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Let $P(D)$ be a matrix of linear differential operators with constant co-
efficients and $f$ be a vector of functions defined on a domain $\Omega$ in $R^{n}$ . We
consider the problem whether a solution $u$ of the equation $P(D)u=f$ exists
or not on the domain $\Omega$ assuming that $f$ satisfies the compatibility condition.
For example, let $P(D)$ be the Cauchy-Riemann system (resp. the de Rham
system). Then the solution always exists if the domain $\Omega$ is pseudo-convex
(resp. simply connected). If $\Omega$ is convex, this problem has been affirmatively
solved for general $P(D)$ by Ehrenpreis [3], Malgrange [9], H\"ormander [6],

Palamodov [11] and Komatsu [7] in many function spaces.
In this note we discuss two special cases of the problem in \S 2 and \S 3

respectively. The first one is the case where the domain has a compact hole
and the second one is the case where $P(D)$ is a partial de Rham system. First
we introduce some notations in \S 1.

\S 1. We denote by $\mathcal{P}$ the ring of linear partial differential operators with
constant coefficients in $R^{n}$ , by $d,$ $\mathcal{B},$ $\mathcal{D}^{\prime},$

$\mathcal{E}$ the sheaves of real analytic func-
tions, hyperfunctions, distributions and infinitely differentiable functions over
$R^{n}$ respectively and generally by $\mathcal{F}$ one of these sheaves. Let $M$ be a finitely
generated $\mathcal{P}$-module. Then $M$ defines an equation $P(D)u=f$ in the following
way:

$M$ has a free resolution
${}^{t}P(D)$ ${}^{t}P_{1}(D)$ ${}^{t}P_{2}(D)$

(1.1) $ 0\leftarrow M-\mathcal{P}^{r_{0}}\leftarrow \mathcal{P}^{r_{1}}\leftarrow \mathcal{P}^{r_{2}}\leftarrow\ldots$

where ${}^{t}P(D)$ is the transposed matrix of the $r_{1}\times r_{0}$ matrix $P(D)$ . We regard
$\mathcal{P}$ and $M$ as constant sheaves over $R^{n}$ . Then $M$ and $\mathcal{F}$ are sheaves of $\mathcal{P}-$

Modules in the natural way. Applying the functor $\mathcal{H}_{omg}(\cdot, \mathcal{F})$ to (1.1), we
have a cochain complex of sheaves of $\mathcal{P}$-Modules:

(1.2)
$ 0\rightarrow \mathcal{F}^{M}\rightarrow \mathcal{F}^{r_{0}}\rightarrow P(D)\mathcal{F}^{r_{1}}\rightarrow \mathcal{F}^{r_{2}}\rightarrow P_{1}(D)P_{2}(D)\ldots$
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where we denote by $\mathcal{F}^{M}$ the solution sheaf $\mathcal{H}\circ m_{\mathcal{P}}(M, \mathcal{F})$ .
We denote by $\mathcal{F}(\Omega)$ the space of the sections $\Gamma(\Omega, \mathcal{F})$ and apply the

functor $Hom_{\mathcal{P}}(\cdot, \mathcal{F}(\Omega))$ to (1.1) or the functor $\Gamma(\Omega, )$ to (1.2), then we have
a cochain complex of $\mathcal{P}$-modules:

(1.3)
$...\rightarrow \mathcal{F}(\Omega)^{r_{i}}-1\rightarrow \mathcal{F}(\Omega)^{r_{i}}\rightarrow \mathcal{F}(\Omega)^{r_{i}}+1P_{i- 1}(D)P_{i}(D)\rightarrow\ldots$

Since the i-th cohomology group of (1.3) is $Ext_{\mathcal{P}}^{i}(M, \mathcal{F}(\Omega))$ by dePnition,
a vector of functions $u\in \mathcal{F}(\Omega)^{r_{0}}$ satisfies $P(D)u=0$ if and only if $ u\in$

$Hom_{\mathcal{P}}(M, \mathcal{F}(\Omega))$ , and assuming that $Ext_{\mathcal{P}}^{1}(M, \mathcal{F}(\Omega))=0$ , the equation $P(D)u=f$

on $\Omega$ has a solution $u$ if and only if the compatibility condition $P_{1}(D)f=0$

holds.
In Ehrenpreis [3], Malgrange [9], Hormander [6], Palamodov [11] and

Komatsu [7] the following theorem is proved by the method of Fourier
analysis.

THEOREM 1.1. Let $\mathcal{F}$ be one of $\mathcal{B},$
$\mathcal{D}^{\prime}$ and $\mathcal{E}$ (or $A$ ) and $W$ be a convex

open (resp. convex compact) set in $R^{n}$ . Then $\mathcal{F}(W)$ is an injective $\mathcal{P}$-module, $i$ . $e.$ ,
$Ext_{\mathcal{P}}^{1}(M, \mathcal{F}(W))=0$ for any $\mathcal{P}$-module $M$.

Since the above sets $W$ form a fundamental system of neighbourhoods
at any point of $R^{n}$ , the sequence (1.2) is exact. Namely (1.2) is a resolution
of $\mathcal{F}^{M}$ . Moreover, $\mathcal{B},$

$\mathcal{D}^{\prime}$ and $\mathcal{E}$ are soft sheaves and $H^{i}(\Omega, d)=0$ for $i\geqq 1$

by a theorem of Malgrange. Hence the i-th cohomology group of (1.3) is
equal to $H^{i}(\Omega, \mathcal{F}^{M})$ . Thus we have

\langle 1.4) $H^{i}(\Omega, \mathcal{F}^{M})=Ext_{\mathcal{P}}^{i}(M, \mathcal{F}(\Omega))$ for $i\geqq 0$ .
Let $Z$ be a closed set in $R^{n}$ . Then the i-th cohomology group of

(1.5)
$...\rightarrow \mathcal{B}_{Z}(R^{n})^{r_{i-1}}\rightarrow \mathcal{B}_{Z}(R^{n})^{r_{i}}\rightarrow \mathcal{B}_{Z}(R^{n})^{r_{i}}+1P_{i-1}(D)P_{i}(D)\rightarrow\ldots$

is equal to $H_{Z}^{i}(R, \mathcal{B}^{M})$ since $\mathcal{B}$ is a flabby sheaf, where we denote by $\mathcal{B}_{Z}(R^{n})$

the space of the global sections of $\mathcal{B}$ whose supports are contained in $Z$.
We get also (1.5) by applying the functor $Hom_{\mathcal{P}}(\cdot, \mathcal{B}_{Z}(R^{n}))$ to (1.1), so that
we have

\langle 1.6) $H_{Z}^{t}(R^{n}, \mathcal{B}^{M})=Ext_{\mathcal{P}}^{i}(M, \mathcal{B}_{Z}(R^{n}))$ for $i\geqq 0$ .

