J. Math. Soc. Japan
Vol. 27, No. 1, 1975

Pseudomonotone operators and nonlinear elliptic
boundary value problems

By Nobuyuki KENMOCHI
(Received Jan. 11, 1974)

Introduction.

In this paper, from a view-point of the nonlinear operator theory we
study nonlinear elliptic partial differential equations of the form

N
(P) — 5L A, T+ Al w, T =f  in Q

k=1 0Xj
with some boundary conditions, and nonlinear elliptic variational inequalities
of the form

ue K,
V)

a(u, uwv)—jgf(u—v)dxg O(v)—D(u) for all ve K,

where £ is a bounded domain in RY with smooth boundary I, fe L?(£)
(1/p+1/p'=1, 1<p< o), K is a convex closed subset of the Sobolev space
Whr(82), @ is a lower semicontinuous convex function on K and a(:, ‘) is
the functional on W4?(2)x W?(£2) given by

a(v, w) :ké jﬂAk(x, v, Vv)——a%%dxﬁ—ngo(x, v, Vo)wdx.

In order to find a solution of (P) with a boundary condition of the
Dirichlet type:

one considers a variational inequality of type (V) with @ and K associated
with this boundary condition. Existence theorems for variational inequalities
of type (V) were established by many authors (e.g., [1], [3], [4], [5], [6],
[12], [14], [17], [21] [22]).

We treat partial differential equations of the form (P) with boundary
conditions of mixed type. In particular, in case (P) has a smooth solution u,
our boundary condition of mixed type is given by
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ulfng on FO:
N
kzzjl(Ak(x, u, Vu) | pyve=¢*+h(u| ) on I'\[,,

where I', is a closed subset of I', ¢, ¢* and h are given functions on I,
I'\I'y and R!, respectively, and v=(v,, vs, ---, vy) is the unit exterior normal
to I'. However, generally, solutions of (P) need not be smooth, so we have
to construct boundary conditions in a generalized sense. For this purpose,
we introduce a continuous linear operator B from the Banach space E?'(2)
={v=(vy, Uy, =+, Vy); v € LP(2), k=1, 2, .-+, N, divoe LP(2)} into W-VP»?'(I")
(=the dual space of WP ?(I")) such that

Bv= é}l(mr)»k

if v=(vy, v,, ---, vy) with vee D(2) for all k. Then our boundary condition
is given by means of the operator B as follows:

ulp=¢ a.e.on [,

Ba(u)=¢*+h(u|p) on I'\[, (in the distribution sense),
where a(u)=(A,(x, u, Vu), ---, Ay(x, u, Vu)).
One aim of this paper is to show that equation (P) with generalized
boundary conditions of the above type is equivalent to the variational in-
equality of type (V) associated with it. Another aim is to investigate the

continuous dependence of solutions of boundary value problems as formulated
above on boundary conditions by using results in and [8]

§1. Preliminaries.

Throughout this paper, let £ be a bounded domain in RY, N=2, and
assume that the boundary I’ of £ is very regular, that is, it consists of a
finite number of C* compact (N—1)-dimensional connected manifolds with £
lying on one side of I'. In this section, let 1<p<oo and 1/p+1/p'=1.

1.1. The Sobolev space W%?(2) and its trace space W¥?"2(I"),

Let us consider the Sobolev space

W Q) ={ve L(Q);-2% & L¥®), k=1,2, -, N}

0x,

and the trace space of WH?(L)

wyrr(Iy={pe LP(["); (), < oo},
where

W N YOWINT
@)= | lTer—) y,’ljﬁfN)_L dr.dT,.,
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-where dI',, and dI',, mean the surface measure. Norms in these Banach
spaces are defined by

. N 0 i
anlyp = HUH LP(Q)+ kgl ‘1—8%

L2
and

[77]1//1)‘,1) - ||17“ LP(F)+(77>%)/Z) ’

respectively. The space of all C™-functions on R¥ with compact support in
2 is denoted by 9(2) and the space of the restrictions of all C>-functions
on RV to £ is denoted by 9(2). It is well-known that the operator y: u e
PD(2)—(the boundary values of u) is a linear and continuous operator from
D(2) equipped with the topology of WUP(2) into W¥?"?(I"). Since 9(2) is
dense in W4?(2), there is a unique continuous extension of y to all of W4?(Q).
This extension is also denoted by y. Then we know that the range of 7 is
all of WY?>2([") and there are positive constants A, and 2, such that for all
1’) = Wl/p’,p([")
inf {{vll,,p; ve WH(Q), yr =0}
(L.1) = Al01up,p
=4, inf {“Vul,p; ve Whr(9Q), TU:ﬁ} .

For a detailed discussion on the operator y, see Gagliardo and Lions-
Magenes [16].

1.2. Equalities and inequalities for functions in W4P(2) and in W*?"?(I").

We now recall notions of equalities and inequalities for functions in
WH2(2) and in WYP»?(I") (cf. Littman-Stampacchia-Weinberger [18]).

Let I', be a compact subset of I'. Then we say that ¢ € WY?"2(I") is
non-negative on I, in the sense of WY¥?>?(I"), if there is a sequence {@.}

C 9(2) such that y$,=0 on I, for all k and r¢k~s>¢ in Wv?»P(I") as k—oo,

bRl

k1
where we mean by “ — " the convergence in the strong topology. For two

functions ¢ and % in WY?"?(I'), we define “¢ =75 on I, in the sense of
WYese([Y by “¢—5=0 on I, in the sense of WY?"?([")".

Next, let F be a compact subset of 2 and ve W'?(£2). We then say that
v=0 on F in the sense of W¥?(#), if there is a sequence {gbk}C_CD(Q—) such

that ¢,=0 on a neighborhood of F for all & and qﬂki»v in WhH?(2) as k—co.
For two functions v and w in WY?(2), we define “v=w on F in the sense

of WH?(£)” in a way similar to the above. Note that if v=w on F in the

sense of WH?(2), then v=w a.e. on F and g;}k = g;uk a.e.on F, k=1, 2,

-, N.
1.3. The space E?(£).
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Let us consider the Banach space
E?”(Q)={v=(vy, vy, -+, Uy); v, € L?'(2), k=1, 2, .-+, N, divv e LP(2)}
with the norm

N
lollpr = div vl Lot 2 Vil Loy -

We denote by D(2) the space {v=(d,, ¢y, -+, n); dr€ DR), k=1, 2, -+, N}.
We then prove the following :

PROPOSITION 1.1. D(Q) is a dense subspace of E*(Q).

Before proving this proposition we give two lemmas.

LEMMA 1.2. Let u=(u,, u,, -, uy) be a function such that u, s L*'(RY),
k=12, -+, N, and divue L?(R¥). Then the restriction u|g of u to £ belongs
to E?(2) and can be approximated by functions in D(Q) in the topology of
E?(Q).

