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\S 1. Introduction.

The information channel is defined as a sort of conditional distributions
on a direct product space of an input alphabet space and an output alphabet
space, which are direct product spaces of countable copies of finite sets, con-
ditioned by a Borel field of an input alphabet space (cf. Feinstein [3] and
Hinchin [5]). The channel defined in this way is the most abstract and general
one. However, many actual communication channels are imagined to have
noise sources. The channel of additive noise is a typical one of such cases.

In this paper, we shall clarify a relation between ergodicity of such a
channel and that of its noise source, and study about the channel capacity for
these channels.

\S 2. Preliminary.

Let (X, $\mathfrak{X}$ ) and $(Y, \mathcal{Y})$ be measurable spaces with measurable transforma-
tions $S,$ $T$ on $X$ and $Y$ respectively, and $\Pi$ be a set of S-invariant probability
measures on $X$ . Assume $\Pi$ to be non-empty. An element $p$ in $\Pi$ is called
the inPut source. The channel (from $X$ to $Y$ ) is a numerical function $\nu$ on
$X\times \mathcal{Y}$ which satisfies the followings:

(i) for any $x\in X,$ $\nu_{x}(\cdot)$ is a probability measure on $\mathcal{Y}$ ,
(ii) for any $F\in \mathcal{Y},$ $\nu.(F)$ is a measurable function on $X$,

and
(iii) $\nu_{Sx}(F)=\nu_{x}(T^{-1}F)$ for any $x\in X$ and $F\in \mathcal{Y}$ .
An output source $q$ derived from an input source $p$ and a channel $\nu$ is

defined by

$q(F)=\int_{X}\nu_{x}(F)p(dx)$ $(F\in \mathcal{Y})$

and denoted by $q(\cdot)=q(\cdot ; p, \nu)$ , which is a T-invariant probability measure on
Y. A compOund source $r$ derived from an input source $p$ and a channel $\nu$ is
defined by

1) This work is partially supported by the Sakkokai Foundation.
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$r(C)=\int_{X}\nu_{x}(C_{x})p(dx)$ $(C\in \mathfrak{X}\times \mathcal{Y})$

where $C_{x}$ is an x-section of $C$ . The compound source $r$ is an $S\times T$-invariant
probability measure on a product measurable space $(X\times Y, \mathfrak{X}\times \mathcal{Y})$ , and denoted
by $r(\cdot)=r(\cdot ; p, \nu)$ . A channel $\nu$ is said to be ergodic if ergodicity of $p$ implies
ergodicity of $r(\cdot)=r(\cdot ; p, \nu)$ . A set of all ergodic input sources in $\Pi$ is de-
noted by $\Pi_{e}$ .

A quadruplet (X, $\mathfrak{X},$ $p,$ $S$ ) is called a dynamical system (for arbitrarily fixed
$p$ in $\Pi$). We can define the entropy $h_{p}(S)$ of the measure preserving transfor-
mation $S$ relative to the source $p$ by

$h_{p}(S)=\sup_{d}\lim_{n}\frac{1}{n}H(d\vee S^{-1}A\vee\cdots\vee S^{-n+1}d)$

where $A$ is a measurable finite partition of $X$ and the joint ‘ V’ is defined by
the following:

$A_{1}\vee d_{2}=\{A_{1}\cap A_{2} : A_{1}\in\leftrightarrow I_{1}, A_{2}\in d_{2}\}$

for any finite paritions $\leftrightarrow q_{1}$ and $-fl_{2}$ which is also a finite partition, and where
$H(d)=-\sum_{A\in \mathcal{A}}p(A)$ log $p(A)$ is the entropy of finite partition $d^{2)}$ . (These argu-

ments are seen in [1]). When there exists a finite $partition\leftrightarrow q_{0}$ which gener-
ates $\mathfrak{X}$ in the sense of $_{i=1}^{\infty}S^{-i}\leftrightarrow l_{0}=\mathfrak{X}$ mod $p$ , then by the Kolmogorov-Sinai
theorem

$h_{p}(S)=\lim_{n}\frac{1}{n}H(\mathcal{A}_{0}\vee S^{-1}\leftrightarrow q_{0}\vee\cdots\vee S^{-n+1}d_{0})$ .

