter of $M$

as a subset of $W$ (cf. [5]). In this case, $\tau(x,\tilde{x})$ is perpendicular to $M$ at both
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of its end points. We call $\tilde{x}\in M$ the antip0dal point of $x\in M$ and the initial
vector $\tau_{*}(0)$ of $\tau(x,\tilde{x})$ the inward unit normal vector at $x$ .

In general, a hypersurface $M$ of $W$ is said to be convex at $x\in M$ if the
second fundamental form $S$ of $M$ is (positive or negative) definite at $x$ , or
equivalently if, in a neighborhood of $x,$ $x$ is the only one point of $M$ that
lies on the hypersurface of $W$ which is tangent to $M$ at $x$ and is totally
geodesic in the neighborhood. $M$ is called a convex hypersurface of $W$ if it
is convex at every point.

\S 2. Compact 2-transnormal hypersurfaces in a Euclidean space.

First we deal with a compact 2-transnormal hypersurface $M$ of a Eucli-
dean $(n+1)$ -space $E^{n+1}$ .

Let $p\in M$ and consider the distance function $\Lambda_{p}(x)=d(p, x)^{2}$ on $M$ . Note
that the cut locus $C(p)$ of $P$ is empty and then $ C(P)\cap M=\emptyset$ . At a critical
point $x$ of $\Lambda_{p}$ , the Hessian $H$ of $\Lambda_{p}$ , which is a symmetric bilinear form on
$T_{x}M$ , is given by

$ H(X, Y)=2\langle(I-lS_{\xi})X, Y\rangle$ , $X,$ $Y\in T_{x}M$ ,

where $I$ denotes the identity transformation and $\xi$ is the unit vector defined
by $P=x+l\xi,$ $1>0$ ([4]). It should be remarked that $\xi$ is normal to $M$ and
thus 1 coincides with the diameter of $M$ as a subset of $E^{n+1}$ .

The clue to the proof of Theorem $B$ is the following
LEMMA 1. If $\lambda$ is a non-zero principal curvature of $M$ at $x$ with respect

to the inward unit normal $\xi$ , then

$\overline{\lambda}=\lambda/(\lambda l-1)$

is a principal curvature of $M$ at $\tilde{x}$ with respect to $-\xi$ , where $\tilde{x}$ is the antipodal
Point of $x$ , and 1 is the diameter of $M$ as a subset of $E^{n+1}$ .

PROOF. Since $\lambda$ is a non-zero principal curvature of $M$ at $x$ with respect
to $\xi$ , the point $ x+\lambda^{-1}\xi$ is a focal point of $M$ at $x$ . It is easily seen that each
focal point of $M$ at $x$ is also a focal point of $M$ at $\tilde{x}$ , because $M$ is a trans-
normal hypersurface. In fact, we have only to note that each $(M, x)$ -Jacobi
field is also an $(M,\tilde{x})$ -Jacobi field. Thus $ x+\lambda^{-1}\xi$ is a focal point of $M$ at $\tilde{x}$

as well. So there exists a principal curvature $\tilde{\lambda}$ of $M$ at $\tilde{x}$ such that

$\tilde{x}-\tilde{\lambda}^{-1}\xi=x+\lambda^{-1}\xi$ .
From this equation, we obtain

(2.1) $\lambda^{-1}+\tilde{\lambda}^{-1}=l$ ,

since the length of the vector $\tilde{x}-x$ attains the diameter 1 of $M$. Rewriting
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(2.1), we get the lemma. Here we note that

$\lambda l-1>0$ ,

which is shown in the proof of Theorem $B(i)$ . Q. E. D.
PROOF OF THEOREM B. (i) Choose a point $x\in M$ arbitrarily, and let $\tilde{x}$

be the antipodal point of $x$ . Remark that $\tilde{x}=x+l\xi$ where $\xi$ is the inward
unit normal of $M$ at $x$ . Then the Hessian $H$ of the distance function $\Lambda_{\tilde{x}}$ at
$x$ is given by

$’(2.2)$ $ H(X, Y)=2\langle(I-lS_{\xi})X, Y\rangle$ , $X,$ $Y\in T_{x}M$ .
Since $M$ is compact and 2-transnormal, $A_{\overline{x}}$ takes its maximum at $x$ , which

is a nondegenerate critical point of $A_{\overline{x}}$ ([5]). Hence $H$ is negative definite
at $x,$

$i$ . $e$ . every eigenvalue of $S_{\xi}$ is greater than 1/1.
(ii) Let $\lambda$ be a principal curvature of $M$ at $x$ in (i), and consider the

.case $\lambda\geqq k$ . By Lemma 1, $\tilde{\lambda}=\lambda/(\lambda 1-1)$ is a principal curvature of $M$ at $\tilde{x}$ .
Thus from the assumption we have

(2.3) $\frac{\lambda}{\lambda l-1}\geqq k$ ,

noticing the choice of unit normals in (i). Assume that (ii) is false, $i$ . $e$ .
$k>2/l$ . Then $\lambda>2/1$ , and (2.3) asserts

$\frac{\lambda}{\lambda l-1}>\frac{2}{l}$ .