Proor. For each positive integer &, let p, be a non-negative C*-function

on R¥ such that |  pi(®)dxr=1and py(x)=0 for x& RY with |x|Z1/k. Set

vk:(ul*pk; uz*Pk, tty uN*Pk> ,

where u;*p, denotes the convolution of u; and p,. Then, clearly,

s
vilg—>ulg in EY(2)

as k— oo,
LEMMA 1.3. Let v, be a unit vector and I', be an open subset of I' such
that for a positive number ¢

{(x'+Av,; xely, —t<A<0lC
and
(x'+Av,; v el, 0< A<t} CRN\2.°

Let u=(u,, uy, -+, uy) be a function in E*'() such that

Swyc{x'+2av,; x¥ 'y, —t<A1Z0},
where

S(u):gl{the support of u,} .

Then u can be approximated by functions in D(Q) in the topology of E?(Q2).
PrOOF. First, let us choose a positive number 7/ with 0<7/<7 and an
open subset I} of I" with I, I, such that

1.2) Swyc {x'+v,; x’ 'y, —t/<A=Z0}.

For small ¢>0 we define u.=(u.,, Uy, -, U, y) ON

1) AN\ B=L{x;x€A, x¢B}.
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Q.={x'+ly; xely, —t<i<eUR

by
Uy(x—ey,) if x€{x+Av,; x’'el’y, —t/<i<le},
us,k(-x):{

0 otherwise.

For small ¢>0, u. is well defined on 2. by [1.2). Clearly,

(div u)(x—ev,) if xe{x+,;xel’, —t/<i<e},
(div u.)(x) ={

otherwise,

and hence, u.lg< E?' (). Furthermore, by a theorem of Lebesgue,

s
(1.3) ulg—u in E?(2) asel0.
We next observe from that for small ¢ >0

SulgVUSw)c {x'+av,; ¥l —7/ <=0},
Let a.x) be a C>-function on R¥ such that

alx)=1 if xe{x'+iy,; sl —t/<i1<e/2}
and
{the support of a}C {x'+Av,; ¥, —t<i<e},

and define v.=(vep, Vep, =+, Veyn) O RY by

a(xX)u(x—evy) if xe{x’4+Ay,;xesl, —t/'<i<e},
vs,k(x) =
0 otherwise.

Then, v.e[L?(RY)]¥, divv.= LP(RY) and v.|g=u.lg on £. Hence, by [1.3),

S
vlg—>u in E?”(2) ase|0.

Since each v.lg is approximated by functions in D(.@) in the topology of
E?(2) by so is u. g.e.d.
PRrROOF OF PropOSITION 1.1. Since I is very regular, we can find an open
covering {U;}%, of I' and a system {#,}%, of functions in 9(R¥) with the
following properties:
(i) For each 7 there are a unit vector v, an open subset I of I and
a positive number 7 such that

Uy={x'+2%; x’'el'?, |2 <P},

(XD e 0<1<D} RN\Q
and
(X +09; el —cP< <0,
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(i) The support of 8; is contained in U;, i=1, 2, -+, n, and

1M

f,(x)=1 in a neighborhood of I'.

k

I}

1
Let u=(u,, u,, -+, uy) be an arbitrary function in E?'(2), and set

uP(x) =6 ,(x)uy(x), k=12, -, N,

and
0 i (@)
P (x) = uy(x)— 21 u(x) .
]:
Then
n .
u=u",
i=o

where u?’ =W, uf®, ---, u$P). Since u”, 7=0,1, 2, ---, n, can be approximated

by functions in D(2) in the topology of E?(£) by Lemmas [.2 and I.3, so
can u.

1.4. The operator B.

We now define a linear continuous operator from E?'(£) into W~Y#:?'(I")
(=the dual space of WY?'?(I")).

Let w=(¢;, @3, -+, Pn) E D(2) and o< 2(2). Then, by the divergence
theorem,

(1.4) [ @iviwygdr+| @, Ig)dx={ SGomGar,

q.e. d.

where (-, -) denotes the inner product in R¥, V¢=grad ¢ and v(x’')=(v,(x),
vo(x'), -+, vy(x") is the unit vector which is normal to I’ at x’ I and
oriented toward the exterior of £. Since 9(9) is dense in W¥?(2), for each

ve WYP(2) there is a sequence {7,} C D(2) such that 7;,»—s>v in W4?(£). Sub-
stituting 7; for ¢ in and letting j— oo, we have

R
(1.5) { (divwyrdet { . T)dx= { 2 GGyl
The functional
N
pe W) — [ S Gégwodl

is linear and continuous in W¥?»?(I"). Therefore there exists a unique ele-
ment 6(w) < W-Y2?(I") such that

§ . ZGoomidl =), oyp  for all 82 WHAD),

where {,)p denotes the natural pairing between W~-V?"?(I") and W *"2(I).
It follows from that for each o & WY?»2(I'),
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| ov
| 0x,

<const.fwl,-lvl,, for all ve W'P(Q) with yv=>.

| <o(w), 0y p| < |ldiv w)| 2o 10l Locgy+ k‘é @l Lorcye

LP(D

Hence, by [1.1),

|<0(w), 0> r| = constlwily - [0]yp,p for all v WY?»?(I").

Thus d is a linear and continuous operator from D(2) into W-v?#'(I') in the
topology of EP?(£2). Therefore, by [Proposition 1.1, there is a unique con-
tinuous linear operator B from E?'(2) into W-Y??(I') such that é(w)= Bw
if weD(Q_). Moreover we have the following :

ProposITION 1.4. (a) For any ve EP(2) and ve WH?(Q)

(1.6) { Jdiv vydat { (v, Vo)dx=(Bo, yv)r.
(b) If vy, v, E?'(2) and if v,=v, a.e. near I", then
Bv,= Bv,.

PrRoOOF. The formula immediately follows from [1.5). We now prove
(b). Let U be a neighborhood of I' and assume that v,=v, a.e. on U L.

Let ¥ be an arbitrary element of WY?%?(]"). We can choose v € W*?(£) such
that y9=9 and v=0 a.e. on 2\UN2. Then by

{Bvy, D)= fg(div vl)vdx+fg(vl, Vv)dx

= (divovdzt { (s, T)dz=(Boy, ).
Thus (b) holds. q.e.d.

If veCl(Q—) and if v=Vv, then Bv-————g%, the outward normal derivative
of v on I.

REMARK. Let A be an operator from W?%?(2) into the dual space
(Wr2(2))* defined by

ou

axk

P-2 9u  ov
axk axk

(Au, vy = é { Ql

dx, for all ve Wh2(Q),
and let
S={ve WH?(2); Av=0}.
Lions [14; Chapter 2] introduced a nonlinear operator 4 from S into
Ww-¥?52' ('Y such that

ov
0x,

P-2 gy
<V, on I,
0x,

)= 3

k=1

if ve S and UECZ(.@). It is easily checked that
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T(v) = Ba(v) for all veS,

where a(v)=(a,(v), a,(v), -+, ay(v)) is given by
_| ov |P* adv _ N
ak(v>—|@? ox, k=12 -+, N.
Let U be a neighborhood of I" in R¥. For a function v=_(vy, Vs, =+, Vy)

with v, € L (2 N\U), k=1, 2, ---, N, such that divve L?(2U), there exists
v< E?'(2) such that v=7 a.e. near I'. The assertion (b) of Proposition 1.4
implies that BvU depends only on v, that is, it does not depend on the choice
of such U. Therefore we may define Bv by BU.