We say $X,$ $Y$ and $V$ are finite alphabet spaces if for some finite sets $A,$ $B$

and $D$ ,
$X=A^{I}$ , $Y=B^{I}$ and $V=D^{I}$

where $I=\{0, \pm 1, \pm 2, \}$ and $A^{I},$ $B^{I}$ and $D^{I}$ are direct product measurable
spaces with Borel fields $\mathfrak{X},$ $\mathcal{Y}$ and $\mathcal{V}$ respectively generated by all cylinder
sets. For $x\in A^{I},$ $x_{i}\in A$ denote the i-th coordinate of $x$. And $[x_{i}^{0}x_{i+1}^{0}\cdots x_{i+k}^{0}]$

is a (thin) cylinder set, $i$ . $e.$ ,

$[x_{i}^{00}x_{i+1}\cdots x_{i+k}^{0}]=\{x\in A^{I} : x_{i}=x_{i}^{0}, x_{i+k}=x_{i+k}^{0}\}$ .
These notations are also adopted to both $Y$ and $V$ . We choose the shift
operators for the transformations $S,$ $T$ and $P$ in this case, $i$ . $e.$ ,

$(Sx)_{i}=x_{i+1}$ , $(Ty)_{i}=y_{t+1}$ and $(Pv)_{i}=v_{\ell+1}$ .
The time $0$ partition $\mathfrak{X}_{0}$ of $X$ is defined by

2) The base of the logarithm is assumed to be 2.
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$\mathfrak{X}_{0}=\{[x_{0}]:x\in A^{I}\}$

and similarly denote $\mathcal{Y}_{0}$ and $\mathcal{V}_{0}$ for $Y$ and $V$ .

\S 3. Channels with noise sources.

Now, let us consider another measurable space (V, $\mathcal{V}$ ) and a measurable
transformation $P$ acting on $V$ . And let $\psi$ be a measurable mapping from the
direct product measurable space $(X\times V, \mathfrak{X}\times \mathcal{V})$ to $(Y, \mathcal{Y})$ , which satisfies

(I) $(Sx, Pv)=T\psi(x, v)$ for all $x\in X$ and $v\in V$ .
Then for any P-invariant probability measure $s(\cdot)$ on $V$ (let us call it $a$

noise source), writing

$\nu_{x}(F)=\int_{V}\chi_{F}(\psi(x, v))s(dv)$ , $(x\in X, F\in \mathcal{Y})$

we see that $\nu$ is a channel from $X$ to $Y$ . Since $\chi_{F}(\psi(x, v))$ is a jointly mea-
surable function on $X\times V$ , by the Fubini theorem, for each fixed $F\in \mathcal{Y}$ the
function $\nu_{x}(F)$ of $x\in X$ is measurable on $X$ . And it is clear that for each
fixed $x\in X\nu_{x}(\cdot)$ is a probability measure on $(Y, \mathcal{Y})$ . Moreover, the formulae

$\nu_{x}(T^{-1}F)=\int_{V}\chi_{\tau-1F}(\psi(x, v))s(dv)=\int_{V}\chi_{F}(T\psi(x, v))s(dv)$

$=\int_{V}\chi_{F}(\psi(Sx, Pv))s(dv)=\int_{V}\chi_{F}(\psi(Sx, Pv))s(P^{-1}dv)$

$=\int_{V}\chi_{F}(\psi(Sx, v))s(dv)=\nu_{Sx}(F)$

imply that $\nu$ satisfies (iii).

Such a channel $\nu$ will be called an integration channel determined by the
pair $(\psi, s)$ . For ergodicity of such channels, let us give the following pro-
position.

