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§1. Introduction.

J. H. Foster and others consider Galton-Watson processes modified to allow
immigration of particles whenever the number of particles is zero. Let {Z,;
n=0,1, ---} be such a process. Under some additional assumptions, J. H. Foster
showed in that the limit law of this process with offspring law having
mean 1 is quite different from that of the original critical Galton-Watson
process {ZF;n=0,1, ---}. He proved that for any 2>0

lim P(log Z,/logn < Bl Z,=k)=J3 for 0<pB<1,

N—o00

i. e, the limit distribution of log Z,/log n is the uniform distribution on [0, 1].
On the other hand, it is known for the original Galton-Watson process that

lim P(Z¥/n< Bx/2| 2 >0, Z¥=1) :Ve—tdt for x=0,
n—oo 0

where B=var ZF.

It is natural to ask whether a similar argument is possible when the time
parameter is continuous. The main purpose of this paper is to prove an anal-
ogous limit theorem in the case of continuous time parameter. In addition
we consider general continuous time branching processes which allow random
immigration whenever the population size is zero (we call such processes
CTBP-RI-0), and give necessary and sufficient conditions in terms of their
infinitesimal generators in order that such processes should be transient, null-
recurrent or positive-recurrent. Further we give a limit theorem also in the
case where the original branching process is supercritical.

In §2, we describe some basic properties of continuous time branching
processes as a preparation for the study of CTBP-RI-0. _

In §3, we give necessary and sufficient conditions for transience, null-
recurrence and possitive-recurrence.

In §4, we calculate generating functions for the use of §5 and §6.

In §5 and §6, we will obtain limit theorems for supercritical and critical
cases.
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§2. Preliminaries.

1. Continuous time branching processes.

Let {Z*(¥); =0} be a time continuous Markov chain on the non-negative
integers. The chain is called continuous time Markov branching process if
its transition probabilities

PY(t)=P{Z*(t+s)=]|Z*(s)=1}
satisfy

a) PH{t)=P 2 P,@) - PH@) for all 1>0, j=0

Jytetig=i
and
P§()=0,

b) P#(s)=0,+p;s+o(s) as s| 0 for i=0, p; finite.

We use an abbreviation CTBP for such a chain. Note that p, <0 and
p:;=0 for i#1. From now on we assume p, <O0.

For CTBP we define a generating function F(f;s) and an infinitesimal
generating function f(s) by

F(t; s):g}) Pi(t)s' and f(s):% bist.
Now, we recall some of their properties.
1 f)=0.
2_Ft; )=fF(; )
2 ot
F(0;s)=s.
[ D F(t; 5)=fs)oFit; 9

FO;s)=s.

3)

9 ZPEOT=F(t; ).

The infinitesimal generator A* of CTBP is easily obtained from the defini-
tion of CTBP and is given by
iy if j=zi—1
A*=(a}), where a}= e o
if j<i—1.
It is known that if a,= /(1) is finite, then solution of (2) satisfies

F(t; =1 for all t=0.
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That is, P} (#) is uniquely determined by {p;}.
Usually CTBP is called supercritical if 0<f/(1)<oo, critical if f(1)=0,
subcritical if f(1)<0. PF(t) satisfies
1 in critical or subcritical case,
lim Pt =
fee g<1 1in supercritical case.

Let a,=f(1) and b,=f"(1). In subcritical case, it is known that

1—P¥(t)~ Kexp (a,t) for some constant K
if and only if

' gt fl—u)
fogl;fu-—u) du

is finite. If b, is finite, then this integral is finite. In critical case,
1—Pj(t)~2/bit

if b, is finite. In supercritical case,
q—Pif(t)~ Me,

where M is a positive constant and c¢= f'(q).

For the proof of the above results, we refer to [1].

