On the global existence of solutions of systems of linear differential equations with constant coefficients

By Toshio OSHIMA

(Received Jan. 19, 1973)

Let P(D) be a matrix of linear differential operators with constant coefficients and f be a vector of functions defined on a domain Ω in \mathbb{R}^n . We consider the problem whether a solution u of the equation P(D)u=f exists or not on the domain Ω assuming that f satisfies the compatibility condition. For example, let P(D) be the Cauchy-Riemann system (resp. the de Rham system). Then the solution always exists if the domain Ω is pseudo-convex (resp. simply connected). If Ω is convex, this problem has been affirmatively solved for general P(D) by Ehrenpreis [3], Malgrange [9], Hörmander [6], Palamodov [11] and Komatsu [7] in many function spaces.

In this note we discuss two special cases of the problem in § 2 and § 3 respectively. The first one is the case where the domain has a compact hole and the second one is the case where P(D) is a partial de Rham system. First we introduce some notations in § 1.

§ 1. We denote by \mathcal{P} the ring of linear partial differential operators with constant coefficients in \mathbb{R}^n , by \mathcal{A} , \mathcal{B} , \mathcal{P}' , \mathcal{E} the sheaves of real analytic functions, hyperfunctions, distributions and infinitely differentiable functions over \mathbb{R}^n respectively and generally by \mathcal{F} one of these sheaves. Let M be a finitely generated \mathcal{P} -module. Then M defines an equation P(D)u=f in the following way:

M has a free resolution

$$(1.1) 0 \longleftarrow M \longleftarrow \mathcal{Q}^{r_0} \stackrel{^tP_1(D)}{\longleftarrow} \mathcal{Q}^{r_1} \stackrel{^tP_2(D)}{\longleftarrow} \mathcal{Q}^{r_2} \stackrel{^t}{\longleftarrow} \cdots,$$

where ${}^tP(D)$ is the transposed matrix of the $r_1 \times r_0$ matrix P(D). We regard \mathcal{P} and M as constant sheaves over \mathbb{R}^n . Then M and \mathcal{F} are sheaves of \mathcal{P} -Modules in the natural way. Applying the functor $\mathcal{H}om_{\mathcal{P}}(\cdot, \mathcal{F})$ to (1.1), we have a cochain complex of sheaves of \mathcal{P} -Modules:

$$(1.2) 0 \longrightarrow \mathcal{Z}^{M} \longrightarrow \mathcal{Z}^{r_0} \stackrel{P(D)}{\longrightarrow} \mathcal{Z}^{r_1} \stackrel{P_1(D)}{\longrightarrow} \mathcal{Z}^{r_2} \stackrel{P_2(D)}{\longrightarrow} \cdots,$$

576 T. Oshima

where we denote by \mathcal{F}^{M} the solution sheaf $\mathcal{H}_{omp}(M, \mathcal{F})$.

We denote by $\mathcal{F}(\Omega)$ the space of the sections $\Gamma(\Omega,\mathcal{F})$ and apply the functor $\mathrm{Hom}_{\mathcal{F}}(\cdot,\mathcal{F}(\Omega))$ to (1.1) or the functor $\Gamma(\Omega,\cdot)$ to (1.2), then we have a cochain complex of \mathcal{P} -modules:

$$(1.3) \qquad \cdots \longrightarrow \mathcal{F}(\Omega)^{r_{i-1}} \overset{P_{i-1}(D)}{\longrightarrow} \mathcal{F}(\Omega)^{r_i} \overset{P_i(D)}{\longrightarrow} \mathcal{F}(\Omega)^{r_{i+1}} \longrightarrow \cdots.$$

Since the *i*-th cohomology group of (1.3) is $\operatorname{Ext}_{\mathcal{Z}}^i(M, \mathcal{Z}(\Omega))$ by definition, a vector of functions $u \in \mathcal{Z}(\Omega)^{r_0}$ satisfies P(D)u=0 if and only if $u \in \operatorname{Hom}_{\mathcal{Z}}(M, \mathcal{Z}(\Omega))$, and assuming that $\operatorname{Ext}_{\mathcal{Z}}^1(M, \mathcal{Z}(\Omega))=0$, the equation P(D)u=f on Ω has a solution u if and only if the *compatibility condition* $P_1(D)f=0$ holds.

In Ehrenpreis [3], Malgrange [9], Hörmander [6], Palamodov [11] and Komatsu [7] the following theorem is proved by the method of Fourier analysis.

THEOREM 1.1. Let \mathcal{F} be one of \mathcal{B} , \mathcal{D}' and \mathcal{E} (or \mathcal{A}) and W be a convex open (resp. convex compact) set in \mathbb{R}^n . Then $\mathcal{F}(W)$ is an injective \mathcal{P} -module, i. e., $\operatorname{Ext}^1_{\mathcal{P}}(M, \mathcal{F}(W)) = 0$ for any \mathcal{P} -module M.

Since the above sets W form a fundamental system of neighbourhoods at any point of \mathbb{R}^n , the sequence (1.2) is exact. Namely (1.2) is a resolution of \mathcal{F}^M . Moreover, \mathcal{B} , \mathcal{D}' and \mathcal{E} are soft sheaves and $H^i(\Omega, \mathcal{A}) = 0$ for $i \ge 1$ by a theorem of Malgrange. Hence the i-th cohomology group of (1.3) is equal to $H^i(\Omega, \mathcal{F}^M)$. Thus we have

(1.4)
$$H^{i}(\Omega, \mathcal{F}^{M}) = \operatorname{Ext}_{\mathcal{P}}^{i}(M, \mathcal{F}(\Omega)) \quad \text{for } i \geq 0.$$

