Ergodicity and capacity of information channels with noise sources¹⁾

By Yatsuka NAKAMURA

(Received May 12, 1973)

§1. Introduction.

The information channel is defined as a sort of conditional distributions on a direct product space of an input alphabet space and an output alphabet space, which are direct product spaces of countable copies of finite sets, conditioned by a Borel field of an input alphabet space (cf. Feinstein [3] and Hinchin [5]). The channel defined in this way is the most abstract and general one. However, many actual communication channels are imagined to have noise sources. The channel of additive noise is a typical one of such cases.

In this paper, we shall clarify a relation between ergodicity of such a channel and that of its noise source, and study about the channel capacity for these channels.

§2. Preliminary.

Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be measurable spaces with measurable transformations S, T on X and Y respectively, and Π be a set of S-invariant probability measures on X. Assume Π to be non-empty. An element p in Π is called *the input source. The channel* (from X to Y) is a numerical function ν on $X \times \mathcal{Y}$ which satisfies the followings:

(i) for any $x \in X$, $\nu_x(\cdot)$ is a probability measure on \mathcal{Q} ,

(ii) for any $F \in \mathcal{Y}$, $\nu(F)$ is a measurable function on X,

and

(iii) $\nu_{Sx}(F) = \nu_x(T^{-1}F)$ for any $x \in X$ and $F \in \mathcal{Y}$.

An output source q derived from an input source p and a channel ν is defined by

$$q(F) = \int_{X} \nu_x(F) p(dx) \qquad (F \in \mathcal{Y})$$

and denoted by $q(\cdot) = q(\cdot; p, \nu)$, which is a *T*-invariant probability measure on *Y*. A compound source *r* derived from an input source *p* and a channel ν is defined by

1) This work is partially supported by the Sakkokai Foundation.

Y. NAKAMURA

$$r(C) = \int_{\mathcal{X}} \nu_x(C_x) p(dx) \qquad (C \in \mathcal{X} \times \mathcal{Y})$$

where C_x is an x-section of C. The compound source r is an $S \times T$ -invariant probability measure on a product measurable space $(X \times Y, \mathcal{X} \times \mathcal{Y})$, and denoted by $r(\cdot) = r(\cdot; p, \nu)$. A channel ν is said to be *ergodic* if ergodicity of p implies ergodicity of $r(\cdot) = r(\cdot; p, \nu)$. A set of all ergodic input sources in Π is denoted by Π_{e} .

A quadruplet (X, \mathcal{X}, p, S) is called a dynamical system (for arbitrarily fixed p in Π). We can define the entropy $h_p(S)$ of the measure preserving transformation S relative to the source p by

$$h_p(S) = \sup_{\mathcal{A}} \lim_{n} \frac{1}{n} H(\mathcal{A} \vee S^{-1} \mathcal{A} \vee \cdots \vee S^{-n+1} \mathcal{A})$$

where \mathcal{A} is a measurable finite partition of X and the joint ' \vee ' is defined by the following:

$$\mathcal{A}_1 \lor \mathcal{A}_2 = \{A_1 \cap A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}$$

for any finite paritions \mathcal{A}_1 and \mathcal{A}_2 , which is also a finite partition, and where $H(\mathcal{A}) = -\sum_{A \in \mathcal{A}} p(A) \log p(A)$ is the entropy of finite partition \mathcal{A}^2 . (These arguments are seen in [1]). When there exists a finite partition \mathcal{A}_0 which generates \mathcal{X} in the sense of $\bigvee_{i=1}^{\infty} S^{-i} \mathcal{A}_0 = \mathcal{X} \mod p$, then by the Kolmogorov-Sinai theorem

$$h_p(S) = \lim_n \frac{1}{n} H(\mathcal{A}_0 \vee S^{-1} \mathcal{A}_0 \vee \cdots \vee S^{-n+1} \mathcal{A}_0).$$

We say X, Y and V are finite alphabet spaces if for some finite sets A, B and D,

$$X = A^I$$
, $Y = B^I$ and $V = D^I$

where $I = \{0, \pm 1, \pm 2, \cdots\}$ and A^I , B^I and D^I are direct product measurable spaces with Borel fields \mathcal{X} , \mathcal{Y} and \mathcal{V} respectively generated by all cylinder sets. For $x \in A^I$, $x_i \in A$ denote the *i*-th coordinate of *x*. And $[x_i^0 x_{i+1}^0 \cdots x_{i+k}^0]$ is a (thin) cylinder set, i.e.,

$$[x_i^0 x_{i+1}^0 \cdots x_{i+k}^0] = \{x \in A^I : x_i = x_i^0, \cdots, x_{i+k} = x_{i+k}^0\}.$$