This is, however, a contradiction, because the last inequality reduces to
$i<2/l$ .

The proof for the case $1/l<\lambda\leqq k$ is accomplished in a similar way.
(iii) We prove here only the case $\lambda\geqq 2/1$ . The assumption $\lambda\geqq 2/1$ leads to

$\frac{\lambda}{\lambda l-1}\geqq\frac{2}{l}$ ,

for the same reason as in the proof of (ii). From these inequalities, we get

$\lambda=2/l$ ,

which shows that $M$ is totally umbilical, and this completes the proof (cf.
[3]). Q. E. D.

As a corollary of Theorem $B(i)$ , we obtain
PROPOSITION 1. Let $M$ be a compact 2-transnormal hypersurface of a

Euclidean $(n+1)$ -space $E^{n+1}$ . Then the following hold.
(i) $M$ is a convex hypersurface of $E^{n+1}$ , and then $M$ has Positive sectional

curvature everywhere.
(ii) $M$ is diffeomorphic to $a$ Euclidean $n$ -sphere $S^{n}$ .
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(iii) The total curvature of $M$ is 2.
PROOF. (i) is a direct consequence of Theorem $B(i)$ . From (i) we have

(ii) as well as (iii). See, for example, [3].

\S 3. 2-transnormal hypersurfaces in a sphere.

In this section we investigate the case where $M$ is a 2-transnormal
hypersurface of a Euclidean $(n+1)$ -sphere $S^{n+1}$ of radius 1. Note that such
$M$ must be closed in $S^{n+1}$ and in consequence compact ([5]). Suppose that
the diameter $l$ of $M$ as a subset of $S^{n+1}$ is less than $\pi$ , then the cut locus
$C(p)$ of $p\in M$ in $S^{n+1}$ does not intersect $ M:C(p)\cap M=\emptyset$ . Unless otherwise
stated, this assumption on the diameter is always made throughout the rest
of this section.

Fix a point $p\in M$ arbitrarily and consider the distance function $\Lambda_{p}(x)$

$=d(p, x)^{2}$ on $M$ . Let $x\in M$ be a critical point of $\Lambda_{p}$ and $\tau(p, x)$ the minimiz-
ing geodesic segment in $S^{n+1}$ joining $p$ with $x$ . Recall that $\tau(p, x)$ is perpen-
dicular to $M$ at $x$ as well as at $p$ , and then the length of $\tau(p, x)$ equals the
diameter 1 of $M$ . The Hessian $H$ of $\Lambda_{p}$ at $x$ is given by

(3.1) $ H(X, Y)=2l\langle(\cot l\cdot I-S_{-\tau.(l)})X, Y\rangle$ , $X,$ $Y\in T_{x}M$ .
This formula can be derived from the second variation formula (1.1). In fact,
the calculation of the Hessian of $\Lambda_{p}$ corresponds to the second variation of
the square of the length of $\tau(p, x)$ all of whose longitudinal curves are
minimizing geodesics. On the other hand, it is well-known that on a unit
sphere $S^{n+1}$ every Jacobi field $Y(t)$ along a geodesic $\tau(t)$ parametrized by arc
length is written as

(3.2) $Y(t)=A(t)$ sin $t+B(t)$ cos $t$ ,

where $A(t)$ and $B(t)$ are parallel vector Pelds along $\tau(t)$ . In our case, the
Jacobi field under consideration may be expressed in a more simplified form

$Y(t)=A(t)$ sin $t$ ,

where $A(t)$ is a parallel vector field along $\tau(p, x)$ satisfying the condition
$A(l)\in T_{x}M$, since $p$ , one of the end points, is Pxed under the variation of
$\tau(p, x)$ . From these facts, after a simple computation, we get the formula
(3.1).

