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\S 1. Let $K$ be an algebraic number field of degree $k$ and let $\theta_{1},$ $\cdots$ , $\theta_{n}$ be
elements of $K$ where $3\leqq n<k$ . We consider solutions in integers $x_{1},$ $\cdots,$ $x_{n}$ of
the following inequality

(1) $|N(x_{1}\theta_{1}+\cdots+x_{n}\theta_{n})|\leqq c\Vert x\Vert^{\eta}$

where $N$ denotes the norm from $K$ to $Q$ , I $x\Vert=\max|x_{i}|$ and $c,$ $\eta$ are positive
constants. Our problem is: How large can we take $\eta$ and still have the con-
dition that (1) has only finitely many integer solutions? Recently W. M. Schmidt
has obtained a number of theorems concerning this problem ([4], [5]). Minkow-
ski theorem on linear form shows, for suitable $c$ , that there always exist
infinitely many integer solutions provided $\eta\geqq k-n$ (see p. 1 [3]). Thus the
best possible exponent would be at most $ k-n-\epsilon$ . Our aim in the present
paper is to give a sufficient condition for the norm inequality (1) in which
$ k-n-\epsilon$ is actually the best possible exponent.

In Theorem 1, we prove a rather general theorem, and we get Theorem
3 of Schmidt [4] as a corollary.

In Theorem 2 and 3, we apply Theorem 1 to a somewhat special type of
norm inequalities and get simple conditions for those inequalities to have $k-7l_{\vee}^{\wedge}--$

as the best possible exponents.
First of all we introduce the notion of complete linear independence.
DEFINITION. Let $K$ be an algebraic number field of degree $k$ over $Q$ and

let $\theta_{1},$ $\cdots$ , $\theta_{n}$ be elements of $K$. We call $\{\theta_{1}, \cdots , 0.\}$ completely linearly inde-
pendent over $Q$ if, in the $k\times n$ matrix

(2) $\left(\begin{array}{lll}\theta_{I}^{(1)} & \cdots & \theta_{n}^{(1)}\\\theta_{1}^{(k)} & \cdots & \theta_{n}^{(k)}\end{array}\right)$

all the $t\times t$ minors in any fixed $t\times n$ submatrix with $t\leqq n$ are linearly inde-
pendent over $Q$ .

Clearly, complete linear independence implies linear independence.
THEOREXI 1. Let $K$ be an algebraic number fteld of degree $k$ over $Q$ an $d$
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let $\theta_{1},$ $\cdots$ , $\theta_{n}$ be elements in K. SuppOse $\{0_{1}, \cdots , \theta_{n}\}$ is $comPletely$ linearly inde-
Pendent over Q. Then for every pair of constants $\epsilon>0$ and $c>0$ , the inequality

(3) $|N_{k/Q}(x_{1}\theta_{1}+\cdots+x_{n}0_{n})|\leqq c\Vert x\Vert^{k- n- g}$

has only finitely many solutions in integers $x_{1},$ $\cdots$ , $x_{n}$ .
We note here that the condition of the complete linear independence in the

theorem is not only sufficient but also necessary in case $n=3$ . This fact can
be shown, though we shall not do it in this paper, by using the theory of
successive minima of pseudocompound.

From Theorem 1, immediately follows the following
COROLLARY 1. SuPpose $K$ and $0_{1},$ $\cdots$ , $\theta_{n}$ are as above and suppOse

$f(x_{1}, \cdots , x_{n})$ is a pOlynOmial of total degree $\nu<k-n$ . Then the equation

$N(x_{1}0_{1}+\cdots+x_{n}\theta_{n})=f(x_{1}, x_{n})$

has only finitely many integer solutions.
COROLLARY 2 (Schmidt [4], Theorem 3). Let $K$ be an algebraic number

field of degree $k$ over $Q$ and let $0_{1},$ $\cdots$ , $0_{n}$ be elements in K. SuPpose $K$ is $n-1$

times transitive, $i$ . $e.$ , the Galois group of the Galois closure of $K$ over $Q$ is $n-1$

times transitive. Further assume any $n$ conjugates of the linear form $ x_{1}\theta_{1}+\cdots$

$+x_{n}\theta_{n}$ are linearly independent. Then, for every Pair of constants $\epsilon>0$ and
$c>0,$ (3) has only finitely many solutions in integers $x_{1},$

$\cdots$ , $x_{n}$ .
THEOREM 2. Let $\xi$ be a primitive n-th root of unity where $n$ is a $7l$ odd

