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\S 1. Introduction.

Let $(M, h_{0})$ be an n-dimensional riemannian manifold all of whose geodesics
are closed and of the same length $2\pi L$ . We call such a riemannian structure
a $C_{L}$-structure. In the present paper we shall give a characterization of $C_{L^{-}}$

structure $(M, h_{0})$ among all the riemannian structures on $M$.
Let Geod $(M, h_{0})$ be the set of all oriented closed geodesics of $(M, h_{0})$ .

Then Geod $(M, h_{0})$ has a structure of compact $2(n-1)$ -dimensional $differentiab1_{\vee}^{a}$

manifold. Moreover on Geod $(M, h_{0})$ there is the natural symplectic form $\Omega$ by
which we may define the volume element

$\omega;=\{(-1)^{n(n- 1)/2}/(n-1)!\}\Omega^{n-1}$

on Geod $(M, h_{0})$ (see \S 2). $\mathcal{V}$ will denote the volume of Geod $(M, h_{0})$ with respect
to $\omega$ . Let $\mathfrak{M}_{M}$ be the space of all riemannian structures $g$ on $M$. Now we
shall define the function $f$ over $\mathfrak{M}_{M}$ as follows:

$f(g):=vol(M, g)/[c(M, g)]^{n}$

where vol $(M, g)$ is the volume of $M$ with respect to the canonical measure $\nu_{g}$

derived from $g$ and $c(M, g)$ is an average of the length of $c\in Geod(M, h_{0})$

with respect to $g$, that is,

$ c(M, g):=(1/\mathcal{V})\int_{Geod(M,h_{\{)})}\{\int_{0}^{2\pi L}\Vert\dot{c}(s)\Vert_{g}ds\}\omega$ .

In the above definition all geodesics $c\in Geod(M, h_{0})$ are parametrized by the
arc length relative to $h_{0}$ , and $\Vert\dot{c}(s)\Vert_{g}$ denotes the norm of the velocity vector
$\dot{c}(s)$ of $c(s)$ with respect to $g$. Then $f$ is a ”smooth” function on $\mathfrak{M}_{H},$ $i$ . $e.$ , for
any differentiable one parameter family $g(t)$ of riemannian structures on $M$,
$f(g(t))$ depends differentiably on $t$ . Indeed, a critical point of $f$ is a riemannian
structure $g$ on $M$ such that $d/dt(f(g(t)))_{1t=0}=0$ does hold for every differenti-
able one parameter family $g(t)$ with $g(O)=g$.

In the present paper we shall give a characterization of $C_{L}$ -structure in
terms of a critical point of the function $f$.

MAIN THEOREM. Let $(M, h_{0})$ be a riemannian manifold with $C_{L}$ -structure
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$h_{0}$ and $f$ be the function on $\mathfrak{M}_{K}$ defined as above by this $C_{L}$ -structure. Then
$g\in \mathfrak{M}_{M}$ is a critical point of $f$ if and only if $g$ is equal to $h_{0}$ up to the
homothety.

In a previous paper ([5]), the author has shown that this theorem holds
for the real projectve spaces with the riemannian structure of constant cur-
vature. On the other hand, the most typical examples of $C_{L}$ -manifolds are the
compact symmetric spaces of rank one with their canonical riemannian struc-
tures. So we have a characterization of these standard riemannian structures
( $i$ . $e.$ , spheres $S^{n}$ , projective spaces $P^{n}(K)$ for $K=R,$ $C$, or $H$, and the Cayley
projective plane $P^{2}(\Gamma)$ , with their canonical metrics). Among other examples
of $C_{L}$ -manifolds, there are so-called Zoll’s surfaces which are surfaces of
revolution diffeomorphic to $S^{2}$ but not isometric to $(S^{2}, g_{0})$ of constant curva-
ture. Of course, for Zoll’s surface $(S^{2}, g_{Z})$ , Geod $(S^{2}, g_{Z})$ is different from the
space of oriented great circles of $S^{2}$ , and consequently the function $f$ defined
by $(S^{2}, g_{Z})$ is different from that defined by $(S^{2}, g_{0})$ .

The author wishes to express his sincere thanks to Prof. W. Klingenberg
for his useful comments on this problem during his stay at T\^ohoku University.

\S 2. The contact structure on the unit tangent bundle.

