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Introduction.

Let $f(z)$ be a complex-valued function of the complex variable $z$. A fix-
point $z_{0}$ of $f$ is a zero of $f(z)-z$ . When $f$ is a rational function or an entire
function one may define the ”iterates” $f_{n}(z)$ of $f(z)$ by $f_{1}(z)=f(z),$ $f_{n}(z)=$

$f_{n-1}(f(z))=f(f_{n-1}(z))$ . The existence and distribution of the fix-points play an
important role in the theory of iteration of entire functions and the solutions
of various functional equations. Regarding the latter subject, we refer the
reader to works of Schr\"oeder, Koenigs and others (for a bibliograph cf. [1])

which deals with the behavior of the sequence $\{f_{n}(z)\}$ in the neighborhood of
fix-points. As for the former subject, we refer the reader to [2] and a book
of Kuczma’s [20]. The theory of iteration of rational functions or entire func-
tions have been extensively studied by Julia [19], Rosenbloom [26], Fatou [10],

Myrberg [21], Baker [2], Cremer $[7, 8]$ , T\"opfer [27] and others.
The first interesting result concerning the fix-points and iterates of an

entire function was announced by Fatou [10] who stated that if any iterate
$g_{n}(z)(n\geqq 2)$ of an entire function $g$ has only a finite number of fix-points, then
$g$ is a polynomial. In 1952, Rosenbloom [25], based on the technique of Nevan-
linna, proved a more general statement that if $f$ and $g$ are entire functions,
and if $f$ and $f(g)$ have only a finite number of fix-points, then either $f$ is a
polynomial or $g\equiv constant$ or $g(z)\equiv z$ . In the same paper, the term ”prime
function” was introduced as an entire function which cannot be represented in
the form $f_{1}(f_{2})$ , where $f_{1}$ and $f_{2}$ are non-linear entire functions. From the
definition, we see immediately that every non-linear polynomial of prime degree
is prime. However, it is, in general, not easy to tell whether a given entire
function is prime or not. For instance, the function $e^{z}+z$ was stated without
proof in [25] to be a prime function, and it was stated there that the proof
was rather complicated. So far, certain classes of prime functions have been
obtained through the investigation of Baker [4], Gross [11, 12, 13, 14, 15],
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Ozawa [23], and the author [14, 15, 29].

Gross [11] extended the studies of prime functions to meromorphic func-
tions. According to [11], a meromorphic function $h(z)=f(g(z))$ is said to have
$f(z)$ and $g(z)$ as left and right factors respectively, provided that $f(z)$ is non-
linear and meromorphic and $g(z)$ is non-linear and entire ( $g$ may be mero-
morphic when $f(z)$ is rational). $h$ is said to be prime (pseudo-prime) if every
factorization of the above form implies that one of the functions $f$ or $g$ is
linear (a polynomial unless $f$ is rational). $h$ is said to be E-prime (E-pseudo-
prime) if every factorization of the above form into entire factors implies that
one of the functions $f(z)$ or $g(z)$ is linear (a polynomial). There are many
properties of entire or meromorphic functions which can be used to deal with
the factorization problems. For instance, the growth property (maximal modulus
for entire functions and Nevanlinna characteristic for meromorphic functions),

the geometric distribution of the zeros of the function, the fix-points of the
function and so on. In this paper, we are interested in the relationship between
the fix-points and the factorizations of a function.

Going back to the example that $e^{z}+z$ is prime, it is natural to expect
more generally that $e^{g(z)}+z$ is prime for any non-constant entire function $g(z)$ .
This can also be phrased as follows: For any two non-linear entire functions
$f$ and $g$ with $f(g)$ being transcendental, the composition $f(g)$ must have in-
finitely many fix-points. This shows that for a certain class of entire functions
the problems of the fix-points and the factorization are related to each other.

In this paper, we introduce some methods used in attacking problems on
the fix-points and the factorizations of entire and meromorphic functions and
present some results mainly based on a joint paper [14] written by Gross and
the author. For completeness, we shall repeat some of the proofs here. Our
main tools will be Nevanlinna’s theory of meromorphic functions, and a special
case of the theorem of Tumura-Clunie [see Lemma 4, Sec 4 below]. We shall
use the standard notation of Nevanlinna theory, as given in [8; pp. 1-9].