These notations are also adopted to both Y and V. We choose the shift operators for the transformations S, T and P in this case, i.e.,

$$(Sx)_i = x_{i+1}, \quad (Ty)_i = y_{i+1} \quad \text{and} \quad (Pv)_i = v_{i+1}.$$

The time 0 partition \mathscr{X}_0 of X is defined by

²⁾ The base of the logarithm is assumed to be 2.

$$\mathcal{X}_0 = \{ [x_0] : x \in A^I \}$$

and similarly denote \mathcal{Y}_0 and \mathcal{CV}_0 for Y and V.

§ 3. Channels with noise sources.

Now, let us consider another measurable space (V, \mathcal{V}) and a measurable transformation P acting on V. And let ϕ be a measurable mapping from the direct product measurable space $(X \times V, \mathcal{X} \times \mathcal{V})$ to (Y, \mathcal{Y}) , which satisfies

(I)
$$(Sx, Pv) = T\psi(x, v)$$
 for all $x \in X$ and $v \in V$.

Then for any *P*-invariant probability measure $s(\cdot)$ on *V* (let us call it a noise source), writing

$$\nu_x(F) = \int_V \chi_F(\phi(x, v)) s(dv) , \quad (x \in X, F \in \mathcal{Y})$$

we see that ν is a channel from X to Y. Since $\chi_F(\phi(x, v))$ is a jointly measurable function on $X \times V$, by the Fubini theorem, for each fixed $F \in \mathcal{Y}$ the function $\nu_x(F)$ of $x \in X$ is measurable on X. And it is clear that for each fixed $x \in X \nu_x(\cdot)$ is a probability measure on (Y, \mathcal{Y}) . Moreover, the formulae

$$\nu_{x}(T^{-1}F) = \int_{V} \chi_{T^{-1}F}(\phi(x,v)) s(dv) = \int_{V} \chi_{F}(T\phi(x,v)) s(dv)$$
$$= \int_{V} \chi_{F}(\phi(Sx, Pv)) s(dv) = \int_{V} \chi_{F}(\phi(Sx, Pv)) s(P^{-1}dv)$$
$$= \int_{V} \chi_{F}(\phi(Sx, v)) s(dv) = \nu_{Sx}(F)$$

imply that ν satisfies (iii).

Such a channel ν will be called an *integration channel* determined by the pair (ϕ, s) . For ergodicity of such channels, let us give the following proposition.

PROPOSITION 1. If a direct product measure $p \times s$ is ergodic for every $p \in \Pi_e$, then the integration channel ν determined by (ϕ, s) is ergodic.

PROOF. Let $C \in \mathfrak{X} \times \mathfrak{Y}$ be an $S \times T$ -invariant set, i.e., $(S \times T)^{-1}C = C$. Then

$$T^{-1}C_{Sx} = T^{-1}\{y : (Sx, y) \in C\} = \{y : (Sx, Ty) \in C\}$$
$$= \{y : (x, y) \in C\} = C_x.$$

And so, putting $f(x, v) = \chi_{C_x}(\phi(x, v))$, we get

$$f(Sx, Pv) = \chi_{c_{Sx}}(\psi(Sx, Pv)) = \chi_{c_{Sx}}(T\psi(x, v))$$
$$= \chi_{T^{-1}CSx}(\psi(x, v)) = \chi_{cx}(\psi(x, v)) = f(x, v),$$

and the invariant function f takes values 0 or 1. Hence

215

Y. Nakamura

$$r(C) = \int_{X} \nu_{x}(C_{x})p(dx) = \int_{X} \int_{V} \chi_{C_{x}}(\phi(x, v))s(dv)p(dx)$$
$$= \int_{X \times V} f(x, v)p \times s(dx, dv) = 0 \quad \text{or} \quad 1,$$

which shows that ν is ergodic.

Q. E. D.

The above proposition shows that if the noise source s is weakly mixing then the channel ν is ergodic (cf. [4] p. 39). And by the proof we know that ergodicity of $p \times s$ implies ergodicity of r.