Let $(M, g)$ be a riemannian manifold. Let $TM$ be the tangent bundle to
$1ff$, and $U(M, g):=\{X\in TM|g(X, X)=1\}$ be the differentiable manifold of unit
tangent vectors to $M$. Then there is a natural riemannian structure $G$ on $TM$

(resp. $U(M,$ $g)$). See S. Sasaki [5], or M. Berger [1]. It is defined by

(2.1) $G(\tilde{X},\tilde{Y}):=g(\pi_{*}\tilde{X}, \pi_{*}\tilde{Y})+g(K\tilde{X}, K\tilde{Y})$ for $\tilde{X},\tilde{Y}\in TTM$ ,

where $\pi$ : $TM$ (resp. $U(M,$ $g)$ ) $\rightarrow M$ denotes the projection mapping and $K$ ; TTM
$\rightarrow TM$ denotes the connection mapping of the Levi-Civita connection of $g$ (see

D. Gromoll, W. Klingenberg and W. Meyer [3]). Or equivalently by the ex-
pression using local coordinates $(x^{i}, a^{i})(X:=(x^{i}, a^{i})$ means $X=\sum a^{i}\partial/\partial x^{i}$), $G$

takes the form

(2.2) $G:=\left(\begin{array}{lll}g_{ij}+\Gamma_{ia}^{m} & \Gamma_{jb}^{n}g_{mn}a^{a}a^{b} & \Gamma_{ll}^{k}g_{jk}a^{l}\\g_{ik}\Gamma_{ij}^{k}a^{l} & & g_{ij}\end{array}\right)$ ,

where $\Gamma_{jk}^{i}$ is the Christoffel’s symbol. It is obvious from (2.1) that $\pi$ : $(TM, G)$

(resp. $(U(M,$ $g),$ $G)$ ) $\rightarrow(M, g)$ is a riemannian submersion. Note that fibre
$(U_{m}(M, g),$ $G_{1U_{m}(M,g)}$ ) over $m\in M$ is a standard sphere $(S^{n-1}, g_{0})$ of constant
curvature 1. Now, on $TM$ there is a horizontal (with respect to the riemannian
submersion $\pi$ ) vector field $\xi$ which is called the geodesic spray of $(M, g)$ . For
$X\in TM,$ $\xi_{X}$ is defined as the tangent vector to the orbit of the geodesic flow
$t\rightarrow\varphi_{t}X$ at $t=0$ . In terms of local coordinates, $\xi$ has the form
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(2.3) $\xi_{(x^{i},a^{i})}$ $:=(x^{i}, a^{i}, a^{i}, -\Gamma_{jk}^{i}a^{f}a^{k})$ .
Since $\xi_{X},$ $X\in U(M, g)$ is tangent to $U(M, g)$ , we may consider $\xi$ as a vector
field on $U(M, g)$ . Let $\eta$ be a one form on $U(M, g)$ which is a dual of $\xi$ relative
to $G,$ $i.e.,$ $\eta(\tilde{X})=G(\tilde{X}, \xi)$ for any $\tilde{X}\in TU(M, g)$ . In local coordinates expres-
sion, $\eta$ takes the form

(2.4) $\eta_{(x^{i},a^{i})}$ $:=(x^{i}, ’’, g_{ij}a^{j}, 0)=\sum g_{ij}a^{j}dx^{i}$

Now we recall the notion of contact structure. Let $M^{2n-1}$ be a $(2n-1)-$

dimensional differentiable manifold. Then differentiable one form $\eta$ on $M^{2n-1}$

is called a contact form if $\eta$ A $(d\eta)^{n- 1}\neq 0$ holds everywhere. By the condition
$\eta(\xi)=1$ and $i(\xi)d\eta=0$ , the unique vector field $\xi$ is determined and is called
the characteristic vector field of $\eta$ . The contact structure is called regular,
if $\xi$ is regular in the sense of one dimensional distribution. That is, for every
point $m\in M$, there exists an adapted coordinate system $\{(x^{1}, \cdots , x^{2n-1}),$ $U:=$

$\{|x^{i}|<a\}\}$ around $m=(0, 0)$ such that slices $x^{i}=c^{i}$ (constant), $i=1,$ $2n-2$ ,
are integral curves of $\xi$ and the intersection of an integral curve of $\xi$ and $U$

consists of at most one such slice.
Now we return to $U(M, g)$ . The following lemma is due to S. Sasaki ([5]).