The content of this paper is as follows:
1. Some known results
2. Conjectures
3. Statement of main results
4. Preliminary lemmas
5. Proofs
6. Question.

\S 1. Known results.

THEOREM A (Rosenbloom [25]). Let $p(z)$ be a non-constant p0lyn0mial and
$g$ be a transcendental entire function. The $p(g)$ has infinitely many fix-points.
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REMARK. Actually a quantitative measure of the number of fix-points was
given in [25].

THEOREM B (Gross [11, p. 211]). If $F(F^{*})$ denotes the family of entire
(meromorphic) functions with at most a finite number of fix-points, then (i)
every entire function has at most one factorization $f(g),$ $f$ transcendental, $f\in F$,
$g$ entire; (ii) every meromorphic function has at most two distinct factorizations
$f_{i}(g_{i}),$ $f_{i}$ meromorphic not rational, $f_{i}\in F^{*},$ $g_{i}$ entire.

It follows from this that
THEOREM $C$ (Gross [11, p. 218]). If $f$ and $g$ are two transcedental entire

functions, then $f$ or $f(g)$ must have infinitely many fix-points.
THEOREM $D$ (Baker and Gross [4]). Let $p(z)$ be any non-constant Poly-

nomial. Then $e^{z}+p(z)$ is prime.

\S 2. Conjectures.

Theorem A and Theorem $C$ suggest the following conjecture:
CONJECTURE 1 (Gross [4, p. 542]). If $f$ and $g$ are two transcendental entire

functions, then $f(g)$ has infinitely many fix-points.
REMARK. If one of $f$ or $g$ is a non-linear polynomial, then the assertion is

true according to Theorem A and Lemma 3 (see section 4 below).

CONJECTURE 2 (Baker and Gross [4, p. 34]). $e^{z}+h(z)$ is prime for any non-
constant entire function $h$ with order less than one.

\S 3. Statement of the main results.

Our first result gives a partial answer to Conjecture 1 as follows:
THEOREM 1. If $f$ and $g$ are two non-linear entire functions such that $f(g)$

is transcendental and of finite order, then $f(g)$ has infinitely many fix-points.
We answer Conjecture 2 completely and more as follows:
THEOREM 2. Let $p_{1}(z)$ be a Polynomial and not identically zero. Let $h(z)$

be any non-constant entire function of order less than one. Then $P_{1}(z)e^{z}+h(z)$

is prime.
Finally we give a result analogous to Theorem A for meromorphic func-

tions.
THEOREM 3. Let $p(z)$ be a polynomial of degree $\geqq 3$ . Then for any trans-

cendental meromorphic function $f,$ $p(f)$ has infinitely many fix-points.
REMARK. The argument used in the proof of Theorem A [10] can be

applied to meromorphic functions $f$ with

$\varlimsup_{r\rightarrow\infty}N(r, f)/T(r, f)<1$ .
When $n=2$ we prove
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THEOREM 4. Let $p(z)$ be a polynomial of degree 2, and let $f$ be transcen-
dental meromorPhic. Then $P(f)$ has finitely many fix-points if and only if $f$ can
be expressed as

(1)
$f(z)=\frac{Q(\sqrt{z-c})e^{\gamma- C}(\sqrt z\neg+Q(-\sqrt{z-c})e^{\gamma(-\prime z-C)}}{\frac{Q(\sqrt{z-c})e^{\gamma(\prime z- c)}}{\sqrt{z-c}}-\frac{Q(-\sqrt{z-c})e^{\gamma(-\prime_{z-c)}}}{\sqrt{z-c}}}+a$

,

where $a$ and $c$ are constants depending on $p(z)$ , and $\gamma(z)$ is an entire function.

\S 4. Preliminary Lemmas.

LEMMA 1 (Goldstein [16]). Let $F$ be an entire function with $\delta(a, F)=1$ for
some $ a\neq\infty$ , where $\delta(a, F)$ denotes the Nevanlinna deficiency. Then $F(z)$ is
Pseudo-prime.

We shall need Lemma 2 but not Lemma 1 in our proofs of the main results.
However, we shall give an outline of the proof of Lemma 1 in order to estab-
lish Lemma 2.