PROPOSITION 1. If a direct product measure $p\times s$ is ergodic for every $p\in\Pi_{e}$ ,

then the integration channel $\nu$ determined by $(\psi, s)$ is ergodic.
PROOF. Let $C\in \mathfrak{X}\times \mathcal{Y}$ be an $s\times T$-invariant set, $i.e.,$ $(S\times T)^{-1}C=C$ . Then

$T^{-1}C_{Sx}=T^{-1}\{y:(Sx, y)\in C\}=\{y:(Sx, Ty)\in C\}$

$=\{y:(x, y)\in C\}=C_{x}$ .
And so, putting $f(x, v)=x_{c_{x}}(\psi(x, v))$ , we get

$f(Sx, Pv)=x_{C_{Sx}}(\psi(Sx, Pv))=x_{C_{Sx}}(T\psi(x, v))$

$=x_{r-1_{CSx}}(\psi(x, v))=x_{c_{x}}(\psi(x, v))=f(x, v)$ ,

and the invariant function $f$ takes values $0$ or 1. Hence
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$r(C)=\int_{X}\nu_{x}(C_{x})p(dx)=\int_{X}\int_{V}\chi_{c_{x}}(\psi(x, v))s(dv)P(dx)$

$=\int_{X\times V}f(x, v)P\times s(dx, dv)=0$ or 1,

which shows that $\nu$ is ergodic. Q. E. D.
The above proposition shows that if the noise source $s$ is weakly mixing

then the channel $\nu$ is ergodic (cf. [4] p. 39). And by the proof we know that
ergodicity of $p\times s$ implies ergodicity of $r$ .

Next, let us assume additionally the following conditions for the function
$\psi(x, v)$ :

(II) for any $x\in X,$ $\psi(x, v)=\psi(x, v^{\prime})$ implies $v=v^{\prime}$ ,
(III) putting $\lambda(x, v)=(x, \psi(x, v)),$ $H\in \mathfrak{X}\times \mathcal{V}$ implies

$\lambda(H)=\{\lambda(x, v) ; (x, v)\in H\}\in \mathfrak{X}\times \mathcal{Y}$ .
THEOREM 1. Let $\psi$ be a function satisfying (I), (II) and (III). Then an

integration channel determined by $(\psi, s)$ is ergodic if and only if $p\times s$ is ergodic
on $X\times V$ for all $P\in\Pi_{e}$ .

PROOF. Sufficiency is clear by Proposition 1. Let $\lambda$ be a mapping defined
in (III). Since $\lambda$ is one-to-one from $X\times V$ into $X\times Y,$ $\lambda^{-1}\lambda(H)=H$ for all
$H\in \mathfrak{X}\times \mathcal{V}$ . Now we assume that $H\in \mathfrak{X}\times \mathcal{V}$ is an $S\times P$-invariant set, then

$\lambda(H)=\lambda((S\times P)^{-1}H)=\{\lambda(x, v):(Sx, Pv)\in H\}$

$=\{(x, \psi(x, v)):(Sx, Pv)\in H\}$

$=$ { $(x,$ $y):y=\psi(x,$ $v)$ and $(Sx,$ $Pv)\in H$ }

$\subseteqq$ { $(x,$ $y):Ty=\psi(Sx,$ $Pv)$ and $(Sx,$ $Pv)\in H$ }

$\subseteqq\{(x, y):(Sx, Ty)\in\lambda(H)\}=(S\times T)^{-1}\lambda(H)$ .
Hence, the ergodicity of $r$ implies

$P\times s(H)=p\times s(\lambda^{-1}\lambda(H))=\int_{V}\int_{X}\chi_{\lambda^{-1\lambda(H)}}(x, v)p(dx)s(dv)$

$=\int_{V}\int_{X}\chi_{\lambda(H)}(\lambda(x, v))P(dx)s(dv)=\int_{V}\int_{X}\chi_{\lambda(H)}(x, \psi(x, v))P(dx)s(dv)$

$=\int_{X}\int_{V}\chi_{\lambda(H)}x(\psi(x, v))P(dx)s(dv)=\int_{X}\nu_{x}(\lambda(H)_{x})p(dx)$