Let Z be a closed set in \mathbb{R}^n . Then the i-th cohomology group of

$$(1.5) \qquad \cdots \longrightarrow \mathcal{B}_{Z}(\mathbf{R}^{n})^{r_{i-1}} \stackrel{P_{i-1}(D)}{\longrightarrow} \mathcal{B}_{Z}(\mathbf{R}^{n})^{r_{i}} \stackrel{P_{i}(D)}{\longrightarrow} \mathcal{B}_{Z}(\mathbf{R}^{n})^{r_{i+1}} \longrightarrow \cdots$$

is equal to $H_Z^i(R, \mathcal{B}^M)$ since \mathcal{B} is a flabby sheaf, where we denote by $\mathcal{B}_Z(R^n)$ the space of the global sections of \mathcal{B} whose supports are contained in Z. We get also (1.5) by applying the functor $\operatorname{Hom}_{\mathcal{L}}(\cdot, \mathcal{B}_Z(R^n))$ to (1.1), so that we have

(1.6)
$$H_{\mathbf{Z}}^{i}(\mathbf{R}^{n}, \mathcal{B}^{M}) = \operatorname{Ext}_{\mathcal{D}}^{i}(M, \mathcal{B}_{\mathbf{Z}}(\mathbf{R}^{n})) \quad \text{for } i \geq 0.$$

§2. In this section we discuss the first case in the space of hyperfunctions.

THEOREM 2.1. Let Ω be a domain in \mathbb{R}^n with a compact hole, i.e., there exist a domain V in \mathbb{R}^n and a compact subset $K \neq \emptyset$ of V such that $\Omega = V - K$ and M be a finitely generated \mathcal{P} -module. Then the following condition (1) implies (2) for an arbitrary positive integer i.

(1)
$$\operatorname{Ext}_{\mathcal{D}}^{i}(M, \mathcal{B}(\Omega)) = 0.$$

(2)
$$\operatorname{Ext}_{\mathcal{P}}^{i+1}(M, \mathcal{P}) = 0.$$

PROOF. According to Komatsu [8] we have the following exact sequence:

$$(2.1) 0 \longrightarrow H^{i}(V, \mathcal{B}^{M}) \longrightarrow H^{i}(\Omega, \mathcal{B}^{M}) \longrightarrow H^{i+1}_{K}(V, \mathcal{B}^{M}) \longrightarrow 0.$$

Therefore (1) and (1.4) imply $H_K^{i+1}(V, \mathcal{B}^M) = 0$. Since $H_K^{i+1}(V, \mathcal{B}^M)$ is equal to $H_K^{i+1}(\mathbb{R}^n, \mathcal{B}^M)$, the i+1-th part of (1.5) and its Fourier-Laplace transform

$$(2.2) \qquad \widetilde{\mathcal{B}_{K}(\mathbf{R}^{n})^{r_{i}}} \xrightarrow{P_{i}(\zeta)} \widetilde{\mathcal{B}_{K}(\mathbf{R}^{n})^{r_{i+1}}} \xrightarrow{P_{i+1}(\zeta)} \widetilde{\mathcal{B}_{K}(\mathbf{R}^{n})^{r_{i+2}}}$$

are exact, where $P_i(\zeta)$ and $P_{i+1}(\zeta)$ are the matrices with polynomial elements which we get replacing $-\sqrt{-1}\,\partial/\partial x_j$ by ζ_j . We can assume $\{0\} \in K$ without loss of generality, then the space of polynomials with n variables, which we denote by A, is contained in $\mathscr{B}_K(\mathbf{R}^n)$ by the Paley-Wiener theorem and if a vector $F(\zeta) \in A^{r_{i+1}}$ satisfies $P_{i+1}(\zeta)F(\zeta)=0$, there exists $U(\zeta) \in \mathscr{B}_K(\mathbf{R}^n)^{r_i}$ such that $P_i(\zeta)U(\zeta)=F(\zeta)$. Applying Hörmander [6] Theorem 7.6.11, we can prove that there exists $U'(\zeta) \in A^{r_i}$ such that $P_i(\zeta)U'(\zeta)=F(\zeta)$. (See the proof of Komatsu [8] Theorem 4.4.)

Since the ring \mathcal{P} is isomorphic to the ring A by the above correspondence, we have proved the following sequence is exact:

(2.3)
$$\mathcal{Q}^{r_i} \xrightarrow{P_i(D)} \mathcal{Q}^{r_{i+1}} \xrightarrow{P_{i+1}(D)} \mathcal{Q}^{r_{i+2}}.$$

We also get the sequence (2.3) by applying the function $\operatorname{Hom}_{\mathfrak{P}}(\cdot, \mathfrak{P})$ to (1.1). This implies (2).

REMARK. This theorem does not hold in the space $\mathcal A$ nor $\mathcal E$. (See Example 3.2 iii).)

Conversely we have the following theorem because of the flabbiness of \mathcal{B} . Theorem 2.2. Let k be a positive integer and assume that a finitely generated \mathcal{P} -module M satisfies the condition (2) for any $i \geq k$. Then the condition (1) holds for any domain Ω in \mathbb{R}^n and any $i \geq k$.