\S 2. In this section we discuss the first case in the space of hyperfunc-
tions.

THEOREM 2.1. Let $\Omega$ be a domain in $R^{n}$ with a compact hole, $i$. $e.$ , there
exist a domain $V$ in $R^{n}$ and a compact subset $ K\neq\emptyset$ of $V$ such that $\Omega=V-K$

and $M$ be a finitely generated $\mathcal{P}$-module. Then the following condition (1) im-
plies(2) for an arbitrary positive integer $i$ .
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\langle 1) $Ext_{\mathcal{P}}^{i}(M, \mathcal{B}(\Omega))=0$ .
\langle 2) $Ext_{\mathcal{P}}^{\dot{t}+1}(M, \mathcal{P})=0$ .

PROOF. According to Komatsu [8] we have the following exact sequence:

(2.1) $0\rightarrow H^{i}(V, \mathcal{B}^{M})\rightarrow H^{i}(\Omega, \mathcal{B}^{M})\rightarrow H_{K}^{i+1}(V, \mathcal{B}^{M})\rightarrow 0$ .
Therefore (1) and (1.4) imply $H_{K}^{i+1}(V, \mathcal{B}^{M})=0$ . Since $H_{R}^{i+1}(V, \mathcal{B}^{M})$ is equal to
$H_{K}^{i+1}(R^{n}, \mathcal{B}^{M})$ , the $i+1$ -th part of (1.5) and its Fourier-Laplace transform

(2.2)
$\mathcal{B}_{K}(R^{n})^{r_{i}}\sim P_{i}(\zeta)\sim P\rightarrow \mathcal{B}_{K}(R^{n})^{r_{i+1}}\rightarrow \mathcal{B}_{K}(R^{n})^{r_{i+2}}i+1(\zeta)\sim$

are exact, where $P_{i}(\zeta)$ and $P_{i+1}(\zeta)$ are the matrices with polynomial elements
which we get replacing $-\sqrt{-1}\partial/\partial x_{j}$ by $\zeta_{j}$ . We can assume $\{O\}\in K$ without
loss of generality, then the $space\sim$of polynomials with $n$ variables, which we
denote by $A$ , is contained in $\mathcal{B}_{K}(R^{n})$ by the Paley-Wiener theorem and if a
vector $F(\zeta)\in A^{r_{i+1}}$ satisfies $P_{i+1}(\zeta)F(\zeta)=0$ , there exists $ U(\zeta)\in \mathcal{B}_{K}(R^{n})^{r_{i}}\sim$ such
that $P_{i}(\zeta)U(\zeta)=F(\zeta)$ . Applying H\"ormander [6] Theorem 7.6.11, we can prove
that there exists $U^{\prime}(\zeta)\in A^{r_{i}}$ such that $P_{i}(\zeta)U^{\prime}(\zeta)=F(\zeta)$ . (See the proof of
Komatsu [8] Theorem 4.4.)

Since the ring $\mathcal{P}$ is isomorphic to the ring $A$ by the above correspondence,
we have proved the following sequence is exact:

(2.3)
$\mathcal{P}^{r_{i}}\rightarrow \mathcal{P}^{r_{i+1}}\rightarrow \mathcal{P}^{r_{i+2}}P_{i}(D)P_{i+1}(D)$

.
We also get the sequence (2.3) by applying the function $Hom_{9}(\cdot, \mathcal{P})$ to (1.1).

This implies (2). $q$ . $e$ . $d$ .
REMARK. This theorem does not hold in the space $\mathcal{A}$ nor $\mathcal{E}$ . (See Ex-

ample 3.2 iii).)
Conversely we have the following theorem because of the flabbiness of $\mathcal{B}$ .
THEOREM 2.2. Let $k$ be a Positive integer and assume that a finitely gener-

ated $\mathcal{P}$-module $M$ satisfies the condition (2) for any $i\geqq k$ . Then the condition
(1) holds for any domain $\Omega$ in $R^{n}$ and any $i\geqq k$ .

PROOF. Any finitely generated $\mathcal{P}$-module $N$ has a free resolution:

(2.4)
$ 0\leftarrow N\leftarrow \mathcal{P}^{s_{0}}\leftarrow \mathcal{P}^{s_{1}}\leftarrow Q(D)Q_{1}(D)\ldots$ .

From the short exact sequence
$0\rightarrow{\rm Im} Q_{j}(D)\rightarrow \mathcal{P}^{s_{j}}\rightarrow{\rm Im} Q_{j-1}(D)\rightarrow 0$ ,

we obtain the long exact sequence:

$...\rightarrow Ext_{\mathcal{P}}^{i}(M, {\rm Im} Q_{j}(D))\rightarrow Ext_{\mathcal{P}}^{i}(M, \mathcal{P}^{s_{j}})\rightarrow Ext_{\mathcal{P}}^{i}(M, {\rm Im} Q_{j-1}(D))\rightarrow\cdots$ .
Hence the assumption implies $Ext_{\mathcal{P}}^{i}(M, {\rm Im} Q_{j-1}(D))=Ext_{\mathcal{P}}^{i+1}(M, {\rm Im} Q_{j}(D))$ for
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$i\geqq k+1$ . Thus we have $Ext_{\varphi}^{k1}\perp(M, N)=Ext_{\mathcal{P}}^{k+2}(M, {\rm Im} Q(D))=\ldots=Ext_{\mathcal{P}}^{n+1}(M$,
${\rm Im} Q_{n-k-1}(D))$ , which vanishes because the global dimension of $\mathcal{P}$ is equal to
$n$ (see [2]). This implies that the prOjectjve dimension of $M$ is not larger
than $k$ .