Next, let us assume additionally the following conditions for the function $\psi(x, v)$:

- (II) for any $x \in X$, $\psi(x, v) = \psi(x, v')$ implies v = v',
- (III) putting $\lambda(x, v) = (x, \phi(x, v)), H \in \mathcal{X} \times \mathcal{V}$ implies

 $\lambda(H) = \{\lambda(x, v); (x, v) \in H\} \in \mathcal{X} \times \mathcal{Y}.$

THEOREM 1. Let ψ be a function satisfying (I), (II) and (III). Then an integration channel determined by (ψ, s) is ergodic if and only if $p \times s$ is ergodic on $X \times V$ for all $p \in \Pi_e$.

PROOF. Sufficiency is clear by Proposition 1. Let λ be a mapping defined in (III). Since λ is one-to-one from $X \times V$ into $X \times Y$, $\lambda^{-1}\lambda(H) = H$ for all $H \in \mathfrak{X} \times \mathfrak{V}$. Now we assume that $H \in \mathfrak{X} \times \mathfrak{V}$ is an $S \times P$ -invariant set, then

$$\lambda(H) = \lambda((S \times P)^{-1}H) = \{\lambda(x, v) : (Sx, Pv) \in H\}$$
$$= \{(x, \phi(x, v)) : (Sx, Pv) \in H\}$$
$$= \{(x, y) : y = \phi(x, v) \text{ and } (Sx, Pv) \in H\}$$
$$\subseteq \{(x, y) : Ty = \phi(Sx, Pv) \text{ and } (Sx, Pv) \in H\}$$
$$\subseteq \{(x, y) : (Sx, Ty) \in \lambda(H)\} = (S \times T)^{-1}\lambda(H).$$

Hence, the ergodicity of r implies

$$p \times s(H) = p \times s(\lambda^{-1}\lambda(H)) = \int_{V} \int_{X} \chi_{\lambda^{-1}\lambda(H)}(x, v) p(dx) s(dv)$$

$$= \int_{V} \int_{X} \chi_{\lambda(H)}(\lambda(x, v)) p(dx) s(dv) = \int_{V} \int_{X} \chi_{\lambda(H)}(x, \psi(x, v)) p(dx) s(dv)$$

$$= \int_{X} \int_{V} \chi_{\lambda(H)x}(\psi(x, v)) p(dx) s(dv) = \int_{X} \nu_{x}(\lambda(H)_{x}) p(dx)$$

$$= r(\lambda(H)) = 0 \quad \text{or} \quad 1,$$

which shows that $p \times s$ is ergodic.

Q. E. D.

The following corollaries are immediate.

COROLLARY 1. The compound source $r = r(\cdot; p, \nu)$ is ergodic if and only if $p \times s$ is ergodic.

216

COROLLARY 2. If $(X, \mathcal{X}) = (V, \mathcal{V})$, S = P and Π_e is a set of all S-invariant ergodic measure on X, then a channel determined by (ϕ, s) , where ϕ satisfies (I). (II) and (III), is ergodic if and only if s is weakly mixing on V.

Indeed, since the direct product measure $s \times s$ on $X \times X$ is ergodic if and only if s is weakly mixing ([4]), we get the result.

COROLLARY 3. Let $(X, \mathcal{X}) = (Y, \mathcal{Y}) = (V, \mathcal{V})$ is a measurable group with a group operation \cdot commuting with S = T = P, and let $y = \phi(x, v) = x \cdot v$, then the integration channel determined by (ϕ, s) is ergodic if and only if s is weakly mixing.

If X, Y, V are complete separable metric spaces and \mathcal{X} , \mathcal{Y} , \mathcal{V} are Borel fields on them, then the Kuratowski theorem (cf. [6]) permits us to omit the condition (III). Hence we get:

COROLLARY 4. Let $X = A^{I}$, $Y = B^{I}$ and $V = D^{I}$, where $A = \{0, 1, 2, \dots, l-1\}$, $D = \{0, 1, 2, \dots, m-1\}$ and $B = \{0, 1, 2, \dots, l+m-2\}$. Let ψ_a be $\psi_a(i, j) = i+j$. Then we can construct the integration channel determined by (ϕ, s) where ϕ is defined by $\phi(x, v)_i = \phi_a(x_i, v_i)$. This channel is ergodic if and only if $p \times s$ is ergodic for all $p \in \Pi_e$.

Let us call the channel obtained in Corollary 4, a channel of additive noise.