PROOF. Any finitely generated \mathcal{Q} -module N has a free resolution:

$$(2.4) 0 \longleftarrow N \longleftarrow \mathcal{Q}^{s_0} \longleftarrow \mathcal{Q}^{s_1} \longleftarrow \cdots.$$

From the short exact sequence

$$0 \longrightarrow \operatorname{Im} Q_{j}(D) \longrightarrow \mathcal{P}^{s_{j}} \longrightarrow \operatorname{Im} Q_{j-1}(D) \longrightarrow 0$$

we obtain the long exact sequence:

$$\cdots \longrightarrow \operatorname{Ext}_{\mathcal{D}}^{i}(M, \operatorname{Im} Q_{i}(D)) \longrightarrow \operatorname{Ext}_{\mathcal{D}}^{i}(M, \mathcal{D}^{s_{j}}) \longrightarrow \operatorname{Ext}_{\mathcal{D}}^{i}(M, \operatorname{Im} Q_{i-1}(D)) \longrightarrow \cdots$$

Hence the assumption implies $\operatorname{Ext}_{\mathcal{L}}^{i}(M,\operatorname{Im} Q_{j-1}(D)) = \operatorname{Ext}_{\mathcal{L}}^{i+1}(M,\operatorname{Im} Q_{j}(D))$ for

T. Oshima

 $i \ge k+1$. Thus we have $\operatorname{Ext}_{\mathcal{P}}^{k+1}(M,N) = \operatorname{Ext}_{\mathcal{P}}^{k+2}(M,\operatorname{Im} Q(D)) = \cdots = \operatorname{Ext}_{\mathcal{P}}^{n+1}(M,\operatorname{Im} Q_{n-k-1}(D))$, which vanishes because the global dimension of \mathcal{P} is equal to n (see [2]). This implies that the *projective dimension* of M is not larger than k.

Set $Z = \mathbb{R}^n - \Omega$. Then we have the long exact sequence of the *relative* cohomology of the sheaf \mathcal{B}^M with respect to the pair $Z \subset \mathbb{R}^n$:

$$\cdots \longrightarrow H^i(\mathbf{R}^n,\,\mathcal{B}^M) \longrightarrow H^i(\Omega,\,\mathcal{B}^M) \longrightarrow H^{i+1}_{\mathbf{Z}}(\mathbf{R}^n,\,\mathcal{B}^M) \longrightarrow \cdots.$$

Theorem 1.1 and (1.4) show that $H^i(\mathbf{R}^n, \mathcal{B}^M) = 0$ for $i \ge 1$. The projective dimension of M and (1.6) show that $H^i_{\mathbf{Z}}(\mathbf{R}^n, \mathcal{B}^M) = 0$ for $i \ge k+1$. Combining these facts, we see that $\operatorname{Ext}^i_{\mathcal{D}}(M, \mathcal{B}(\Omega)) = H^i(\Omega, \mathcal{B}^M) = 0$ for $i \ge k$. q. e. d.

REMARK. The assumption of Theorem 2.2 is equivalent to the following condition (3). (See the above proof.)

$$\operatorname{proj\,dim}_{\mathscr{D}} M \leq k.$$

Since the global dimension of \mathcal{P} equals n, we have $\operatorname{Ext}_{\mathcal{P}}^{i}(M, \mathcal{B}(\Omega)) = 0$ unconditionally for $i \geq n$.

Theorem 2.3. Assume that the space dimension n equals 2 and M is a finitely generated \mathcal{P} -module. In the case where $\operatorname{Ext}_{\mathcal{P}}^2(M,\mathcal{P})=0$, we have $\operatorname{Ext}_{\mathcal{P}}^1(M,\mathcal{B}(\Omega))=0$ for any domain Ω in \mathbb{R}^2 . In the case where $\operatorname{Ext}_{\mathcal{P}}^2(M,\mathcal{P})\neq 0$, we have $\operatorname{Ext}_{\mathcal{P}}^1(M,\mathcal{B}(\Omega))=0$ if and only if $H^1(\Omega,\mathbb{C})=0$.

PROOF. Considering Theorem 2.1, Theorem 2.2 and the above remark, we have only to prove that $\mathcal{B}(\Omega)$ is an injective \mathcal{P} -module if $H^1(\Omega, \mathbb{C}) = 0$.

Let $\mathcal G$ be an ideal of $\mathcal P$ and its generators be $P_1(D), \cdots, P_m(D)$. We find a solution u of the equations $P_i(D)u=f_i$ $(1\leq i\leq m)$ on $\mathcal Q$ as follows if f_i satisfy the compatibility condition. We set $P_i(D)=Q_i(D)R(D)$ where $Q_i(D)$ have no non-trivial common factor for $1\leq i\leq m$, and define the equations $Q_i(D)v=f_i$ $(1\leq i\leq m)$ satisfying the compatibility condition. Considering the space dimension, we see that the equations form a maximally overdetermined system. We can find a solution v by the assumption $H^1(\mathcal Q,C)=0$ because the solution sheaf of such system is a constant sheaf (cf. Matsuura [10]). And then we can solve the single equation R(D)u=v by Theorem 2.2 because the $\mathcal P$ -module $\mathcal P/\mathcal PR(D)$ satisfies (3) for k=1. (This solvability was proved first by Harvey [5].)

Thus we have $\operatorname{Ext}_{\mathcal{L}}^1(\mathcal{Q}/\mathcal{J},\,\mathcal{B}(\Omega))=0$ for any ideal \mathcal{J} of \mathcal{D} . This implies that $\mathcal{B}(\Omega)$ is an injective \mathcal{D} -module. (See [2].) q. e. d.

§ 3. Throughout this section we assume the \mathcal{P} -module M equals \mathcal{P}/\mathcal{G} where \mathcal{G} is the ideal of \mathcal{P} generated by $\partial/\partial x_1, \dots, \partial/\partial x_k$ $(1 \le k \le n)$. We denote by y and z the coordinates x_1, \dots, x_k and x_{k+1}, \dots, x_n respectively and by π

the projection from a domain Ω in \mathbb{R}^n to \mathbb{R}^{n-k} defined by $(y,z) \stackrel{\pi}{\longmapsto} z$. Moreover we denote by \mathcal{F} one of the sheaves \mathcal{A} , \mathcal{B} , \mathcal{D}' , \mathcal{E} over \mathbb{R}^n as in §1 and by \mathcal{F}_{n-k} the corresponding sheaf over \mathbb{R}^{n-k} . Then the solution sheaf \mathcal{F}^M is isomorphic to $\pi^*\mathcal{F}_{n-k}$ because \mathcal{F}^M is constant along the fibre of π . Here we denote by $\pi^*\mathcal{G}$ the inverse image of the sheaf \mathcal{G} over \mathbb{R}^{n-k} under the map π .