COROLLARY 1.5. Let F be a compact subset of 2 and set

KF 0)={veWv"(Q); v=0 on F in the sense of W4 P(2)}.

Then for any ve K(F,0) and any v=(v,, v, -, vy) = [LP'(Q\F)]¥ with
divve LP'(ON\F),

1.7 jQ\F(div v)vdx%—le\F(v, Vv)dx={Bv, yv)p.

In fact, we see that holds for ve@(é) such that v=0 on a neigh-
borhood V of F by considering v < E?'(£), which is equal to v a.e. on 2\ V,
and applying [1.6). Since any function of K(F, 0)is the strong limit of such
functions v, (1.7) holds for any ve K(F, 0).

§2. Pseudomonotone operators in W4P(0Q),

2.1. Definition of pseudomonotone operators.

Let 1<p<oo and 1/p+1/p'=1. Let A(x, & &) be a real-valued functions
on 2XRX RN, We then say that it satisfies the Carathéodory conditions, if
for a.e. x€ 82, A(x, £, &) is continuous in (£, &) and if for all (§, &)= RX RV,
A(x, ¢, &) is measurable in x= 2. Furthermore it is said to satisfy Assump-
tion (I), if it satisfies the Carathéodory conditions and there exist a positive
constant C and a function A(x) e L?'(£2) such that

A €, & &0, 80| ZROFCULIP 4+ 32 161770,

REMARK. Assumption (I) is equivalent to the following condition: for
any v, < Lp(g)! k:O, ly R Ny

A(x, vo(x), vi(x), -+, vy(x)) € LP'(Q).
Moreover, Assumption (I) implies that the integral operator :

(UO’ Uy =0, Z}N\) - A(X, Vo, Uy, ' UN)
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is a bounded continuous operator from [ L?(£2)]¥*! into L?'(2) (cf. Krasnosel’skii
[11; Chapter 17).
We now consider a functional a(-, -) on W*P(2)Xx W?(2) defined by

2.1) a(v, w)= zN)f Ax, v Vv)-—aw—dx—i—j Ay(x, v, Vv )wdx
. ] eI k y Yy axk 2 0\ Uy .

We often say that a(-, -) given by satisfies Assumption (I), if every
Aix, ¢ 8),7=0,1, -+, N, satisfies Assumption (I). Assume Assumption (I).
Then for any fixed ve WbH?(2), the functional w—a(v, w) is linear and con-
tinuous on Wb?(£). Hence there is a unique element 7Tv & (W4?(2))* (=the
dual of Wb?(2)) such that

(2.2) {Tv, wy =a(v, w) for all we WhHP(Q).

Here {-,-> denotes the natural pairing between (W¥?(2))* and W“P(2).
Thus we can define a nonlinear operator T from W%?(£2) into (W¥?(2))* by
and [2.2) Furthermore we consider the following

AssumpTioN (II). If {v,} is a sequence weakly convergent to v in W4?(2)
and if

limsup a(v,, v,—v) <0,

7—00

then
a(v, v—w) <liminf a(v,, v,—w) for all we Wb2(Q).

Here, we recall the notion of pseudomonotone operators that was originally
introduced by Brezis [1]. Let X be a real reflexive Banach space and X*
be its dual space. Then an operator T from X into X* is called pseudomono-
tone if the following two properties are satisfied:

(PM,) 1If {v,} is a sequence weakly convergent to v in X and if

limsup {Tv,, v,—v)> <0,

n—oe

then

{Tv, v—w) Zliminf {Tv,, v,—w) for all we X,

n—oo

(PM,) For each ve X, the functional w—{Tw, w—v) is bounded below
on each bounded subset of X.
Here, <{-, -> denotes the natural pairing between X* and X.

It is easy to see that Assumptions (I) and (II) imply that T defined by
and is a bounded and pseudomonotone operator from W%?(2) into
(WL2(2)*.

Finally, we mention an existence theorem for variational inequalities
involving pseudomonotone operators in X.

THEOREM A (Brezis [1; Corollary 30]). Let T be a bounded pseudomonotone
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operator from X into X* K be a closed convex subset of X and @ be a lower
semicontinuous convex function on K such that @(v)e (—oo, o] for all ve K
and @=*co on K. Suppose that for some vy K with @(v,) < co

{Tv, v—v,) +D(v)

Bl 0o as |v|—oo, veK,

where || denotes the norm in X. Then there is us K such that
{Tu, u—vd <Q(w)—0(u) for all ve K.
If, in particular, T is strictly monotone, 1. e.,
Tv—Tw, v—w)>0 for any v, we X with v+w,

then the above variational problem has a unique solution in K.

2.2. Examples.

We give some simple examples of functionals satisfying Assumptions (I)
and (II).

EXAMPLE 2.1. Let 2=p<oo, a(x)eL=(2), k=1,2, -, N, B(x)e L(2)
and assume that for a positive constant C

B()=C, afn=C, ae on @ k=12, N.
We then define a functional a,(-, ) on WHP(2)X W4?(£2) by

_ov_ [P ov ow
0x, 0xp

ay(v, w)= E

dx—l—j‘ Blv|PPvwdx.

It is easy to check Assumptions (I) and (II). Thus the operator T, given by
(Tw, wy =a,(v, w)

is a continuous, bounded and pseudomonotone operator from W%?(£2) into

(WHP(2))*., Furthermore, it is strictly monotone and for each v, W“?(2),

a,(v, v—v,)
21,0

EXAMPLE 2.2. Let 2=p <co and a(x), B(x)e L=(2) such that for a posi-
tive constant C, a(x)=C and S(x)=C a.e. on £. Set

ow
0x,

o as ”vlll,p_)oo-

“2ywdx

N
a,(v, w)= kgl jga |Vv| p‘z—aa?vl;—

for v, we WhH?(2),

where |Vv|=
as a,(-, +).

EXAMPLE 2.3. Let 3<o<p<oo and B,(x)eL~(2), k=1,2,---, N. We
define

1/2
> . This functional also has the same properties
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bv, w) = ‘Ef Belvle-9wdx  for we WLH(Q)
’ ¥t 0Xxp, = ’

and a;(v, w)=a,(v, w)+b(v, w) or ay,(v, w)+b(v, w). Functions
A0<x7 Cr E) = 18 | C l p—ZC
and

Aix, §, &) =a;|§;177%,+B;1C1°7°CE;
or

o316 T 68101, =12, N,

satisfy Assumption (I). Let {v,} be a sequence in W¥»?(£2) such that vn—w»v

in WhHP(Q) (“g” means the weak convergence). Then, noting that the
natural injection of W¥?(£) into L?(£) is compact (see [13; Theorem 7.1 in

Chapter 2]), we see that vn—s»v in L?(2). Since gi” —>aa—;k in L?(2), k=
k

1,2 -+, N, it follows that h(v, v,—w)—b(v,v—w) for all we W), and
hence, if

limsup a3<vm vn_v> =0 ’
Nvoo

then
limsup a,(v,, v,—v)<0.