We shall give a simple proof.
LEMMA 2.1. $\eta$ defined by (2.4) is a contact form on $U(M, g)$ and $\xi$ defined

by (2.3) is the characteristiic vector field of $\eta$ .
PROOF. Take a normal coordinates $(x^{i})$ around $m\in M$. Then at $X,$ $\pi_{*}(X)$

$=m,$ $\eta$ and $ d\eta$ takes the form

$\eta=\sum a^{i}dx^{i}$ and $d\eta=-\Sigma dx^{i}\wedge da^{i}$

So we have at $m$ ,

(2.5) $\eta\Lambda(d\eta)^{n- 1}=(-1)^{n(n- 1)/2}(n-1)$ ! $dx^{1}\Lambda\ldots\wedge dx^{n}$

$\Lambda$ ( $\Sigma(-1)^{f- 1}a^{j}da^{1}\wedge$
$ da^{j}\wedge\ldots$

A $da^{n}$)

$=(-1)^{n(n-1)/2}(n-1)$ ! volume element of $(U(M, g),$ $G$),

because $\pi$ : $(U(M, g),$ $G$ ) $\rightarrow(M, g)$ is a riemannian submersion with Pbre $(S^{n-1}, g_{0})$ .
Next, $\eta(\xi)=1$ is trivial and

$i(\xi)d\eta=\Sigma(\xi\cdot a^{i})dx^{i}-\sum(\xi\cdot x^{i})da^{i}$

$=-\Sigma a^{i}da^{i}=0$ ,

since $\sum(a^{i})^{2}=1$ holds. $q$ . $e$ . $d$ .
Now we have,
PROPOSITION 2.2. Let $M$ be a compact differentiable manifold. Then $(M_{-}^{-}h_{0})$

is a $C_{L}$-manifold for some positive $L$ if ond only if $(U(M, h_{0}),$ $\eta$ ) is a regular
contact $s$ tructure, where $\eta$ denotes the contact structure on $U(M, h_{0})$ defined by
(2.4).
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PROOF. This follows from the following observations.
(i) Compact contact manifold is regular if and only if all trajectories of

the characteristic vector field are closed and of the same period.
(ii) Trajectory through $X\in U(M, g)$ of the geodesic spray $\xi$ on $U(M, g)$

is given by the orbit of the geodesic flow $\{\varphi_{t}X\}_{c\geqq 0}$ .
(iii) $(M, h_{0})$ is a $C_{L}$ -manifold if and only if all the orbits of the geodesic

flow are periodic with the least period $2\pi L$ . $q$ . $e$ . $d$ .
Let $(M, h_{0})$ be a $C_{L}$ -structure. Then from the general theory of regular

contact structure we have the following (see Boothby-Wang [2], Sasaki [6]).
(a) $U(M, h_{0})$ has a structure of principal circle bundle over the base

manifold $B^{2(n-1)}$ of dimension $2(n-1)$ . $P$ will denote the projection.
(b) $\eta$ defines a connection over this bundle.
(c) $B^{2(n-1)}$ is a symplectic manifold and its fundamental 2-form $\Omega$ is the

curvature form of this connection, $i$ . $e.$ ,

(2.6) $ d\eta=p*\Omega$

is the equation of the structure of the connection.
(d) $\Omega/2\pi L$ determines an integral cocycle on $B^{2(n-1)}$ .
Since fibres of $P$ are trajectories of $\xi$ , which are the orbits of the geodesic

flow, $B^{2(n- 1)}$ may be identified with the space Geod $(M, h_{0})$ of all oriented closed
geodesics of $(M, h_{0})$ .

REMARK 1. The cohomology class determined by the closed form $-\Omega/2\pi L$

is nothing but the first Chern class of the $U(1)$ -bundle $U(M, h_{0})\rightarrow B$ .
REMARK 2. We have the following geometrical interpretation of $\Omega$ . Let

$\tilde{X},\tilde{Y}\in T_{c}$ Geod $(M, h_{0})$ . Then $\tilde{X},\tilde{Y}$ may be identiPed with periodic Jacobi fields
along the closed geodesic $c$ such that $\langle\tilde{X}(s),\dot{c}(s)\rangle=\langle\tilde{Y}(s),\dot{c}(s)\rangle=0$ . Then a
direct calculation shows

$-2\Omega(\tilde{X},\tilde{Y})=\langle\tilde{X}(s), \nabla Y(s)\rangle-\langle\nabla\tilde{X}(s),\tilde{Y}(s)\rangle$ .
Note that the right-hand side of the above equation is independent of $s$ .

