General convergence theorems for the numerical function and the nonstationary stochastic processes

By Shigetoku KAWABATA

(Received March 24, 1973) (Revised Aug. 7, 1973)

§ 1. Introduction.

We shall discuss the validity of the limit relation

$$\lim_{n\to\infty} n \int_{-\infty}^{\infty} f(x+u) K(nu) du = f(x) \int_{-\infty}^{\infty} K(u) du.$$

A theorem concerning this relation was given in S. Bochner [1] and is well known. It was generalized by S. Bochner and S. Izumi [2], S. Izumi [3]. The corresponding theorem for the stochastic process was obtained by T. Kawata [4], [5]. In the present paper we shall deal with the generalizations of these theorems.

$\S 2.$ N-functions.

Known definitions and results which we are going to use in this paper are given. An N-function M(u) admits the representation

$$M(u) = \int_0^{|u|} p(t) dt$$
,

where the function p(t) is right-continuous for $t \ge 0$, positive for t > 0, non-decreasing, and satisfies the conditions

$$p(0) = 0$$
, $p(\infty) = \lim_{t \to \infty} p(t) = \infty$.

Let $q(s) = \sup_{p(t) \le s} t$, $(s \ge 0)$. Then

$$M(u) = \int_0^{|u|} p(t)dt$$
, $N(v) = \int_0^{|v|} q(s)ds$

are called mutually complementary N-functions. Let M(u) be an N-function. We shall denote by $L_M(G)$, where G denotes a bounded (unbounded) set in a finite-dimensional Euclidean space, the class of real-valued functions u(x), defined on G, for which

$$\rho(u; M) = \int_G M(u(x)) dx < \infty.$$

Suppose M(u) and N(v) are mutually complementary N-functions. We shall denote by $L_M^*(G)$ the totality of u(x) satisfying the condition

$$(u, v) = \int_{G} u(x)v(x)dx < \infty$$

for all $v(x) \in L_N(G)$.

We state known results as lemmas [6].

LEMMA 1. For any pair of functions $u(x) \in L_M^*(G)$, $v(x) \in L_N^*(G)$,

$$\left| \int_{G} u(x)v(x)dx \right| \leq |u|_{M}|v|_{N}.$$

LEMMA 2. For an arbitrary N-function M(u) and $u(x) \in L_M^*(G)$,

$$|u|_{M} = \inf_{k>0} \frac{1}{k} \left(1 + \int_{G} M(ku(x)) dx \right).$$

§ 3. A convergence theorem for the numerical function.

We shall prove the following theorem which is a generalization of Bochner-Izumi's theorem.

THEOREM 1. Suppose M(u) and N(v) are mutually complementary N-functions. If f(u) is a function such that

(3.1)
$$\int_{-\infty}^{\infty} M(f(u)) \frac{du}{1+|u|^{1+\alpha}} < \infty, \quad (\alpha \ge 0),$$

(3.2) f(u) is continuous at the point u = x,

and

$$(3.3) \qquad \int_{-\infty}^{\infty} |K(u)| \, du < \infty \quad and \quad \int_{-\infty}^{\infty} N(u^{1+\alpha}K(u)) \frac{du}{1+|u|^{1+\alpha}} < \infty \,,$$

then

(3.4)
$$\lim_{n\to\infty} n \int_{-\infty}^{\infty} f(x+u) K(nu) du = f(x) \int_{-\infty}^{\infty} K(u) du.$$

When $M(u)=|u|^p/p$ (p>1), Theorem 1 reduces, with some modification, to the following corollary.

COROLLARY 1. If

(3.1)'
$$\int_{-\infty}^{\infty} \frac{|f(u)|^p}{1+|u|} du < \infty, \quad (p>1, \ \alpha=0),$$

(3.2)'
$$f(u)$$
 is continuous at the point $u = x$,

$$(3.3)' \qquad \int_{-\infty}^{\infty} |K(u)| du < \infty \quad and \quad \int_{-\infty}^{\infty} |u^{q-1}K^q(u)| du < \infty ,$$

where $\frac{1}{p} + \frac{1}{q} = 1$, then the relation (3.4) holds.

We note that Corollary 1 is Bochner-Izumi's theorem [2].