T—r 00

Since a,{-, -) satisfies Assumption (II), so does as(-, -). Moreover, we see
that for each v, WH?(£2) there are positive constants d;, t=1, 2, 3, 4, such
that for any ve WH2(2)

ay(v, v=204) Z 0, [V[|£,— 8,0 lf,,—0sV7 5 = dullvIf5 -

This implies that
a5(v, v—1,)
[v]l1,p

o as ||vfl,p—co.

§3. Boundary value problems of mixed type.

3.1. Existence theorem.

Let 1<p<oo, 1/p+1/p’=1, I', be a compact subset of I' and F be a
compact subset of £, and let @ be a lower semicontinuous convex function
on WYPHP(I') with values in (—oo, c0o]. The subdifferential 0@® of @ is a
(possibly multivalued) operator from W¥?“?([") into W-Y?*'(I"). For func-
tions we W2(£) and ¢ € WV??(I"), we put

1) Let @ be a lower semicontinuous convex function on a Banach space X. Then
the multivalued operator 0@ from X into X* defined by 9@(u) ={u*cX*; (u*, w—u)
ZO0(w)—-0(u) for all weX) for ueX with @(u)<co and by 90(u) =0 for u=X with
@ (u) =00 is called the subdifferential of @.
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Ky, ¢; F,w)y={veW"?(2); yv=¢ a.e. on I,

and v=w on F in the sense of W'?(22)}

and
KTy, ¢; F,wy={o=yv; ve K(I',, ¢; F, w)}.

Clearly, the sets K(I'y, ¢; F, w) and K(I',, ¢; F, w) are closed and convex in
WU2(£2) and in WYP»?(I"), respectively.

Let A;(x, ¢ &), 7=0,1, -+, N, be integral operators satisfying Assumption
() and let a(-,-) be the functional given by [2.1} Let we W"?(Q), ¢ <=
wyese(IN, g*e WY (') and f< LP(£2) be given. We suppose that

D=0 on X<F0y¢;F7w)
and
O=co on WYPP(I')NK([,, ¢; F,w).

Then we propose the following problem P,[®, w, ¢, ¢*, f]1: Find us W"2(2)
such that
3.1) — 3 20 A(x w, V)R Agx, u, Ty =F  in ONF

=1 ox,
(in the distribution sense),

Tu=¢ a.e. on [y,
(3.2) {

U=w on F in the sense of W%?(2),
(3.3) —Ba(u)+¢* = 00(yu),

where a(u)=/(a,(u), a,(w), ---, ay(w)), a(u)=A,(x, u, Vu), k=1,2,---, N. We
note that Ba(u) makes sense, since a(u) < [L?'(2)]¥ and div a(u) € LP(2\F)
by Assumption (I) and [3.1)

We first show that the above problem P,[@, w, ¢, ¢* f] is equivalent to
the following variational inequality V,[®@, w, ¢, ¢*, f1: Find ue W"?(2) such
that

(3.4) ue KUI'y, ¢; F,w),
(3.5) a(u, u—v)— | S U=de = Q% pu—yvd p+ 0Gr0) ~ )
for all ve K(['y, ¢; F,w).

PROPOSITION 3.1. Problems P,[®@, w, ¢, ¢* f1 and V,[@, w, P, P* [ are
equivalent to each other.

PrOOF. First we assume that uc W?(£2) is a solution of V,[@, w, ¢, ¢*, f1.
Then u satisfies (3.2) because of [3.4). Substituting u+¢ with @< D(2\F)

for v in [3.5), we have
au, $)—| L Spdx=0.
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This means that holds. Next we show We note that
div a(u) € L (9O\F),

which follows from [3.1). Therefore we can apply the formula for a(u)
and any ve< K(F, 0) and have

(3.6) { 4 (div a(w)vdzt { (@), To)dx=(Ba(w), o).

Using [(3.1), [3:4), [3.5) and [3.6), we obtain
O(yv)—O(yu)= L}\F(a(u), V(u~-v))dx+fg\FAo(x, u, Vu)(u—v)dx

~L}\Ff(u-—v)dx~ QX yu—rvyp
- [ (div a(u))(u—v)dx+ j Ay(x, u, Yu)(u—v)dx
R\F ON\F

=, S=vdrtBatw)—¢*, pu—yvyr

={(Ba(u)—¢*, yu—yvpr  for all ve K(I',, ¢; F,w).

Since @ =00 on WY ?(I'NK(I',, ¢ ; F, w), we have by the definition of
00.

Conversely, let u be a solution of P,[®,w, ¢, ¢* f1. (3.2) shows that
holds. From it follows that div a(u) € LP'(2\F), so that as above
we have [3.6). We derive from together with and that

O(yv)—@(ru) = {Ba(u), yu—yvyp—<$*, yu—yvir
:_f (div a(u))(u—v)dx—{—f (a(u), V(u—uv))dx
O\F ON\F
—P*, yu—yvr

== ~§ f(u——v)dx—i—j Ay(x, u, Vu)(u—v)dx
(AN O\F
+f ,(atw), Tu—v)dz—(g*, ru—rv)r

=au, u=v)= [ flu—v)dx—(g¥, pu—po)r
for all ve KU, ¢; F, w).

Thus we have [(3.5). g.e.d.
The following existence theorem for P,[@, w, ¢, ¢*, /] is a consequence

of A in paragraph 2.1 and the above proposition.
THEOREM 3.2. In addition to the assumptions so far made, we suppose
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that the functional a(-, -) satisfies Assumption (II) and for some vy K(I',, ¢ ;

F, w) with @(yv,) < oo

G.7) a(v, v—v)+P(yv)
llvlll,p

Then the problem P,[®,w, ¢, ¢*, ] admits a solution.
Proor. We define an operator T : WH2(Q2)—(W¥P(2))* by

Co as ”11”1,1;"*00, ve K(F(lv ¢: Fy ZU) .

{Tv, 2> =a(v, z)—«j‘gfzdx—- ¥ rzor.

Since a(-, -) satisfies Assumption (II), we see that T is bounded and pseudo-
monotone. A function @ on K(I'y, ¢; F, w) given by &(v)=®(;v) is convex,
#* oo, and lower semicontinuous on K([',, ¢; F, w). Besides, it follows from
(3.7) that for the same v, as in (3.7)

(T, v—0,> +B(v)

V)1,
Therefore, by A, the variational inequality
(Tu, u—vy <®w)—d(u)  for all ve K[, ¢; F,w),

o as |vll,,—o0, vE KUy, ¢ F,w).

or equivalently, V,[@, w, ¢, ¢* f] has a solution u. By [Proposition 3.1, this
function u is also a solution of P,[®, w, ¢, ¢*, f1. q.e. d.