LEMMA 2. Let $p(z)$ be a non-constant polynomial of degree $k\geqq 1$ , and $\psi_{1}$ ,
$\psi_{2}$ be two entire functions with $\psi_{1}\not\equiv 0$ . $s_{\mathcal{U}}ppose$ that both orders of $\psi_{1}$ and $\psi_{2}$

are less than $k$ . Then $\psi_{1}e^{p(z)}+\psi_{2}$ is Pseudo-prime.
PROOF. We first present a sketch of the proof of Lemma 1.
According to a result of Edrei and Fuchs [9], if $F$ is $a$ meromorphic func-

tion with $\sum_{a\neq\infty}\delta(a, F)=1$ , then its lower order $\mu$ is greater than or equal to 1/2.

Furthermore, if $p$ is the integer defined by $P-1/2\leqq\mu<P+1/2$ (hence $P\geqq 1$),

then there exist an increasing sequence $\{r_{j}\},$ $ r_{j}\uparrow\infty$ as $ j\rightarrow\infty$ , a sequence of
arcs $\gamma_{j}$ of $|z|=r_{j}$ , each of angular measure not less than $2\pi/sp$ , and a sequence
of segments $l_{f}$ joining the arcs $\gamma_{j}$ , such that on the path $\gamma=l_{1}+\gamma_{2}+l_{2}+\gamma_{3}+\cdots$ ,

the following estimate holds:

(2) $\log|F(z)|\leqq\frac{-\pi}{16}T(r, F)$ , $(|z|=r>r_{0})$ .
Now suppose that

$F=f(g)$ ,

where $f$ and $g$ are two transcendental entire functions. Then by a well-known
result of P\’olya [24], $f$ is of order zero. Hence, by a classical theorem of
Wiman [28], there is a sequence $\{R_{n}\}$ with $ R_{n}\uparrow\infty$ as $ n\rightarrow\infty$ such that

$\min_{|z|=R_{n}}|f(z)|\rightarrow\infty$ ,

as $ n\rightarrow\infty$ .
But by (2), $F(z)\rightarrow 0$ as $ z\rightarrow\infty$ along $\Gamma$ . So, $\Gamma=g(\gamma)$ must be bounded.
Now suppose that $\Gamma$ is contained in $|z|\leqq R$ , and assume that $f$ has no
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zeros on $|z|=R$ . Then since $f(\Gamma)\rightarrow 0$ , therefore

$ g(\gamma)\rightarrow\alpha$ ,

where $\alpha$ is a zero of $f$ in $|z|\leqq R$ .
Thus, given $\epsilon>0$ , there exists $r_{0}$ such that

(3) $|g(z)-\alpha|\leqq\epsilon$ $(z\in\gamma, |z|\geqq r_{0})$ .
On the other hand, assume that $f$ has a zero of order $s$ at $\alpha$ , then there

is a constant $A>0$ such that

(4) $|f(z)|\geqq A|z-\alpha|^{s}$ $(|z-\alpha|\leqq\epsilon)$ .

From this and (3) we have

(5) $F(z)\equiv|f(g(z))|\geqq A|g(z)-\alpha|^{s}$ $(z\in\gamma_{j})$

for $j>j_{0}$ .
So, (2) and (5) yield

(6) $s$ logl $g(z)-\alpha|+\log A\leqq-\frac{\pi}{16}T(|z|, F)$ .

Hence, for $j\geqq j_{0}$ , we have by Nevanlinna’s first fundamental theorem

(7) $ T(r_{j}, g)+O(1)\geqq m(\gamma_{j}, \alpha, g)=\frac{1}{2\pi}\int_{0}^{2\pi}\log^{+}|\frac{1}{g(r_{f}e^{i\theta})-\alpha}|d\theta$

$\geqq\frac{1}{2\pi}\int_{\gamma_{j}}\log|\frac{1}{g(r_{j}e^{t\theta})-\alpha}|d\theta$

$\geqq\frac{1}{3p}\frac{\pi}{16s}T(|\gamma_{j}|, F)+\frac{\log A}{s}$ .