We cite some examples. Let k equal 2 in the examples, which means that we think the system of the equations $\frac{\partial u}{\partial x_i} = f_i$ (i=1, 2). Then the compatibility condition is the equation $\frac{\partial f_2}{\partial x_1} = \frac{\partial f_1}{\partial x_2}$. Assume that $\Omega = \mathbf{R}^n - A$, $n \ge 3$ and A is as follows:

Example 3.1.

$$A = \{(x_1, x_2, z) \in \mathbb{R}^n ; x_1 = z = 0\}$$
.

Set $D = \mathbb{R}^{n-2} - \{0\}$. Then we have

(3.1)
$$\operatorname{Ext}_{\mathcal{P}}^{1}(M, \mathcal{F}(\Omega)) \cong \Gamma(D, \mathcal{F}_{n-2}) / \Gamma(\mathbf{R}^{n-2}, \mathcal{F}_{n-2}).$$

This vanishes if and only if \mathcal{F} is \mathcal{B} .

For instance, the following system on Ω has no solution in \mathcal{E} .

(3.2)
$$\begin{cases} \frac{\partial u}{\partial x_1} = \begin{cases} (a(x_1/\|z\|^2)/\|z\|^2) \cdot b(z), & \text{if } \|z\| \neq 0, \\ 0, & \text{if } \|z\| = 0, \\ \frac{\partial u}{\partial x_2} = 0, \end{cases}$$

where $a(t) \in \mathcal{D}(\mathbf{R}^1)$ (which denotes the space of the infinitely differentiable functions with compact supports on \mathbf{R}^1), $\int a(t)dt \neq 0$, $||z|| = (x_3^2 + \cdots + x_n^2)^{1/2}$, $b(z) \in \Gamma(D, \mathcal{E})$ and $b(z) \in \Gamma(\mathbf{R}^{n-2}, \mathcal{E})$.

To prove (3.1) we define

$$U_1 = \{(x_1, x_2, z) \in \mathbb{R}^n \; ; \; z \neq 0\}$$

and

$$U_2 = \{(x_1, x_2, z) \in \mathbb{R}^n : x_1 \neq 0\}$$
.

Then by Leray's theorem on cohomology groups of the covering $\Omega = U_1 \cup U_2$, $H^1(\Omega, \mathcal{F}^M)$ is isomorphic to the cokernel of the map

Therefore we have (3.1) by the following isomorphisms:

$$\Gamma(U_1, \mathcal{F}^{\mathit{M}}) \cong \Gamma(D, \mathcal{F}_{n-2}),$$

$$\Gamma(U_2, \mathcal{F}^{\mathit{M}}) \cong \Gamma(R^{n-2}, \mathcal{F}_{n-2}) \oplus \Gamma(R^{n-2}, \mathcal{F}_{n-2})$$

580 T. Оsніма

and

$$\Gamma(U_1 \cap U_2, \mathcal{G}^M) \cong \Gamma(D, \mathcal{G}_{n-2}) \oplus \Gamma(D, \mathcal{G}_{n-2})$$
.

Example 3.2. i) $A = \{(x_1, x_2, z) \in \mathbb{R}^n ; x_1 = x_2 = 0\}$,

ii)
$$A = \{(x_1, x_2, z) \in \mathbb{R}^n ; x_1 = x_2 = 0, x_3 \ge 0\},$$

iii)
$$A = \{(x_1, x_2, z) \in \mathbb{R}^n ; x_1 = x_2 = z = 0\}.$$

In i), ii) and iii) we have

(3.3)
$$\operatorname{Ext}_{\mathcal{D}}^{1}(M, \mathcal{F}(\Omega)) \cong \Gamma_{\pi(A)}(\mathbf{R}^{n-2}, \mathcal{F}_{n-2}),$$

which vanishes in and only in the following cases respectively:

- i) It never vanishes,
- ii) $\mathcal{F} = \mathcal{A}$,
- iii) $\mathcal{F} = \mathcal{A}, \mathcal{E}.$

The system on Ω

(3.4)
$$\begin{cases} \frac{\partial u}{\partial x_1} = \frac{1}{x_1 + \sqrt{-1}x_2} \cdot b(z), \\ \frac{\partial u}{\partial x_2} = \frac{\sqrt{-1}}{x_1 + \sqrt{-1}x_2} \cdot b(z) \end{cases}$$

has no solution for non-zero function $b(z) \in \Gamma_{\pi(A)}(\mathbb{R}^{n-k}, \mathcal{F}_{n-k})$. We can prove (3.3) by the same method as in Example 3.1.

We have the following theorems as expected by these examples.

THEOREM 3.3. Assume that M is the \mathcal{P} -module \mathcal{P}/\mathcal{J} where \mathcal{J} is the ideal of \mathcal{P} generated by $\partial/\partial x_1, \dots, \partial/\partial x_k$. Then the two conditions

(4)
$$\operatorname{Ext}_{\mathcal{P}}^{1}(M, \mathcal{B}(\Omega)) = 0,$$

(5)
$$H^{1}(\pi^{-1}(z), C) = 0$$
 for any $z \in \mathbb{R}^{n-k}$

are equivalent for a domain Ω in \mathbb{R}^n .

