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On Veronese manifolds
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(Received Nov. 27, 1974)

From differential geometric point of view, a Veronese surface may be con-
sidered as a minimal immersion of a 2-dimensional sphere of curvature 1/3
into a 4-dimensional unit sphere. S.S. Chern, M. doCarmo and S. Kobayashi
gave a local characterization of a Veronese surface. The author also
characterized a Veronese surface by non-zero constant normal curvature.

We call an isometric immersion (a submanifold) an isotropic immersion
(isotropic) if all its normal curvature vectors have the same length at each
point. Let P"(c) (resp. P,(c)) be an n-dimensional real (resp. complex) projec-
tive space of curvature ¢ and S™(¢) be an m-dimensional sphere of curvature c.
B. O’'Neill proved the following results:

(A) There exists a non-umbilic isotropic minimal imbedding ¢ : P"(c)—S""(C)

where c:»ﬁ%)— and p:A%n(nqu)—l.

(B) There exists a Kaehler imbedding ¢ : P,(c)— Ppyp(€), where 2¢=¢ and
p=5n(n+1).

Taking account of [8], we may call these submanifolds the Veronese sub-
manifolds, in particular, we may call the former the real Veronese submanifold
and the latter the complex Veronese submanifold. M. doCarmo and N. Wallach
[2] characterized a real Veronese submanifold. The author and K. Ogiue ([6],
also gave some characterizations of a real Veronese submanifold in terms
of isotropic immersion. K. Ogiue gave characterizations of a complex Vero-
nese submanifold. ‘

The purpose of the present paper is to characterize Veronese manifolds
by means of geometric invariant functions on submanifolds.

§1. Real submanifolds in real space forms.

Let M™ be an n-dimensional submanifold immersed in an (n+p)-dimensional
Riemannian manifold M"*? of constant curvature &, (i.e., Riemannian submani-

&> Partially supported by the Sakkokai Foundation.
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fold with induced Riemannian metric). We denote by V (resp. V) the covariant
differentiation on M™ (resp. M™P), then the second fundamental form (the
shape operator) ¢ of the immersion is given by

o(X,Y)=VyY—V,Y, where X and Y are vector fields on M",

and it satisfies (X, Y)=0(Y, X). We choose a local field of orthonormal

frames ey, e, -+, €y, Cpu1y 1y Cpyp IN M™? in such a way that, restricted to M",
e, -, e, are tangent to M" (and, consequently, the remaining vectors are
normal to M™?), With respect to the frame field of M"*? chosen above, let
@y, -+, @™*? be the field of dual frames. Then the structure equations of M"*?
are given by®

(1.1) A, =G 45 \NGp, @ptBpa=0,

(1.2) A 5=20 40\ Gcp—CB4N\@p.

Restricting these forms to M", we have the structure equations of the immer-
sion :

(1.3) w,=0,

(14) wia: Eh%wj ’ h’?_{i: ?E ]

(1.5) dwi:Zw”/\wj, wij+wji:0,

(1.6) da)ijzzwik/\wkj_"Qij; Qij:“%—zRukzwk/\wu
(L.7) Rijkz:5(5ik511”5i15jk)+2(h?k ?L“‘h?z ?k) ’

(1.8) dwa@:Ewar/\wrp‘—Qaﬁ, Qaﬁz—%—zRaﬂuwi/\wm
(1-9> Raﬁij: z(h?khkg—h?khk‘?) .

Then, the second fundamental form (the shape operator) ¢ can be written as
o(X,Y)=2Zhfo(X)o(Y e, or o(ey, e;) =2 hie,.
If we define A%, by
Zhfewy = dhi+ ZE hGw e+ 2 hiion+ X o,

then, from [1.2), [1.3) and [1.4), we have h%,=h$%,. The second fundamental
form o is said to be parallel if h$,=0 for all a, 1, j, k.