$=r(\lambda(H))=0$ or 1,

$which_{L^{\prime}}^{-}$shows that $p\times s$ is ergodic. Q. E. D.
The following corollaries are immediate.
COROLLARY 1. The compound source $r=r(. ; p, \nu)$ is ergodic if and only if

$p\times s$ is ergodic.
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COROLLARY 2. If (X, $\mathfrak{X}$ ) $=(V, \mathcal{V}),$ $S=P$ and $\Pi_{e}$ is a set of all S-invariant
ergodic measure on $X$, then a channel determined by $(\psi, s)$ , where $\psi$ satisfies (I),
(II) and (III), is ergodic if and only if $s$ is weakly mixing on $V$ .

Indeed, since the direct product measure $s\times s$ on $X\times X$ is ergodic if and
only if $s$ is weakly mixing ([4]), we get the result.

COROLLARY 3. Let (X, $\mathfrak{X}$ ) $=(Y, \mathcal{Y})=(V, \mathcal{V})$ is a measurable group with a
grouP operatiOn commuting with $S=T=P$, and let $y=\psi(x, v)=x\cdot v$ , then the
integration channel determined by $(\psi, s)$ is ergodic if and only if $s$ is weakly
mixing.

If $X,$ $Y,$ $V$ are complete separable metric spaces and $\mathfrak{X},$ $\mathcal{Y},$ $\mathcal{V}$ are Borel
fields on them, then the Kuratowski theorem (cf. [6]) permits us to omit the
condition (III). Hence we get:

COROLLARY 4. Let $X=A^{I},$ $Y=B^{I}$ and $V=D^{I}$ , where $A=\{0,1, 2, l-1\}$ ,
$D=\{0,1,2, \cdots , m-1\}$ and $B=\{0,1,2, \cdots , l+m-2\}$ . Let $\psi_{a}$ be $\psi_{a}(i, J)=i+j$ .
Then we can construct the integration channel determined by $(\psi, s)$ where $\psi$ is
defined by $\psi(x, v)_{i}=\psi_{a}(x_{i}, v_{i})$ . This channel is ergodic if and only if $p\times s$ is
ergodic for all $P\in\Pi_{e}$ .

Let us call the channel obtained in Corollary 4, a channel of additive noise.
Next, we shall characterize the integration channel when the function $\psi$ is

given. It can be proved that $\psi(x, F)=\{\psi(x, v):v\in F\}\in \mathcal{Y}$ for all $x\in X$ and
$F\in \mathcal{V}$ assuming (I), (II) and (III). Because the image of $X\times F$ under the func-
tion $\lambda$ is $\mathfrak{X}\times \mathcal{Y}$ -measurable by the condition (III), and an x-section of the above
image set $\lambda(X\times F)_{x}=\psi(x, F)$ is $\mathcal{Y}$ -measurable.

PROPOSITION 2. Let $\psi$ be a measurable mapping from $X\times V$ to $Y$ satisfying
(I), (II) and (III). A ch annel $\nu$ from $X$ to $Y$ is an integration channel deter-
mined by $(\psi, s)$ for some noise source $s$ , if and only if the following conditions
are satisfied;

i) $\nu_{x}(\psi(x, V))=1$ for all $x\in X$ , and

ii) $\nu_{x}(\psi(x, F))=\nu_{x^{\prime}}(\psi(x^{\prime}, F))$ for all $x,$
$x^{\prime}\in X$ and $F\in \mathcal{V}$ .

PROOF. Let $\nu$ be a channel satisfying the conditions i) and ii). Putting
$s(F)=\nu_{x}(\psi(x, F))$ , we see that it is a P-invariant probability measure on (V, $\mathcal{V}$ )

independent of $x\in X$. Moreover

$\nu_{x}(E)=\nu_{x}(E\cap\psi(x, V))=\nu_{x}(\psi_{x}\psi_{x}^{-1}(E))=\nu_{x}(\psi(x, F))$

$=s(\psi_{x}^{-1}(E))=\int_{V}\chi_{E}(\psi(x, v))s(dv)$

where $\psi_{x}(\cdot)=\psi(x, )$ and $F=\psi_{x}^{-1}(E)$ . Hence $\nu$ is an integration channel.
The converse is obvious. Q. E. D.
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\S 4. Capacity of some integration channels.