Now we have the following lemma which plays an essential role in the
proof of the theorem.

LEMMA 2.3. Let $(M, h_{0})$ be a $C_{L}$ -manifold and $\varphi$ be a continuous function
on $U(M, h_{0})$ . Let $dS^{n-1}$ be the canonical measure of the sphere $S^{n-1}$ of constant
curvature 1. Then we have

(2.6) $\int_{c\subset}-$

Geod (M. $h_{0}$ )
$\{\int_{0}^{2\pi L}\varphi(\dot{c}(s))ds\}\omega=\int_{M}\{\int_{U_{m}(M,h_{0})}\varphi(x)dS^{n-1}\}\nu_{h_{0}}$ .

PROOF. The left-hand side of (2.6)

$=(-1)^{n(n- 1)/2}/(n-1)!\int_{Geod}\{\int_{p^{-1(C)}}\iota^{*}(\varphi\eta)\}\Omega^{n- 1}(\iota;p^{-1}(c)\rightarrow U(M, h_{0})$ , inclusion)
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$=(-1)^{n(n- 1)/2}/(n-1)!\int_{U(M,h_{0})}\varphi\eta$ A $(p*\Omega)^{n- 1}$ (see M. Berger [1], p. 14)

$=(-1)^{n(n-1)/2}/(n-1)1\int_{U(M,h_{0})}\varphi\eta$ A $(d\eta)^{n- 1}=\int_{U(M,h_{0})}\varphi\nu_{G}$

$=\int_{M}\{\int_{U_{m}(M,h_{0})}\varphi(x)dS^{n-1}\}\nu_{h_{0}}$ .

The last equality holds since $\pi$ : $(U(M, h_{0}),$ $G$ ) $\rightarrow(M, h_{0})$ is a riemannian sub-
mersion with fibre $(S^{n-1}, h_{0})$ of constant curvature 1. $q$ . $e$ . $d$ .

REMARK 3. The fibring $P$ of $U(M, h_{0})$ has been considered in A. Weinstein
[7] without using contact structure.

\S 3. Proof of the theorem.

1. First we shall compute the Prst variation formula. Let $g(t)$ be a dif-
ferentiable one parameter family of riemannian structures on a $C_{L}$ -manifold
$(M, h_{0})$ . We put $k=g^{\prime}(O)$ and $trace_{g}k$ will denote the trace of symmetric tensor
$k$ relative to $g,$

$i$ . $e.,$ $trace_{g}k=\sum g^{ij}k_{ij}$ . Then by the well-known formula

$\{vol(M, g(t))\}^{\prime}=1/2\int_{M}trace_{g(t)}g^{\prime}(t)\nu_{g(t)}$ ,

we get

(3.1) (First Variation Formula). $ d/dt(f(g(t)))=\{[c(M, g(t))]^{n-1}/2\mathcal{V}\}\times$

$[\int_{M}trace_{g(t)}g^{\prime}(t)\nu_{g(t)}\cdot\int_{Geod}\{\int_{0}^{2\pi L}\Vert\dot{c}(s)\Vert_{g(t)}d_{S}\}\omega-$

$n$ vol $(M, g(t))\int_{G\infty d}\{\int_{0}^{2\pi L}g^{\prime}(t)(\dot{c}(s),\dot{c}(s))/\Vert\dot{c}(s)\Vert_{g(t)}ds\}\omega]$ .

Now we shall assume $g(O)=\alpha^{2}h_{0}$ , where $\alpha$ is a positive constant, and show
that $d/dt(f(g(t)))_{It=0}=0$ does hold for all such $g(t)$ . Let $t0_{n-1}$ be $the^{v}volume$

of $(S^{n-1}, g_{0})$ of constant curvature 1. After the homothetic deformation $h_{0}\rightarrow\alpha^{2}h_{0}$ ,

we have the following.