The bulk of the proof of Theorem $C$ lies in the following
LEMMA 2. Let $x\in M$ and $\tilde{x}$ be the antipodal Point of $x$ . Let $\tau$ be the

minimizing geodesic in $S^{n+1}$ joining $x$ with $\tilde{x}$ . SuPpose that $\lambda$ is a principal
curvature of $M$ at $x$ with respect to $\tau_{*}(0)$ . Then

$\tilde{\lambda}=$ ( $\sin l+\lambda$ cos $l$ ) $/$ ( $\lambda$ sin 1–cos 1)
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is a principal curvature of $M$ at $\tilde{x}$ with respect to $-\tau_{*}(l)$ , where $l$ is the dia-
meter of $M$ as a subset of $S^{n+1}$ .

PROOF. Let $Y(t)=A(t)$ sin $t+B(t)$ cos $t$ be an $(M, x)$ -Jacobi field along $\tau(t)$ ,
$0\leqq t\leqq l$, such that the parallel vector fields $A(t)$ and $B(t)$ satisfy the follow-
ing conditions:

$A(0)\in T_{x}M,$ $A(l)\in T_{\overline{x}}M;B(0)\in T_{x}M,$ $B(l)\in T_{\overline{x}}M$ ; and

$B(O)$ is a principal vector corresponding to $\lambda,$ $i$ . $e$ .
$S_{\tau_{s}(0)}B(0)=\lambda B(0)$ .

The existence of such $Y(t)$ is obvious. From the very definition of an $(M, x)-$

Jacobi Peld, $Y(t)$ satisPes the boundary condition

$S_{r*(0)}Y(0)+Y^{\prime}(0)\in T_{x}M^{\perp}$

This means that
$S_{\tau_{s(0)}}B(0)+A(0)\in T_{x}M\cap T_{x}M^{\perp}=\{0\}$ .

Therefore $A(O)=-\lambda B(O)$ , because $B(O)$ is a principal vector corresponding to
$\lambda$ . Consequently, we have

$Y(t)=$ ( $\cos t-\lambda$ sin $t$) $B(t)$ .
Since $M$ is a transnormal hypersurface, every $(M, x)$ -Jacobi field is also

an $(M,\tilde{x})$ -Jacobi Peld. Thus, the above $Y(t)$ must satisfy the following bound-
ary condition as well:

$S_{\tau.(l)}Y(l)+Y^{\prime}(l)\in T_{\tilde{x}}M^{\perp}$

From this it follows that

$S_{-\tau_{i}(l)}$ ( $\lambda$ sin 1–cos $l$ ) $B(l)=$ ( $\sin 1+\lambda$ cos $l$ ) $B(l)$ .
As is shown in the proof of Theorem $C(i)$ ,

$\lambda$ sin $l-$ cos $1>0$ ,

and thus the lemma is proved. Q. E. D.
Now, we turn to
PROOF OF THEOREM C. (i) Choose a point $x\in M$ arbitrarily, and let $\tilde{x}$

be the antipodal point of $x$ . Let $\tau$ be the minimizing geodesic joining $x$ with
$\tilde{x}$ . Then the Hessian $H$ of the distance function $\Lambda_{\tilde{x}}$ at $x$ is given by

$ H(X, Y)=2l\langle(\cot l\cdot I-S_{\tau_{*}(0)})X, Y\rangle$ , $X,$ $Y\in T_{x}M$ .
By the same argument as in the proof of Theorem $B(i)$ , we can conclude
that every eigenvalue of $S_{\tau_{*}(0)}$ is greater than cot 1.

(ii) Let $\lambda$ be a principal curvature of $M$ at $x$ in (i). We need only to
consider the case $\lambda\geqq k$ , because the other case can be proved in parallel
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with this one.
By Lemma 2 together with the assumption, we have

$\frac{\sin l+\lambda\cos l}{\lambda\sin l-\cos l}\geqq k$ ,

noticing the choice of unit normal vectors in (i). Suppose that (ii) is not
valid, $i$ . $e$ . $k>(1+\cos l)/\sin l$ . Then we get

$\lambda>\frac{1+\cos l}{\sin l}$ and $\frac{\sin l+\lambda\cos l}{\lambda\sin l-\cos l}>\frac{1+\cos 1}{\sin l}$ .