Next, we shall characterize the integration channel when the function ϕ is given. It can be proved that $\psi(x, F) = \{\psi(x, v) : v \in F\} \in \mathcal{Y}$ for all $x \in X$ and $F \in \mathcal{V}$ assuming (I), (II) and (III). Because the image of $X \times F$ under the function λ is $\mathcal{X} \times \mathcal{Y}$ -measurable by the condition (III), and an x-section of the above image set $\lambda(X \times F)_x = \phi(x, F)$ is *Y*-measurable.

PROPOSITION 2. Let ϕ be a measurable mapping from $X \times V$ to Y satisfying (I), (II) and (III). A channel ν from X to Y is an integration channel determined by (ϕ, s) for some noise source s, if and only if the following conditions are satisfied;

- i) $\nu_r(\phi(x, V)) = 1$ for all $x \in X$, and
- ii) $\nu_x(\phi(x, F)) = \nu_{x'}(\phi(x', F))$ for all $x, x' \in X$ and $F \in \mathcal{V}$.

PROOF. Let ν be a channel satisfying the conditions i) and ii). Putting $s(F) = v_x(\phi(x, F))$, we see that it is a *P*-invariant probability measure on (V, \mathcal{C}) independent of $x \in X$. Moreover

$$\nu_x(E) = \nu_x(E \cap \psi(x, V)) = \nu_x(\psi_x \psi_x^{-1}(E)) = \nu_x(\psi(x, F))$$
$$= s(\psi_x^{-1}(E)) = \int_V \chi_E(\psi(x, v)) s(dv)$$

where $\psi_x(\cdot) = \psi(x, \cdot)$ and $F = \psi_x^{-1}(E)$. Hence ν is an integration channel. Q. E. D.

The converse is obvious.

§4. Capacity of some integration channels.

In this section we assume the finite alphabet spaces $X = A^I$, $Y = B^I$ and $V = D^I$. For the output source $q(\cdot) = q(\cdot : p, \nu)$ and the compound source $r(\cdot) = r(\cdot ; p, \nu)$, the entropies $h_p(S)$, $h_q(T)$ and $h_r(S \times T)$ can be defined as in §2. When $h_p(S) < +\infty$ and $h_q(T) < +\infty$, it is possible to define the *transmission* rate R_p by

$$R_p = h_p + h_q - h_r$$
.

The stationary capacity C of a channel ν from X to Y is defined by

$$C = \sup_{p \in \Pi} R_p.$$

Putting $\Pi' = \{ p \in \Pi_e : r(\cdot; p, \nu) \text{ is ergodic} \}$, the *ergodic capacity* C_e of a channel ν is defined by

$$C_e = \sup_{p \in \Pi'} R_p$$
. (We put $C_e = 0$ if Π' is empty).

Let ψ_0 be a mapping from a direct product set $A^{m+1} \times D$ to B (*m* is a non-negative integer), satisfying the following condition (a):

(a)
$$\psi_0(a_0a_1\cdots a_m, d) = \psi_0(a_0a_1\cdots a_m, d')$$
 implies $d = d'$ in D.

Then we can construct the mapping $\hat{\psi}$ from $X \times Y$ to Y by

$$\hat{\psi}(x, v)_i = \psi_0(x_{i-m}x_{i-m+1}\cdots x_i, v_i).$$

Clearly $\hat{\phi}$ is a measurable mapping from $X \times V$ to Y and

$$\hat{\psi}(Sx, Pv)_i = \psi_0((Sx)_{i-m} \cdots (Sx)_i, (Pv)_i)$$

= $\psi_0(x_{i-m+1} \cdots x_{i+1}, v_{i+1}) = \hat{\psi}(x, v)_{i+1} = (T\hat{\psi}(x, v))_i.$

Hence we can define an integration channel ν determined by the mapping $\hat{\psi}$ and a noise source s on D^{I} . The mapping $\hat{\psi}$ satisfies the conditions (II) and (III), for (II) is clear and (III) follows from the Kuratowski theorem. The integration channel defined as above is clearly an *m*-memory channel, i. e.,

if

$$\nu_x([y_i \cdots y_j]) = \nu_{x'}([y_i \cdots y_j]) \qquad (i \le j)$$

$$[x_{i-m}x_{i-m+1}\cdots x_j] = [x'_{i-m}x'_{i-m+1}\cdots x'_j].$$

THEOREM 2. For the integration channel determined by $(\hat{\psi}, s)$, the transmission rate is obtained by

$$R_p = h_q - h_s$$
.

