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§1. Introduction.

We shall discuss the validity of the limit relation
lim o f(x+u)K(n)du=F(0[ "~ K()du.

A theorem concerning this relation was given in S. Bochner [1] and is well
known. It was generalized by S. Bochner and S. Izumi [2], S. Izumi [3].
The corresponding theorem for the stochastic process was obtained by T.
Kawata [4], [6]. In the present paper we shall deal with the generalizations
of these theorems.

§2. N-functions.

Known definitions and results which we are going to use in this paper
are given. An N-function M(u) admits the representation

M = [ "p(o)t,

where the function p(f) is right-continuous for ¢=0, positive for >0, non-
decreasing, and satisfies the conditions

p(0)=0,  pleo)=lim p(¢)=co.
Let q(s) :pSC})lgst, (s=0). Then

M) =", Nwy={"q(s)ds

are called mutually complementary N-functions. Let M(u) be an N-function.
We shall denote by L,(G), where G denotes a bounded (unbounded) set in
a finite-dimensional Euclidean space, the class of real-valued functions u(x),
defined on G, for which
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o(u; M)= LM(u(x))dx < oo,

Suppose M(u) and N(v) are mutually complementary N-functions. We shall
denote by L% (G) the totality of u(x) satisfying the condition
(u, v) ::j‘ u(x)v(x)dx < oo
G
for all v(x)e Ly(G).

We state known results as lemmas [6].
LEMMA 1. For any pair of functions u(x)< L% (G), v(x)e L (G),

[ wtopda|= ululvly.
LEMMA 2. For an arbitrary N-function M(u) and u(x) e L§(G),

)y = igf—k—(l#—fGM(ku(x))dx) .

§3. A convergence theorem for the numerical function.

We shall prove the following theorem which is a generalization of Bochner-
[zumi’s theorem.

THEOREM 1. Suppose M(u) and N(v) are mutually complementary N-functions.
If f(u) is a function such that

= du
(31) | M) e <00 (a20),
(3.2) f(u) is continuous at the point u=x,
and

(3.3) "1 Kwldu<oo and | lN(u”“K(u))l—_i_—%TH—a <o,
then

(3.4) lim { if(x+u)K(nu)du — f(x)jlff(u)du :

When M(uw)=|u|?/p (p>1), Theorem 1 reduces, with some modification,
to the following corollary.
COROLLARY 1. If

/ = 1 fw)l” _
(3.1) S <o, (0>1, a=0),
(3.2) f(u) is continuous at the point u==x,

(33Y "1 Kldu<oo and [ jutKe(w)|du< oo,
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where —l—-i—%:l, then the relation (3.4) holds.

P
We note that is Bochner-Izumi’s theorem [2].

We shall now prove Theorem 1. We may obviously assume that K(u)=0
for ¥ <0 and that x=0; in which case the relation reads

(3.5) lim nj: Fa) K(nuydu = f(-+0) :K(u)du .

Let g(u) be any function having the following properties : g(u) is bounded
throughout and vanishes outside a certain interval including x, and the limit
g(+0) exists and is equal to f(+0) then, the hypothesis

j”lK(u)|du:A<oo

0

implies (S. Bochner [1]. Satz 3, a)
tim n{ g(u) K(nu)du = f(+0) “K(uw)du .
n—00 0 0

On the other hand g(u) satisfies all conditions laid down for the function
f(u) in Theorem 1. Hence, replacing f(u) by f(u)—g(u), we may add the
further assumption f(+0)=0 and reads now

(3.6) lim 7 f :f(u)K(nu)du =0

which we are going to show.
To any &>0 there corresponds an a > 0 such that | f(u)] §—%— if 05u=<a.
Since

a 8 a e oo -
|nj0f(u)K(nu)dulgTjoan(nu)ldug—[L1K(u)|du—.s
and ¢ may be chosen arbitrary small, the relation will follow if the
relation
(3.7) lim | fu)K(nu)du=0

holds.
i) The case, a>0.
It follows from the Young’s inequality that

a 1+a

l nf f(u)K(nu)du\ i ‘f(u)n”"‘ D

= j MOF)) v + j N(ntut+K(nu)

n u”"‘

M) -G+ | NG K )~
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From the hypotheses and [3.3),

tim |~ NG K@)t =0,

lim—t ("M T =0, (a>0)

N~r00 TL

which shows [3.7).

ii) The case, a=0.
If we put u=2¢%, then becomes

(3.8) hmnj () K(ne)édg =0.

n—c0

If we put f*(&)=f(ef), K*(n, &) =ne*K(ne*), then becomes

(3.9) hmj FHOKHn, dE=0.