Set $ Z=R^{n}-\Omega$ . Then we have the long exact sequence of the relative
cohomology of the sheaf $\mathcal{B}^{M}$ with respect to the pair $Z\subset R^{n}$ :

$...\rightarrow H^{i}(R^{n}, \mathcal{B}^{M})\rightarrow H^{i}(\Omega, \mathcal{B}^{M})\rightarrow H_{Z}^{i+1}(R^{n}, \mathcal{B}^{N})\rightarrow\cdots$ .

Theorem 1.1 and (1.4) show that $H^{i}(R^{n}, \mathcal{B}^{M})=0$ for $i\geqq 1$ . The projective
dimension of $M$ and (1.6) show that $H_{Z}^{i}(R^{n}, \mathcal{B}^{M})=0$ for $i\geqq k+1$ . Combining
these facts, we see that $Ext_{\mathcal{P}}^{t}(M, \mathcal{B}(\Omega))=H^{i}(\Omega, \mathcal{B}^{M})=0$ for $i\geqq k$ . $q$ . $e$ . $d$ .

REMARK. The assumption of Theorem 2.2 is equivalent to the following
condition (3). (See the above proof.)

(3) proj $\dim_{\mathcal{P}}M\leqq k$ .
Since the global dimension of $\mathcal{P}$ equals $n$ , we have $Ext_{\mathcal{P}}^{i}(M, \mathcal{B}(\Omega))=0$ uncon-
ditionally for $i\geqq n$ .

THEOREM 2.3. Assume that the space dimension $n$ equals 2 and $M$ is a
finitely generated $\mathcal{P}$-module. In the case where $Ext_{\mathcal{P}}^{2}(M, \mathcal{P})=0$ , we have
$Ext_{\mathcal{P}}^{1}(M, \mathcal{B}(\Omega))=0$ for any domain $\Omega$ in $R^{2}$ . In the case where $Ext_{\mathcal{P}}^{2}(M, \mathcal{P})\neq 0$ ,

we have $Ext_{\mathcal{P}}^{1}(M, \mathcal{B}(\Omega))=0$ if and only if $H^{1}(\Omega, C)=0$ .
PROOF. Considering Theorem 2.1, Theorem 2.2 and the above remark,

we have only to prove that $\mathcal{B}(\Omega)$ is an injective $\mathcal{P}$-module if $H^{1}(\Omega, C)=0$ .
Let $\mathcal{J}$ be an ideal of $\mathcal{P}$ and its generators be $P_{1}(D),$ $\cdots$ , $P_{m}(D)$ . We Pnd

a solution $u$ of the equations $P_{i}(D)u=f_{i}(1\leqq i\leqq m)$ on $\Omega$ as follows if $f_{i}$

satisfy the compatibility condition. We set $P_{1}(D)=Q_{i}(D)R(D)$ where $Q_{i}(D)$

have no non-trivial common factor for $1\leqq i\leqq m$ , and define the equations
$Q_{i}(D)v=f_{i}(1\leqq i\leqq m)$ satisfying the compatibility condition. Considering the
space dimension, we see that the equations form a maximally overdetermined
system. We can find a solution $v$ by the assumption $H^{1}(\Omega, C)=0$ because the
solution sheaf of such system is a constant sheaf (cf. Matsuura [10]). And
then we can solve the single equation $R(D)u=v$ by Theorem 2.2 because the
$\mathcal{P}$-module $\mathcal{P}/\mathcal{P}R(D)$ satisfies (3) for $k=1$ . (This solvability was proved first
by Harvey [5].)

Thus we have $Ext_{\mathcal{P}}^{1}(\mathcal{P}/\mathcal{J}, \mathcal{B}(\Omega))=0$ for any ideal $\mathcal{J}$ of $\mathcal{P}$ . This implies
that $\mathcal{B}(\Omega)$ is an injective $\mathcal{P}$-module. (See [2].) $q$ . $e$ . $d$ .

\S 3. Throughout this section we assume the $\mathcal{P}$ -module $M$ equals $\mathcal{P}/\mathcal{J}$

where $\mathcal{J}$ is the ideal of $\mathcal{P}$ generated by $\partial/\partial x_{1},$ $\cdots$ , $\partial/\partial x_{k}(1\leqq k\leqq n)$ . We denote
by $y$ and $z$ the coordinates $x_{1},$

$\cdots$ , $x_{k}$ and $x_{k+1},$ $\cdots$ , $x_{n}$ respectively and by $\pi$
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$\pi$

the projection from a domain $\Omega$ in $R^{n}$ to $R^{n-k}$ defined by $(y, z)-z$. More-
over we denote by $\mathcal{F}$ one of the sheaves $d,$ $\mathcal{B},$ $\mathcal{D}^{\prime},$

$\mathcal{E}$ over $R^{n}$ as in \S 1 and
by $\mathcal{F}_{n-k}$ the corresponding sheaf over $R^{n- k}$ . Then the solution sheaf $\mathcal{F}^{M}$ is
isomorphic to $\pi^{*}\mathcal{F}_{n- k}$ because $\mathcal{F}^{M}$ is constant along the fibre of $\pi$ . Here we
denote by $\pi^{*}\mathcal{G}$ the inverse image of the sheaf $\mathcal{G}$ over $R^{n-k}$ under the map $\pi$ .