To prove the theorem we employ a method similar to Suzuki [13], which argues the problem in the holomorphic category in the case k=1. First we give some definitions. Given a point $x \in \Omega$, let L_x be the connected component of the set $\pi^{-1} \cdot \pi(x)$ containing x. We denote by X the quotient space of Ω with the quotient topology by the equivalence relation " $L_x = L_x$ " for $x, x' \in \Omega$. We write the natural projections $\pi_1: \Omega \to X$ and $\pi_2: X \to \mathbb{R}^{n-k}$. Then the following is clear:

(3.5)
$$\begin{cases} \pi = \pi_2 \cdot \pi_1 \text{ and } \mathcal{F}^M \cong \pi^* \mathcal{F}_{n-k} = \pi_1^* \cdot \pi_2^* \mathcal{F}_{n-k}; \\ \pi_1 \text{ is an open map with connected fibres;} \\ \pi_2 \text{ is a local homeomorphism.} \end{cases}$$

We prepare two lemmas:

LEMMA 3.4. The sheaf $\pi_2 * \mathcal{B}_{n-k}$ is flabby.

PROOF. Let P be an arbitrary point of X. Since the map π_2 is a local homeomorphism, there exists a neighbourhood U of P such that $\pi_2 * \mathcal{B}_{n-k} | U$ is a flabby sheaf. Therefore we can prove easily by Zorn's lemma that $\pi_2 * \mathcal{B}_{n-k}$ is flabby (cf. [4], Chapter II, § 3.1).

LEMMA 3.5. Using the above notations and assuming that $H^1(\pi_1^{-1}(P), \mathbb{C}) = 0$ at every point P in X, we have $\mathcal{H}^1_{\pi_1}(\pi_1^*\mathcal{G}) = 0$ for any sheaf \mathcal{G} of \mathbb{C} -Module over X. Here we denote by $\mathcal{H}^2_{\pi_1}(\mathcal{G}')$ the q-th direct image of a sheaf \mathcal{G}' over \mathcal{Q} under the projection π_1 . (For the definition see [1], Chapter IV, 4. $\mathcal{H}^2_{\pi_1}(\mathcal{G}')$ is called there the Leray sheaf in degree q.)

PROOF. Consider the stalk of $\mathcal{H}_{\pi_1}^1(\pi_1 * \mathcal{G})$ at every point $P \in X$. Then we have by definition

(3.6)
$$\mathcal{H}^{1}_{\pi_{1}}(\pi_{1}^{*}\mathcal{G})_{P} = \underset{\longrightarrow}{\lim} H^{1}(\pi_{1}^{-1}(U), \pi_{1}^{*}\mathcal{G}),$$

where U ranges over the open sets in X containing P. To calculate (3.6) we write the canonical flabby resolution of $\pi_1 * \mathcal{G}$:

$$0 \longrightarrow \pi_1 * \mathcal{Q} \longrightarrow \mathcal{Q}_0 \xrightarrow{p_0} \mathcal{Q}_1 \xrightarrow{p_1} \mathcal{Q}_2 \longrightarrow \cdots.$$

Let u be a section of \mathcal{G}_1 over $\pi_1^{-1}(U)$ satisfying $p_1u=0$. Then there exist a convex open set $V_x\subset\pi_1^{-1}(U)$ and a section $v_x\in\mathcal{G}_0(V_x)$ for every $x\in\pi_1^{-1}(U)$ such that $V_x\ni x$ and $p_0v_x=u\,|\,V_x$. We choose a point $x^0\in\pi_1^{-1}(P)$ and denote by U' the open set $\pi_1(V_{x^0})$ containing P. Then we can find $v\in\mathcal{G}_0(\pi_1^{-1}(U'))$ satisfying $p_0v=u\,|\,\pi_1^{-1}(U')$ as follows:

For a point $x\in\pi_1^{-1}(U')$ there exist finite points x^1,\cdots,x^r contained in $\pi_1^{-1}\cdot\pi_1(x)$ such that $V_{xi}\cap V_{xi+1}\neq\emptyset$ for $0\leq i\leq r$ where we denote by x^{r+1} the point x. Set $U''=U'\cap\bigcap_{0\leq i\leq r}\pi_1(V_{xi}\cap V_{xi+1})$. Since $v_{xi}-v_{xi+1}$ is an element of $\Gamma(V_{xi}\cap V_{xi+1},\pi_1^*\mathcal{G})$ and $\pi_1|V_{xi}\cap V_{xi+1}$ is an open map with connected fibres, we can find the unique section $w_i\in\mathcal{G}(U'')$ such that $\pi_1^*w_i=v_{xi}-v_{xi+1}$ on $V_{xi}\cap V_{xi+1}\cap\pi_1^{-1}(U'')$. Then we define v by the equality

$$v \mid V_x \cap \pi_1^{-1}(U'') = v_x + \pi_1 * \sum_{i=0}^r w_i$$
.

The well-definedness of v is due to the assumption meaning that $H^1(\pi_1^{-1} \cdot \pi_1(x), \mathcal{Q}_{\pi_1(x)}) = 0$.

This shows the right side of (3.6) equals 0 by definition. So we have $\mathcal{H}_{\pi_1}^1(\pi_1^*\mathcal{G})_P = 0$ for $P \in X$, thus $\mathcal{H}_{\pi_1}^1(\pi_1^*\mathcal{G}) = 0$. q. e. d.

PROOF OF THEOREM 3.3. (4) \Rightarrow (5). It suffices to prove that the equations on $\pi^{-1}(z^0)$

(3.7)
$$\frac{\partial v}{\partial x_i} = f_i(x_1, \dots, x_k) \qquad (1 \le i \le k)$$

satisfying the compatibility condition have a solution v for $z^0 \in \mathbb{R}^{n-k}$.