n—oo

We are now going to show [3.9).
By Lemmas 1, 2 we have

(3.10) | INEAGLa E)a’él ={inf ([ Mk©)z))

x{inf (L[ NRK#(n, £)d2)}
Since

fop MRS = [ MU0

[ MK, e)de = °°N<kuK(u))~‘%‘—,
(3.10) becomes

Gy |7 e, &g = {inf (1] Mk s)-2 )}

s{inf - (147 N2 )}

From the hypotheses (3.1) and (3.3), we have
lim nj N(kuf’(u))—~- =0, k>0,

inf £ (14 "Mk s -4y <

Thus (3.9) and hence the theorem is proved.
COROLLARY 2. If
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(3.1) jjy(f(u))—l;_—i%‘m?<oo , a>0

(3.2) f(u) is continuous at u=x

(3.3)” Let there exist a monotone decrveasing function Ky(u) such that
(K=K, | Kw<oo,

K(uw)=0(lu|~"*%)  as |u|—oo,

Then the relation (3.4) holds.
In order to prove this, it is sufficient to show that

lim wN(u”“K(u))Tﬁ—ﬁx— =0, a>0.

n—oo

In virtue of the convexity of the N-function N(v)
N K(u)) = Nu*Ky(u)) .
The right hand side is bounded, since, by [3.3Y,

lu'"**Ky(u)=0(1), as |u|—oo.
Therefore

. = @ d . e d
tim | N K@)t < lim | 0(1)—5% =0.

§4. A convergence theorem for the nonstationary stochastic process.

We shall suppose that the stochastic process X(x, w), —co < x< o0, w € 2,
being a probability field, satisfies the conditions:
(i) it is measurable and separable,
(ii) EX(x, )=0 for every x,
(iii) the covariance function

p(s, 1)=EX(s, 0)X(, @)

is continuous in —oo <s, <o,
We shall prove the following theorem which is a generalization of
Kawata’s theorem.
THEOREM 2. Suppose M(u) and N(v) are mutually complementary N-func-
tions. If

(" M(p(s, 1))
(41) j‘_wj_w <1+I311+a>21+lt|1+a> det<OO s a_2_0,

du

(3.3) j_:lmu)mu@o and | _:z\»’(u““K(u)) T <0,
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and
(4.2) the N-function N(u) satisfies the A’-condition (i.e. if there exists positive
constant ¢ and u, can be found such that N(uv)<cN(u)N(), u, v=1u,), then for

every x

(4.3) lim 7 j :X(x+u, ) K(nuw)du = X(x, o) j :QK(u)du ,

where lim is taken in the L* norm E?|-|.

N>

The proof will be done in the same way as for the case of a numerical
function. We only prove the case a > 0.
First of all, we have

(4.4) L= Eln f  Xetu, 0)K(udu—X(s, o) lK(u)dur

§2E‘n [ [XGtu, 0)-X(x, w)]K(nu)dur
luid

2

+2E}X(x, )

n,fl . lgaK(nu)alu'
= 2n2jlu]<5jlv I<5¢(u, V) K(nuw)K(nv)dudv

+200r, ([ 1K@ldu)’,
where ¢(u, v) is 4,,9(x, x),
dywd(x, x) = p(x+u, x+v)—p(x+u, x)— p(x, x+v)+p(x, x).

Since p(s, t) is continuous, we can choose d so small that |@g(u, v)|Zey,
for |ul, |v| <0, ¢, being an arbitrarily given small number. If we do this, the

oo 2
first term of the right hand side of is not greater than 2516 | K(u)| du> )

The second term converges to zero as n tends to infinity. Accordingly, we
can find ¢ and 7, such that for any given ¢

I, <e, if n>mn,.
Next consider,

IzzElnj X(x4u, w)K(nu)du :
lul>s

_— a2
- .f|u,>5,{m>a o(x+u, x+v)K(nu) K(nv)dudv

@ a dudv
= f[umfw o P xR K(nu)K(nU)—nz—&—l%v—l‘ —

It follows from the Young’s inequality that
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L= Mot 540) 4o
n**|uv |t
N(n** 2 (u)** K(nu) K(nv)) dudy

Zaluv|1+a

.
5' M(o(x+u, x+v)) dudv
>0

ul lvi>0 ]ulea

s
.
]
[ N(un) K@Kw)

1+«
|ul>w55w [>né fuv|

which is, in view of (4.2),

1 j j M(p(x+u, x—|—v)) dudv
n** Jyursed w13 [uv|*™

A

ol A )

[ufe
where ¢ is a constant. Hence for a given e >0, there exists an n, such that
I,<e, if n>mn,.

If we take N=max (n,, n,), then
oo oo 2
E[nj X(x+u, 0)K(nu)du—X(x, ) j i K(u)du'

<I,+1I,<2e, if n>N,

which proves the theorem.
COROLLARY 3. If

M(p(s, 1))
(41) j j—.m (l+lbll+g)<l+|tll+a> det<OO, a>07

(3.3)” Let there exist a monotone decreasing function Ky(u) which satisfies
the conditions:

KW= K@), | Kwdu<o,

Ko(w)=0(u|="*™),  as Ju|—oo,

then for every x the relation (4.3) holds.
The proof will be done in a quite similar way.
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