PROOF. As we can prove easily

$$h_r = \lim_n \frac{1}{n} \sum_{x_1 = m \cdots x_n} \sum_{y_1 \cdots y_n} r(([x_{1-m} \cdots x_0] \times Y) \cap [(x_1, y_1) \cdots (x_n, y_n)])$$
$$\cdot \log r(([x_{1-m} \cdots x_0] \times Y) \cap [(x_1, y_1) \cdots (x_n, y_n)]),$$

we get

$$R_{p} = h_{p} + h_{q} - h_{r}$$

$$= h_{q} + \lim_{n} \frac{1}{n} \sum_{x_{1} - m \cdots x_{n}} \sum_{y_{1} \cdots y_{n}} p([x_{1 - m} \cdots x_{n}]) \nu_{x}([y_{1} \cdots y_{n}]) \log \nu_{x}([y_{1} \cdots y_{n}])$$

Now putting

$$M_i(a_0a_1\cdots a_n, b) = \{v \in D^I : \psi_0(a_0\cdots a_n, v_i) = b\},\$$

we see

$$\nu_x([y_1 \cdots y_n]) = \int_V \chi_{[y_1 \cdots y_n]}(\hat{\psi}(x, v)) s(dv)$$

= $s(M_1(x_{1-m} \cdots x_1, y_1) \cap \cdots \cap M_n(x_{n-m} \cdots x_n, y_n)).$

Denote

 $B_0 = \{ \phi_0(x_{i-m} \cdots x_i, d) : d \in D \} .$

Then for every $y_i \in B_0$ there exists one and only one $[v_i] \in \mathcal{V}_i = S^{-i}\mathcal{V}_0$ such that $M_i(x_{i-m} \cdots x_i, y_i) = [v_i]$. If $y_i \in B \setminus B_0$, then $M_i(x_{i-m} \cdots x_i, y_i) = \emptyset$. Therefore

$$R_{p} = h_{q} - \lim_{n} \frac{1}{n} \sum_{x_{1}-m\cdots x_{n}} p([x_{1-m}\cdots x_{n}]) H(\mathcal{CV}_{0} \vee P^{-1}\mathcal{CV}_{0} \vee \cdots \vee P^{-n+1}\mathcal{CV}_{0})$$

= $h_{q} - \lim_{n} \frac{1}{n} H(\mathcal{CV}_{0} \vee P^{-1}\mathcal{CV}_{0} \vee \cdots \vee P^{-n+1}\mathcal{CV}_{0}) = h_{q} - h_{s}.$
Q. E. D.

As the class II, let us choose the set of all S-invariant probability measures on $X = A^{I}$. Then:

THEOREM 3. For the integration channel determined by $(\hat{\psi}, s)$, the stationary capacity C is achieved by some ergodic source $p_0 \in \Pi_e$, i.e., $C = R_{p_0}$.

PROOF³⁾. The finite alphabet space A^{I} is a compact metric space by the Tychonoff product topology. By the Riesz-Markov-Kakutani representation theorem, the set Π of input sources can be imbedded in the positive part of the unit sphere of $C^{*}(A^{I})$, the conjugate space of the Banach space $C(A^{I})$ of all real valued continuous functions of A^{I} , and the set Π is compact convex in $C^{*}(A^{I})$ with the weak* topology. As the channel ν is of finite memory, we can derive (see Umegaki [7] p. 60) that

$$\frac{1}{n}H(\mathcal{Y}_0\vee T^{-1}\mathcal{Y}_0\vee\cdots\vee T^{-n+1}\mathcal{Y}_0)$$

is a real valued continuous function on Π . Furthermore

³⁾ The proof is a reformation of Breiman [2], in which he proved that the ergodic capacity and the stationary capacity coincide for finite memory, finitely correlated channels.

$$h_q = \inf_n \left\{ \frac{1}{n} H(\mathcal{Y}_0 \vee T^{-1} \mathcal{Y}_0 \vee \cdots \vee T^{-n+1} \mathcal{Y}_0) \right\}$$

is a well known formula ([3], [5]), which shows that h_q is upper semicontinuous on Π when p is varied. The remaining part of the proof is same as Breiman [2]. Q. E. D.