582 T. OSHIMA

Let $\delta(z)$ be the Dirac δ -function on R^{n-k} . Then by the assumption (4) the equations on Ω

(3.8)
$$\frac{\partial u}{\partial x_i} = f_i(x_1, \dots, x_k) \cdot \delta(z - z^0) \qquad (1 \le i \le k)$$

have a solution u. The functions in the right side of the equation (3.8) are 0 on $\Omega - \pi^{-1}(z^0)$, which implies that $u \mid \Omega - \pi^{-1}(z^0) \in \mathcal{B}^M(\Omega - \pi^{-1}(z^0))$. Since π_1 is an open map with connected fibres and $\mathcal{B}^M \cong \pi_1^* \cdot \pi_2^* \mathcal{B}_{n-k}$, we see that $\mathcal{B}^M(\Omega - \pi^{-1}(z^0))$ and $\mathcal{B}^M(\Omega)$ are isomorphic to $\Gamma(X - \pi_2^{-1}(z^0), \pi_2^* \mathcal{B}_{n-k})$ and $\Gamma(X, \pi_2^* \mathcal{B}_{n-k})$ respectively. Therefore we can find a section $\tilde{u} \in \mathcal{B}^M(\Omega)$ by Lemma 3.4 such that

(3.9)
$$(u-\tilde{u}) \mid \Omega - \pi^{-1}(z^0) = 0.$$

Since $u-\tilde{u}$ is a solution of (3.8), we see that the section $\int (u-\tilde{u})dx_{k+1}\cdots dx_n$ over $\pi^{-1}(z^0)$ is a solution of (3.7). In fact, the well-definedness of the integral follows from (3.9).

(5) \Rightarrow (4). Consider the following Leray spectral sequence of the map π_1 (cf. [1], Chapter IV, 6):

$$(3.10) E_{2}^{p,q} = H^{p}(X, \mathcal{A}_{\pi_{1}}^{q}(\mathcal{B}^{M})) \Rightarrow H^{p+q}(\Omega, \mathcal{B}^{M}).$$

Since π_1 is an open map with connected fibres, we have

$$\mathcal{A}_{\pi_1}^0(\mathcal{B}^M) = \pi_{1*}\mathcal{B}^M \cong \pi_{1*}\pi_1^*\pi_2^*\mathcal{B}_{n-k} \cong \pi_2^*\mathcal{B}_{n-k}$$
.

And by Lemma 3.5 we have

$$\mathcal{H}_{\pi_1}^1(\mathcal{B}^M) \cong \mathcal{H}_{\pi_1}^1(\pi_1^*\pi_2^*\mathcal{B}_{n-k}) = 0$$
.

Now in the exact sequence of the edge homomorphisms (cf. [4], Chapter I, Theorem 4.5.1)

$$(3.11) 0 \longrightarrow E_2^{1,0} \longrightarrow H^1 \longrightarrow E_2^{0,1} \longrightarrow E_2^{2,0} \longrightarrow H^2,$$

we have proved that $E_2^{0,1}=0$. Combining the above facts with Lemma 3.4 and (1.4), we have

$$\begin{split} \operatorname{Ext}^1_{\mathcal{P}}(M,\,\mathcal{B}(\varOmega)) &= H^1(\varOmega,\,\mathcal{B}^{\mathit{M}}) \\ &\cong E^{1,0}_2 = H^1(X,\,\mathcal{H}^0_{\pi_1}(\mathcal{B}^{\mathit{M}})) \\ &\cong H^1(X,\,\pi_2{}^*\mathcal{B}_{n-k}) = 0 \;. \end{split}$$

This completes the proof of the theorem.

In the space of distributions we have the following theorem.

THEOREM 3.6. Assume that M is the same as in Theorem 3.3. Then the followings are equivalent conditions for a domain Ω in \mathbb{R}^n .

(6)
$$\operatorname{Ext}_{\mathcal{P}}^{1}(M, \mathcal{D}'(\Omega)) = 0,$$

(7)
$$H^{1}(\pi^{-1}(z), C) = 0$$
 for any $z \in \mathbb{R}^{n-k}$

and the topology of X is Hausdorff.

In our proof of Theorem 3.6 we need the following lemmas.

LEMMA 3.7. Let u be an element of $\Gamma(\Omega-\pi^{-1}(z^0), \mathcal{D}'^M)$ where $z^0 \in \mathbb{R}^{n-k}$. Assume u has an extension $u' \in \Gamma(\Omega, \mathcal{D}')$. Then we can also extend u over Ω as a section of \mathcal{D}'^M .

PROOF. The set $\pi^{-1}(z^0)$ has the following decomposition into the connected components:

$$\pi^{-1}(z^0) = \bigcup_{\lambda=A} L_{x\lambda}$$
.

For every $\lambda \in \Lambda$ we can find convex open sets $V \subset \mathbb{R}^k$ and $W \subset \mathbb{R}^{n-k}$ such that $x^{\lambda} \in V \times W \subset \Omega$. Choose a function $\varphi(y) \in \mathcal{D}(V)$ satisfying $\int \varphi(y) dy \neq 0$. We define a distribution $w_{\lambda} \in \mathcal{D}'(W)$ by the equality

$$w_{\lambda} = \int \varphi(y) u' dy / \int \varphi(y) dy$$
.

That is, $\langle w_{\lambda}, \rho(z) \rangle = \langle u', \varphi(y)\rho(z) \big/ \int \varphi(y) dy \rangle$ for any $\rho(z) \in \mathcal{D}(W)$. Let $U_{\lambda} = \pi_1^{-1} \cdot \pi_1(V \times W)$. Since the distribution $u' \mid U_{\lambda} - \pi^{-1}(z^0)$ is constant along the fibre of π and $\pi \mid U_{\lambda}$ has connected fibres, it is clear that the distribution $\pi^* w_{\lambda} \in \mathcal{D}'^{M}(U_{\lambda})$ equals u' and also u on $U_{\lambda} - \pi^{-1}(z^0)$. Hence there exists $\tilde{u} \in \mathcal{D}'^{M}(\Omega)$ such that

LEMMA 3.8. Assume \mathcal{F} is \mathcal{A} , \mathcal{D}' or \mathcal{E} . Then the followings are equivalent conditions for X:

(8) The topology of
$$X$$
 is Hausdorff.