2. Continuous time branching process which allows random immigration
whenever the population size is zero.

For the generator A* of CTBP described above, the state 0 is an absorb-
ing barrier. We modify this state so that the resulting infinitesimal generator
is

1Djmie1 if j=i—1and 121,

A=(a;;), where a;;=1 ¢; if 1=0,

0 otherwise .
From now on, we assume that

§,<0, ¢;=0 >0 and i}qizo.
1=0

The processes generated by A is a continuous time analogue of “branching
process with state-dependent immigration” investigated by J.H. Foster and
others. Generally, processes generated by A are not unique and may approach
to infinity in a finite time. We denote by CTBP-RI-0 the minimal processes
generated by A, which terminate at the instant 7 of first infinity. There are
versions such that their sample functions are right continuous step functions
and if T>¢, then the number of jumps before ¢ is finite. Let {Z(t); 0=i<T}
be such a version. We will use Z*(t) for the sample function of CTBP corre-
sponding to Z(t) and P¥(f) (t=0, i, j=0, 1, ---) for the transition probabilities
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of Z*(¥).
It is easy to see that if a, <co, then

P(T=c0)=1.

In the sequel we assume that a, < oo.

§3. Transience, null-recurrence and positive-recurrence.

1. Transience and recurrence.

We can easily determine by a;=f’(1) whether {Z(#);t<oo} is transient or
recurrent.

THEOREM 1. {Z(t); 0=<t<co} is recurrent if and only if a; 0.

Proor. Let Z(0)=1>0. By the definition of Z(¢), Z(f) behaves in the
same way as Z*(f) till it reaches the state 0. Z(f) stays there according to
exponential distribution with mean —1/¢,. Then it jumps to state j=1 with
probability —¢;/g,. After that it repeats the same motion by the strong Markov
property. From this fact, it is obvious that Z({) is recurrent if and only if
the extinction probability ¢ of Z*({) equals 1, and Z(?) is transient if and only
if ¢<1. g.e.d.

2. Null-recurrence and positive-recurrence.

In §2-1, we have defined two generating functions F(¢;s) and f(s). Now
we define one more generating function

g(9)=Sq:s'.

As is seen in §3-1, a¢,=f'(1) determines whether the process is recurrent
or transient. Further, does a; determine null-recurrence and positive-recurrence
of the process? The answer is “no”. We must take into consideration the
function g(s). But Remark 1 will show that a criterion is given by a; under
some additional conditions.

Let To=inf {¢t; Z(t)+ Z(0)} and T,=inf {t;t>T, and Z()=Z(0)}. We
investigate a probability H(t)= P{T,<t|Z(0)=0} to give a criterion whether
{Z(t); 0=<t<oo} is positive-recurrent. H(?) is the distribution function of the
first recurrence time when the starting point is 0.

LEMMA 1.

M H(t) = [ (g(Pi(t—uw)—q,} exp (guudu

ProOOF. T, is a Markov time. From the strong Markov property, we have

Ht = % [ Pt—wP(T,€ du, 2(T) =il Z20)=0).
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Since P(T,=du, Z(T,)=1|Z(0)=0)=gq, exp (g,u)du for each 1> 0,
o L
H(t)= 3 | a.PH(t—w) exp (q)du

Moreover, P¥(t—u)= Pj(t—u)'. Therefore we get the lemma.
LEMMA 2. Let a,=<0. Then

§IES ds= — [ 1L g(Paoat.

5(s)
PrOOF. Let s= P#(¢). From the property 2) of §2-1, we get
ds P
S =F(PK®) and (= jo oy @5

Using these relations, we obtain

“ d Lot 1
jo t—S-g(PA(1)dt = jog (5>d5507m du

= j:% a’uj:g’(s)a's

THEOREM 2. Let a,<0. If

' g(s) e
) fs) BZ T

483

g.e.d.

then {Z(t); 0=t < oo} is positive recurrent. If this integral diverges, then the

process is null-recurrent,
ProoF. Differentiation of (1) leads to the equation

(2) () = 0, B+ 2 (PHO) 4.

Integrating (1) partially, we get
(3) g H(t) = —g(PHi(1)+q,+ A1),

where A(f)=exp (q,t) f:exp(—qou)%—g(Pf‘s(u))du. We denote the density of

H(t) by A(t). Then we have by (2) and (3),
)] h(t)y=A(t).
Thus,
oo . o0 d oo
[ tdH® = [ “exp (=g g(Pi(u)duf t-exp (git)dt

_ 1 = d
= War—wrg g(PiGw)du.
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This shows that {Z(f); 0<t< oo} is positive-recurrent if and only if the
integral

[ “uttg(Pa)dn

converges. By we get the theorem. q.e.d.
The representations (1) and (2) will be used in the proof of of §5,
and 3 of §6.
REMARK 1. The following statements are easily verified by
a) If a,=0 and b, < oo, then {Z(t); 0<t< oo} is null-recurrent.
b) Suppose that a¢; <0 and
Vautf(l—u
0;-*u;—d£_u) : du

is finite. If there is an a >0 such that
g(s)/(1—=s)*"=0(1) as stl,

then {Z(#); 0=t < oo} is positive-recurrent.