$Posi\Gamma ive$ integer greater than 1. Let $K=Q(\xi)$ . Let $i_{1},$ $i_{2},$ $i_{3}$ be rational integers
with $0\leqq i_{1}<j_{2}<i_{3}<n$ such that $i_{2}-i_{1},$ $i_{3}-i_{2},$ $i_{1}-i_{3}$ are different modulo $n$ and
$(i_{2}-i_{1}, i_{3}-i_{2}, i_{1}-i_{3}, n)=1$ . Then for every Pair of constants $\epsilon>0$ and $c>0$ , the
inequality

(4) $|N(x_{1}\xi^{i_{1}}+x_{2}\xi^{i_{2}}+x_{3}\xi^{\iota_{3}})|\leqq c\Vert x\Vert^{\varphi(n)- 3- s}$

has only finitely many solutions in integers.
THEOREM 3. Let $a$ and $n$ be Positive integers greater than 1 so that $\theta=\Psi\overline{a}$

is of degree $n$ and let $K=Q(\theta)$ . Let $j_{1},$ $j_{2},$ $j_{3}$ be rational integers with $0\leqq j_{1}<$

$j_{2}<j_{3}<n,$ $(j_{2}-j_{1}, n)=(j_{3}-j_{2}, n)=(j_{3}-j_{1}, n)=1$ . Then for every Pair of con-
stants $\epsilon>0$ and $c>0$ , the inequality

(5) $|N(x_{1}0^{J_{1}}+x_{2}0^{j_{2}}+x_{3}0^{J_{3}})|\leqq c\Vert x\Vert^{n- 3-\epsilon}$

has only finitely many solutions in integers $x_{1},$ $x_{2},$ $x_{3}$ .
In the final Remark, we show that in each of Theorem 2 and 3, all the

conditions are not only sufficient but also necessary in the sense that, if any
one of these conditions fails to hold, the conclusion of the theorem is no longer
true. Our proofs depend primarily on the remarkable theorem of W. M. Schmidt
(Satz 1 [3]) which will be written here in a convenient form for our purpose:
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Let $K$ be an algebraic number field of degree $k$ and let $\delta$ be a positive constant.
Let $L$ be a linear form in $x_{1},$ $\cdots$ , $x_{n}$ with coef7cients in K. Then the following
two conditions are equivale $nt$. (a) There exists a constant $C=C(L, \delta)>0$ such
that $|N(L)|\leqq C\Vert x\Vert^{k-\tilde{o}}$ has infinitely many integer solutions in $x_{1},$

$\cdots$ , $x_{n}$ . (b)
There exists a non-null rational subspace $S^{t}(i$ . $e.$ , linear subspace defined over
$Q)$ of $R^{n}$ of dimension $t$ and a $symmetr\dot{i}C$ system $L_{i_{1}},$ $\cdots$ , $L_{i_{m}}$ of conjugates of
$L$ ( $i$. $e.$ , stable under taking complex conjugates) whose rank $r$ on $S^{t}$ satisfies
both $ r\leqq tm/\delta$ a$ndr<t$ .

\S 2. Proof of Theorem 1.

By virtue of Schmidt’s theorem (see the last part of \S 1; in our case $\delta=$

$7t+6$ and $L=x_{1}\theta_{1}+\cdots+x_{n}\theta_{n}$ ), we have only to show the non-existence of a
rational subspace $S^{t}$ of the type mentioned there. Assume to the contrary

that there exists such $S^{t}$ ; that is, we assume that there exist a rational sub-
space $S^{t}$ of $R^{n}$ and a symmetric system $L^{(i_{1})},$ $\cdots$ , $L^{(i_{m})}$ , whose rank on $S^{t}$ satisfies
$r\leqq tm/(n+\epsilon)$ and $r<t$ . We are going to get to a contradiction in the end of
the proof. First, as a basis for $S^{t}$ , we take $\alpha_{i}={}^{t}(a_{1i}, \cdots , a_{ni})$ ( $i=1,$ $\cdots$ , t) where
$a_{kt}(1\leqq k\leqq n, 1\leqq l\leqq t)$ are rationals. Let $A$ be the $n\times t$ matrix $(a_{kt})$ . It is of
rank $t$. Then any $x={}^{t}(x_{1}, \cdots , x_{n})$ in $S^{t}$ can be written as $x=Ay$ where $y=$