In this section we assume the finite alphabet spaces $X=A^{l},$ $Y=B^{I}$ and
$V=D^{I}$ . For the output source $q(\cdot)=q(\cdot : p, \nu)$ and the compound source $r(\cdot)$

$=r(. ; p, \nu)$ , the entropies $h_{p}(S),$ $h_{q}(T)$ and $h_{r}(S\times T)$ can be dePned as in \S 2.
When $ h_{p}(S)<+\infty$ and $ h_{q}(T)<+\infty$ , it is possible to define the transmission
rate $R_{p}$ by

$R_{p}=h_{p}+h_{q}-h_{\gamma}$ .
The stationary capacity $C$ of a channel $\nu$ from $X$ to $Y$ is defined by

$C=\sup_{p\in\Pi}R_{p}$ .

Putting $\Pi^{\prime}=$ { $p\in\Pi_{e}$ ; $r$(. ; $p,$ $\nu$ ) is ergodic}, the ergodic capacity $C_{e}$ of a channel
$\nu$ is defined by

$C_{e}=\sup_{p\in\Pi},R_{p}$ . (We put $C_{e}=0$ if $\Pi^{\prime}$ is empty).

Let $\psi_{0}$ be a mapping from a direct product set $A^{m+1}\times D$ to $B(m$ is a non-
negative integer), satisfying the following condition (a):

(a) $\psi_{0}(a_{0}a_{1}\cdots a_{m}, d)=\psi_{0}(a_{0}a_{1}\cdots a_{m}, d^{\prime})$ implies $d=d^{\prime}$ in $D$ .

Then we can construct the mapping $\phi$ from $X\times Y$ to $Y$ by

$\phi(x, v)_{i}=\psi_{0}(x_{i-m}x_{i- m+1}\cdots x_{i}, v_{i})$ .

Clearly $\phi$ is a measurable mapping from $X\times V$ to $Y$ and

$\hat{\psi}(Sx, Pv)_{i}=\psi_{0}((Sx)_{i-m}\cdots(Sx)_{i}, (Pv)_{i})$

$=\psi_{0}(x_{i-m+1}\cdots x_{l+1}, v_{i+1})=\phi(x, v)_{i+1}=(T\phi(x, v))_{i}$ .

Hence we can define an integration channel $\nu$ determined by the mapping $\phi$

and a noise source $s$ on $D^{I}$ . The mapping $\hat{\psi}$ satisfies the conditions (II) and
(III), for (II) is clear and (III) follows from the Kuratowski theorem. The
integration channel dePned as above is clearly an m-memory channel, $i$ . $e.$ ,

$\nu_{x}([y_{t}\cdots y_{j}])=\nu_{x^{\prime}}([y_{i}\cdots y_{j}])$ $(i\leqq j)$

if
$[x_{i-m}x_{i-m+1}\cdots x_{j}]=[x_{i-m}^{\prime}x_{t-m+1}^{\prime}\cdots x_{j}^{\prime}]$ .

THEOREM 2. For the integration channel determined by $(\phi, s)$ , the trans-
mission rate is obtained by

$R_{p}=h_{q}-h_{s}$ .
PROOF. As we can prove easily
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$h_{\gamma}=\lim_{n}\frac{1}{n}\sum_{x_{1- m}\cdot\cdot x_{n}}.\sum_{y_{1}\cdots y_{n}}r(([x_{1-m}\cdots x_{\theta}]\times Y)\cap[(x_{1}, y_{1})\cdots(x_{n}, y_{n})])$

. log $r(([x_{1-m}\cdots x_{0}]\times Y)\cap[(x_{1}, y_{1})\cdots(x_{n}, y_{n})])$ ,
we get

$R_{p}=h_{p}+h_{q}-h_{r}$

$=h_{q}+\lim_{n}\frac{1}{n}\sum_{x_{1-m}\cdot x_{n}}..\sum_{y_{1}\cdots y_{n}}p([x_{1- m}\cdots x_{n}])\nu_{x}([y_{1}\cdots y_{n}])$ log $\nu_{x}([y_{1}\cdots y_{n}])$ .