REMARK 2. The statement “If ¢,<0 and b,<oo, then {Z(t);0=i<oo} is
positive-recurrent” is not true.

COUNTER-EXAMPLE. Let

g(s)=(1/g,+log (1—s)*
and
F(s)=a(s—1)+b(s—1)*/2,

where —1/2<¢,<0, a<0 and b>0. In this case, we can solve the differential

equation 2) of §2-1 and further we have

PXt=1—e*/(b(e*—1)/2a-+1).
Hence
g(Pii(1) = (1/g,+at—log (b(e*—1)/2a+1))™"

~1/at as t—oo,

By [Theorem 2, the process in null-recurrent.
We must establish that g(s) is a generating function of some {¢;}. For
this, let 1/¢,+log (1—s)=B(s). Then

g(s)=B(s)™
and
g'(s)=B(s)*(1—s)"*>0.

Let B(s)"(1—s)"'=ua(s) and (1—s)"*4+2B(s)""(1—s)"'=0b(s). Then

g"(s)=a(s)b(s) .
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By the hypothesis 0>¢,>—1/2, we have b(0)>0. Therefore
g7(0)=a(0)b(0)>0.

Now, since a’(s)=a(s)b(s) and b'(s)=>5b(s)?/2+(1—s)"?/2, higher derivatives of
g(s) are represented as polynomials of a(s), b(s) and (1—s)~! with positive
coefficients. Therefore all coefficients (except the constant term) of the Taylor
expansion of g(s) at the origin are positive.

§4. Generating functions and moments.

Now we want to describe limit theorems for our processes. For this we
begin with calculating generating functions and moments.

1. Generating functions.
Let

Gilt; )= 3 Pi(0s’,

where P;;({)=P{Z(t)=j|Z(0)=1i}. We will represent G,(f;s) by generating
functions of CTBP-RI-0. The transition probability of Z(t) satisfies the fol-
lowing renewal equations.

©a t 13
Po(t)=3q,{ PHt—u)exp (qu)du+{ Py (t—u)dH(u)
Jj=1 0 0
for 1>0 and
t
Pu(t) = | Poolt—)dH(u)+exp (4ut)

The proof is easily obtained from the strong Markov property.
From the renewal theory, the unique solution of the above equation is
given by

Put)={ aUO[ " 5 0,P5(t—s—u) exp (qau)du
for 1>0, and
Pot)={_exp (qult—1)dUG),

oo

where U(t)= X H™ and H™ is the n-fold convolution of H. Using (1), we

n=0

obtain
Got; s)= 1+J':_dU(u)j:—ug(F(t—u—w ; S)) exp (qow)dw .
It is easy to see that
Po(t)=P5(t)+[ Pot—s)dPE(s)
for 1>0 and
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t
Pi(t)= | Pult—5)dP3(s),
by the strong Markov property. Therefore we have
t
(5) Gi(t; )=Ft; )+[ (Golt—u; 5)—1)dPH(w).
0
By this result, it is easily seen that if
Fit;1)=1 for all t=0,
then
G(t:; =1 for all =0 and :=0.
This is obvious also by the fact that Z(t) behaves in the same way as Z*(?)
till it reaches the state zero.
2. Moments.
Let E;(-) stand for E(-|Z(0)=1).

THEOREM 3. a) If a,=f"(1) and a,=g’(1) are finite, then E(Z(t)) is finite
for all t=0.

b) If ay, a, by=f"(1) and b,=g”(1) are finite, then E,(Z(t)*) is finite for
all t=0.

PROOF. a) If liIm —aas—Gi(t ; $) is finite, then this is equal to E,(Z(#)). From
st1

the expression of G(f;s) we get

£i?r{1 % Gy(t;s)

. t t—u a
= lim fo_dwu)jo —j—F—g(F)—aS— Ft—u—w ; s) exp (quu)dw

st1

= [ exp (qu(t—u)dUw).

Thus, liTm%Go(t ; s) is finite and continuous. Hence it is bounded on closed
s11
intervals. From (5) we have

lim -Gt )

sT1

— lim % Fi(t; 9)-+lim jo—aas— Golt—u; $)dP% () .

st1
It is well known in the theory of branching process that the first term is
finite. The second term is finite since liTm —aaS—Go(t——u ;S) is bounded on ue
sT1
[0, t]. Therefore liTm %Gi(t; s) is finite.
st1

b) Let us calculate
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lim 2 Gy(t; )= E(Z()(Z(D—1)).
si1 N

[t follows from
2 t t—u 2 2
TGt 9= av)| g () F—u—w; 9))

I dp g asz ’ p QO
that

. 0°
181?11 —as—zGo(t; s)

= j:_dU(“)f:_u{bz exp (2a,(t—u—w))+a,B(t—u—w)} exp (gow)dw ,

where B(t)= E(Z*(t)(Z*(t)—1)). Therefore E(Z({)(Z(t)—1)) is finite. In the

same way as the proof of a), we can conclude that lsigl—aa%G,-(t; s) is finite
for each 1=0. g.e.d.

THEOREM 4. If a,, a,, b, and b, are finite, then E,(Z(t)) and E,(Z(t)%
satisfy

L E(Z()= ,E(Z(0)+ a,Pu)
a) 1
E(Z(0)=i
and
A E(2() =20, ELZ(0)+C(1)
b) y

E(Z(0)")=1",
where C(1) = (b;—a,) E(Z(1))+(a,+b,) Pio(2).
PrROOF. Using the forward equation

d;dtpij(t): i Py(D)ay; where (a;;)=A
k=0

and the preceding theorem, we have

_ddt_El(Z(t)) - —dd?—(Jg 7P;;(1)

i
M3

J

2 1P(t)ay;
0 k=0

i

=3 3 jkpsenPul®)+ 2 iPu(Dy;
k=1 j=k—1 t=1
=a, Ei(Z(1))+a,Pyo(t) .
b) is obtained by similar calculation. g.e.d.

THEOREM 5. Under the hypothesis of Theorem 4,
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E(Z()= (0] Puw) exp (—au)du+i) exp (a,0
and
Ezt)=({ :C(u) exp (—2a,u)du+i*) exp (2a.1) .
In critical case (a;=0),
E(Z(1)=a,[ Pu(u)du+i
and

E{Z(t)) = (ay(by+1)+by) | :Pio(u)du—!—i‘* _

PrOOF. Solve the differential equations obtained in q.e.d.

§5. Limit theorems in supercritical case.
For supercritical CTBP (a,>0), it is known that &*(t)= Z*(t) exp (—a,t)
converges almost surely to some random variable &*, If f} Jbjlog j=oco, then
Jj=2

P&x=0)=1. If f)Zij log j<co, then &* is non-degenerate and the Laplace
J=
transform ¢(1)= E(exp (—A&*)| Z*(0)=1) satisfies a differential equation

d A
da P(A)= _______f(ﬁfl(l ) ’ $0)=1.
Note that
(6) Q) =lim F(t; exp (—2exp (—aD))).
We will prove similar limit thecrems for CTBP-RI-0.
THEOREM 6. Let a,, a, be finite and a,>0. Let Z(0)=1i. Then &)=

Z(t) exp (—at) converges almost surely to some random variable &,.
ProoOF. It follows from §4, that

EeD180); 4S9 =0, Prycwol®) exp (—a,u)du-+E(5)

= £.(s) for all t>s.

Hence {&,(t); t=0} is a submartingale. Since
E (&))< a,(i+1/a,)  for all t=0,

&,(t) converges almost surely to some &; such that F;(§;)<co by the con-
vergence theorem for submartingales. g.e.d.

THEOREM 7. Under the hypothesis of Theorem 6, the Laplace transform
0i(A) = E(exp (—2&,)) is represented as follows.
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e D= W+[ "dPEW ~dUO)[ g((@ exp (—a(u+v+w))) exp (guw)dw .
PROOF. From the preceding theorem and §4-1 it follows that
@A) =lim Gt ; exp (—2exp (—a,t))
t t—-u
=1lim {H—j dU(u)j g(F(t—u—w; D(t, u, w))) exp (qow)dw} )
t—roo 0— 0

where D(t, u, w)=exp (—Aexp (—a,(t—u—w)) exp (—a,(u+w))). Since U is a
bounded measure, we have by the bounded convergence theorem,

e =1+[ AU lim [ “g(F(t—u—w; D(t, u, w))) exp (gouw)dw

= H‘J: dU(“>f0wg(¢(2 exp (—a,(u+w)))) exp (gow)dw .

Similarly we can prove the theorem when >0 by the boundedness of P (%).
qg.e.d.
By the absolute continuity of H(x), U(x) is written in the form

UGx)=1+{ u(xdy,

where u(x):f:h(x—y)dU( v). We need the following lemma in order to prove

the absolute continuity of the distribution of &;.
LEMMA. We assume the hypothesis of Theorem 6. If ¢>0, then

u(x)~L-exp (—yx) as x—oo
for some constants L>0 and y>0 satisfying
7y < —max (¢, q,) .
PROOF. Let 2<2,=—max (c, q,). Let IQ)=( ¢“dH(f). By (4), we have

0

oo t d

1) = [ “exp (A+gn)0dt| exp (—go)—— g(Ph(u)du .
0 0

Since 14¢,<0, we have

12) = { "exp (—qo) g2 (P du "exp (-+a)bdt

— _ﬁf :j—u g(P(w)) exp (u)du .
It follows from q—Ps%(t)~ Me®" that

g (P(u) ~ M



490 M. YAMAZATO

where M’ is a positive constant. From this, it is obvious that for fixed >0,
we can choose 7>0 so that

A g(PHw) > M(1—e)e
for u>T. Hence
12)> == f "M/(1—e) exp (Aot

- e o,

This shows that I(2) tends to infinity as A1 2,. Thus there is some y>0 such
that

j TertdH(t) =1.
0

Let e"h(t)=h*{t) and e"u(t)=u*(t). Then h*(t) and u*(t) satisfy a renewal
equation
t
wk(t) = A0+ [ ur(t—)h*(2)dy
Applying L’Hospital’s rule to (4), we have for y<4<4,

h*(t) = o(exp (y—A)1)) .

This shows that for large t, A*(t) is estimated from above by integrable de-
creasing function. Then A*(¢) is directly Riemann integrable. The definition
of directly Riemann integrable was given by Feller [4]. Since

§ mody=1,
by the renewal theorem [4, Chap. 11, Sect. 1], we have
u¥(x) — L as x— oo,
where L™= 5 :yh*(y)dy. It is obvious that L' is finite. Therefore

u(x)~ L-exp (—7yx) as x—oo. q.e.d.

THEOREM 8. For &,, either P(§,=0)=1 or P(£,=0)=0. The latter holds
if and only if

leszj Iog ] < 0 )
and then the distribution of &, has a continuous density on (0, o),

PrOOF. If 3 jpslog j=oo, then ¢()=1 for all 220, and hence py(2)=1
~
by Therefore P(§,=0)=1. If the series converges, ¢(1) is known
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to tend to ¢ as 1—oco. Hence, we have by
lim (D) ="+ "aPw)|  dUw)| "g(g) exp (gw)dw
A—oo 0 0— 0

=¢*—q*g(q)U(0)/q,.

Since U(oo)=q,/g(q), lim ©x(A)=0. This means P(£,=0)=0.

If iszj log j<co, then applying of [1, p. 1107 to Lemma 7-(ii)

j=
of [1, p. 35], we have for any 0<0,<0,
sup|¢'(iA)] - [0 =R <o,

where 6= —c/a;, c=/"(¢) and i=+/—1. Differentiation of ¢,(1) leads to the
inequality

sup| i (i) - | 2]+
< kR+{ "dPH)| " dUW)| "a,M-exp (adu(utv+w)+g)dw .

If ¢>0, we can choose 9, so that a,0,<y where 7 is the positive number obtained
in the preceding lemma. Then the right-hand side of the above inequality is
smaller than

a,M

R+ mfo sz‘o(u)jo_eXp (a,8,(u+v))dU(u) .

Thus, by the preceding lemma and the fact that

%P;“O(u)NM”ew as u—co

where M” is a positive constant, we have

(7) sup| @,/ (id) |- [ 2]+ <o

If ¢=0, then U(#)=1 for £=0. Choosing d, so that a,0,+¢,<0, we also have
(7). Thus, ¢,/(12) is integrable. Let W,(x) be the distribution function of &,.
Since Ek(&k)<°°,

jmxde(x) < oo,
0
Hence

_ f:x' exp (—iAx)dW ,(x) = ¢,/ (i4)

and by the integrability of ¢,’(i4), xdW,(x) has a continuous density. q.e.d.
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§ 6. Limit theorem in critical case.

Let a;=0. We assume Z(0)=0 in this section.
LEmma 1. If f7(1)=b, < co, then
(1—F(t; 8)) '—(1—s)"'~b,t/2
uniformly in s€[0,1) as t— oo,
PrROOF. See [1, p. 113, Lemma 2].
LEMMA 2. If b, <oo and g/(1)=a,<co, then
a) 1—H{t)~1/Qt

and

b) A(t)~1/Q¢t

b,q
as t—oo, where Q= ——52%

2a, °
Proor. By [Lemma 1] of §3-2, we have

H1—H(B)=t-exp () (1 2(Pi(w)) exp (—qou)du).

Since 1—P}(t)~2/b,t as t— oo,
g(Pi(t)) ~ —2a,/bit as f—oco,

By L’Hospital’s rule, we have

. o g(PH(1)) exp (—got)
lim 81— H(D) = 1im ~7727 ) 75 extp (—,0)

_ i L g(PR(#) _
=iy e
Similarly we obtain (b).

q.e.d.

LEMMA 3. Under the condition of Lemma 2, u(t):fth(t—y)dU(y) satisfies ;
0

u(t)~Q/logt as t— oo,
PROOF. Put

m(t)= | :(I—H(x))dx .

It follows from (a) of that
m(t)~(logt)/Q  as t—oo.

By the same reason as A*(f), A(t) is directly Riemann integrable.

have by of [3, p. 264]

u(t)NW%b—j:h(f)dt:Q/(log ) as t—oo.

Now, we can prove the following :

Thus, we

q.e.d.
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THEOREM 9. If a,=0, b, <co and a,< oo, then, for 0< <1,

tlim Gy(t; exp (—s/tF) =R, s (0, c0).
Equivalently,
lim P(log Z(t)/log t<= B Z(0)=0)= 4.

PROOF. Let I,=G,(t; exp(—s/t?))—1. Then, by the representation of
Go(t; s) we have

t t—u
I‘J:jo_dU(mL g(F(t—u—v; exp (—s/tF))) exp (gw)dv .
Let t—u—v=w. Changing the order of integration, we have

I,= f:g(F(w ; exp (—s/tP))) exp (—qow)dwf::wexp (go(t—u))dU(u) .
Let

L= "g(F(w; exp (—s5/th)) exp (—qu)dw| | “exp (at—w)dUw)
and

L= g(F(w; exp (—3/t%) exp (—guw)dw| “exp (gu(t—1)dUw),
where @ =min (}—w, t/2). Then I,=IL+1I,. Let

L= " exp (@(t—u)dU(w).

By we have

L=QUroq) | " -XRULZL) 4y,

From this equality, we have

b,(1+0(1))
2a, log (t—w)

(8) =5

= "ébéilljg‘% {exp (qow)—exp (¢ot/2)} .

{exp (gow)—exp (¢got/2)}

For arbitrary ¢ >0, we can choose T such that if {> T, then
(9) —(a,—e)(1—F(t; ) =8(F(t; ) = —a,(1-F(¢; 5))
for all s€(0,1]. By Lemma 1,
(2t8/s+w(by+e)/2) " < 1—F(w ; exp (—s/t%))
= (t%/s+w(b,—e)/2)" .
Therefore for sufficiently large ¢ we get by (8), (9) and (10)

(10)
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I4 = [1 = Is
where
[= —-allFo) ¢ 1—exp (@t/2—w)) ,,
2log (t/2) J, t8/s+w(b,—¢e)/2
and

= — D@ UtoL) (* 1—exp at/z—uw)
5T 2a, log t o 2tF/s+w(by,+e)/2

Dividing the integral I, into two parts, we have

—L=< azj:/z tﬁ/i}—clf)u(zgl;?—o—u;))/Z dw Ltizexp (go(t—u))dU(u)

¢ exp (—-q 1,()) t—w B
+azf”2 t5/3+w(b1°_e)/2 dwfo, exp (qo(t—w))dU(u) .

Denote the first and second terms by /; and I; respectively. Changing the
order of the integration, we have

t/2 t-u —_—
L=a,f "exp (gt—w)dU(w)| "5 2F Lﬁ(bff‘;)) .

Let C=2/(s(b;—¢)) and let x=Ctf4+w. Then

e S e 0 o+ ),
= b12_a_ze - [(t/2, 0)- Iy exp (q,Ct?)
and
L= blzizs [ K=, 1/2) exp (qu(t—ut CtPNAU@)
where
I(u, v)= f:f:x‘l exp (—gox)dx
and

t/2
Iy={ " exp (gu(t—u)dUw).

By L’Hospital’s rule, we have

exp (—q,(CtP+1/2))

11) I(t/2, 0)~ i(CLFED) as t—oo,
Thus, we have
. b -
(12) }LIOI_} Ii= -’b—l“_l—;(r”_l) .
Similarly, we have
. _ bla,—e) o 4,
(13) lim =3 ey 1.
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Since ¢ is arbitrary, we have by and

{—o0

Now we estimate J,. By and L’Hospital’s rule,
Iz = o(exp (¢ot/2)) .
By this estimation and [11), we have

I;=o((CtP+1/2)7").

That is,
(15) lim [,=0.
Since Hﬁ
Kt—u, t/2) < — mexp(q—oggft_“;;‘()g;iﬁ%(f Wt/
we have
b=~y .. (1—exp @ut/2—w)}dUw)
- 2a,

t/2
qo(b,—e)(CtF+1/2) L_ dU(u) .

By Lemma 3 and L’Hospital’s rule, we have
(16) lim I,=0.

t—o0

Thus, by and we have
17) lim [,=0.

t—o0

Therefore by and [(17), we can conclude that
Got; exp(—s/tB))=p for 0<B<1. g.e.d.

ACKNOWLEDGEMENT. The author is indebted to Professor K. Sato for his
helpful suggestions.

Bibliography

[1] K.B. Athreya and P. Ney, Branching processes, Springer, Berlin-Heidelberg-
New York, 1972.

[2] K.L. Chung, Markov chains with stationary transition probabilities, 2nd ed.,
Springer, Berlin-Heidelberg-New York, 1967,

(3] K.B. Erickson, Strong renewal theorems with infinite mean, Trans. Amer.



496 M. YAMAZATO

Math. Soc., 151 (1970), 263-293,

[4] W. Feller, An introduction to probability theory and its application 2, Wiley,
New York, 1966,

[5] J H. Foster, A limit theorem for a branching process with state-dependent
immigration, Ann, of Math. Statist., 42 (1971), 1772-1776.

ADDED IN PROOF. The following paper deals with a related problem in
discrete case; A.G. Pakes, A branching process with state dependent immigra-
tion component, Adv. Appl. Prob., 3 (1971), 301-314.

Makoto YAMAZATO

Department of the Foundations
of Mathematical Sciences
Tokyo University of Education
Otsuka, Bunkyo-ku

Tokyo, Japan




	\S 1. Introduction.
	\S 2. Preliminaries.
	1. Continuous time branching ...
	\S 3. Transience, null-recurrence ...
	1. Transience and recurrence.We ...
	THEOREM 1. ...
	THEOREM 2. ...

	\S 4. Generating functions ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	\S 5. Limit theorems in ...
	THEOREM 6. ...
	THEOREM 7. ...
	THEOREM 8. ...

	\S 6. Limit theorem in ...
	THEOREM 9. ...

	Bibliography