(3.2) $\int_{M}trace_{\alpha^{2}h_{0}}k\nu_{a^{2}h_{0}}=\alpha^{n-2}\int_{M}trace_{h_{0}}k\nu_{h_{0}}$ ,

$\int_{Geod}\{\int_{0}^{2\pi L}\Vert\dot{c}(s)\Vert_{\alpha^{2}h_{0}}ds\}\omega=\alpha\int_{Geod}\{\int_{0}^{2\pi L}ds\}\omega=vol(U(M, h_{0}),$ $G$ ),

vol $(M, \alpha^{2}h_{0})=\alpha^{n}$ vol $(M, h_{0})$ ,

$\int_{c\in G\infty d}\{\int_{0}^{2\pi L}k(c(s),\dot{c}(s))/\Vert\dot{c}(s)\Vert_{\alpha^{2}h_{0}}ds\}\omega$

$=1/\alpha\int_{U(M,ho)}k(x, x)\nu_{G}=\omega_{n- 1}/(n\alpha)\int_{M}trace_{h_{0}}k\nu_{h_{0}}$ .
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The last identity follows from $\int_{U_{m}(M,h_{0})}k(x, x)dS^{n-1}=\omega_{n-1}/ntrace_{h_{0}}k(m)$ . Since

vol $(U(M, h_{0}),$ $G$) $=\omega_{n-1}$ vol $(M, h_{0})$ via Lemma 2.3, our assertion is clear from
these formulas.

$2^{o}$ . To begin with, we shall prepare the following lemma.
LEMMA. Let $a_{1},$ $\cdots$ , $a_{n}$ be positive numbers. We put

$A_{i}$ $:=\int_{x_{1}^{2}+\cdots+x_{n}^{2}=1}a_{i}x_{i}^{2}/\sqrt{a_{1}x_{1}^{2}++a_{n}x_{n}^{2}}dS^{n- 1}$

(not summed up with respect to $i$ ). If $A_{1}=\ldots=A_{n}$ holds, then we have $a_{1}=$

$...=a_{n}$ .
PROOF OF LEMMA. By an elementary calculus we get for $i\neq j$ ,

$A_{i}-A_{j}=(a_{i}-a_{j})\int_{s^{n-1}}$ (positive function on $S^{n-1}$ ) $dS^{n-1}$

In fact, put $\alpha_{1}$
$:=\sqrt{a_{1}x_{1}^{2}++a_{n}x_{n}^{2}},$

$\alpha_{2}$
$:=\sqrt{a_{1}x_{2}^{2}+a_{2}x_{1}^{2}+a_{3}x_{3}^{2}++a_{n}x_{n}^{2}}$. Then

we have by the formula for transformation of integral,

$A_{1}-A_{2}=\int_{s^{n- 1}}(a_{1}x_{1}^{2})/\alpha_{1}dS^{n- 1}-\int_{s^{n-1}}(a_{2}x_{2}^{2})/\alpha_{1}dS^{n- 1}$

$=\int_{s^{n- 1}}(a_{1}x_{1}^{2}/\alpha_{1}-a_{2}x_{1}^{2}/\alpha_{2})dS^{n- 1}$

$=\int_{s^{n-1}}x_{1}^{2}\{a_{1}a_{2}(a_{1}-a_{2})x_{1}^{2}+(a_{1}^{3}-a_{2}^{3})x_{2}^{2}+a_{3}(a_{1}^{2}-a_{2}^{2})x_{3}^{2}+ \}$

$/\alpha_{1}\alpha_{2}(a_{1}\alpha_{2}+a_{2}\alpha_{1})dS^{n-1}$

$=(a_{1}-a_{2})\int_{s^{n-1}}$ (positive function on $S^{n-1}$) $dS^{n-1}$
$q$ . $e$ . $d$ .