3.2. Special cases.

We now state some special cases of
CaSE 1. In case I'y=1"and ¢=0, note that K(I", 0; F, w)={0} and 9®(0)
=W-¥?»?'(["), Hence, shows that :

— 0 A w, V) Afx, w, Ty =F  in ON\F,
E=1 axk

lruZO a.e.on [,
U=w on F in the sense of WH?(02)
has a solution u in W*?({2), provided that for some v, K(I', 0; F, w)

a(v, v—1,)
1V,

CASE 2. We consider the case in which F=0 and I';=1". In this case,
KUI,¢;0,w)y=KI,)={ve W4 (2);yv=¢ a.e. on I'}
and 00(¢)=W-V?-?(I"), Suppose that

oo as |v|,p—o0, ve K(I',0; F,w).

a(v, v—0,)
‘ HUH1,p

Then, applying we see that the Dirichlet problem

o as ||U”1,p'_’oo, ve K(I', &) .
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0

1 0xy

M=

Ap(x, u, Vu)+Ay(x, u, Vu)=f in £,

k

Il

yu=¢ a.e.on I

has a solution in W4H?(Q).

Case 3. Take I'y=0 and F=0 in Then, clearly, K(®, ¢;
0, w)y=WH2(2). If @=0o0n W¥P?(I"), then 00(9)= {0} for every 0 W¥?"2(I"),
Hence, under the assumption that

a(v, v)

P, 28 Ihp—o

?

the problem of the Neumann type:
N
— 5 A w, Tt A w, T=F  in @
k=1 00X,

Ba(u)=¢*

has a solution in W%P(2).

CASE 4. Let j(r) be a continuous and convex function on R such that
jove LYI') for every ®< LP(I"). Suppose that j is bounded below and the
function & on L?(I") given by

B(0) = j[ i@®dl for e LA

is continuous. Then, the subdifferential [ of j is given by
(ry=[j.(r),j4(r)]  for every rER

(cf. Rockafellar [20; §24]), where j~ and j, denote the left and right deriva-
tives of j, respectively. It is clear that ® is convex and bounded below on
L»(I"). Moreover, 0*<od(9) if and only if o*< L?(I") and ?*&lod a.e. on
I" (see Brezis [2; Appendix 7). Now, we take F=0, I',=0 and @=& | y1/p".,
in [Theorem 3.2 In this case, is written in the following form:

(3.8) —Ba(u)+¢* € l(yu) a.e.on I'.
In fact, by [3.3),
{(—Ba(u)+¢*, 0—yudr < O(0)—0(ru) for all D W¥? 2(['),
Substituting yu+® with @ € WY?»2([") for ¢ in the above inequality, we have
B(yu)—b(ru—n) < (—Ba(w)+¢*, D))
< d(Gyu+w)—d(yu) for all we wW¥rHr(I),

Since WY¥?2([') is dense in L"), the continuity of & on L?(I") and the
above inequality imply that
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—Ba(uw)+¢*e LP(I)
and

. jr<—Ba<u)+¢*xa—7u>dr§ B(0)—B(Gu)  for all ve LI,

that is,
—Ba(u)+¢* e aﬁ(ru) ,
and so holds.

For example, if j(r)=|r|, then

1 if >0,
(ry=9 [—1,1] if r=0,
—1 if r<0.
In this case, is of the form
—Ba(u)+¢*=1 a.e.on {xel;yru(x’)>0},
—1=—Ba(u)+¢*<1 a.e.on {x¥'el;yux)=0},
—Ba(u)+¢*=—1 a.e.on {x'el"; ru(x’)<0}

(cf. [2;4§ 1.2]).
CASE 5. Let 2=<p<oo, g L*(I") with g=0 a.e. on I'. Define @ by

60)=—( glo|rdl’  for veLAT).
pJr
Then it is easy to see that @ is everywhere differentiable in the sense of
Fréchet and the derivative coincides with the subdifferential 09 of @, that is,
00(0)=g|0|?"%  for each ve< L?().
In [Theorem 312, let F=0. Then
Ky, ¢; 0, w)y=K(UIy, p)={ves WP(2);yv=¢ a.e. on I',}.

If we put
16) it ek, d)={v=yv;ve KT, ¢)},

(3.9 (D)=
0 otherwise,

then is written in the following form:
(3.10) —Ba(u)+¢*=glyu|?*(yu) on I\U,

(in the distribution sense).
In fact, by [3.3),
(Ba(uw)—¢*, ru—0yp = 0@)—0(yu)  for all v K, ¢).

Taking o =7yu+t® with 0<t<1 and w< 9(I'\[,) in the above inequality,
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we obtain
(—Ba(u)+¢*, 0y = - @Gut12)—B(ru)).
Hence we have by letting ] 0
(—Ba(w+¢* 0yr = | _glpul?*(rundl.
This implies that
(—Ba(w)+¢*, op= jrgtyulp-%ru)wdr for all we IN\T).
Thus we have [3.10).

§4. Unilateral boundary value problems.

Let 1<p<oo and 1/p+1/p’=1. Let I', be a compact subset of I', F be
a compact subset of 2, we W'?(2) and ¢ = WY?"2(I"). Then we put

CUy, ¢; Fyw)y={ve W"(2);yv=¢ on I', in the sense of

WursP([), v=w on F in the sense of W%?(2)}
and
C(ly, ¢; Fw)y={o=yv; veCl, ¢; F,w)}.

Obviously, C(I', ¢ ; F, w) (resp. cur,, ¢ ; F, w)) is closed and convex in W ?(£2)
(resp. WY¥2He(™)),

Let Aj(x, ¢ &), 7=0,1, -+, N, be integral operators satisfying Assumption
(I). Then, given ¢ € WY? ("), o*< WP P'("), we WHP(£2) and fe L' (Q),
we pose the following problem P, w, ¢, ¢* f]: Find u<s W"?(2) such that

“.1) —kﬁ%—Ak(x, w, V) +Ayx, w, Yu)=/f in O\F
=1 k
(in the distribution sense),

yu=¢  on I’y in the sense of WY?"?(["),

(4.2)

u=w on F in the sense of WH?(Q),
(4.3) Ba(u) = ¢* on I’ (in the distribution sense),
(4.4) Ba(u) = ¢* on I'\\I", (in the distribution sense),
(4.5) {Ba(u)—¢*, yu—gyr=0,

where a(u) is as in the previous section. Again Ba(u) makes sense, since
a(u) e [LP'(£2)]¥ and div a(u)= LP(2\F) by Assumption (I) and [4.I).

REMARK 1. The set of conditions (4.3), (4.4) and may be formally
written in the following form
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¥
kZ; Ap(x, u, Vu)y, = p* on I,

N
kz Ak('xy u, vu)”k :9/)* on F\FO ’
=1

N -
(;§1Ak(x’ u, Vu)y,—¢*)(u—¢)=0 on I'.