Now, we consider the following non-negative functions on M":

&) We use the following convention on the range of indices unless otherwise
stated; A4, B, C=1, 2, ---, n+p, i,j, b, I=1,2, -, n, a, B, r=n+1, «-, n+p, and we agree
that repeated indices under a summation sign without indication are summed over
the respective range.
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S:=le|*=Zhzhy, (A,

(1.10) Ky: =2 RasijRapi; = Z(kZ(h%"khk@—-h?khk‘?))g , 37,
(1.11) Ly: =23 <a(ey, ej); o(ey, e))’= 2(121 hgjhﬂij>2: Ehgff ?zh‘%jhk'% ’

where <, ) is the inner product in the normal space to M™. We know that S
is the square of the length of the second fundamental form and Ky is the
square of the length of curvature tensor of the normal bundle, which is called
the normal scalar curvature of M™ in M defined in [5] Set S,s:=3hghé;, the
(pX p)-matrix (S.s) is symmetric and can be diagonal for a suitable choice of
frames e,.y, '+, €n+p. Then, setting S,: = Sea= 2 (h%)?, we have S=3S, and
Ly=3S% Since S, is the square of the length of the second fundamental
form for the direction e¢,, we may consider Ly as the sum of the 4-th power
of the length of the second fundamental forms for suitable frames.

We know that if M"™ is minimal, i.e., 2 h%=0 for any «, then the func-
tions above satisfy a differential equation, that is,

LEMMA 1 ([1]). Let A be the Laplacian. Then we have

(1.12) L AS=neS—Ky—Lyt Skt on M.

M™ is said to be A-isotropic at a point x< M™ if o(X, X) has the same
length A for any unit tangent vector X to M™ at x. We say M" is isotropic
if it is isotropic at each point of M". Then we have the following

LEMMA 2 ([10]). M™ is A-isotropic at a point x& M™ if and only if setting
Ayj=o(e;, e;), for any orthonormal frames of M™ at x, we have

”Ajj“:'zy <Aw Aij>:Oy <An‘, Ajj>+2nAinZ:'227
<Aiiy Ajk>+2<Aij, Aik>: <Aij7 Akl>+<Aik1 Ajz>+<AiL, Ajk> :0,

where {,> denotes the inner product in the normal space N, at x and all indices
are different from each other.

(1.13)

§2. Real Veronese submanifolds.

We first prove the following

PROPOSITION 1. Let M™ be an n-dimensional submanifold immersed in an
(n4-p)-dimensional Riemannian manifold M™? of constant curvature ¢. Then
we get

(2.1) Ky=nLy everywhere on M™,

where the equality holds at a point x = M™ if and only if M™ is isotropic and
minimal at x and the sectional curvature of M™ at x is constant for all tangent
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planes to M" at x.
PROOF. Denoting A;;: =a(e;, ¢;)= X hje,, from and we get
(2.2) KN:27§ (A An, Ay =22 Au, A Au, Aup
:2§<Aik, Ay (Au, Alj>+4§<Aiiy Aspp{A; Az
+8X (Au, Aip (i Aup =23 Ausy App Aary Arp
—8§<Ai,-, A <A, Akj>—4§<A“, AU>2-2§<AM, At
+2§”*AUHZ'”AM”2+4§ [ Aull®- [ As]*—43 [A1* - <Auiy Ajp
(2.3) Ly=X<A;, Aw'’= §<A”, Akl>2—}-4§<Aw, Aik>2+4§<Aii; At
+2,Z_)<Aii; A+ §<Am Ajj>2+2§”14ij“4+2”Aii”4;

where 2 denotes the summation over different indices.
*

From these equations we have
(24)  nly—Ky= > {CAir, Apip—<Auss Au>}2+2§ {CAigy Aip—<(Ayy, A0 }*
+§{<Aw, Apy+<{A, Aﬂ>}2+(n—2)§<Ai,-, App?
TAZ KAy, A +<Ausy Aupt+2n T Ay, Ap®
T4 {CAsy, Aipp— <A, Akj>}2+2(n—2>§<z4u, Asw®
T 2w, A2 Al /n} +8 < Au, A