Now assume that $g$ is a critical point of $f$. Then for any differentiable
one parameter family $g(t)$ of riemannian structures with $g(O)=g$, we have
$d/dt(f(g(t)))_{1t=0}=0,$ $i$ . $e.$ ,

(3.3) $\int_{G\infty d}\{\int_{0}^{2\pi L}\Vert\dot{c}(s)\Vert_{g}ds\}\omega\cdot\int_{M}trace_{g}k\nu_{g}$

$-n$ vol $(M, g)\int_{Geod}\{\int_{0}^{2\pi L}k(\dot{c}(s),\dot{c}(s))/\Vert\dot{c}(s)\Vert_{g}ds\}\omega=0$ ,

where we have put $k=g^{\prime}(O)$ . Let $S^{2}(M)$ be the set of all symmetric tensor
fields on $M$ of type $(0,2)$ . Then $g$ is a critical point of $f$ if and only if

(3.4) $\int_{Geod}\{\int_{0}^{2\pi L}k(\dot{c}(s),\dot{c}(s))/\Vert\dot{c}(s)\Vert_{g}ds\}\omega/\int_{M}trace_{g}k\nu_{g}=constant$

does hold for any $k\in S^{2}(M)$ . On the other hand we have via Lemma 2.3

$\int_{Geod}\{\int_{0}^{2\pi L}k(\dot{c}(s),\dot{c}(s))/\Vert\dot{c}(s)\Vert_{g}ds\}\omega=\int_{M}\{\int_{U_{m}(M,h_{0})}k(x, x)/\Vert x\Vert_{g}\}\nu_{h_{0}}$ ,
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and

$\int_{M}trace_{g}k\nu_{g}=n/\omega_{n-1}\cdot\int_{M}\{\int_{U_{m}(Mg)}k(x, x)dS^{n-1}\}\nu_{g}$ .

So (3.4) is turned into

$\int_{M}\{\int_{U_{m}(M,h_{0})}k(x, x)/\Vert x\Vert_{g}dS^{n-1}\}\nu_{h_{0}}/\int_{M}\{\int_{U_{m}(Mg)}k(x, x)dS^{n-1}\}\nu_{g}$

$=constant$

for any $k\in S^{2}(M)$ . On the other hand we have

$\nu_{g}(m)=\sqrt{\det(g_{ij}(m))/(\det((h_{0})_{ij}(m))}\nu_{h_{0}}(m)$ .
So if $g$ is a critical point of $f$, then there exists a $C^{\infty}$-function $\beta(m)$ on $M$

such that

$\int_{M}\{\int_{U_{m}(M,ho)}k(x, x)/\Vert x\Vert_{g}dS^{n-1}-\beta(m)\int_{U_{m}(M,g)}k(x, x)dS^{n-1}\}\nu_{h_{0}}=0$

does hold for any $k\in S^{2}(M)$ . Then at every point $m\in M$, we have

(3.6) $\alpha_{k}(m):=\int_{U_{m}(M,h_{0})}k(x, x)/\Vert x\Vert_{g}dS^{n-1}-\beta(m)\int_{U_{m}(M,g)}k(x, x)dS^{n-1}=0$

for any $k\in S^{2}(M)$ . In fact, assume that (3.6) is not satisfied for some $m\in M$,

and $k\in S^{2}(M)$ . Then we may assume that $m\rightarrow\alpha_{k}(m)$ is positive on some
neighbourhood $U$ of $m$ . Choose a non-negative $C^{\infty}$ -function $\varphi$ on $M$ such that

$\varphi=1$ on some $V(\subset U)$ and $\varphi=0$ outside $U$ . Then we have $\int_{M}\varphi\alpha_{k}\nu_{h_{0}}$

$=\int_{M}\alpha_{\varphi k}\nu_{h_{0}}>0$ . But this contradicts to the equation above (3.6). So (3.6) does

hold for any $m\in M$ and $k\in S^{2}(M)$ .
Now take an orthonormal frame relative to $h_{0}$ in $T_{m}M$ such that $g$ takes

the form
$g(x, x)=a_{1}x_{1}^{2}+\cdots+a_{n}x_{n}^{2}$ $(a_{1}, a_{n}>0)$ ,

where $x_{i}’ s$ are the components of $x\in T_{m}M$ with respect to this orthonormal
basis. In (3.6), take especially $k(x, x)=x_{i}^{2}$ . Then we get