We cite some examples. Let $k$ equal 2 in the examples, which means
$\partial u$

that we think the system of the equations $\overline{\partial x_{i}}=f_{i}(i=1,2)$ . Then the com-

patibility condition is the equation $\frac{\partial}{\partial}\frac{f_{2}}{x_{1}}=\frac{\partial f_{1}}{\partial x_{2}}$ . Assume that $\Omega=R^{n}-A$ ,
$n\geqq 3$ and $A$ is as follows:

EXAMPLE 3.1.
$A=\{(x_{1}, x_{2}, z)\in R^{n} ; x_{1}=z=0\}$ .

Set $D=R^{n- 2}-\{0\}$ . Then we have

(3.1) $Ext_{\mathcal{P}}^{1}(M, \mathcal{F}(\Omega))\cong\Gamma(D, \mathcal{F}_{n-2})/\Gamma(R^{n-2}, \mathcal{F}_{n- 2})$ .

This vanishes if and only if $\mathcal{F}$ is $\mathcal{B}$ .
For instance, the following system on $\Omega$ has no solution in $\mathcal{E}$ .

(3.2) $\left\{\begin{array}{l}\frac{\partial u}{\partial x_{1}}=\{\\\frac{\partial u}{\partial x_{2}}=0\end{array}\right.$

$(a(x_{1}/\Vert z\Vert^{2})/\Vert z\Vert^{2})\cdot b(z)$ , if $\Vert z\Vert\neq 0$ ,

$0$ , if $\Vert z\Vert=0$ ,

where $a(t)\in \mathcal{D}(R^{1})$ (which denotes the space of the infinitely differentiable

functions with compact supports on $R^{1}$), $\int a(t)dt\neq 0,$ $\Vert z\Vert=(x_{3}^{2}+\cdots+x_{n}^{2})^{1/2},$ $b(z)$

$\in\Gamma(D, \mathcal{E})$ and $b(z)\not\in\Gamma(R^{n- 2}, \mathcal{E})$ .
To prove (3.1) we define

$U_{1}=\{(x_{1}, x_{2}, z)\in R^{n} ; z\neq 0\}$

and
$U_{2}=\{(x_{1}, x_{2}, z)\in R^{n} ; x_{1}\neq 0\}$ .

Then by Leray’s theorem on cohomoiogy groups of the covering $\Omega=U_{1}\cup U_{2}$ ,
$H^{1}(\Omega, \mathcal{F}^{M})$ is isomorphic to the cokernel of the map

$\Gamma(U_{1}, \mathcal{F}^{M})\oplus\Gamma(U_{2}, \mathcal{F}^{M})\rightarrow\Gamma(U_{1}\cap U_{2}, \mathcal{F}^{M})$

U) UJ $u$

$(\varphi_{1}, \varphi_{2})$ – $\varphi_{1}-\varphi_{2}$ .
Therefore we have (3.1) by the following isomorphisms:

$\Gamma(U_{1}, \mathcal{F}^{M})\cong\Gamma(D, \mathcal{F}_{n-2})$ ,

$\Gamma(U_{2}, \mathcal{F}^{M})\cong\Gamma(R^{n- 2}, \mathcal{F}_{n- 2})\oplus\Gamma(R^{n-2}, \mathcal{F}_{n-2})$



580 T. OSHIMA

and
$\Gamma(U_{1}\cap U_{2}, \mathcal{F}^{M})\cong\Gamma(D, \mathcal{F}_{n- 2})\oplus\Gamma(D, \mathcal{F}_{n-2})$ .

EXAMPLE 3.2. i) $A=\{(x_{1}, x_{2}, z)\in R^{n} ; x_{1}=x_{2}=0\}$ ,
ii) $A=\{(x_{1}, x_{2}, z)\in R^{n} ; x_{1}=x_{2}=0, x_{3}\geqq 0\}$ ,

iii) $A=\{(x_{1}, x_{2}, z)\in R^{n} ; x_{1}=x_{2}=z=0\}$ .
In i), ii) and iii) we have

(3.3) $Ext_{\mathcal{P}}^{1}(M, \mathcal{F}(\Omega))\cong\Gamma_{\pi(A)}(R^{n-2}, \mathcal{F}_{n-2})$ ,

which vanishes in and only in the following cases respectively:
i) It never vanishes,

ii) $\mathcal{F}=d$ ,
iii) $\mathcal{F}=\mathcal{A},$ $\mathcal{E}$ .
The system on $\Omega$

(3.4) $\left\{\begin{array}{l}\frac{\partial u}{\partial x_{1}}=\frac{1}{\chi_{1}+\sqrt{-1}\chi_{2}} . b(z),\\\frac{\partial u}{\partial x_{2}}=\frac{\sqrt{-1}}{x_{1}+\sqrt{-1}x_{2}} . b(z)\end{array}\right.$

has no solution for non-zero function $b(z)\in\Gamma_{\pi(A)}(R^{n-k}, \mathcal{F}_{n-k})$ . We can prove
(3.3) by the same method as in Example 3.1.

We have the following theorems as expected by these examples.
THEOREM 3.3. Assume that $M$ is the $\mathcal{P}$ -module $\mathcal{P}/\mathcal{J}$ where $\mathcal{J}$ is the ideaf

of $\mathcal{P}$ generated by $\partial/\partial x_{1},$ $\cdots$ , $\partial/\partial x_{k}$ . Then the two conditions

(4) $Ext_{\mathcal{P}}^{1}(M, \mathcal{B}(\Omega))=0$ ,

(5) $H^{1}(\pi^{-1}(z), C)=0$ for any $z\in R^{n-k}$

are equivalent for a domain $\Omega$ in $R^{n}$ .
To prove the theorem we employ a method similar to Suzuki [13], which

argues the problem in the holomorphic category in the case $k=1$ . First we
give some definitions. Given a point $ x\in\Omega$ , let $L_{x}$ be the connected com-
ponent of the set $\pi^{-1}\cdot\pi(x)$ containing $x$ . We denote by $X$ the quotient space
of $\Omega$ with the quotient topology by the equivalence relation “

