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Introduction.

In [8] Smyth showed that an Einstein complex hypersurface in a com-
plex space form is locally symmetric, and he proved the classification theorem
of it and Chern proved the corresponding local theorem. And moreover
Takahashi [9] showed that the condition that a hypersurface is Einstein can
be relaxed to the condition that the Ricci tensor is parallel. These results
were studied also by Nomizu-Smyth [4]. And by the method of algebraic
geometry Kobayashi [2] proved that P"(C) and the complex quadric Q" are
the only compact complex hypersurfaces imbedded in P"*'(C) which have
constant scalar curvature. On the other hand, Ogiue [6] studied a non-
singular algebraic variety from the differential geometric point of view and
gave sufficient conditions for a complex submanifold to be totally geodesic.

In this note we shall give a condition for a compact complex submani-
fold itmmersed in a projective space to be Einstein. From this, we shall
prove that a compact complex hypersurface immersed in P**(C) with con-
stant scalar curvature is either a hyperplane or a hyperquadric.

The author would like to express his hearty thanks to Dr. S. Yamaguchi

for his advices.

§1. Preliminaries.

Let M be a Kaehler manifold of complex dimension n-+p with structure
tensor field / and the Kaehler metric <,), and let M be an n-dimensional
complex submanifold of M. The Riemannian metric induced on M is a
Kaehler metric, which is denoted by the same <{,) and all metric properties
of M refer to this metric. The complex structure of M is denoted by the
same J as in M. By V, we denote the covariant differentiation in M and by
V the one in M determined by the induced metric. For any tangent vector
fields X, ¥ and normal vector field N on M, the Gauss-Weingarten formulas

are given by
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VxY=V;Y+B(X,Y), VyN=—AY(X)+DyN,

where (B(X,Y), N>=<{A¥(X),Y> and D is the linear connection in the
normal bundle T(M)*. Both A and B are called the second fundamental
form of M. Let R and R denote the curvature tensors of M and M respec-
tively. If we assume that M is of constant holomorphic sectional curvature
¢, then the curvature tensor R of M is represented by the following:

11 RxyZ= "LlfC(<Y, Ly X=X, Z5Y+LZ,JYJX—LZ, JXOJY +2(X, JY)]Z) ,

(1.2) RyyZ=RyyZ—ABTD(X)4 ABED(Y)

Let v, -+, vy, be a frame for T,(M)*, and let x, y=T,(M). Then the
Ricci tensor S of M is given by

(13) S, 3) = -y (n+1)ed, 3y— 3 <AIAN), 3.

Here we write A’ instead of A% to simplify the presentation. We denote by
Q the Ricci operator of M defined by setting S(x, ¥) =<{Qx, y>. From [1.3),
the scalar curvature K of M is given by

(1.4) K=n(n+1)c—[Al?,

where ||A|| denotes the length of the second fundamental form.
On the other hand, we have the relations between the second fundamental
form A and the complex structure J:

(1.5) AVJH+JAY =0, AN —JAN =0,

§2. Complex submanifolds with constant scalar curvature.

First we prepare two lemmas for a Kaehler manifold M of complex
dimension n. Let ey, -+, e, be a frame for T,(M), and let E, -, E,, be
local, orthonormal vector fields on M which extend ¢y, ---, ¢,,, and which are
covariant constant with respect to V at me M. Let x,y, z€ T,(M). Extend
x,9,zto X,Y, Z local vector fields on M such that all are covariant constant
at me M with respect to V. Then using the standard facts about the covari-
ant differentiation, we obtain the following:

LEMMA 1. The Ricci tensor S of a Kaehler manifold M satisfies the fol-
lowing

V.(S)(x, ) =V(S)y, 2)+V,,(S)(Jx, 2).

PROOF. The curvature tensor R and the Ricci tensor S of M possess the
properties (cf. [3], p. 149)
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SUx J»)=5(x,5) and S(x,y)=-5(Trace of JoRq,p).
From this and Bianchi’s identity, we have

()% N=TASX, ¥ )=V 5 JRx,or By BD)

=3 3 (TR 0 20+ T (Rhss 20)

=V, 2)+V5,(S)(Ux, 2).
Now we define the “restricted” Laplacian of a tensor field 7 of type

(r, s) on M. First we set

VX,ZTZVX(VYT)—VVXYTs
where X and Y are vector fields on M. Then the “restricted” Laplacian
V2T is defined by

2n

V& THY(m)= L_:ZI VeV, T(m).

This is independent of the choice of an orthonormal basis.

LEMMA 2. If a Kaehler manifold M has the constant scalar curvature,
then we have

TAS)(x, 9) =2 2 RecalS)ew, 3).