$\int_{x_{1}^{2}+\cdots+x_{n}^{2}=1}x_{i}^{2}/\sqrt{a_{1}x_{1}^{2}++a_{n}x_{n}^{2}}dS^{n-1}=\beta(m)\int_{y_{1}^{2}+\cdots+y_{n}^{2}=1}y_{i}^{2}/a_{i}dS^{n-1}$

where we have put $y_{i}^{2}=a_{i}x_{i}^{2}$ (not summed up). That is,

$A_{l}$ $:=\int_{x_{1}^{2}+\cdots+x_{n}^{2}=1}a_{i}x_{i}^{2}/\sqrt{a_{1}\chi_{1}^{2}++a_{n}x_{n}^{2}}dS^{n-1}=\beta(m)\omega_{n-1}/n$

holds for $i=1,$ $n$ , so by the lemma above we have $a_{1}=\cdots=a_{n}$ . Consequently
critical point $g(=a^{2}h_{0})$ is conformally related to the $C_{L}$-structure $h_{0}$ on $M$.
Finally we must show that this positive $C^{\infty}$-function $a$ on $M$ reduces to a



246 T. SAKAI

constant.
Let $k=\varphi h_{0}$ , where $\varphi$ is any $C^{\infty}$-function, then from (3.3) we have easily

$\int_{M}\{(\int_{M}a^{n}\nu_{h_{0}})1/a-(\int_{M}a\nu_{h_{0}})a^{n-2}\}\varphi\nu_{h_{0}}=0$

and consequently $a$ must be a constant. This completes the proof of the
theorem.

REMARK 4. The function $f$ on $\mathfrak{M}_{M}$ for a $C_{L}$ -manifold $(M, h_{0})$ takes neither
maximum nor minimum. It suffices to show that at $h_{0}f$ takes neither maximum
value nor minimum value. For that purpose we shall give the second variation
of $f$ at the critical point $h_{0}$ . We omit the calculation.

(3.7) $2c(M, h_{0})^{n+1}\mathcal{V}d^{2}/dt^{2}\{f(g(t))\}_{1t=0}$

$=-(n+1)/(n+2)$ vol $(U(M, h_{0}),$ $G$) $\int_{M}\langle k, k\rangle\nu_{h_{0}}$

$+(n+3)/2(n+2)$ vol $(U(M, h_{0}),$ $G$ ) $\int_{M}(trace_{h_{0}}k)^{2}\nu_{h_{0}}$

$-(n-1)/2n\omega_{n-1}(\int_{M}trace_{h_{0}}k\nu_{h_{0}})^{2}$

where $k=g^{\prime}(O)$ , and $\langle k, k\rangle$ denotes the square of the norm (derived from $h_{0}$)

of $k$ .
First take a normal coordinate system $(x, U)$ around $m\in M$. Choose a

non-zero symmetric tensor $k_{0}$ of type $(0,2)$ with vanishing trace at $m$ . By
parallel translation of $k_{0}$ along the radial geodesics, we have a non-zero sym-
metric tensor field $k_{U}$ with vanishing trace on $U$ . Let $\varphi$ be a non-negative
smooth function such that $\varphi=1$ on $V(V\subset U)$ and $\varphi=0$ outside $U$ . If we
define $k=\varphi k_{U}$ on $U$ and $k=0$ outside $U$ , then we have a smooth symmetric

tensor field $k$ on $M$ such that $trace_{h_{0}}k=0$ , but $\int_{M}\langle k, k\rangle\nu_{h_{0}}>0$ . Now put $g(t)$

$=h_{0}+kt$, then we have $d^{2}/dt^{2}\{f(g(t))\}_{1t=0}<0$ by (3.7), and we see that $f$ can
not take a minimum value at $h_{0}$ .

Secondly put $g^{\prime}(O)=k=\varphi h_{0}$ , where $\varphi$ is any $C^{\infty}$-function. Then

$2(c(M, h_{0}))^{n+1}\mathcal{V}d^{2}/dt^{2}\{f(g(t))\}_{|t=0}=n(n-1)/2$ vol $(U(M, h_{0}),$ $G$ )

$\times\{\int_{M}\varphi^{2}\nu_{h_{0}}-1/vol(M, h_{0})(\int_{M}\varphi\nu_{h_{0}})^{2}\}\geqq 0$

does hold by virtue of Schwarz’s inequality, where the equality holds if and
only if $\varphi$ is a constant function. Then if we take any $g(t)$ with $g^{\prime}(O)=\varphi h_{0}$

where $\varphi$ is a non-constant smooth function on $M$, then we have $f(g(t))>f(h_{0})$

for every sufficiently small $t\neq 0$ . So $t\rightarrow f(g(t))$ takes a strictly relative mini-
mum at $t=0$ , and $f$ can not take a maximum value at the critical points of $f$.
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