Let a(-, -) be the functional on W¥?(2)x W¥?(Q) given by [2.1). Then the
variational inequality V,[w, ¢, ¢* f] associated with the above problem is
of the following form: Find ue W%?(2) such that

(4.6) ueCl'y, ¢; F,w),

4.7) alu, u——v)—jgf(u—w)dxg P*, yu—yvr

for all vel(l', ¢; F,w).
Now, we show

PRrROPOSITION 4.1. Problems P,[w, ¢, ¢* f1 and V,[w, ¢, ¢* f1 are equi-
valent to each other.

ProOF. We first prove that a solution u of V,[w, ¢, ¢* f] satisfies
~(4.5). In fact, substituting u+¢ with ¢ € D(L\F) for v in [4.7), we obtain
(4.1), and hence we see that

div a(u) € LP(2\F).

Therefore we can use the formula (1.7) with v=a(u) and v< K(F, 0). Now,
choose 7= C(['y, ¢ ; F, w) with yo=¢. Substituting 2u—7 for v in [(4.7), we
have

al, u=0)2 | _fu—0)dxt(g¥, pu—r,-.
Combining with v=4, we have
(4.8) a(u, u—0)= | Ju—0)dxt (g, ru—yorr.
On the other hand, by the formula and the equation [4.1),
(4.9) {Ba(u), yvypr=a(u, v)——jgfvdx for all ve K(F, 0).
Letting v=u—7 in [4.9] and making use of [4.8), we have

(Ba(u), yu—yvyr =<{¢* yu—yor.
Hence holds. Next, let § be any function in (/") and ¢ be a function
in 9(2) such that y¢=¢ and $=0 on a neighborhood of F. If =0 on I,
then u+¢ < C(y, ¢; F, w) and so it follows from and that (Ba(u)
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—¢* ¢>p=0. Hence we have (4.3). If ée D(I'\I,), then u+pe C(Iy, ¢;
F, w) and so it follows from and again that
(Ba(u)—¢*, é>r=0.

Thus (4.4) is proved. Finally, follows directly from [(4.6).

Conversely, assume that u is a solution of P,[w, ¢, ¢* f1. It is enough
to prove only [4.7). We first observe that
(4.10) (Ba(uw)—¢*, g—yvop =0 for all velC'y, ¢; F,w).
Indeed, for each v C(I', ¢ ; F, w) there is a sequence {@,} C.@(Q) such that

76,=0 on a neighborhood of [’y and 7’¢k—s->7fv—¢ in W¥?»?»([") as k— oo,
Hence, noting that
Ba(u)—¢* ro,r=0  for all &

by (4.3) and (4.4)7, we get
(Ba(u)—¢*, yv—dyr= lim (Ba(u)—¢* y¢or=0.
Thus we have [410). Next, take ¢ = C(I",, ¢; F, w) with y9=¢. Then, since
holds, we see from that
(4.11) 0={(Ba(uw)—¢*, yu—d>r

= au, u=0)~[_flu—0)dx—{g* ru—gyr.

Hence, by and using again, we have for any veC(l'y, ¢; F, w)
(4.12) 0=<Ba(u)—¢*, s—rv>r

=a(u, 3—v)— [ _flo—v)dz—(g* $—yvdr.

Combining and [(4.12), we obtain [4.7). q.e.d.

From A and the above proposition we get the following exist-
ence theorem for the problem P, w, ¢, ¢* f].

THEOREM 4.2. If, in addition to the above assumptions, we suppose that
the functional a(-, -) satisfies Assumption (II) and that for some v, C(I'y, ¢;
F, w)

a(v, v—1,)
1ol
then PLw, ¢, ¢*, f1 admits a solution.

In fact, applying A for K=C(I'y, ¢; F,w), ®=0 and T given

by {Tu, v) =a(y, v)——jgfvdx——@’)*, rv>r, we see that V,[w, ¢, ¢* f1 has a solu-

tion, and hence so does P,[w, ¢, ¢*, f1.

o0 as ”7)”1’1,—’00, UEC(F0,¢;F1 w)y
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REMARK 2. In the parabolic case, analogues of Theorems and are
valid under further restrictions on A;(x, , §); certain nonlinear parabolic
partial differential equations of the form

G S DA, V) r A w, Y= in (0, T)x 2
k=1 0Xy
with initial condition and with boundary conditions of the same types as in
the problems treated above are equivalent to initial-value problems for the
parabolic variational inequalities associated with them (see [9], [107]).

ExAMPLE 4.3. Let 2<p< oo and let us consider the case where F=20,
I'v=I", $=0and ¢*=0. Then, in view of the above theorem, given f & L?'(2),
the problem

1 p-2

k 1 axk <' axk au >+Iu1p U= f in Q’
yuz=0 a.e.on I,
Ba(u)=0 on I,

<Ba(u)7 )’u>r:0
has a solution in W*?(2) (cf. [15; Chapter 1]), where

au)= (‘ 0x;

Pt gu | ou
0x, ° | Oxy

P~ Ju ou

ox, | 0x, g )

0xy

§5. Some results on convergence of sets and of functions.

In this section, let 1<p<co and 1/p+1/p’=1. We use the same notations
as in the preceding sections; for a compact subset I', of I', a compact sub-
set F of 2, = WYPP(I") and we WHP(2) we set

Ky, p)={ve W*(2); yv=¢ a.e. on I},

C, p)={ve W"?(2); yv=¢ on Iy in the sense of W¥?"2(I")},
KF,wy={ve W"?(); v=w on F in the sense of W»?(Q)},
Ko, ¢ 5 F, w)=K(I'y, $) N K(F, w),

CL, ¢; F, w)y=CI'"y, $) N K(F, w).

5.1. Convergence of subsets and of functions.

The following notion of convergence of sets is due to Mosco [19]. Let
X be a real reflexive Banach space. For a sequence {S,} of subsets of X,
we define
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s-Liminf S, ={v= X; there is a sequence {v,} with v, S,
s
for all & such that v, — v in X as k— oo}
and
w-Limsup S, = {ve X; there is a sequence {v;} with v,ES,;

for all j such that {Sk,} is a subsequence of

w
{S¢} and v; —> v in X as j—oo}.
We say that {S,} converges to a subset S in X, if
S=s-Liminf S, =w-Limsup S, .

We then write either S,—S in X or S=Lim S, in X.

Let @ be a function on X with values in [—oo, co]. The epigraph epi (@)
of @ is the set {(v, 7)€ XX R; ®(v)=<r}. Let {@,} be a sequence of functions
on X with values in [—oo, co]. Then, by “O@=Lim®, in X” we mean that
epi (@,)=Limepi(P,) in XX R.

The following lemma due to Mosco [19; Lemma 1.10] gives a characteriza-
tion of convergence of functions in the above sense.

LEMMA 5.1. Let {@,} be a sequence of functions on X. Then @=Lim®,
in X if and only if (a) and (b) below are satisfied:

(a) For each ve X there is a sequence {v,} C X such that vkiv in X and

1ifknsup D, (v,)=0W).

(b) If {@,;} is a subsequence of {@,} and {v,} is a sequence in X weakly
convergent to ve X, then

lirglinf 0, (v)=D(v).