We shall now prove Theorem 1. We may obviously assume that K(u) = 0 for u < 0 and that x = 0; in which case the relation (3.4) reads

(3.5)
$$\lim_{n\to\infty} n \int_0^\infty f(u) K(nu) du = f(+0) \int_0^\infty K(u) du.$$

Let g(u) be any function having the following properties: g(u) is bounded throughout and vanishes outside a certain interval including x, and the limit g(+0) exists and is equal to f(+0) then, the hypothesis

$$\int_0^\infty |K(u)| \, du = A < \infty$$

implies (S. Bochner [1]. Satz 3, a)

$$\lim_{n\to\infty} n \int_0^{\infty} g(u) K(nu) du = f(+0) \int_0^{\infty} K(u) du.$$

On the other hand g(u) satisfies all conditions laid down for the function f(u) in Theorem 1. Hence, replacing f(u) by f(u)-g(u), we may add the further assumption f(+0)=0 and (3.5) reads now

(3.6)
$$\lim_{n \to \infty} n \int_0^\infty f(u) K(nu) du = 0$$

which we are going to show.

To any $\varepsilon > 0$ there corresponds an a > 0 such that $|f(u)| \le \frac{\varepsilon}{A}$ if $0 \le u \le a$. Since

$$\left| n \int_0^a f(u) K(nu) du \right| \leq \frac{\varepsilon}{A} \int_0^a n |K(nu)| du \leq \frac{\varepsilon}{A} \int_0^\infty |K(u)| du = \varepsilon$$

and ε may be chosen arbitrary small, the relation (3.6) will follow if the relation

(3.7)
$$\lim_{n \to \infty} n \int_{a}^{\infty} f(u) K(nu) du = 0$$

holds.

i) The case, $\alpha > 0$.

It follows from the Young's inequality that

$$\begin{split} \left| n \int_{a}^{\infty} f(u) K(nu) du \right| & \leq \int_{a}^{\infty} \left| f(u) n^{1+\alpha} u^{1+\alpha} K(nu) \right| \frac{du}{n^{\alpha} u^{1+\alpha}} \\ & \leq \int_{a}^{\infty} M(f(u)) \frac{du}{n^{\alpha} u^{1+\alpha}} + \int_{a}^{\infty} N(n^{1+\alpha} u^{1+\alpha} K(nu)) \frac{du}{n^{\alpha} u^{1+\alpha}} \\ & = \frac{1}{n^{\alpha}} \int_{a}^{\infty} M(f(u)) \frac{du}{u^{1+\alpha}} + \int_{an}^{\infty} N(u^{1+\alpha} K(u)) \frac{du}{u^{1+\alpha}} \,. \end{split}$$

From the hypotheses (3.1) and (3.3),

$$\lim_{n\to\infty} \int_{an}^{\infty} N(u^{1+\alpha}K(u)) \frac{du}{u^{1+\alpha}} = 0,$$

$$\lim_{n\to\infty} \frac{1}{n^{\alpha}} \int_{a}^{\infty} M(f(u)) \frac{du}{u^{1+\alpha}} = 0, \quad (\alpha > 0)$$

which shows (3.7).

ii) The case, $\alpha = 0$.

If we put $u = e^{\xi}$, then (3.7) becomes

(3.8)
$$\lim_{n\to\infty} n \int_{\log a}^{\infty} f(e^{\xi}) K(ne^{\xi}) e^{\xi} d\xi = 0.$$

If we put $f^*(\xi) = f(e^{\xi})$, $K^*(n, \xi) = ne^{\xi}K(ne^{\xi})$, then (3.8) becomes

(3.9)
$$\lim_{n \to \infty} \int_{\log a}^{\infty} f^*(\xi) K^*(n, \xi) d\xi = 0.$$

We are now going to show (3.9).

By Lemmas 1, 2 we have

(3.10)
$$\left| \int_{\log a}^{\infty} f^{*}(\xi) K^{*}(n, \xi) d\xi \right| \leq \left\{ \inf_{k > 0} -\frac{1}{k} - \left(1 + \int_{\log a}^{\infty} M(k f^{*}(\xi)) d\xi \right) \right\} \times \left\{ \inf_{k > 0} \frac{1}{k} \left(1 + \int_{\log a}^{\infty} N(k K^{*}(n, \xi)) d\xi \right) \right\}.$$

Since

$$\begin{split} &\int_{\log a}^{\infty} M(kf^*(\xi)) d\xi = \int_{a}^{\infty} M(kf(u)) \frac{du}{u} \;, \\ &\int_{\log a}^{\infty} N(kK^*(n,\,\xi)) d\xi = \int_{an}^{\infty} N(kuK(u)) \frac{du}{u} \;, \end{split}$$

(3.10) becomes

(3.11)
$$\left| \int_{\log a}^{\infty} f^{*}(\xi) K^{*}(n, \xi) d\xi \right| \leq \left\{ \inf_{k \geq 0} \frac{1}{k} \left(1 + \int_{a}^{\infty} M(kf(u)) \frac{du}{u} \right) \right\} \times \left\{ \inf_{k \geq 0} \frac{1}{k} \left(1 + \int_{an}^{\infty} N(kuK(u)) \frac{du}{u} \right) \right\}.$$