$L_{x}=L_{x^{\prime}}$ for
$x,$

$ x^{\prime}\in\Omega$ . We write the natural projections $\pi_{1}$ : $\Omega\rightarrow X$ and $\pi_{2}$ : $X\rightarrow R_{-}^{n-k}$

Then the following is clear:

(3.5) $\left\{\begin{array}{l}\pi=\pi_{2}\cdot\pi_{1}and\mathcal{F}^{M}\cong\pi^{*}\mathcal{F}_{n-k}=\pi_{1}^{*}\cdot\pi_{2}^{*}\mathcal{F}_{n- k}.\cdot\\\pi_{1}isanopenmapwithconnecredfi bres.\cdot\\\pi_{2}isalocalhomeomorphism.\end{array}\right.$

We prepare two lemmas:
LEMMA 3.4. The sheaf $\pi_{2}^{*}\mathcal{B}_{n- k}$ is flabby.
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PROOF. Let $P$ be an arbitrary point of $X$. Since the map $\pi_{2}$ is a local
homeomorphism, there exists a neighbourhood $U$ of $P$ such that $\pi_{2}^{*}\mathcal{B}_{n- k}|U$

is a flabby sheaf. Therefore we can prove easily by Zorn’s lemma that
$\pi_{2}^{*}\mathcal{B}_{n- k}$ is flabby (cf. [4], Chapter II, \S 3.1). $q$ . $e$ . $d$ .

LEMMA 3.5. Using the above notations and assuming that $H^{1}(\pi_{1}^{-1}(P), C)=$ (\rangle

at every pOint $P$ in $X$, we have $\mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\mathcal{G})=0$ for any sheaf $\mathcal{G}$ of C-Module over
X. Here we denote by $\mathcal{H}_{\pi_{1}}^{q}(\mathcal{G}^{\prime})$ the q-th direct image of a sheaf $\mathcal{G}^{\prime}$ over $\Omega$

under the Projection $\pi_{1}$ . (For the definition see [1], Chapter IV, 4. $\mathcal{H}_{\pi_{1}}^{q}(\mathcal{G}^{\prime})$ is
called there the Leray sheaf in degree $q.$ )

PROOF. Consider the stalk of $\mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\mathcal{G})$ at every point $P\in X$. Then we
have by definition

(3.6) $\mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\mathcal{G})_{P}=\lim_{\rightarrow}H^{1}(\pi_{1}^{-1}(U), \pi_{1}^{*}\mathcal{G})$ ,

where $U$ ranges over the open sets in $X$ containing $P$. To calculate ( $ 3.6\rangle$

we write the canonical flabby resolution of $\pi_{1}^{*}\mathcal{G}$ ;

$p_{0}$ $p_{1}$

$ 0\rightarrow\pi_{1}^{*}\mathcal{G}\rightarrow \mathcal{G}_{0}\rightarrow \mathcal{G}_{1}\rightarrow \mathcal{G}_{2}\rightarrow\cdots$ .

Let $u$ be a section of $\mathcal{G}_{1}$ over $\pi_{1}^{-1}(U)$ satisfying $p_{1}u=0$ . Then there exist a
convex open set $V_{x}\subset\pi_{1}^{-1}(U)$ and a section $v_{x}\in \mathcal{G}_{0}(V_{x})$ for every $x\in\pi_{1}^{-1}(U)$

such that $V_{x}\ni x$ and $p_{0}v_{x}=u|V_{x}$ . We choose a point $x^{0}\in\pi_{1}^{-1}(P)$ and denote
by $U^{\prime}$ the open set $\pi_{1}(V_{x^{0}})$ containing $P$. Then we can Pnd $v\in \mathcal{G}_{0}(\pi_{1}^{-1}(U^{\prime}))$

satisfying $p_{0}v=u|\pi_{1}^{-1}(U^{\prime})$ as follows:
For a point $x\in\pi_{1}^{-1}(U^{\prime})$ there exist finite points $x^{1},$ $\cdots$ , $x^{r}$ contained in

$\pi_{1}^{-1}\cdot\pi_{1}(x)$ such that $ V_{x^{i}}\cap V_{x^{i+1}}\neq\emptyset$ for $0\leqq i\leqq r$ where we denote by $x^{r+1}$ the
point $x$ . Set $U^{\prime\prime}=U^{\prime}\cap\bigcap_{0\leqq i\leqq r}\pi_{1}(V_{x^{i}}\cap V_{x^{i+1}})$ . Since $v_{x^{i}}-v_{x^{i+1}}$ is an element of
$\Gamma(V_{x^{i}}\cap V_{x^{i+1}}, \pi_{1}^{*}\mathcal{G})$ and $\pi_{1}|V_{x^{i}}\cap V_{x^{i+1}}$ is an open map with connected fibres,
we can find the unique section $w_{i}\in \mathcal{G}(U^{\prime\prime})$ such that $\pi_{1}^{*}w_{i}=v_{x^{i}}-v_{xi+1}$ on
$V_{x^{i}}\cap V_{x^{i+1}}\cap\pi_{1}^{-1}(U^{\prime\prime})$ . Then we define $v$ by the equality

$v|V_{x}\cap\pi_{1}^{-1}(U^{\prime})=v_{x}+\pi_{1}^{*}\sum_{t=0}^{r}w_{i}$ .