Here, liminf and limsup are taken in [ —oo, oo,

5.2. Some results on convergence of convex sets.

PROPOSITION 5.2. Let {¢,} T WYPP(I") and {w,} C W"P(2) be sequences
such that

¢k—s>¢ in WYPsP(I™Y and w, —s—>w in WhP(2) as k—co.
Then,
(L K(F, w)y=Lim K(F, w,) in WhH2(8),
(2) KU, ¢)=Lim K(I',, ¢ in Whe(8),
3) CU, ¢)=Lim CU,, ¢p) in Wh2(8),

4) Ky, ¢; F,wy=Lim K(I'y, 5 F, wy)  in WHP(Q),
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(5)  CU'y ¢; F,w)=Lim C(I'y, ¢r; F, wy) in WHr(8Q).

Proor. We first show (1). Let ve K(F,w) be any function. Then
vpy=w,+w—w)e K(F, w,) for all £ and [vi—vly,p=llwy—wl,,,—0 as k—co,
Therefore,
(5.1) K(F, w)C s-Liminf K(F, w,) .
Next, let {v;} be a sequence with v, & K(F, w,;) for all j such that {w,,} is
a subsequence of {w,} and: vjﬂw in W42(2). Then v,—w,, € K(F, 0) and
v,-—wkj-w»v—w in Wb?(2). Since K(F, 0)is convex and closed in W¥?(2), we
have v—w e K(F, 0). Thus v K(F, w). Hence
(5.2) w-Limsup K(F, w,)C K(F, w) .
Since it is trivial that

s-Liminf K(F, w,) C w-Limsup K(F, w,),

it follows from and that K(F, w)=Lim K(F, w,) in W¥?(2).

To show (2) we take a function ? € W¥?(2) and a sequence {7,} C W?(2)

such that yo=¢, 79,=¢, for all k and ﬁk—s»ﬁ in WH2(2). Let ve K(I'y, ¢)
be any function and set v,=%,+v—0 for each k. Then v, K(I',, ¢;) for all

k£ and vklv in W4?(). Hence,
K(I'y, ¢) s-Liminf K(I'y, ¢s) .
Furthermore, just as in the case of (1), we can prove that
w-Limsup K(I'y, ¢p) KLy, ¢).
Thus (2) holds.
(3) is also proved just as (2).
Next, using (1) and (2), we shall show (4). Let v be any function in
K(I'y, ¢; F, w) and p be a function in 9(2) such that p=1 on a neighborhood

of F. Since K(I'y, ¢; F,w)=K(Iy, ) "K(F,w), by (1) and (2) there are
sequences {v,} with v, K(F, w,) and {9,} with 7, K(I',, ¢;) for each &

such that vk—sav in W4?(2) as k—oco and ﬁk—s»v in WH?(2) as k—oo. There-
fore, if we put u,=pv,+({1—p)d, for each k, then u,e K(I',, ¢; F, w;) for
all & and uk—iv in W4?(£), so that

s-Liminf K(I'y, ¢»; F, wy) DKy, ¢ ; F, w).
Since it is clear by (1) and (2) that

W—Limsup K(['O’ (}’)k; F, wk>CK(F0, Sb, F’ 'LU),
we have (4).
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Finally, (5) follows from (1) and (3) by the same method as above.

q. e. d.

§6. Convergence of solutions.

We investigate convergence properties of solutions of problems treated
in Sections 3 and 4. In this section, let 1<p<oo and 1/p+1/p'=1.

6.1.

Convergence theorem.

Let a(-, -) be a functional on WH?(Q) X W4?() given by satisfying
Assumption (I), K be a closed convex subset of W¥?(2) and ¥ be a lower
semicontinuous convex function on K such that ¥'(v) & (—oo, co] for all ve K
and ¥ =00 on K. Suppose that there are sequences {a™(-,-)}, {K,} and
{¥,} with the following properties :

(i)

(ii)

(iii)

(iv)

Each a™(-, -) is a functional on WHP(2)X W¥?(£) given by the form

satisfying Assumptions (I) and (II) in Section 2. We require

(A) {a™(-, -)} is uniformly bounded on bounded subsets of W?(£2)
X WH2(£2), i.e., for each bounded subset B of W¥?(£), there is
a positive constant M such that

la™(v, w)| =M for all » and all v, we B.

(A, If {a™®(-, )} is a subsequence of {a“(-, )} and {v,} is a
sequence in W'?(2) weakly convergent to v W4?(£2) and if
lirknsup a"B (v, v,—0) =0,

then
liminf a®™®(v,, v,—w) = a(v, v—Ww)
k—oo

for every we WHP(Q).
Each K, is a closed convex subset of W¥%?(£2) and
K=Lim K, in Wbh2(0Q).

Each ¥, is a lower semicontinuous convex function on W2({)
such that ¥,z 00 on K,, ¥,(v)e(—o0, o] for all ve K,

vewrr(Q); ¥,(v)<o}CK,,
and
Y=Lim?, in Wh2(02).

There is a bounded sequence {a,} C WH?(2) with a,€ K,, for all n
such that

(By sup ¥, (a,) < oo,
(B,) for each n,



144 N. KENMOCHI

a(n)(v, v— an) + wn(v)

“le,p

o as “UHI,p—-}OO’ UEKnr

(B;) for any sequence {v,} with v, € K,, |v,ll;,,—co implies that

a(m(vm vn#an>+wn(vn>

lvalls,p

oo,

Under these hypotheses (i)-(iv) we have the following convergence
theorem.

THEOREM 6.1. Let fe LP(2) and {f,} C L? (). Suppose that fn—s+f n
L?(2) as n—oo. If we denote by S the set of all solutions of the variational
inequality:

ue K,
(V) {

a(u, u—v)—jgf(u—v)a’xé U(w)—¥ () for all ve K,

and, for each n, denote by S, the set of all solutions of the variational inequality:

u, € K, ,
(Vo) {
a™(uy, un—v)—‘fgfn(un—v)dx§ .-, (u,) foralvekK,,
then we have:
(a) w-Limsup S, #0 and w-Limsup S,CS.
(b) Let {u,} be a sequence such that u,S,, for a subsequence {S,,} of
{S,} and uk—>u in WH2(2) as k—oo for some ue WhP(2) (hence
ueS by (a)). Then

lim @™ (u,, u,) = alu, u)

k—oo

and
}eim U, () ="(u).

For a proof of this theorem, see [8; Theorem 4.27].
REMARK. We set

a(v, w) =3 [_A,(x, v, 70)

and for each =,

g;"j dxt [ Afx, v, Voywdz

a™ (v, w) :Jé jg AP(x, v, Vv)g—zdx+j9A5")(x, v, V)wdx.