From the hypotheses (3.1) and (3.3), we have

$$\lim_{n \to \infty} n \int_{an}^{\infty} N(kuK(u)) \frac{du}{u} = 0, \quad k > 0,$$

$$\inf_{k \to 0} \frac{1}{k} \left(1 + \int_{a}^{\infty} M(kf(u)) \frac{du}{u} \right) < \infty.$$

Thus (3.9) and hence the theorem is proved. COROLLARY 2. If

$$\int_{-\infty}^{\infty} M(f(u)) \frac{du}{1+|u|^{1+\alpha}} < \infty, \qquad \alpha > 0$$

(3.2)
$$f(u)$$
 is continuous at $u = x$

(3.3)" Let there exist a monotone decreasing function $K_0(u)$ such that

$$|K(u)| \leq K_0(u), \quad \int_{-\infty}^{\infty} K_0(u) < \infty,$$

$$K_0(u) = O(|u|^{-(1+\alpha)}) \quad as \quad |u| \to \infty.$$

Then the relation (3.4) holds.

In order to prove this, it is sufficient to show that

$$\lim_{n\to\infty}\int_{an}^{\infty} N(u^{1+\alpha}K(u)) \frac{du}{u^{1+\alpha}} = 0, \quad \alpha > 0.$$

In virtue of the convexity of the N-function N(v)

$$N(u^{1+\alpha}K(u)) \leq N(u^{1+\alpha}K_0(u))$$
.

The right hand side is bounded, since, by (3.3)",

$$|u|^{1+\alpha}K_0(u) = O(1)$$
, as $|u| \to \infty$.

Therefore

$$\lim_{n\to\infty}\int_{an}^{\infty} N(u^{1+\alpha}K(u)) \frac{du}{u^{1+\alpha}} \leq \lim_{n\to\infty}\int_{an}^{\infty} O(1) \frac{du}{u^{1+\alpha}} = 0.$$

§ 4. A convergence theorem for the nonstationary stochastic process.

We shall suppose that the stochastic process $X(x, \omega)$, $-\infty < x < \infty$, $\omega \in \Omega$, being a probability field, satisfies the conditions:

- (i) it is measurable and separable,
- (ii) $EX(x, \omega) = 0$ for every x,
- (iii) the covariance function

$$\rho(s, t) = EX(s, \omega) \overline{X(t, \omega)}$$

is continuous in $-\infty < s$, $t < \infty$.

We shall prove the following theorem which is a generalization of Kawata's theorem.

Theorem 2. Suppose M(u) and N(v) are mutually complementary N-functions. If

$$(4.1) \qquad \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{M(\rho(s,\,t\,))}{(1+\,|\,s\,|^{\,1+\alpha})(1+\,|\,t\,|^{\,1+\alpha})} \, ds dt < \infty \;, \qquad \alpha \geqq 0 \;,$$

$$(3.3) \qquad \int_{-\infty}^{\infty} |K(u)| du < \infty \quad and \quad \int_{-\infty}^{\infty} N(u^{1+\alpha}K(u)) \frac{du}{1+|u|^{1+\alpha}} < \infty ,$$

and

(4.2) the N-function N(u) satisfies the Δ' -condition (i. e. if there exists positive constant c and u_0 can be found such that $N(uv) \leq cN(u)N(v)$, $u, v \geq u_0$), then for every x

(4.3)
$$\lim_{n\to\infty} n \int_{-\infty}^{\infty} X(x+u, \omega) K(nu) du = X(x, \omega) \int_{-\infty}^{\infty} K(u) du,$$

where $\lim_{z\to z}$ is taken in the L^2 norm $E^2|\cdot|$.

The proof will be done in the same way as for the case of a numerical function. We only prove the case $\alpha > 0$.

First of all, we have

$$(4.4) I_{1} = E \Big| n \int_{|u| < \delta} X(x+u, \omega) K(nu) du - X(x, \omega) \int_{-\infty}^{\infty} K(u) du \Big|^{2}$$

$$\leq 2E \Big| n \int_{|u| < \delta} \left[X(x+u, \omega) - X(x, \omega) \right] K(nu) du \Big|^{2}$$

$$+ 2E \Big| X(x, \omega) \Big|^{2} \Big| n \int_{|u| \ge \delta} K(nu) du \Big|^{2}$$

$$\leq 2n^{2} \int_{|u| < \delta} \int_{|v| < \delta} \phi(u, v) K(nu) K(nv) du dv$$

$$+ 2\rho(x, x) \Big(\int_{|u| \ge n\delta} |K(u)| du \Big)^{2},$$

where $\phi(u, v)$ is $\Delta_{uv}\phi(x, x)$,

$$\Delta_{uv}\phi(x, x) = \rho(x+u, x+v) - \rho(x+u, x) - \rho(x, x+v) + \rho(x, x)$$

Since $\rho(s,t)$ is continuous, we can choose δ so small that $|\phi(u,v)| \leq \varepsilon_1$, for $|u|, |v| < \delta$, ε_1 being an arbitrarily given small number. If we do this, the first term of the right hand side of (4.4) is not greater than $2\varepsilon_1 \left(\int_{-\infty}^{\infty} |K(u)| du\right)^2$. The second term converges to zero as n tends to infinity. Accordingly, we can find δ and n_0 such that for any given ε

$$I_1 < \varepsilon$$
, if $n > n_0$.

Next consider,

$$\begin{split} I_2 &= E \Big| n \int_{|u| > \delta} X(x+u, \omega) K(nu) du \Big|^2 \\ &= n^2 \int_{|u| > \delta} \int_{|v| > \delta} \rho(x+u, x+v) K(nu) K(nv) du dv \\ &= \int_{|u| > \delta} \int_{|v| > \delta} \rho(x+u, x+v) n^{2\alpha+2} |uv|^{1+\alpha} K(nu) K(nv) \frac{du dv}{n^{2\alpha} |uv|^{1+\alpha}}. \end{split}$$

It follows from the Young's inequality that

$$\begin{split} I_{2} & \leq \int_{|u| > \delta} \int_{|v| > \delta} \frac{M(\rho(x+u, x+v))}{n^{2\alpha} |uv|^{1+\alpha}} du dv \\ & + \int_{|u| > \delta} \int_{|v| > \delta} \frac{N(n^{2\alpha+2}(uv)^{1+\alpha}K(nu)K(nv))}{n^{2\alpha} |uv|^{1+\alpha}} du dv \\ & = \frac{1}{n^{2\alpha}} \int_{|u| > \delta} \int_{|v| > \delta} \frac{M(\rho(x+u, x+v))}{|uv|^{1+\alpha}} du dv \\ & + \int_{|u| > n\delta} \int_{|v| > n\delta} \frac{N((uv)^{1+\alpha}K(u)K(v))}{|uv|^{1+\alpha}} du dv \end{split}$$

which is, in view of (4.2),

$$\leq \frac{1}{n^{2\alpha}} \int_{|u|>\delta} \int_{|v|>\delta} \frac{M(\rho(x+u, x+v))}{|uv|^{1+\alpha}} du dv + c \left(\int_{|u|>n\delta} \frac{N(u^{1+\alpha}K(u))}{|u|^{1+\alpha}} du \right)^{2},$$

where c is a constant. Hence for a given $\varepsilon > 0$, there exists an n_1 such that

$$I_2 < \varepsilon$$
, if $n > n_1$.

If we take $N = \max(n_0, n_1)$, then

$$E \left| n \int_{-\infty}^{\infty} X(x+u, \omega) K(nu) du - X(x, \omega) \int_{-\infty}^{\infty} K(u) du \right|^{2}$$

$$\leq I_{1} + I_{2} < 2\varepsilon, \quad \text{if} \quad n > N,$$

which proves the theorem.

COROLLARY 3. If

$$(4.1) \qquad \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{M(\rho(s,t))}{(1+|s|^{1+\alpha})(1+|t|^{1+\alpha})} \, ds dt < \infty \,, \qquad \alpha > 0 \,,$$

(3.3)" Let there exist a monotone decreasing function $K_0(u)$ which satisfies the conditions:

$$|K(u)| \le K_0(u)$$
, $\int_{-\infty}^{\infty} K_0(u) du < \infty$,
 $K_0(u) = O(|u|^{-(1+\alpha)})$, as $|u| \to \infty$,

then for every x the relation (4.3) holds.

The proof will be done in a quite similar way.

Bibliography

- [1] S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
- [2] S. Bochner and S. Izumi, Some general convergence theorems, Tôhoku Math. J., 42 (1936).
- [3] S. Izumi, A general convergence theorem, Proc. Imp. Acad. Japan, XI (1935).

- [4] T. Kawata, Some convergence theorems for stationary processes, Ann. Math. Statist., 30 (1959), 1192-1214.
- [5] T. Kawata, Fourier analysis of nonstationary stochastic processes, Trans. Amer. Math. Soc., 118 (1965), 276-302.
- [6] M. A. Kranosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961.

Shigetoku KAWABATA
Department of Mathematics
Faculty of Engineering
Kyushu University
Hakozaki-cho, Fukuoka
Japan