COROLLARY 1. If ν is a channel of additive noise defined in Corollary 4 of Theorem 1, then $C = R_{p_0}$ for some ergodic source p.

Next, we assume that A=B=D and is a finite group. Put $\psi_1(a, d)=a \cdot d$, the product in this group. The channel determined by the ψ_1 is called a *channel of productive noise*. For this channel, Theorem 3 is also valid. However, the more clarified expression is given in the following:

THEOREM 4. For a channel of productive noise, the capacity C is expressed by

$$C = \log (\operatorname{Card} A) - h_s$$
,

where Card A is the cardinarity of a set A.

PROOF. Putting N = Card A, we consider a Bernoulli-source⁴) \tilde{p} on A^I determined by an N-dimensional probability vector $(1/N, 1/N, \dots, 1/N)$. Then, for the output source $q(\cdot) = q(\cdot; p, \nu)$,

$$\tilde{q}(\llbracket y_1 \cdots y_n \rrbracket) = \sum_{x_1 \cdots x_n} \nu_x(\llbracket y_1 \cdots y_n \rrbracket) \tilde{p}(\llbracket x_1 \cdots x_n \rrbracket)$$

$$= \frac{1}{N^n} \sum_{x_1 \cdots x_n} \nu_x(\llbracket y_1 \cdots y_n \rrbracket)$$

$$= \frac{1}{N^n} \sum_{x_1 \cdots x_n} s(\llbracket x_1^{-1} \cdot y_1, x_2^{-1} \cdot y_2, \cdots, x_n^{-1} \cdot y_n \rrbracket) = \frac{1}{N^n},$$

where the last equality follows from the fact that $x_i^{-1} \cdot y_i$ moves all over A when x_i is varied. Hence q is also a Bernoulli measure and $h_p = \log N$. Therefore,

$$C = \sup_{p} (h_{q} - h_{s}) \leq \log N - h_{s} = R_{\tilde{p}} \leq C.$$

Q. E. D.

THEOREM 5. For a channel of productive noise, the noise source is ergodic, if and only if $C = C_e = \log (\text{Card } A) - h_s$.

PROOF. Necessity: Let p be the same Bernoulli source as defined in the above proof. Put $r(\cdot) = r(\cdot; p, \nu)$. It suffices to prove that r is ergodic, which is clear from the remark under Proposition 1.

$$p([x_1x_2\cdots x_n]) = p_{i_1}p_{i_2}\cdots p_{i_n}$$

where $x_j = a_{i_j}$ in A and p_{i_j} is an element of the vector $(p_1 p_2 \cdots p_N)$.

220

⁴⁾ A Bernoulli-source p determined by a probability vector $(p_1p_2\cdots p_N)$ is a source which gives a probability to any thin cylinder $[x_1x_2\cdots x_n]$ $(x_i \in A = \{a_1a_2\cdots a_N\})$, in such a way

Sufficiency: If $C = C_e = 0$, then $h_s = \log N$ by Theorem 3 and $s(\cdot)$ is a Bernoulli measure, hence is ergodic. If $C = C_e > 0$, then there exists an ergodic source p_0 and $r_0(\cdot) = r(\cdot; p_0, \nu)$ is ergodic. Then by Corollary 1 of Theorem 1, $\tilde{p} \times s$ must be ergodic, and which implies ergodicity of $s(\cdot)$. Q.E.D.

We can expect some applications of this theory. For example, models of burst errors are given by integration channels, choosing m-fold Markov chains as noise sources. By these models we will be able to faithfully represent many types of errors in various communication channels.

Bibliography

- [1] P. Billingsley, Ergodic theory and information, John Wiley and Sons, Inc., 1965.
- [2] L. Breiman, On achieving channel capacity in finite-memory channels, Illinois J. Math., 4 (1960), 246-252.
- [3] A. Feinstein, Foundations of information theory, McGraw-Hill, 1958.
- [4] P.R. Halmos, Lectures on ergodic theory, Math. Soc. Japan, 1956.
- [5] A.I. Hinchin, Mathematical foundations of information theory, Dover, 1958 (English translation).
- [6] K.R. Parthasarathy, Probability measures on metric spaces, Academic Press, 1967.
- H. Umegaki, Representations and extremal properties of averaging operators and their application to information channels, J. Math. Analysis Appl., 25 (1969), 41-73.

Yatsuka NAKAMURA Department of Information Engineering Faculty of Engineering Shinshu University Wakasato, Nagano Japan