PRrROOF. Since M has the constant scalar curvature, the Ricci tensor S
2n
of M satisfies 3 V., (S)(e;, x)=0 for any vector x& T, (M). Thus
t=1
implies

TSN, 3)= 3 Vs, D5 )% 9= 3 Tr(Tu(SIX, ¥))
= S (TaTa(S)(Ee, Y )+ T5(Tor(SHE,, X))
= 33 (Ruge(S)ew, )+ Retyro(S)Xes, J5))

2n
- 2121 Rei,z<s.)(ei, y) .

REMARK 1. Let M be a compact Kaehler manifold with constant scalar
curvature. If Ry y(R)=0, we can see that the Ricci tensor of M is parallel,
by using [Lemma 1 and [Lemma 2 And from the integral formula of
A. Lichnérowicz (Géométrie des groupes de transformations, p. 10), M is
locally symmetric. This result has been proved by Ogawa [5].

In the following, let M be a Kaehler manifold of complex dimension n-+p
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and constant holomorphic sectional curvature ¢, and let M be an n-dimensional
complex submanifold of M with constant scalar curvature K. Hereafter we
take a frame ey, -+, ¢, in T,(M) such that ¢,,;=Je, (i=1, ---, n) and a frame
Uy, *rv, Vgp for Thp(M)* such that v,y ;= Jv; (j=1, -+, p). Let x,ye T, (M). We
calculate VS)(x, ) in the following way. Since M is minimal in M, we

obtain, by [1.2),
2n 2n, _ —
21221 Rei,x(s)(eiy y) - —21;‘1 {S(Rei,zeia y)+S(Rei,zyr ei)
S(AT0(ey), 3)— S(ATE(2), )

+S(AP=¥ (e,), e))} .
From (1.1), we have

2n —_ —_—
2 33 (S(Ruyya6 9)+S(Rerye, €)= ne(S(, 3) = K<, ).
The Ricci tensor S of M has the property S(Jx, /¥)=S(x, ¥), and hence (1.5
implies that Zé S(AB=Y(e,), ¢,)=0. And we have also
1=1

—2 3 (S(AT0(e,), y)—S(AF(x), ¢,)

=23 S (CA%e), Qy) (AN (x), ey —(AH(x), QedCA(Y), ey)

= —2 R (QAIA(x), y)— (AIQA), ).
Consequently we have
2 3% Ryl S)eq, )= e(nS(x, 3) =5~ K<x, )
—2 53 (QAA(x), ) —(AIQAN), ).

Therefore implies the following

(2.1) Q) @ =c(nlQIP—4K*)— S [Q, A

because V(S)(x, ¥) =<V*Q)(x), ¥, where [|@| denotes the length of the Ricci
operator Q and [Q, A7]=QA’—A’Q. If M is an Einstein manifold, then we
have always [Q, A7]=0.

Next we consider the application of the equation for a complex
submanifold. First we obtain obviously

PROPOSITION 1. Let M be a Kaehler manifold of constant holomorphic sec-
tional curvature ¢<0, and let M be a complex submanifold of M. If the Ricci
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tensor of M is parallel, then M is an Einstein manifold.

In the following, we take the complex projective space P**?(C) as an
ambient space. Then we have

PROPOSITION 2. Let M be an n-dimensional compact complex submanifold
immersed in P™*P(C) with constant scalar curvature. If QA= A'Q (j=1, -+, D),
then M is an Einstein manifold.

PrROOF. By the assumption and we have the following inequality

0=[ Q> =—[ @), Q= (FK—nIQI).

But we have always K?=<2n[|Q|?>, hence we obtain VQ=0. Consequently we
get K*=2n||Q|?% which shows that M is an Einstein manifold.

THEOREM 1. Let M be a compact complex hypersurface immersed in P**(C).
If the scalar curvature of M is constant, then M is either a complex hyperplane
P™(C) or a complex quadric Q™ in P™*(C).

ProOOF. Let v, Jv be a frame for T,(M)*. Then we have

Q=L (1202,

by using and [15). From this we obtain QA*= A°Q and M is an Einstein
manifold by Therefore we have our assertion by Theorem 5
of Nomizu-Smyth [4].

REMARK 2. In [2] Kobayashi proved the following: Let M be an -
dimensional compact complex submanifold imbedded in P**?(C). If M is a
complete intersection of p non-singular hypersurfaces in P**?(C) with con-
stant scalar curvature, then M is an Einstein manifold. (See also Ogiue [6].)
We have shown that the assumption of this Kobayashi’s theorem can be
replaced by the condition QA= A'Q (j=1, ---, p) which is satisfied always
when p=1 and our results are obtained also for an immersed submanifold.
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