+ AL s A=l A2 — DY

+ 2 UAGP 1 Aul* 20,

where the equality holds at x = M™ if and only if for any orthonormal frames
ey, **, enyp in M such that e, -+, ¢, are tangent to M", we have

Ay Aipp = Ay, Avww = <Ay, Ay =< Ay, A =0,
(25) [AilIP=nlAyl*/2(n—=1),  nlAyu, A;p+2]A4451*=0,

1Al =1Aul,
where different indices indicate different numbers. From [2.5) we have

[Aull =114l for all 4 j,

1ZAul*=nlAul*+ 2 <A, A1 =0,

and so
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which implies that the immersion is minimal at x.
We assume that the equality of (2.1) holds at a point x = M. Then, using

and (2.5), we easily have
Rijkl — <C~‘_n_(n§:v><5ik5jl_5ilajk> ’

which implies that the sectional curvature of M™ at x is constant for all tan-
gent planes to M" at x. We get (1.13) from [2.5), so the immersion is isotropic
at x.

Coversely, we assume that the immersion is isotropic and minimal at
x&€ M™ and the sectional curvature of M™ at x is constant ¢ for all tangent
planes to M™ at x. It follows from that we have

(A, Ajl>_“<*4ily Ajk> =(¢— C)(aik5j1—5i15jk),
from which we have

CA A =<Ay, Ajp if at least three indices are different
(2.6) A 12—=< A, A =E—c, t+1),
Ay, Aj =< Ay, A, (J#k).
Since the immersion is minimal at x, we easily get from (1.13) and (2.6),
so the equality of (2.1) holds at =x. Q.E.D.
Now, using this proposition 1, we can prove the following
THEOREM 1. Let M™ be an n-dimensional, compact, oriented and connected
submanifold minimally immersed in an (n+p)-dimensional sphere S™P(¢) of
curvature ¢. If the immersion is full and the following inequality holds every-

where on M™;
(n+1)Ly<néS

where Ly is the function on M™ defined by (1.11) and S is the square of the length
of the second fundamental form, then p=0 or p:—%~n(n—l—1)—1 and M™ is

ne . n - . .
of constant curvature 1) t.e, M"™ is a real Veronese submanifold in

StP(E).
Proor. It follows from Lemma 1|, (2.1) and our assumption that we have

@.7) 5 AS= S (k) +neS—Ky— Ly 2 néS—(n-+1)Ly 0.

Since M™ is compact and oriented, we have ASdV =0, where dV is the
Mn

volume element of M”. Then from we have

(2.8) ¢r=0 for all 7,7/, k and «a,
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(2.9) néS=n+1)L,= ~n——7:—1~Kn everywhere on M™".

It follows from that M" is isotropic. Next, we shall show that
M™ is of constant curvature ¢ and p=0 or p:—%—n(n—l-l)—l. Setting A:=
A, from we have

(2.10) S= %n(njuzw .

Since S is constant by [2.8), 2 is so on M". From we have

. S
(2.11) C=(C— n(n_"l) .
It follows from [2.5), and that we have
_ _ nn—=1(n+2)¢ n
(2.12) S=0 or S= JCES)) on M™.

If S=0 on M™", then from [2.11)] we have c=¢ and M" is totally geodesic (i. e.,
p=0). If S>0 on M™ from [2.11) and [2.12) we get C:Z—(nll—%—‘l)“' In this

case, from we easily see that the dimension of the vector space generated

by {o(e;, e)}1=i=n and {o(e;, €;)}1<icjsn 18 —%—n(n—i—l)——l, that is, the dimension
of the first normal space of M" is —%;n(n-l—l)-l at each point of M"®. On the
other hand, it follows from [(2.8) that the second fundamental form o is parallel
everywhere on M”. Therefore, by Theorem in [3], we see that p= —%‘,—n(n—i—l)—l.