Now putting
$M_{i}(a_{0}a_{1}\cdots a_{n}, b)=\{v\in D^{I} : \psi_{0}(a_{0}\cdots a_{n}, v_{\ell})=b\}$ ,

we see
$\nu_{x}([y_{1}\cdots y_{n}])=\int_{V}\chi_{Iy_{1}\cdots yd}(\emptyset(x, v))s(dv)$

$=s(M_{1}(x_{1-m}\cdots x_{1}, y_{1})\cap\cdots\cap M_{n}(x_{n- m}\cdots x_{n}, y_{n}))$ .
Denote

$B_{0}=\{\psi_{0}(x_{\ell-m}\cdots x_{i}, d) : d\in D\}$ .
Then for every $y_{i}\in B_{0}$ there exists one and only one $[v_{i}]\in \mathcal{V}_{i}=S^{-i}\mathcal{V}_{0}$ such
that $M_{i}(x_{i- m}\cdots x_{\iota}, y_{i})=[v_{i}]$ . If $y_{i}\in B\backslash B_{0}$ , then $ M_{i}(x_{i-m}\cdots x_{i}, y_{i})=\emptyset$ . Therefore

$ R_{p}=h_{q}-\lim\perp$
$\Sigma$ $p([x_{1- m}\cdots x_{n}])H(\mathcal{V}_{0}\vee P^{-1}\mathcal{V}_{0}\vee\cdots\vee P^{-n+1}\mathcal{V}_{0})$

$n$ $nx_{1^{-}m}\cdots x_{n}$

$=h_{q}-\lim_{n}\frac{1}{n}H(\mathcal{V}_{0}\vee P^{-1}\mathcal{V}_{0}\vee\cdots\vee P^{-n+1}\mathcal{V}_{0})=h_{q}-h_{s}$ .
Q. E. D.

As the class $\Pi$ , let us choose the set of all S-invariant probability mea-
sures on $X=A^{I}$ . Then:

THEOREM 3. For the integration channel determined by $(\phi, s)$ , the stationary
capacity $C$ is achieved by some ergodic source $p_{0}\in\Pi_{e},$ $i$ . $e.,$ $C=R_{p_{0}}$ .

PROOF3). The finite alphabet space $A^{I}$ is a compact metric space by the
Tychonoff product topology. By the Riesz-Markov-Kakutani representation
theorem, the set $\Pi$ of input sources can be imbedded in the positive part of
the unit sphere of $C^{*}(A^{I})$ , the conjugate space of the Banach space $C(A^{I})$ of
all real valued continuous functions of $A^{I}$ , and the set $\Pi$ is compact convex
in $C^{*}(A^{I})$ with the weak* topology. As the channel $\nu$ is of finite memory, we
can derive (see Umegaki [7] p. 60) that

$\frac{1}{n}H(\mathcal{Y}_{0}\vee T^{-1}\mathcal{Y}_{0}\vee\cdots\vee T^{-n+1}\mathcal{Y}_{0})$

is a real valued continuous function on $\Pi$ . Furthermore

3) The proof is a reformation of Breiman [2], in which he proved that the
ergodic capacity and the stationary capacity coincide for finite memory, finitely cor-
related channels.
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$h_{q}=\inf_{n}\{\frac{1}{n}H(\mathcal{Y}_{0}\vee T^{-1}\mathcal{Y}_{0}\vee\cdots\vee T^{-n+1}\mathcal{Y}_{0})\}$

is a well known formula ([3], [5]), which shows that $h_{q}$ is upper semicontinuous
on $\Pi$ when $p$ is varied. The remaining part of the proof is same as Breiman
[2]. Q. E. D.