Suppose that a(-, -) and every a"™(-, -) satisfy Assumptions (I) and (II) in § 2,
and that there are sequences {c,} of positive numbers and {A,} of functions
in L?(2) such that for each n
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(61) IA;”KX, Cy Ely 52’ Ty EN)—Ak(x: Cr Slv 527 Tty EN>1

Zc(IE1PF BIEPHh (), k=01, N,

and

tn —>0,

S
h,—>0 in L?(Q)

as n—oo, Then a(-,-) and {a™(-, )} satisfy conditions (A,) and (A;). In
fact, it is easy to see that the sequence {a™(-, <)} satisfies condition (A,).
Let {vi} be a sequence in WH"P(£) weakly convergent to v< W¥P(2) and
{a"®(-, -)} be a subsequence of {a™(-, -)} such that

(6.2) lirknsup a"B(vy, 1,—0) <0,

Then, by [6.1),

|a"P(vy, vi)—a(vg, ve)| —> 0

and
[a"®(vy, v)—a(vy, V)| —> 0

as k—oo. Since
a™®(vy, vy —a™P(vy, v)
= —a"P(vy, ve)—a(ve, vi)| —|a(ve, v)—a"® (v, v)]

+alvg, vi)—a(ve, v)

we have by
1i£nsup a(vy, vy—v) Z0.
Therefore, Assumption (II) for a(-, -) implies that

liininf a(ve, ve—w) = a(v, v—w) for every we WhH?(Q).

Hence, using again, we obtain
liminf a™#(vy, vp—w) = alv, v—w) for every we Wh?(0Q).
koo
Thus condition (A,) is verified.

6.2. Examples.
We suppose that 2<p < oo. Let us consider

J v ow
(n) — (n)y p-2 A n) p-2
(v, )= 31 [ a®|Tv| T T da+{ B™|v|*twdx,

n=1, 2, -, and

N
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Assume:
(1) For a positive constant c,
a™(x)=c, B™(x)=c¢ a.e.on 2 for n=1,2, -,

(2) a, B, a™, ™ e L*(2) and
s s
a®” —a, B®—f in L>(£2) as n—oo.
Then, clearly, {a®(-, -)} and a(-, -) satisfy condition (i) in the previous para-
graph. As is easily seen, for each bounded subset B of W'?(£) there is a
constant ¢> 0 such that

. o —w
inf (P, v—w)

= vl —=ClvlEy for all ve WH?(2) with v+0.
weEB anl,p

EXAMPLE 6.2. Let F be a compact subset of £ and I', be a closed subset
of I', and let {¢,} CWVer(I'), {g¥}cCWv*-?(I"), {f,} CL?(2) and {g.}
c L=(I") with g,=0 a.e. on I" and {w,} C W»?(2) be sequences such that

W, —> W in Wir(Q),

I —> ¢ in WVPr(I7),

S
¥—>¢*  in WovEr (D),
S
fo—f in L?(Q),
S

& —> & in L=(I"),

as n—oo, Then we consider the problems

— 5o« Tul ) +plulru=F  in O\F,

i= 0x;

(P) ru=¢ a.e.on I,

U=w on F in the sense of W4?(Q),
—Ba(u)+¢*=glyu|?*(yu) on I'\J,,

and for each n

— - 0 ) —Z_Gu_n (n -2, .
;gl 3xj (a lvunlp axj )+IB )Iunlp un‘—fn in IQ\F’
(P,) YU, =¢, a.e.onl,
Up =W, on F in the sense of W'2(2),

—Ba™(u,)+¢%=g, | ru,|?"*(ru,) on I'\[,,
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where
a(u):(alvulp-z_(,;@;‘l_, | T2 aa;tN>
and
a™(u,)= (am)]Vunlp—?_g_Zl_z_, e, ™| Ty, | P 31;; > '

We now show that every (P,) admits a unique solution as well as (P) and
that the solution u, of (P,) converges strongly to the solution u of (P) in
Wr(2). In fact, as was seen in Case 5 in Section 3, these problems (P) and
(P,) are equivalent to the associated variational inequalities

us K, ¢; F,w),
(V) a(u, u——v)—fgf(u——v)dxg@(rv)——@(ru)

for all ve K(I'y, ¢ ; F, w)
where

1 ) . 5

==\ g|o|Pdl +L*, 0> p, if e K(I'y, ¢; F, w),
q)(ﬁ):[ o), ¢*, r o ¢ F, )

o0 otherwise,

and
unEK(F07¢n;Fy wn)y

( Vn) am)(uny un—v)—j‘gfn<un—v>dx é ®n(rv)_@n(run)

for all ve K(I', ¢, ; F, w,)
where

@n(ﬁ):{ %"jrgnlﬁlpdf%—(gbi‘, 0 if 0Ky, ¢n; F, wy),

0 otherwise,

respectively. We note that by A the above problem (V) has a
unique solution as well as the problem (V,), since the operators from W4?(2)
into (WHP(2))* associated with a(-, -) and a‘™(-, -) are strictly monotone.
Under our assumptions, we have by (4) of [Proposition 5.2, K([',, ¢; F, w)
=Lim K(Iy, ¢ ; F, w,) in WH?(2) and @oy=Lim@,o7 in W"2(£2) by
5.1. Hence conditions (ii) and (iii) for K= K(I',, ¢ ; F, w), K, =K'y, ¢ ; F, wy,),
U=@oy and ¥,=0,07 in the previous paragraph are satisfied. It is also
easy to check condition (iv) for K=K, ¢; F,w), K,=K(',, ¢,; F, w,),
U =@oy and ¥,=0,0y. Therefore, applying (a) of [Theorem 6.1, we obtain
that the solution u, of (P,) converges weakly to the solution u# of (P) in

WHP(), so that uniu in L?(£) by the compactness of the natural injection
from W4?(2) into LP(2). Moreover, by (b) of [Theorem 6.1, lim fg a™ |Vu,|Pdx
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_j alVu|?dx, and so hmj |vzzn1pdx—j |Vu|?dx. Hence |uals,p—llulp

Nn—oco

From this together with the uniform convexity of W%?(£2) we conclude that

U, —u in WHP(2) as n—oo.
ExXAMPLE 6.3. Under the same assumptions as in Example 6.2, we con-
sider problems of another type:

au

-5 —(al VulP i) Blulu=r  in ONF,

yu=¢  on I, in the sense of WY?"2(I"),
U=uw on F in the sense of Wh"?(2),
Ba(w)z¢* on I,

Ba(u)=¢* on I'\.,,

I

(P)’

(Ba(u)—¢*, yu—¢>r=0,
and

_é ox; Gk ;‘j)+ﬁ<">lunlp-2un=fn in ONF,

7U,=¢, on I, in the sense of WY?"?(["),

(P,) 4 Un="Wn on F in the sense of W'?({2),

Ba™(u,)z¢x  on I,

Ba™(u,)= ¢ on I'N[I'y,

(Ba™ ()=, 1in—¢wr=0.

Applying and using the fact ((5) of [Proposition 5.2) that
C(Ly, ¢; F,w)y=Lim C(I"y, ¢ ; F,w,)  in Wh2(Q),

we can prove, just as in Example 6.2, that the solution u, of (P,)’ strongly
converges to the solution u of (P) as n—co.
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