The well-definedness of $v$ is due to the assumption meaning that $H^{1}(\pi_{1}^{-1}\cdot\pi_{1}(x)_{r}$

$\mathcal{G}_{\pi_{1}(x)})=0$ .
This shows the right side of (3.6) equals $0$ by definition. So we have

$\mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\mathcal{G})_{P}=0$ for $P\in X$, thus $\mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\mathcal{G})=0$ . $q$ . $e$ . $d$ .
PROOF OF THEOREM 3.3. (4) $\subset>(5)$ . It suffices to prove that the equations

on $\pi^{-1}(z^{0})$

(3.7) $\frac{\partial v}{\partial x_{i}}=f_{i}(x_{1}, x_{k})$ $(1\leqq i\leqq k)$

satisfying the compatibility condition have a solution $v$ for $z^{0}\in R^{n-k}$ .
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Let $\delta(z)$ be the Dirac $\delta$ -function on $R^{n-k}$ . Then by the assumption (4)

the equations on $\Omega$

$\partial u$

(3.8) $-\overline{\partial x_{i}}=f_{i}(x_{1}, \cdots , x_{k})\cdot\delta(z-z^{0})$ $(1 \leqq i\leqq k)$

have a solution $u$ . The functions in the right side of the equation (3.8) are
\langle ) on $\Omega-\pi^{-1}(z^{0})$ , which implies that $u|\Omega-\pi^{-1}(z^{0})\in \mathcal{B}^{M}(\Omega-\pi^{-1}(z^{0}))$ . Since $\pi_{1}$ is
an open map with connected fibres and $\mathcal{B}^{M}\cong\pi_{1}^{*}\cdot\pi_{2}^{*}\mathcal{B}_{n- k}$ , we see that
$\mathcal{B}^{M}(\Omega-\pi^{-1}(z^{0}))$ and $\mathcal{B}^{M}(\Omega)$ are isomorphic to $\Gamma(X-\pi_{2}^{-1}(z^{0}), \pi_{2}^{*}\mathcal{B}_{n-k})$ and
$\Gamma(X, \pi_{2}^{*}\mathcal{B}_{n-k})$ respectively. Therefore we can find a section $\tilde{u}\in \mathcal{B}^{M}(\Omega)$ by

Lemma 3.4 such that
\langle 3.9) $(u-\tilde{u})|\Omega-\pi^{-1}(z^{0})=0$ .

Since $u-\tilde{u}$ is a solution of (3.8), we see that the section $\int(u-\tilde{u})dx_{k+1}\cdots dx_{n}$

over $\pi^{-1}(z^{0})$ is a solution of (3.7). In fact, the well-definedness of the integral
follows from (3.9).

(5) $\mathfrak{c}\Rightarrow(4)$ . Consider the following Leray spectral sequence of the map $\pi_{1}$

\langle cf. [1], Chapter IV, 6):

\langle 3.10) $E?^{q}=H^{p}(X, \mathcal{H}\#_{1}(\mathcal{B}^{M}))\subset>H^{p+q}(\Omega, \mathcal{B}^{M})$ .

Since $\pi_{1}$ is an open map with connected fibres, we have

$\mathcal{H}_{\pi_{1}}^{0}(\mathcal{B}^{M})=\pi_{1*}\mathcal{B}^{M}\cong\pi_{1*}\pi_{1}^{*}\pi_{2}^{*}\mathcal{B}_{n- k}\cong\pi_{2}^{*}\mathcal{B}_{n-k}$ .

And by Lemma 3.5 we have

$\mathcal{H}_{\pi_{1}}^{1}(\mathcal{B}^{M})\cong \mathcal{H}_{\pi_{1}}^{1}(\pi_{1}^{*}\pi_{2}^{*}\mathcal{B}_{n-k})=0$ .
Now in the exact sequence of the edge homomorphisms (cf. [4], Chapter I,
Theorem 4.5.1)

(3.11) $0\rightarrow E_{2}^{1.0}\rightarrow H^{1}\rightarrow E_{2}^{0.1}\rightarrow E_{2}^{2.0}\rightarrow H^{2}$

we have proved that $E_{2}^{0.1}=0$ . Combining the above facts with Lemma 3.4
and (1.4), we have

$Ext_{\mathcal{P}}^{1}(M, \mathcal{B}(\Omega))=H^{1}(\Omega, \mathcal{B}^{M})$

$\cong E_{2}^{1.0}=H^{1}(X, \mathcal{H}_{\pi_{1}}^{0}(\mathcal{B}^{M}))$

$\cong H^{1}(X, \pi_{2}^{*}\mathcal{B}_{n- k})=0$ .
This completes the proof of the theorem.

In the space of distributions we have the following theorem.
THEOREM 3.6. Assume that $M$ is the same as in Theorem 3.3. Then the

followings are equivalent conditions for a domain $\Omega$ in $R^{n}$ .
(6) $Ext_{\mathcal{P}}^{1}(M, \mathcal{D}^{\prime}(\Omega))=0$ ,
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(7) $H^{1}(\pi^{-1}(z), C)=0$ for any $z\in R^{n- k}$

and the top0l0gy of $X$ is Hausdorff.
In our proof of Theorem 3.6 we need the following lemmas.
LEMMA 3.7. Let $u$ be an element of $\Gamma(\Omega-\pi^{-1}(z^{0}), \mathcal{D}^{\prime M})$ where $z^{0}\in R^{n-k}$ .

Assume $u$ has an extension $u^{\prime}\in\Gamma(\Omega, \mathcal{D}^{\prime})$ . Then we can also extend $u$ over $\Omega$

as a section of $\mathcal{D}^{\prime M}$ .
PROOF. The set $\pi^{-1}(z^{0})$ has the following decomposition into the connected

components:

$\pi^{-1}(z^{0})=\bigcup_{\lambda\Lambda}L_{x^{\lambda}}$ .

For every $\lambda\in\Lambda$ we can find convex open sets $V\subset R^{k}$ and $W\subset R^{n- k}$ such

that $ x^{\lambda}\in V\times W\subset\Omega$ . Choose a function $\varphi(y)\in \mathcal{D}(V)$ satisfying $\int\varphi(y)dy\neq 0$ .
We dePne a distribution $w_{\lambda}\in \mathcal{D}^{\prime}(W)$ by the equality

$w_{\lambda}=\int\varphi(y)u^{\prime}dy/\int\varphi(y)dy$ .