COROLLARY 1. If $\nu$ is a channel of additive noise defined in Corollary 4 of
Theorem 1, then $C=R_{p_{0}}$ for some ergodic source $p$ .

Next, we assume that $A=B=D$ and is a finite group. Put $\psi_{1}(a, d)=a\cdot d$ ,
the product in this group. The channel determined by the $\psi_{1}$ is called a
channel of Productive noise. For this channel, Theorem 3 is also valid. How-
ever, the more clarified expression is given in the following:

THEOREM 4. For a channel of prOductive noise, the capacity $C$ is expressed
$by$

$ C=\log$ (Card $A$ ) $-h_{s}$ ,

where Card $A$ is the cardinarity of a set $A$ .
PROOF. Putting $N=CardA$ , we consider a Bernoulli-source4) $\tilde{p}$ on $A^{I}$ deter-

mined by an N-dimensional probability vector $(1/N, 1/N, \cdots , 1/N)$ . Then, for
the output source $q(\cdot)=q(\cdot ; p, \nu)$ ,

$\tilde{q}([y_{1}\cdots y_{n}])=\sum_{x_{1}\cdot\cdot x_{n}}\nu_{x}([y_{1}\cdots y_{n}])\beta([x_{1}\cdots x_{n}])$

$=\frac{1}{N^{n}}\sum_{x_{1}\cdots x_{n}}\nu_{x}([y_{1}\cdots y_{n}])$

$=\frac{1}{N^{n}}\sum_{x_{1}\cdots x_{n}}s([x_{1}^{-1}\cdot y_{1}, x_{2}^{-1}\cdot y_{2}, \cdots x_{n}^{-1}\cdot y_{n}])=\frac{1}{N^{n}}$ ,

where the last equality follows from the fact that $x_{i}^{-1}\cdot y_{i}$ moves all over $A$

when $x_{i}$ is varied. Hence $q$ is also a Bernoulli measure and $h_{p}=\log N$. There-
fore,

$C=\sup_{p}(h_{q}-h_{s})\leqq\log N-h_{s}=R_{\tilde{p}}\leqq C$ .
Q. E. D.

THEOREM 5. For a channel of Produciive noise, the noise source is ergodic,

if and only if $ C=C_{e}=\log$ (Card $A$ ) $-h_{s}$ .
PROOF. Necessity: Let $p$ be the same Bernoulli source as defined in the

above proof. Put $r(\cdot)=r(\cdot ; p, \nu)$ . It suffices to prove that $r$ is ergodic, which
is clear from the remark under Proposition 1.

4) A Bernoulli-source $p$ determined by a probability vector $(p_{1}p_{2}\cdots p_{N})$ is a source
which gives a probability to any thin cylinder $[x_{1}x_{2}\cdots x_{n}](x_{i}\in A=\{a_{1}a_{2}\cdots a_{N}\})$ , in
such a way

$p([x_{1}x_{d}c x_{n}])=p_{i_{1}}p_{i_{2}}\cdots p_{\iota_{n}}$

where $x_{j}=a_{i_{j}}$ in $A$ and $p_{i_{j}}$ is an element of the vector $(p_{1}p_{2}\cdots p_{N})$ .
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Sufficiency: If $C=C_{e}=0$ , then $h_{s}=\log N$ by Theorem 3 and $s(\cdot)$ is a
Bernoulli measure, hence is ergodic. If $C=C_{e}>0$ , then there exists an ergodic
source $p_{0}$ and $r_{0}(\cdot)=r(\cdot ; p_{0}, \nu)$ is ergodic. Then by Corollary 1 of Theorem 1,
$\tilde{p}\times s$ must be ergodic, and which implies ergodicity of $s(\cdot)$ . Q. E. D.

We can expect some applications of this theory. For example, models of
burst errors are given by integration channels, choosing m-fold Markov chains
as noise sources. By these models we will be able to faithfully represent many
types of errors in various communication channels.
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