By means of in [6], we see that M™ is a real Veronese sub-
manifold in S™2(¢). Q.E.D.

§ 3. Kaehler submanifolds of complex space forms.

Let A7In+p(5) be an (n-p)-dimensional complex space form of constant
holomorphic sectional curvature ¢ and M, be an n-dimensional Kaehler sub-
manifold immersed in Mn+p(5) (i.e.,, complex submanifold with the induced
Kaehler structure). Let J (resp. j) be the complex structure of M, (resp.
Mn+p(c”)) and let g (rssp. &) be the Kaehler metric of M, (resp. Mn+,,(6)). We
denote by V (resp. ﬁ) the covariant differentiation with respect to g (resp.

8). Then the second fundamental form ¢ of the immersion is given by

o( X, Y)=$XY—VXY, for vector fields X and Y on M,,

and it satisfies

(3.1) o X, Y)=0(Y, X), o(JX, Y)=0(X, jY):jo(X, Y).



Veronese manifolds 503

We choose a lgcal field of orthonormal frames ey, ---, ¢,, el*:fel, e, =
Je,, e, -, e5, exe=Je3, -+, e,;*:je; in 1\7In+p(5) in such a way that, restricted to
M,, e, ---, e, en -+, e,» are tangent to M,®. With respect to the frame field
of ]\7In+p(€') chosen above, let @y, -+, @,, Wy, -+, Wps, OF, -+, ©F, OF, -+, W5 be the
field of dual frames. Then the Kaehler metric can be expressed locally as
g=2w,;w; and §= 2 w;w;. The structure equations of Mn+p(6) are given by

(3.2) do;=wANw;, o+to,;,=0,

Wap=— Weaeps Wa3 = Warps, Wap=— Worgs ,
(3.3)

Waps— Wpgs , Wy = Wgas , Weps = Wgg#

. ~ 1
Adw =201 NOxg—21;, QIJ:_2‘ERIJKL(DK/\(DL )

(3.4)
EIJKLz'2—(51K5JL—5IL6JK+jIKjJLMjILjJK+2jIJjKL)
where
I, 0 ) . . .
Jrp) = 0 At I; being the identity matrix of degree s.
—ip
0 I, 0

Restricting these forms to M,, we have the structure equations of M, :
w,=0, Wi =2 W0, , his = h#;

(3.5) dw; =20 \w;, w;+w;=0,

1
dwijzzwik/\wkj_gija 'Qij:‘—z'zRijkzwk/\wz,
Qij:.éij“—zwilu/\w#j .

We can easily see that the equation of Gauss is written as

(3.6) Rijm= _fl‘(Bikajl_"51‘{6;'12+]ik]jl_jil]jk+2.]ij.]kl)+ 2 (hé s —hih4,)

# We use the following convention on the range of indices unless otherwise

stated:
A: B; C’ D:ly _”’n"\i’ "';5; a, b; c, d:1, see, N

2

I: ]1 K’ L=1; e, N, 1*; AR n*, 1: ttty p’ 1*; AR p*,

i;j: k’ l=1x () 1*; ] 7’[*;
‘!J, Y, " :1; "':p: T*J "';E*; a, ﬁy ?":"1’, "';5-

and we agree that repeated indices under a summation sign without indication are
summed over the respective range.
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Now, we can consider the following non-negative functions on M, :
3.7 Ky:= 2(§(hé’kh5j—h§‘k D)

(3.8 Ly: =X hihhihy,,  (see Lemma 3.4 in [9])).

Then we know the following useful result.
LEMMA 3 ([9]). Let A denote the Laplacian. Then we have

1 n+2
2 2

(3.9 AS=(h#,)?—Ky—Ly-+ ¢S,

where S is the square of the length of the second fundamental form.

§4. Complex Veronese submanifolds.