That is, $\langle w_{\lambda}, \rho(z)\rangle=\langle u^{\prime}, \varphi(y)\rho(z)/\int\varphi(y)dy\rangle$ for any $\rho(z)\in \mathcal{D}(W)$ . Let $U_{\lambda}=$

$\pi_{1}^{-1}\cdot\pi_{1}(V\times W)$ . Since the distribution $u^{\prime}|U_{\lambda}-\pi^{-1}(z^{0})$ is constant along the
fibre of $\pi$ and $\pi|U_{\lambda}$ has connected fibres, it is clear that the distribution
$\pi^{*}w_{\lambda}\in \mathcal{D}^{\prime M}(U_{\lambda})$ equals $u^{\prime}$ and also $u$ on $U_{\lambda}-\pi^{-1}(z^{0})$ . Hence there exists $\tilde{u}\in$

$g^{\prime M}(\Omega)$ such that
$\tilde{u}|\Omega-\pi^{-1}(z^{0})=u$ ,

$\tilde{u}|U_{\lambda}=\pi^{*}w_{\lambda}$ for $\lambda\in\Lambda$ . $q$ . $e$ . $d$ .

LEMMA 3.8. Assume $\mathcal{F}$ is $d,$ $\mathcal{D}^{\prime}$ or $\mathcal{E}$ . Then the followings are equivalent
conditions for $X$ :

(8) The topology of $X$ is Hausdorff.
(9) $H^{1}(X, \pi_{2}^{*}\mathcal{F}_{n-k})=0$ .

PROOF. (8) $\subset\succ(9)$ . This is clear, because (8) implies that $X$ is an $(n-k)-$

dimensional real analytic manifold and that $\pi_{2}^{*}\mathcal{F}_{n- k}$ is a sheaf of real
analytic functions, distributions or infinitely differentiable functions over the
manifold.

(9) $\subset\succ(8)$ . Suppose that the topology of $X$ is not Hausdorff. Let $P$ and
$P^{\prime}$ be distinct points in $X$ which cannot be separated by open sets. Let $U$

and $U^{\prime}$ be open neighbourhoods of $P$ and $P^{\prime}$ respectively such that $\pi_{2}|U$ and
$\pi_{2}|U^{\prime}$ are into-homeomorphisms. We denote shortly by $V$ the open set $X-\{P\}$

and by $\mathcal{G}$ the sheaf $\pi_{2}^{*}\mathcal{F}_{n- k}$ . Consider the following commutative diagram:
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$p_{1}$

$\rightarrow\Gamma(U, \mathcal{G})\oplus\Gamma(V, \mathcal{G})\rightarrow\Gamma(U\cap V, \mathcal{G})\rightarrow H^{1}(U\cup V, \mathcal{G})\rightarrow$

$ r_{1}\downarrow$ $ r_{2}\downarrow$

$p_{2}$

$\Gamma(U, \mathcal{G})\oplus\Gamma(U^{\prime}, \mathcal{G})\rightarrow\Gamma(U\cap U^{\prime}, \mathcal{G})$ .

The first row is the exact Mayer-Vietoris sequence (cf. [1], Chapter II, 13), the
map $p_{1}$ (or $p_{2}$) is defined by $(u_{1}, u_{2})->u_{1}-u_{2}$ , and $r_{1}$ and $r_{2}$ are restrictions.
Note that $U\cup V=X,$ $U\cap V=U-\{P\}$ . Condition (9) implies that $p_{1}$ is sur-
jective, therefore ${\rm Im} r_{2}\subset{\rm Im} p_{2}$ . Considering $\Gamma(U, \mathcal{G})\cong\Gamma(\pi_{2}(U), \mathcal{F}_{n-k})$ etc., we
define the maps

$r_{2}^{\prime}$ : $\Gamma(\pi_{2}(U)-\pi_{2}(P), \mathcal{F}_{n- k})\rightarrow\Gamma(\pi_{2}(U\cap U^{\prime}), \mathcal{F}_{n- k})$

and
$p_{2}^{\prime}$ ; $\Gamma(\pi_{2}(U), \mathcal{F}_{n- k})\oplus\Gamma(\pi_{2}(U^{\prime}), \mathcal{F}_{n- k})\rightarrow\Gamma(\pi_{2}(U\cap U^{\prime}), \mathcal{F}_{n-k})$ ,

then ${\rm Im} r_{2}^{\prime}\subset{\rm Im} p_{2}^{\prime}$ . We can find $f\in{\rm Im} r_{2}^{\prime}-{\rm Im} p_{2}^{\prime}$ in the undermentioned way,
which contradicts this fact and completes the proof:

There exists a sequence $\{P_{t}\}$ of points in $U\cap U^{\prime}$ which converges to $P$

and $P^{\prime}$ . Then the sequence $\{\pi_{2}(P_{i})\}$ converges to the point $\pi_{2}(P)=\pi_{2}(P^{f})$ .
In the case where $\mathcal{F}$ is $cj$ or $\mathcal{E}$ , we set $f=1/\Vert z-\pi_{2}(P)\Vert^{2}$ and in the case
where $\mathcal{F}$ is $\mathcal{D}^{\prime}$ , we set $f=\sum_{i=1}^{\infty}\delta^{(i)}(z-\pi_{2}(P_{i}))$ where we denote by $\delta^{(t)}(z)$ the i-th

derivative of the Dirac $\delta$ -function on $R^{n- k}$ . Since the both open sets $\pi_{2}(U\rangle$

and $\pi_{2}(U^{\prime})$ contain $\pi_{2}(P)$ , it is clear that $f\not\in{\rm Im} p_{2}^{\prime}$ . $q$ . $e$ . $d$ .
PROOF OF THEOREM 3.6. Refer to the proof of Theorem 3.3.
(6) $\subset\Rightarrow(7)$ . Using Lemma 3.7 in place of Lemma 3.4, we can prove that ( $ 6\rangle$

implies (5) in the same way as in Theorem 3.3. On the other hand, since
the map

$i:H^{1}(X, \pi_{2}^{*}\mathcal{D}_{n-k}^{\prime})\rightarrow H^{1}(\Omega, \mathcal{D}^{\prime M})$

is injective (cf. (3.11)), it follows immediately from (1.4) and Lemma 3.8 that
(6) implies (8).