(9)
$$H^{1}(X, \pi_{2} * \mathcal{F}_{n-k}) = 0.$$

PROOF. (8) \Rightarrow (9). This is clear, because (8) implies that X is an (n-k)-dimensional real analytic manifold and that $\pi_2^* \mathcal{F}_{n-k}$ is a sheaf of real analytic functions, distributions or infinitely differentiable functions over the manifold.

 $(9) \Rightarrow (8)$. Suppose that the topology of X is not Hausdorff. Let P and P' be distinct points in X which cannot be separated by open sets. Let U and U' be open neighbourhoods of P and P' respectively such that $\pi_2 | U$ and $\pi_2 | U'$ are into-homeomorphisms. We denote shortly by V the open set $X - \{P\}$ and by $\mathcal Q$ the sheaf $\pi_2 * \mathcal Q_{n-k}$. Consider the following commutative diagram:

$$\longrightarrow \varGamma(U, \mathcal{Q}) \oplus \varGamma(V, \mathcal{Q}) \xrightarrow{p_1} \varGamma(U \cap V, \mathcal{Q}) \longrightarrow H^1(U \cup V, \mathcal{Q}) \longrightarrow r_1 \downarrow \qquad \qquad r_2 \downarrow \\ \varGamma(U, \mathcal{Q}) \oplus \varGamma(U', \mathcal{Q}) \xrightarrow{p_2} \varGamma(U \cap U', \mathcal{Q}) \, .$$

The first row is the exact Mayer-Vietoris sequence (cf. [1], Chapter II, 13), the map p_1 (or p_2) is defined by $(u_1, u_2) \mapsto u_1 - u_2$, and r_1 and r_2 are restrictions. Note that $U \cup V = X$, $U \cap V = U - \{P\}$. Condition (9) implies that p_1 is surjective, therefore $\operatorname{Im} r_2 \subset \operatorname{Im} p_2$. Considering $\Gamma(U, \mathcal{Q}) \cong \Gamma(\pi_2(U), \mathcal{F}_{n-k})$ etc., we define the maps

$$r'_2: \Gamma(\pi_2(U) - \pi_2(P), \mathcal{F}_{n-k}) \longrightarrow \Gamma(\pi_2(U \cap U'), \mathcal{F}_{n-k})$$

and

$$p_2': \Gamma(\pi_2(U), \mathcal{F}_{n-k}) \oplus \Gamma(\pi_2(U'), \mathcal{F}_{n-k}) \longrightarrow \Gamma(\pi_2(U \cap U'), \mathcal{F}_{n-k})$$

then $\operatorname{Im} r'_2 \subset \operatorname{Im} p'_2$. We can find $f \in \operatorname{Im} r'_2 - \operatorname{Im} p'_2$ in the undermentioned way, which contradicts this fact and completes the proof:

There exists a sequence $\{P_i\}$ of points in $U \cap U'$ which converges to P and P'. Then the sequence $\{\pi_2(P_i)\}$ converges to the point $\pi_2(P) = \pi_2(P')$. In the case where \mathcal{F} is \mathcal{A} or \mathcal{E} , we set $f = 1/\|z - \pi_2(P)\|^2$ and in the case where \mathcal{F} is \mathcal{D}' , we set $f = \sum_{i=1}^{\infty} \delta^{(i)}(z - \pi_2(P_i))$ where we denote by $\delta^{(i)}(z)$ the i-th derivative of the Dirac δ -function on \mathbb{R}^{n-k} . Since the both open sets $\pi_2(U)$ and $\pi_2(U')$ contain $\pi_2(P)$, it is clear that $f \in \operatorname{Im} p_2'$. q. e. d.

PROOF OF THEOREM 3.6. Refer to the proof of Theorem 3.3.

 $(6) \Rightarrow (7)$. Using Lemma 3.7 in place of Lemma 3.4, we can prove that (6) implies (5) in the same way as in Theorem 3.3. On the other hand, since the map

$$i: H^1(X, \pi_2 * \mathcal{D}'_{n-k}) \longrightarrow H^1(\Omega, \mathcal{D}'^M)$$

is injective (cf. (3.11)), it follows immediately from (1.4) and Lemma 3.8 that (6) implies (8).

 $(7) \Rightarrow (6)$ follows from Lemma 3.5 and Lemma 3.8. See the proof of "(5) \Rightarrow (4)".

We define the conditions for a domain Ω in \mathbb{R}^n

(10)
$$\operatorname{Ext}_{\mathcal{D}}^{1}(M, \mathcal{A}(\Omega)) = 0,$$

(11)
$$\operatorname{Ext}_{\mathcal{D}}^{1}(M, \mathcal{E}(\Omega)) = 0,$$

then the following theorem also follows from the same proof as above.

THEOREM 3.9. On the same assumption as in Theorem 3.6,

- i) (7) implies (10) and (11),
- ii) (10) implies (8), (11) implies (8).

Note that neither (10) nor (11) implies (7) except in the cases where k=1

and where k = n (cf. Example 3.2).

PROPOSITION 3.10. Assume that $M=\mathcal{D}/\mathcal{J}$ where \mathcal{J} is an ideal of \mathcal{D} generated by $\partial/\partial x_1$ and $\partial/\partial x_2$ (i.e. k=2) and that a domain Ω in \mathbf{R}^n satisfies the conditions (11) and

(12)
$$\Omega = \operatorname{int} \bar{\Omega} \ (= the interior of the closure of \Omega).$$

Then (7) holds.