We first show the following
PROPOSITION 2. Let M, be an n-dimensional Kaehler submanifold immersed
in an (n+p)-dimensional complex space form M,,,. Then we have

(4.1 Ky=<(n+1)Ly everywhere on M,

where the equality of (4.1) holds at a point x= M, if and only if the holomor-
phic sectional curvature of M, at x is constant.
PrROOF. Denoting A;;: =a(e;, ¢;) =X hte,, from (3.1) we see

(42) 44a*b*: '_44ab ’ Aab*: Arz‘b :jAa,b .
By means of [2.2), (2.3) and [4.2), we have
(4.3) KN:2§<AH¢, Akj><Aily Alj>+4§<Aii’ Aij><Ajj: Afi>
+8§<Aiiy A {Ayy, Akj>_8§<Aija Ay {Ags, Ay
—43 Ay, Ay =22 Ay A pp? +162 1 Agall*
2 =3 F
_2§,<Aik; Az {Ay, Akj>+32§“14aa“2'”Aabnz
+16§“Aab“2' [Agcl*+1620 Agall*,
(4.4) Ly= §/<Aijy Akl>2+4§<Ai]‘y Aik>2+4§<Aii: Aij>2+2§<Aii, At
+4§<Aaa: Abb>2+16§||Aab”4+82”14aan4 ,

where § denotes the summation over different indices and X’ denotes the
+*

summation over different indices except the case k=1* and /= *. From these
equations we have
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(4.5) (n+1)Ly—Ky
=27 {<Ay, Ay +<{Ais, Ajl>}2+(n——1)§/<14ijy Aw?

F 2 A A — Ay At +235{KAG, Ay — <Ay Ao}
FAS{Ay, A Ay, A P2+ 1T Au, 4,0
FAZ{KAu, Aip —<Au, A P2 —1) 2 Au, 4307
+4n+1)2K e, Aw*+8Z {1 4w~ I Aacl*}*

+821 1 Asel® =21 A0lI*}* 20,

where the equality holds at a point x M, if and only if for any above ortho-
normal frames of M, we have

<Aik, Akj> = <Aii; Aij> = <Aii, Ajk> =0,
(4.6) {A;j, A =0, (k+#1*, 1+ %)

[Aaol =140l = 5 1 Aaal®,  <Aa, Ay =0,

where different indices indicate different numbers.

From we easily see that the holomorphic sectional curvature of M,
at x is constant.

When the holomorphic sectional curvature of M, at x is constant ¢, we
easily obtain Ky=(n+1)Ly=n(n+1)%¢—c) Q.E.D.

Using this result, we have the following

THEOREM 2. Let M, be an n-dimensional compact Kaehler submanifold
immersed in an (n+p)-dimensional complex projective space P,,,(¢) of curvature

~

¢. If the immersion is full and the following inequality holds
2Ly =¢S everywhere on M, ,

where S=|a|® and Ly is the function on M, defined by (3.8), then p=0 or
p:—%—n(n—i—l) and M, is of constant holomorphic sectional curvature —g—, i.e.,
M, is a complex Veronese submanifold in P, ().

PrROOF. From (4.1) and our assumption we have

U7 5 AS=S(hr+ R 5Ky —Lyz 2 (2S—2Ly) 20.

Since M, is compact, we easily see that all equalities of (4.7) hold everywhere
on M,. Therefore we have

(4.8 h,=0 for all i, j, k and g,
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(4.9)

T. IToHn

2Ky=2(n4+1)Ly=(n+1)&S everywhere on M, .

It follows from (3.6) and that the holomorphic sectional curvature
H is given by H=¢&—S/{n(n+1)}. Since S is constant by [4.8), H is so, i. e., M, is
of constant holomorphic sectional curvature c¢. Using and [4.8), we easily
see that the dimension of the first normal space of M, is not greater than

—%—n(n—i—l). Then, by Theorem in [3], p< —%n(n—l—l). Therefore, by means of

Theorem 4.4 in [9], we complete the proof. Q.E.D.
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