(7) $\subset>(6)$ follows from Lemma 3.5 and Lemma 3.8. See the proof of “ (5)
$\subset>(4)$ ”. $q$ . $e$ . $d$ .

We define the conditions for a domain $\Omega$ in $R^{n}$

(10) $Ext_{\mathcal{P}}^{1}(M, d(\Omega))=0$ ,

(11) $Ext_{\mathcal{P}}^{1}(M, \mathcal{E}(\Omega))=0$ ,

then the following theorem also follows from the same proof as above.
THEOREM 3.9. On the same assumption as in Theorem 3.6,
i) (7) implies(10) and (11),

ii) (10) implies(8), (11)implies(8).

Note that neither (10) nor (11) implies (7) except in the cases where $k=1$
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and where $k=n$ (cf. Example 3.2).

PROPOSITION 3.10. Assume that $M=\mathcal{P}/\mathcal{J}$ where $\mathcal{J}$ is an ideal of $\mathcal{P}$ gener-
ated by $\partial/\partial x_{1}$ and $\partial/\partial x_{2}(i. e. k=2)$ and that a domain $\Omega$ in $R^{n}$ satisfies the
conditions (11) and

(12) $\Omega=int\overline{\Omega}$ ( $=the$ interior of the closure of $\Omega$).

Then (7) holds.
PROOF. It suffices to prove (5). Suppose that there exists a point

$z^{0}\in R^{n- 2}$ such that $H^{1}(\pi^{-1}(z^{0}), C)\neq 0$ . Then there exist a Jordan curve $C$ in
$R^{2}$ and a point $y^{0}$ contained in the domain which is surrounded by $C$ such
that

$ C\times z^{0}\subset\Omega$ , $(y^{0}, z^{0})\not\in\Omega$ .
Assume that $(y^{0}, z^{0})\in\partial\Omega$ . Then we can find convex open sets $V$ in $R^{2}$ and
$W$ in $R^{n- 2}$ such that

$V\ni y^{0}$ $W\ni z^{0}$ $ C\cap V=\emptyset$ , $ C\times W\subset\Omega$ .
Since (12) implies that $\partial\Omega=\partial(R^{n}-\overline{\Omega})$ , the set $V\times W\cap(R^{n}-\overline{\Omega})$ is non-void.
Choose a point $(y^{1}, z^{1})$ in the set. Thus we can assume that $(y^{0}, z^{0})\not\in\overline{\Omega}$ from
the beginning replacing $(y^{0}, z^{0})$ by $(y^{1}, z^{1})$ if necessary. So there exists an
open neighbourhood $W^{\prime}$ of $z^{0}$ such that $ y^{0}\times W^{\prime}\cap\Omega=\emptyset$ . Then the following
system has no solution:

$\left\{\begin{array}{l}\frac{\partial u}{\partial x_{1}}=\frac{1}{(x_{1}-X_{1}^{0})+\sqrt{-1}(x_{2}-x_{2}^{0})}b(z),\\\frac{\partial u}{\partial x_{2}}=\frac{\sqrt{-1}}{(x_{1}-x_{1}^{0})+\sqrt{-1}(x_{2}-X_{2}^{0})}\cdot b(z),\end{array}\right.$

where $y^{0}=(\chi_{1}^{0}x_{2}^{0}),$ $b(z)\in \mathcal{D}(W^{\prime})$ and $b(z^{0})\neq 0$ . This is a contradiction.
$q$ . $e$ . $d$ .

REMARK. These theorems hold for a $\mathcal{P}$ -module $M^{\prime}$ in place of $M$ if the
solution sheaf $\mathcal{F}^{M}$

‘ is isomorphic to $\mathcal{F}^{M}$ . We owe the following to Sato, Kawai
and Kashiwara [12]:

Let $M^{\prime}$ be $\mathcal{P}/\mathcal{J}^{\prime}$ where $\mathcal{J}^{\prime}$ is an ideal of $\mathcal{P}$ generated by $P_{1}(D),$ $\cdots$ , $P_{k}(D)$

and $\mathcal{J}$ be the radical of the ideal of $\mathcal{P}$ generated by the principal symbols

of $P_{1}(D),$ $\cdots$ , $P_{k}(D)$ . Assume that $\mathcal{J}$ is as before ( $i$ . $e$ . $\mathcal{J}$ is generated by
$\partial/\partial x_{1},$ $\partial/\partial x_{k}$ and $M=\mathcal{P}/\mathcal{J}$ ). Then one of the two modules $M$ and $M^{\prime}$

(precisely $\overline{\mathcal{P}}\bigotimes_{\mathcal{P}}M$ and $\overline{\mathcal{P}}\bigotimes_{\mathcal{P}}M^{\prime}$ ) is isomorphic to a direct summand of a direct

sum of finite copies of the other in the ring $\overline{\mathcal{P}}$ of linear differential operators

of infinite order with constant coefficients, which operates $d$ and $\mathcal{B}$ . And $\overline{\mathcal{P}}$

is faithfully flat over $\mathcal{P}$ .
Therefore one of the solution sheaves $\mathcal{A}^{M}$ and $\mathcal{A}^{M^{\prime}}$ (or $\mathcal{B}$“ and $\mathcal{B}^{M}$ ) is
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isomorphic to a direct summand of a direct sum of finite copies of the other
as sheaves of $\overline{\mathcal{P}}$-Modules. Hence Theorem 3.3 and “ (7) $=(10),$ (10) $\subset>(8)$

“ in
Theorem 3.9 hold even if we replace $M$ by $M^{J}$ . For example, we can apply

the theorems to the following system:

(3.12) $\left\{\begin{array}{l}P_{1}(D)u\equiv\frac{\partial^{2}u}{\partial x_{1}^{2}}-\frac{\partial u}{\partial x_{2}}=f_{1},\\P_{2}(D)u\equiv_{\partial\overline{x}_{2}^{2}\partial}^{\partial^{2}u\partial}----\frac{u}{x_{3}}=f_{2}.\end{array}\right.$
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