PROOF. It suffices to prove (5). Suppose that there exists a point $z^0 \in \mathbb{R}^{n-2}$ such that $H^1(\pi^{-1}(z^0), \mathbb{C}) \neq 0$. Then there exist a Jordan curve \mathbb{C} in \mathbb{R}^2 and a point y^0 contained in the domain which is surrounded by \mathbb{C} such that

$$C \times z^0 \subset \Omega$$
, $(y^0, z^0) \in \Omega$.

Assume that $(y^0, z^0) \in \partial \Omega$. Then we can find convex open sets V in \mathbb{R}^2 and W in \mathbb{R}^{n-2} such that

$$V \ni y^0$$
. $W \ni z^0$. $C \cap V = \emptyset$. $C \times W \subset \Omega$.

Since (12) implies that $\partial \Omega = \partial (\mathbf{R}^n - \bar{\Omega})$, the set $V \times W \cap (\mathbf{R}^n - \bar{\Omega})$ is non-void. Choose a point (y^1, z^1) in the set. Thus we can assume that $(y^0, z^0) \notin \bar{\Omega}$ from the beginning replacing (y^0, z^0) by (y^1, z^1) if necessary. So there exists an open neighbourhood W' of z^0 such that $y^0 \times W' \cap \Omega = \emptyset$. Then the following system has no solution:

$$\begin{cases}
\frac{\partial u}{\partial x_{1}} = \frac{1}{(x_{1} - x_{1}^{0}) + \sqrt{-1}(x_{2} - x_{2}^{0})} \cdot b(z), \\
\frac{\partial u}{\partial x_{2}} = \frac{\sqrt{-1}}{(x_{1} - x_{1}^{0}) + \sqrt{-1}(x_{2} - x_{2}^{0})} \cdot b(z),
\end{cases}$$

where $y^0 = (x_1^0, x_2^0)$, $b(z) \in \mathcal{D}(W')$ and $b(z^0) \neq 0$. This is a contradiction.

q. e. d.

REMARK. These theorems hold for a \mathcal{D} -module M' in place of M if the solution sheaf $\mathcal{D}^{M'}$ is isomorphic to \mathcal{D}^{M} . We owe the following to Sato, Kawai and Kashiwara $\lceil 12 \rceil$:

Let M' be \mathscr{D}/\mathscr{J}' where \mathscr{J}' is an ideal of \mathscr{D} generated by $P_1(D), \cdots, P_k(D)$ and \mathscr{J} be the radical of the ideal of \mathscr{D} generated by the principal symbols of $P_1(D), \cdots, P_k(D)$. Assume that \mathscr{J} is as before (i.e. \mathscr{J} is generated by $\partial/\partial x_1, \cdots, \partial/\partial x_k$ and $M = \mathscr{D}/\mathscr{J}$). Then one of the two modules M and M' (precisely $\overline{\mathscr{D}} \underset{\mathscr{D}}{\otimes} M$ and $\overline{\mathscr{D}} \underset{\mathscr{D}}{\otimes} M'$) is isomorphic to a direct summand of a direct sum of finite copies of the other in the ring $\overline{\mathscr{D}}$ of linear differential operators of infinite order with constant coefficients, which operates \mathscr{A} and \mathscr{B} . And $\overline{\mathscr{D}}$ is faithfully flat over \mathscr{D} .

Therefore one of the solution sheaves \mathcal{A}^{M} and $\mathcal{A}^{M'}$ (or \mathcal{B}^{M} and $\mathcal{B}^{M'}$) is

Т. Оshiма

isomorphic to a direct summand of a direct sum of finite copies of the other as sheaves of $\overline{\mathcal{P}}$ -Modules. Hence Theorem 3.3 and " $(7) \Rightarrow (10)$, $(10) \Rightarrow (8)$ " in Theorem 3.9 hold even if we replace M by M'. For example, we can apply the theorems to the following system:

(3.12)
$$\begin{cases} P_1(D)u \equiv \frac{\partial^2 u}{\partial x_1^2} - \frac{\partial u}{\partial x_2} = f_1, \\ P_2(D)u \equiv -\frac{\partial^2 u}{\partial x_2^2} - \frac{\partial u}{\partial x_3} = f_2. \end{cases}$$

References

- [1] G. Bredon, Sheaf theory, McGraw-Hill, New York, 1967.
- [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
- [3] L. Ehrenpreis, Fourier analysis in several complex variables, Wiley-Interscience, New York, 1970.
- [4] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
- [5] R. Harvey, Hyperfunctions and partial differential equations, Thesis, Stanford University, 1966, a part of it is published in Proc. Nat. Acad. Sci. U.S.A., 55 (1966), 1042-1046.
- [6] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, 1966.
- [7] H. Komatsu, Resolution by hyperfunctions of sheaves of solutions of differential equations with constant coefficients, Math. Ann., 176 (1968), 77-86.
- [8] H. Komatsu, Relative cohomology of sheaves of solutions of differential equations, Séminaire Lions-Schwartz, 1966-67, Hyperfunctions and pseudo-differential equations, Part I, Lecture Notes in Math., No. 287, Springer, Berlin, 1973, 192-261.
- [9] B. Malgrange, Systèmes différentiels à coefficients constants, Séminaire Bourbaki, Paris, 1962/63, No. 246.
- [10] S. Matsuura, Finite type system of partial differential operators and decomposition of solutions of partial differential equations, Proceedings of the Symposium on Partial Differential Equations RIMS, 1966, Sûrikaiseki-kenkyûsho Kôkyûroku, 22 (1967), 10-17.
- [11] V.P. Palamodov, Linear differential operators with constant coefficients, Nauka, Moskva, 1967 (in Russian).
- [12] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations, Part II, Lecture Notes in Math., No. 287, Springer, Berlin, 1973, 265-529.
- [13] H. Suzuki, On the global existence of holomorphic solutions of the equation $\partial u/\partial x_1 = f$, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A., 11 (1972), 253-258.

Toshio OSHIMA
Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan