A remark on G. Glauberman's theorem

By Makoto HAYASHI

(Received Jan. 10, 1974) (Revised May 13, 1974)

In his paper [2], Glauberman proved an interesting theorem for p-stability. The purpose of this note is to prove an immediate corollary of Glauberman's theorem. We introduce notation which will be used in this note. For a finite group H; H_p denotes a Sylow p-subgroup of H and $\pi(H:p)$ is the set of primes $\bigcup_{\mathbf{P}} \pi(N_H(P)/C_H(P))$, where P ranges over all p-subgroups of H. Other notations are standard (see [3]).

THEOREM*. Let G be a finite group. Then the following (i), (ii), (iii) are equivalent.

- (i) $G \triangleright G_2$.
- (ii) $N_G(ZJ(G_p)) \triangleright N_G(ZJ(G_p))_2$, for every odd prime $p \in \pi(G)$.
- (iii) $2 \in \pi(N_G(ZJ(G_p)) : p)$, for every odd prime $p \in \pi(G)$.

COROLLARY. Let G be a finite group admitting a fixed-point-free automorphism ϕ of a prime power order p^n . Suppose that the order of $C_G(\phi^{p^{n-1}})$ is odd. Then G is solvable.

PROOF OF THE THEOREM. (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) follow immediately from definition. To prove (iii) \Rightarrow (i), we assume by way of contradiction that G_2 is not normal in G. Then we have $2 \in \pi(G:p)$ for some odd prime in $\pi(G)$ by Baer's theorem (see [3] page 105). So the order of $N_G(W)/C_G(W)$ is divisible by 2 for some p-subgroup W of G. But the functor ZJ controls strong fusion in G_p with respect to G, because, otherwise, Corollary 2 of Theorem A of [2] would imply that $2 \in \pi(N_G(ZJ(G_p):p))$, contrary to our assumption (iii). Then for $g \in N_G(W)$, we have g = cn, $c \in N_G(W)$, $n \in N_G(ZJ(G_p))$. Then we have $n \in N_{N_G(ZJ(G_p))}(W)$, and n has the same action on W as g. So we have $2 \in \pi(N_G(ZJ(G_p)):p))$. This contradicts (iii), q. e. d.

PROOF OF THE COROLLARY. Let G be a minimal counter example group of the corollary. Then all ϕ -invariant proper subgroups of G are solvable.

^{*)} Originally, to prove this theorem, I did not use Glauberman's theorem, but Thompson's N-group classification theorem. I would like to thank the referee for his several suggestions, including improvement in the proof of the theorem.

Let $N = N_G(ZJ(G_p))$ be a ϕ -invariant subgroup of G, p odd. Suppose G = N, then we have $G/O_p(G)$ is solvable by induction. Hence G is solvable, which is a contradiction. Thus N is a ϕ -invariant proper subgroup of G. Since Nis solvable, we have $N = F(N)C_N(\phi^{p^{n-1}})$ by F. Gross [4]. Hence we have $N \triangleright N_2$. Since p is an arbitrary odd prime in $\pi(G)$, we have $G \triangleright G_2$ by the Theorem. Since G/G_2 is solvable by the fundamental theorem of W. Feit and J.G. Thompson [1], we have G is solvable. It's a contradiction. Thus the proof is complete.

References

- W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
- G. Glauberman, A sufficient condition for p-stability, Proc. London Math. Soc., 25 (1972), 253-287.
- [3] D. Gorenstein, Finite Groups, Harper Row, New York, 1968.
- [4] F. Gross, Solvable groups admitting a fixed-point-free automorphism of a prime order, Proc. Amer. Math. Soc. 17 (1966), 1440-1446.

Makoto HAYASHI Department of Mathematics Faculty of Science Hokkaido University Sapporo, Japan