${}^{t}(y_{1}, \cdots, y_{t})$ ranges over $R^{t}$ . $L^{(\dot{t})}=(\theta_{1}^{(i)}, \cdots , \theta_{n}^{(i)})x=(0_{1}^{(i)}, \cdots , \theta_{n}^{(i)})Ay$ . Therefore
the rank of a system of linear forms $L^{(\iota_{1})},$ $\cdots$ , $L^{(i_{s})}$ on $S^{t}$ is equal to the rank
of $(0_{1}^{(i_{1})}, \cdots , \theta_{n}^{(i1)})Ay,$ $\cdots$ , $(\theta_{1}^{(?s})\ldots$ , $0_{\rho}^{(i_{\theta})}$ )$Ay$ on $R^{t}$ and this is obviously equal to
the rank of

$\left(\begin{array}{lll}0_{1}^{(i1)}, & \cdots & \theta_{n}^{(t_{1})}\\\vdots & & \\\theta_{1}^{(t_{s})} & \cdots & \theta_{n}^{(i_{s})}\end{array}\right)A$ .

We can see easily that there exists a system of $t$ linear forms $L^{(i_{1})},$ $\cdots$ , $L^{(i_{t})}$

whose rank on $S^{t}$ is less than $t$ ; if $m\geqq t$, pick up any $t$ linear forms from
$L^{(i_{1})},$ $\cdots$ , $L^{(i_{m})}$ , then its rank $\leqq r<t$ . If $m<t$, enlarge $L^{(i_{1})},$ $\cdots$ , $L^{(\iota_{m})}$ to a set
of $t$ linear forms, then its rank $\leqq r+(t-m)=t+(r-m)<t$. Thus we have
proved our assertion. Therefore, the rank of $L^{(i_{1})},$ $\cdots$ , $L^{(i_{i})}$ on $S^{t}$ is less than
$t$ and consequently, by the above argument, the rank of

$\left(\begin{array}{lll}\theta_{1}^{(i_{1})}, & \cdots & \theta_{n}^{(i_{1})}\\\vdots & & \\\theta_{1}^{(i_{t})} & \cdots & \theta_{n}^{(i_{t})}\end{array}\right)A$

is less than $t$ .
This is a $t\times t$ matrix and hence its determinant must be $0$ . But by the-

well-known formula,
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(6) $|(_{\theta i^{i_{t}})}^{\theta_{1}^{(..i_{1})}},$

$\cdots$

$\theta_{n}^{(t_{t})}\theta_{;t}^{(t_{1})})A|=\sum_{1\leqq\alpha_{1}<\alpha_{2}<\alpha_{t}\leq n|_{\theta_{\alpha_{1}}^{(lt)}’}^{\theta_{\alpha_{1}^{i}}^{(.1)}}}\ldots\cdot\ldots$ $\theta_{\alpha_{t}}^{(t_{t)}}\theta_{\alpha_{t}}^{(i1)}\Vert_{a_{\alpha t^{1}}}^{a_{\alpha_{1,1}}}..\cdot’\ldots$
$a_{\alpha_{1},t}a_{a_{t},t}|$

where $\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{t}\}$ range over all the t-tuples of natural numbers satisfying
$1\leqq\alpha_{1}<\alpha_{2}<\ldots<\alpha_{t}\leqq n$ . As the rank of $A$ is $t$ , the second factors of the
right hand side of (6) are not all $0$ . This means the linear dependence of the
first factors of the right hand side over $Q$ and hence contradicts the complete
linear independence of $\theta_{1},$ $\cdots$ , $\theta_{n}$ .

PROOF OF COROLLARY 2. By Theorem 1, we have only to show the com-
plete linear independence of $\{\theta_{1}, \cdots , 0_{n}\}$ over $Q$ under our assumptions. Assume,
to the contrary, that it is not completely linearly independent. Then there
exists, by definition, a natural number $t\leqq n$ and a $t\times n$ submatrix $S$ of (2)

where $t\times t$ minors are linearly dependent over $Q$ . Here, note that $t<n$ since
any $n\times n$ minors of (2) are not $0$ by the assumption. Let us take an $n\times n$

matrix

$\left(\begin{array}{lll}\theta_{1}^{(1)}, & \cdots & \theta_{n}^{(1)}\\\vdots & & \\\theta_{1}^{(n)}, & \cdots & 0_{n}^{(n)}\end{array}\right)$

containing $S$ in (2) and denote it by $T$ . Here det $T\neq 0$ by the assumption.
Let $C(n, t)$ consist of all t-tuples of integers $i_{1},$ $i_{t}$ with $1\leqq i_{1}<i_{2}<\ldots<i_{t}\leqq n$ .

The number of elements of $C(n, t)$ is $\left(\begin{array}{l}n\\t\end{array}\right)$ . Let us fix a lexicographic order

in $C(n, t)$ and make a $\left(\begin{array}{l}?l\\t\end{array}\right)\times\left(\begin{array}{l}n\\t\end{array}\right)$ matrix $T^{\prime}=(\theta_{r\sigma})_{\tau,\sigma\in C(n,t)}$ . Here $\theta_{\tau\sigma}$ is deter-

mined as follows. Let $\tau=\{j_{1}<j_{2}<\cdots<j_{t}\}$ and $\sigma=\{k_{1}<k_{2}<\ldots<k_{t}\}$ , then
$\theta_{\tau\sigma}$ is the determinant of the $t\times t$ matrix which is the intersection of $j_{1^{-}}th$ ,

, $j_{t^{-}}th$ rows and $k_{1^{-}}th,$ $\cdots$ , $k_{t^{-}}th$ columns. As $T$ contains $S$ , at least one row
of $T^{\prime}$ is linearly dependent over $Q$ and hence, by the t-transitivity of $K$, the
columns of $T^{\prime}$ are linearly dependent over $Q$ . Therefore det $T^{f}=0$ . On the

other hand, as is well-known, det $T^{\prime}=(\det T)^{\frac{t}{n}()}tn\neq 0$ . This is a contradiction.
REMARK. For the actual application of the Theorem 1 to some type of

norm form inequality, we don’t always have to check the complete linear inde-
pendence of $\theta_{1},$ $\cdots$ , $\theta_{n}$ . As is clear from the proof of Theorem 1, we have
only to consider, for the validity of the theorem, those $t\times n$ matrices whose
rows are symmetric or symmetric except for one row. This fact will be used
in the proof of Theorem 2.
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\S 3. Proof of Theorem 2.

We need the following lemma, in whose proof we use the idea of the proof
of Theorem 1 in [2].

LEMMA 1. Let $\xi$ be a primitive n-th root of 1 where $n$ is a Positive integer
greater than 1 and Prime to 2. Let $s,$

$t$ be integers such that $s,$ $-s,$ $t,$ $-t,$ $t-s$

and $s-t$ are different modulo $n$ . Then $\xi^{s}-\xi^{-s},$ $\xi^{t}-\xi^{-t},$ $\xi^{t- S}-\xi^{s- t}$ are linearly

indePendent over $Q$ .
PROOF OF LEMMA 1. Without loss of generality we can assume g.c.d$(s, t, n)$

$=1$ , since, if $(s, t, n)=d>1$ , we have only to replace $\xi^{d}$ by a new $\xi$ which is
a primitive $(n/d)$ -th root of 1. Now, assume the numbers are linearly depend-
ent over $Q$ , say

(7) $a_{1}(\xi^{s}-\xi^{-S})+a_{2}(\xi^{t}-\xi^{-t})+a_{3}(\xi^{t- s}-\xi^{s- t})=0$

where $a_{1},$ $a_{2},$ $a_{3}$ are rational numbers which are not all $0$ . We are going to
derive a contradiction. Denote $s,$ $-s,$ $t,$ $-t,$ $t-s,$ $s-t$ by $\nu_{1},$

$\cdots$ , $\nu_{6}$ respectively.
These are distinct mod $n$ . Let $p$ be a prime divisor of $n$ , say $n=p^{j}n^{\prime}$ where
$(p, n^{\prime})=1$ . Let $\rho$ be a primitive $P^{j}$-th root of 1 and $\xi_{*}$ be a primitive $p^{f-1}n^{\prime}$ -th
root of 1. We fix these two primitive roots of 1 once for all in this proof.
Then the $n$ numbers $\rho^{\sigma}\xi_{*}^{\lambda}(0\leqq\sigma\leqq P-1,0\leqq\lambda\leqq P^{f- 1}\uparrow^{\prime}-1)$ are all n-th roots of 1.
It is easily seen that these $n$ numbers are all distinct. Hence, $\rho^{\sigma}\xi_{*}^{\lambda}$ ranges
over all the n-th roots of 1 just for once and every $\xi^{V}i$ $(i=1, \cdots , 6)$ can be
represented uniquely in the form $\xi^{\nu_{i}}=\rho^{\sigma_{i}}\xi_{*}^{\lambda_{i}}$ , where $0\leqq\sigma_{i}\leqq p-1,0\leqq\lambda,$ $\leqq$

$p^{j-1}n^{\prime}-1$ . Therefore, if we collect terms with the same value of $\sigma_{i}$ as $\alpha_{\mu}=$

$\sum_{\sigma\ell=\mu}a_{i}\xi_{*}^{\lambda_{i}}$ , we obtain from (7)

(8) $\sum_{\mu=0}^{p-1}\rho^{f^{p}}\alpha_{\mu}=0$ $\alpha_{\prime},\in Q[\xi_{*}]$ .

Clearly at most 6 of the $\alpha_{\mu}$ are non-zero.
Suppose first that $\alpha_{f^{\lrcorner}}=0$ for $\mu=0,$ $\cdots$ , $P-1$ . From the representation of

$\xi^{v_{i}}=\rho^{\sigma_{i}}\xi_{*}^{\lambda_{i}}$ , it is obviously impossible for some $\alpha_{\mu}$ either to be a rational mul-
tiple of a $p^{j-1}n^{f}$ -th root of unity or to be a linear combination of two different
$p^{j-1}n^{\prime}$ -th roots of unity. Therefore if $\alpha_{\mu}$ is a non-empty sum of $p^{j-1}n^{f}$ -th roots
of unity, it must be a linear combination of three or six different $p^{j-1}n^{\prime}$ -th
roots of unity. Suppose a complex conjugate term, $a_{1}\xi^{s}$ and $a_{1}\xi^{-s}$ say, appear
with some $\rho^{\mu}$ factor, say $\rho^{\mu}\alpha_{\mu}$ , then $2\mu=0mod P$ , hence $\mu=0$ and therefore $p$

divides $s$ . Now that $\rho^{I}\alpha_{\mu}\prime J$ contains another term, it easily follows that $p$ also
divides $t$ , which contradicts $(s, t, n)=1$ . Similarly if $a_{2}\xi^{t},$ $a_{2}\xi^{-1}$ or $a_{3}\xi^{t-s},$ $a_{3}\xi^{s- t}$

have the same $\rho^{\mu}$ factor we get a contradiction. Therefore non-empty $\rho^{\mu}\alpha_{f^{f}}$

must contain $a_{1}\xi^{\delta_{1^{S}}},$ $a_{2}\xi^{\overline{0}_{2}t}$ and $a_{3}\xi^{\delta_{3}(t- S)}$ where $\delta_{t}$ are $-1$ or 1, and no other
terms. As the $\rho$ -parts of these three numbers are $\rho^{\prime p}$ , uniqueness of $\rho$ -parts
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shows $\mu=0$ , from which $p$ divides $s$ and $t$ . This contradicts $(s, t, 7l)=1$ . We
have thus seen that $\alpha_{\mu}=0$ for $\mu=0,$ $\cdots,$ $P-1$ leads to a contradiction.

(Case 1) $n$ : not square free.
In this case we choose the prime $p$ above so that $p^{2}$ divides $n$ . Then $\rho$ is

of degree $\varphi(n)/\varphi(n/p)=p$ over $Q(\xi_{*})$ . Hence $\alpha_{\mu}=0$ for $\mu=0,$ $\cdots,$ $P-1$ . This
is a contradiction as seen above.

(Case 2) $n$ : square free and divisible by a prime $p\geqq 7$ .
In this case we choose $p$ to be the largest prime divisor of $n$ . Then $\rho$ is

of degree $P-1$ over $Q(\xi_{*})$ , hence $\alpha_{0}=\cdots=\alpha_{p-1}$ . As $p\geqq 7$ one of $\alpha_{i}’ s$ , con-
sequently all $\alpha_{i}’ s$ must be $0$ . This is a contradiction.

(Case 3) $n$ : square free and divisible only by primes $\leqq 5$ .
Our conditions on $s$ and $t$ show $n\geqq 6$ . Since 2 does not divide $n$ , in this

case $n$ is 15. So, we choose $p=5$ and $n^{\prime}=3$ . In this case, as in case 2, $\alpha_{0}=$

. . $=\alpha_{p-1}$ . Since we can assume that none of $\alpha_{i}’ s$ are $0$ , four of $\alpha_{t}’ s$ must
consist of just one term. It is easy to obtain a contradiction by considering
the $\xi_{*}$ -parts this time. Q. E. D.

PROOF OF THEOREM 2. Dividing the left hand side of (4) by $|N(\xi)^{t_{1}}|=1$ ,

we have $|N(x_{1}+x_{2}\xi^{t_{2}- 4_{1}}+x_{3}\xi^{i_{3}-i_{1}})|$ . Putting $i_{2}-i_{1}=s$ and $i_{3}-i_{1}=t$ , our assump-
tions on $i_{1},$ $i_{2},$ $i_{3}$ imply that $0<s<t<n,$ $\{s, -t, t-s\}$ are different mod $n$ and
$(s, -t, t-s, n)=1$ . From these, it follows easily that $\{s, -s, t, -t, t-s, s-t\}$

are all different mod $n$ and $(s, t, n)=1$ . To prove our theorem, owing to Theo-
rem 1 and the remark after its proof, we have only to show (a) the non-
degeneracy of the following matrix

$\left(\begin{array}{lll}1 & \xi^{s} & \xi^{t}\\1 & \sigma^{-S}\leftarrow & \sigma^{-t}\leftarrow\\ 1 & (\xi^{m})^{s} & (\xi^{m})^{t}\end{array}\right)$

where $m\neq\pm 1$ , (b) the linear independence over $Q$ of all the $2\times 2$ minors of
the following matrix

$\left(\begin{array}{lll}1 & \prime\backslash rs & \xi^{t}\\1 & \xi^{-S} & \tilde{\sigma}^{-t}\end{array}\right)$

and (c) the linear independence of 1, $\xi^{s},$ $\xi^{t}$ over $Q$ .
PROOF OF (a). The determinant of the matrix is

$(\xi^{-s+mt}-\xi^{ms- f})-(\xi^{s+mt}-\xi^{ms+t})+(\xi^{s- t}-\xi^{t- S})$ .

Suppose this is $0$ , then

(9) $\xi^{-s+mt}-\xi^{ms+t}+\xi^{s- t}=\xi^{ms- t}+\xi^{s+mt}+\xi^{r- S}$
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Denote these six numbers $\xi^{-s+mt},$ $\xi^{ms+t},$ $\xi^{s-t},$ $\xi^{ms- t},$ $\xi^{s+mt}$ and $\xi^{t- S}$ by $\alpha_{1},$
$\beta_{1},$

$\gamma_{1}$ ,
$\alpha_{2},$

$\beta_{2}$ , and $\gamma_{2}$ respectively. Then clearly

(10) $\alpha_{1}+\beta_{1}+\gamma_{1}=\alpha_{2}+\beta_{2}+\gamma_{2}$

(11) $\alpha_{1}\beta_{1}\gamma_{1}=\alpha_{2}\beta_{2}\gamma_{2}$ .
Also on applying the automorphism which sends $\xi$ to $\xi^{2}$ to both sides of (9),

we have

(12) $\alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}=\alpha_{2}^{2}+\beta_{2}^{2}+\gamma_{2}^{2}$ .
From (10) and (12) we have

(13) $\alpha_{1}\beta_{1}+\beta_{1}\gamma_{1}-\gamma_{1}\alpha_{1}=\alpha_{2}\beta_{2}+\beta_{2}\gamma_{2}+\gamma_{2}\alpha_{2}$ .

Furthermore (10), (11) and (13) show that $\{\alpha_{1}, \beta_{1}, \gamma_{1}\}$ and $\{\alpha_{2}, \beta_{2}, \gamma_{2}\}$ are the
three roots of the same cubic equation. Therefore $\{\alpha_{1}, \beta_{1}, \gamma_{1}\}=\{\alpha_{2}, \beta_{2}, \gamma_{2}\}$ as
a set.

(Subcase 1) $\alpha_{1}=\alpha_{2}$ .
In this case, if $\gamma_{1}=\gamma_{2}$ then $2(s-t)=0$ mod $n$ , contradiction. If $\gamma_{1}=\beta_{2}$ then

$-t=mt$ mod $n$ and $\beta_{1}=\gamma_{1}i$ . $e.,$ $-s=ms$ ; these two mean $(s, t, n)\neq 1$ and we
get a contradiction.

(Subcase 2) $\alpha_{1}=\beta_{2}$ .
In this case $-s=s$ mod $n$ , a contradiction.

(Subcase 3) $\alpha_{1}=\gamma_{2}$ .
This implies $tm=t$ . If $\beta_{1}=\alpha_{2}$ then $t=-t$ and we have a contradiction.

If $\beta_{1}=\beta_{2}$ then $\gamma_{1}=\alpha_{2}$ and $sm=s$ . These two mean $(s, t, n)\neq 1$ , a contradiction.
PROOF OF (b). The $2\times 2$ minors are the following: $\xi^{-S}-\xi^{s},$ $\xi^{-t}-\xi^{t}$ and

$\xi^{r- t}-\xi^{t-s}$ . As we noted at the beginning of this proof, our assumptions on $s$

and $t$ satisfy those of Lemma 1. Hence these three are linearly independent
over $Q$ .

PROOF OF (c). Suppose 1, $\xi^{s}$ and $\xi^{t}$ are linearly dependent over $Q$ . Then
for some rationals $a_{1},$ $a_{2}$ and $a_{3},$ $a_{1}+a_{2}\xi^{s}+a_{3}\xi^{t}=0$ . Hence $a_{1}+a_{2}\xi^{-s}+a_{3}\xi^{-t}=0$ .
Therefore $a_{2}(\xi^{s}-\xi^{-S})+a_{3}(\xi^{t}-\xi^{-t})=0$ , which contradicts Lemma 1.

\S 4. Proof of Theorem 3.

By our Theorem 1, we have only to prove the complete linear independence
of $\theta^{j_{1}},$

$\theta^{j_{2}}$ and $\theta^{j_{3}}$ over $Q$ . By dividing these by $\theta^{j_{1}}$ and putting $s=j_{2}-j_{1}$ ,
$t=j_{3}-j_{1}$ we have to show the complete linear independence of 1, $\theta^{s}$ and $\theta^{t}$

under the assumptions $0<s<t<n$ and $(s, n)=(t, n)=(t-s, n)=1$ . For this
purpose, by Theorem 1, we must show (a) the non-degeneracy of



Exp0nent in norm form inequalities 357

(14) $\left(\begin{array}{lll}1 & \theta^{s} & 0^{t}\\1 & (\theta\xi^{m})^{s} & (\theta\xi^{m})^{t}\\1 & (\theta\xi^{l})^{s} & (\theta\xi^{l})^{t}\end{array}\right)$

where 1, $m$ and $l$ are different natural numbers less than $n$ , (b) that all $2\times 2$

minors in the matrix

$\left(\begin{array}{lll}1 & (\theta\xi^{m})^{s} & (\theta\xi^{m})^{t}\\1 & (\theta\xi^{l})^{s} & (\theta\xi^{l})^{t}\end{array}\right)$

are linearly independent over $Q$ , and (c) the linear independence of 1, $\theta^{s}$ and $\theta^{t}$ .
PROOF OF (a).

det of (14) $=0^{s}\theta^{t}\left(\begin{array}{lll}1 & 1 & 1\\1 & \xi^{ms} & \xi^{mt}\\1 & \xi^{ls} & \xi^{lt}\end{array}\right)=0^{s+l}(\xi^{ms+tt}-\xi^{ts+mt}-\xi^{tt}+\xi^{mt}+\xi^{ts}-\xi^{ms})$ .

Suppose this is $0$ . Then

(15) $\xi^{ms+tt}+\xi^{mt}+\xi^{ls}=\xi^{ts+mt}+\xi^{tt}+\xi^{ms}$

As our assumptions on $s$ and $t$ imply that $n$ is not divisible by 2, we can use
the same technique as in the proof of Theorem 2 and we see that the terms
on both sides are pairwise equal.

(Subcase 1) $\xi^{ms+lt}=\xi^{ts+mt}$ .
Then $\xi^{mt}=\xi^{lt}$ or $\xi^{mt}=\xi^{ms}$ . If $mt=lt$ mod $n$ then $m=l$ , a contradiction. If

$mt=ms$ mod $n$ then $m=0$ , a contradiction.

(Subcase 2) $\xi^{ms+tt}=\xi^{tt}$ .
Then $ms=0(mod n)$ and hence $m=0$ , a contradiction.

(Subcase 3) $\xi^{ms+tt}=\xi^{ms}$ .
Then $lt=0$ mod $n$ and hence $1=0$ , again a contradiction.
PROOF OF (b). All the $2\times 2$ minors are $\theta^{s}(\xi^{ts}-\xi^{ms})$ , $\theta^{t}(\xi^{tt}-\xi^{mt})$ and

$0^{s+t}(\xi^{ms+lt}-\xi^{ls+mt})$ . It is easily seen that $\xi^{ls}-\xi^{ms},$ $\xi^{lt}-\xi^{mt}$ and $\xi^{ms+lt}-\xi^{ts+mt}$ are
not $0$ . As $Q(\theta)\cap Q(\xi)=Q,$ $\theta$ is of degree $n$ over $Q(\xi)$ . Since $n\geqq 3$ , it follows
that $\theta^{s}$ , $0^{t}$ and $\theta^{s+t}$ are linearly independent over $Q(\xi)$ , which proves our
assertion.

PROOF OF (c). 1, $0^{s},$ $0^{t}$ are linearly independent over $Q$ since $n\geqq 3$ .
REMARK. We will show that the conditions in Theorem 2 and 3 are neces-

sary in the sense that, without any one of them, the theorems are no longer
true even if all the other conditions are fulfilled.

In the case of Theorem 2. If $(2, n)\neq 1$ , then set $n=14$ and $i_{1}=0,$ $i_{2}=1$ ,
$i_{3}=7$ . Let $L_{1}=x_{1}+x_{2}\xi+x_{3}\xi^{7}$ and $L_{2}=x_{1}+x_{2}\xi^{2}+x_{3}\xi^{7}$ . Then it is easily seen
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that $L_{1}\overline{L}_{1},$ $L_{2}$ and $\overline{L}_{2}$ make a symmetric system of rank 2 on $R^{3}$ . Therefore,
by Schmidt’s theorem, $|N(x_{1}+x_{2}\xi+x_{3}\xi^{7})|\leqq C\Vert x\Vert^{1-\epsilon}$ has infinitely many solutions
in integers $x_{1},$ $x_{2},$ $x_{3}$ for some constant $c$ and $\epsilon>0$ . If $i_{2}-i_{1}=i_{3}-i_{2}$ , then set
$n=5$ and $i_{1}=0,$ $i_{2}=1,$ $i_{3}=2$ . Let $S^{2}$ be the rational subspace of $R^{3}$ defined by
$x_{1}=x_{3}$ . Then $L=x_{1}+x_{2}\xi+x_{3}\xi^{2}$ and $\overline{L}=x_{1}+x_{2}\xi^{4}+x_{3}\xi^{3}$ has rank 1 on $S^{2}$ . There-
fore $|N(x_{1}+x_{2}\xi+x_{3}\xi^{2})|\leqq C\Vert x\Vert^{1-\epsilon}$ has infinitely many solutions in integers for
some constant $c>0$ and $\epsilon>0$ . If $(i_{2}-i_{1}, i_{3}-i_{2}, i_{1}-i_{3}, n)=d>1$ , then set $i_{1}=0$ ,
$i_{2}=3,$ $i_{3}=9$ and $n=15$ . Then $d=3$ . Put $\xi^{\prime}=\xi^{3}$ . Then $N(x_{1}+x_{2}\xi^{3}+x_{3}\xi^{9})=$

$(N^{\prime}(x_{1}+x_{2}\xi^{\prime}+x_{3}\xi^{\prime 3}))^{2}$ where $N^{\prime}$ denotes the norm from $Q(\xi^{\prime})$ . There are infinitely
many solutions of $|N^{\prime}(x_{1}+x_{2}\xi^{\prime}+x_{3}\xi^{\prime 3})|\ll\Vert x\Vert^{\varphi(5)-3}=\Vert x\Vert$ , hence of $|N(x_{1}+x_{2}\xi^{3}$

$+x_{s}\xi^{9})|\ll\Vert x\Vert^{2}$ .
In the case of Theorem 3 if $(j_{3}-j_{2}, n)\neq 1$ , then set $n=15,$ $j_{1}=0,$ $j_{2}=2$ and

$j_{3}=7$ . Let $S$ be the rational subspace of $R^{3}$ defined by $x_{1}=0$ , and $L=$

$x_{1}+x_{2}(\theta\xi^{3})^{2}+x_{3}(\theta\xi^{3})^{7}$ . Then $L$ and $\overline{L}$ has rank 1 on $S^{2}$ . Therefore
$|N(x_{1}+x_{2}\theta^{2}+x_{3}\theta^{7})|\leqq c\Vert x\Vert^{5-\epsilon}$ has infinitely many solutions in integers for some
constant $c$ and $\epsilon>0$ .
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