However these inequalities contradict each other, because the last one reduces
to

$\lambda<(1+\cos l)/\sin l$ .
(iii) We have only to see that the assumption consequently yields

$\lambda=(1+\cos l)/\sin 1$ ,

but it is straightforward. This equality completes the proof. Q. E. D.
As a corollary of Theorem $C(i)$ , we get
PROPOSITION 2. Let $M$ be a 2-transnormal hypersurface of $a$ Euclidean

$(n+1)$ -sphere $S^{n+1}$ of radius 1. SuPpose the diameter $l$ of $M$ as a subset of
$S^{n+1}$ is less than $\pi/2^{1)}$ . Then

(i) $M$ is a convex hypersurface of $S^{n+1}$ , and hence every sectional curva-
ture of $M$ is greater than 1, and

(ii) $M$ is diffeomorphic to $a$ Euclidean n-sphere $S^{n}$ .
PROOF. By Theorem 1.1 of [2], (i) implies (ii), whereas (i) is obtained

from Theorem $C(i)$ because $l<\pi/2$ .

\S 4. Compact 2-transnormal hypersurfaces in a hyperbolic space.

Finally we study a compact 2-transnormal hypersurface $M$ of a hyper-
bolic $(n+1)- spaceH^{n+1}$ of constant curvature $-1$ . But, as one may immediately
realize, the proof of Theorem $D$ is quite similar to that of Theorem $C$ as
well as Theorem B. So, we describe here only the matters which are worth
mentioning.

Let $p\in M$ be a fixed point and consider the distance function $\Lambda_{p}(x)=$

$d(p, x)^{2}$ on $M$. The cut locus $C(p)$ is empty due to the non-positiveness of
the sectional curvature of $H^{n+1}$ . At a critical point $x$ , the Hessian $H$ of $\Lambda_{p}$

is given by

$ H(X, Y)=2l\langle(\coth l\cdot I-S_{-\tau.(l)})X, Y\rangle$ , $X,$ $Y\in T_{x}M$ ,

1) As to the case $l>\pi/2$ , see \S 5, $2^{o}$ .
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where $\tau$ is the minimizing geodesic joining $P$ with $x$ , and $l$ denotes the dia-
meter of $M$ as a subset of $H^{n+1}$ . This formula can be obtained from the
second variation formula (1.1) and the fact that, in $H^{n+1}$ of constant curva-
ture $-1$ , every Jacobi field $Y(t)$ along a geodesic $\tau(t)$ parametrized by arc
length is written as

$Y(t)=A(t)$ sinh $t+B(t)$ cosh $t$ ,

where $A(t)$ and $B(t)$ are parallel vector fields along $\tau(t)$ .
The role played by Lemma 2 is replaced with the following
LEMMA 3. Let $x\in M$ and $\tilde{x}$ be the antip0dal point of $x$ . Let $\tau$ be the

minimizing geodesic in $H^{n+1}$ joining $x$ with $\tilde{x}$ . Supp0se that $\lambda$ is a principal
curvature of $M$ at $x$ with respect to $\tau_{*}(0)$ . Then

$\tilde{\lambda}=$ ( $\lambda$ cosh 1–sinh $l$ ) $/$ ( $\lambda$ sinh 1–cosh 1)

is a principal curvature of $M$ at $\tilde{x}$ with respect to $-\tau_{*}(1)$ , where 1 is the dia-
meter of $M$ as a subset of $H^{n+1}$ .

We can prove this lemma by the same method as that of Lemma 2 with
a slight modification. In the light of Lemma 3, the proof of Theorem $D$ is
now straightforward, and so we omit it. The following proposition is $oI\underline{)}-$

tained as a corollary of Theorem $D(i)$ .
PROPOSITION 3. Let $M$ be a compact 2-transnormal hypersurface of a

hyperb0lic $(n+1)$ -space $H^{n+1}$ of constant curvature $-1$ .
(i) Then, $M$ is a convex hypersurface of $H^{n+1}$ , and moreover has positive

sectional curvature everywhere, and
(ii) $M$ is diffeomorphic to $a$ Euclidean n-sphere $S^{n}$ .
Here we remark that (ii) is an implication of (i). See, for example, [2].

Q. E. D.

\S 5. Concluding remarks.

1. As for the order of transnormality, we have proved in [5] the fol-
lowing theorem which states that 1- and 2-transnormal hypersurfaces cover
a rather wide class of transnormal hypersurfaces.

THEOREM E. Let $M$ be an $r(<+\infty)$ -transnormal $hyPersurface$ of W. Sup-
Pose $W$ is simply connected and has non-positive sectional curvature everywhere.
Then $r$ is either 1 or 2.

$2^{o}$ . With regard to 2-transnormal hypersurfaces in a unit sphere $S^{n+1}$ ,
it can be observed without difficulty that there exists an example which is
not convex and has a diameter $1>\pi/2$ . But, for a diameter $1<\pi/2$ , we have
Proposition 2 which assures the convexity of $M$.
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