So we have for some positive constant $B$

$T(r_{j}, g)\geqq BT(r_{j}, F)$ $(j\geqq j_{1})$ .
Therefore

$\varlimsup_{r\rightarrow\infty}\frac{T(r,g)}{T(r,f(g))}\geqq B$

which contradicts the fact that $\lim_{r\rightarrow\infty}T(r, g)/T(r, f(g))=0$ , for any two trans-

cendental entire functions $f$ and $g$ (Clunie [17, p. 54]). Lemma 1 is thus proved.
We now return to the proof of Lemma 2.
We rewrite $\psi_{1}e^{p}+\psi_{2}$ as $\psi_{2}(\frac{\psi_{1}}{\psi_{2}}e^{p}+1)$ . Set

$\psi_{1}e^{p}+\psi_{2}\equiv H=\psi_{2}F$ ,
and
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$F=\frac{\psi_{1}}{\psi_{2}}e^{p}+1$ .

Then $F$ is a meromorphic function of regular growth with $\delta(1, F)=1$ . Thus
$F$ satisfies all the hypotheses of the Edrei-Fuchs result mentioned in
Lemma 1. Hence, the estimate (2) holds for $F$. Now, since $\psi_{2}$ is entire of
order less than $k$ , the estimate (2) still holds with $\pi/16$ replaced by $\pi/16-\epsilon$

for some positive constant $\epsilon,$ $\pi/16>\epsilon>0$ .
Suppose that there exist two transcendental entire functions $f$ and $g$ such

that
$H\equiv\psi_{2}\cdot F=f(g)$ .

By an argument exactly the same as that used before, we will get a contradic-
tion. This completes the proof of Lemma 2.

LEMMA 3. Let $f$ and $g$ be two functions such that $f(g)$ and $g(f)$ are also
well-defined functions. Then $f(g)$ has infinitely many fix-pOints if and only if
$g(f)$ does.

PROOF. Suppose that $z_{0}$ is a fix-point of $f(g)$ . Then

$g(f(g)(z_{0}))=g(z_{0})$ .
This implies that $g(z_{0})$ is a fix-point of $g(f)$ . Furthermore, if $z_{1},$ $z_{2}$ are two
distinct fix-points of $f(g)$ , then $g(z_{1})$ and $g(z_{2})$ are two distinct fix-point of $g(f)$ .

LEMMA 4. Let $f$ be a transcendental meromorphic function and $a_{i}(z)(i=1$ ,
2, $\cdots$ , n) be meromorphic functions satisfying

$T(r, a_{i}(z))=0\{T(r, f)\}$ ,

as $ r\rightarrow\infty$ for $i=1,2,$ $\cdots$ , $n$ . Assume that

(8) $f^{n}(z)+a_{1}(z)f^{n- 1}(z)+a_{2}(z)f^{n-2}(z)+\cdots+a_{n}(z)=g$

and that

(9) $N(r, f)+N(r, 1/g)=0\{T(r, f)\}$

as $r\rightarrow\infty n$ . $e$ . (The abbreviation $n$ . $e$ . (Hayman [18]) is used to mean every-
where in $[0, \infty$) except in a set of finite measure).

Then

$g=(f+\frac{a_{1}(z)}{n})^{n}$

REMARK. This is a special case of the Tumura-Clunie theorem [17, p. 69].

We present a sketch proof of it as follows.
PROOF. Let
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(10) $f=F-\frac{a_{1}(z)}{n}$ .
Substituting this into (8), we have

(11) $F^{n}+b_{2}(z)F^{n- 2}+b_{3}(z)F^{n- 3}+\cdots+b_{n}(z)=g$ ,

where $b_{i}(z)$ ($i=2,3,$ $\cdots$ , n) are meromorphic functions satisfying $T(r, b_{i}(z))=$

$0T(r, f)$ as $r\rightarrow\infty n.e$ .
We now differentiate this and obtain

(12) $nF^{n- 1}F^{\prime}+H^{\prime}(z)=g^{\prime}$

where $H(z)\equiv b_{2}(z)F^{n- 2}+b_{3}(z)F^{n- 3}+\cdots+b_{n}(z)$ .
We eliminate $g^{\prime}$ by multiplying $g^{\prime}/g$ on both sides of (11) and substituting

from (12). This gives

(13) $F^{n- 1}(nF^{\prime}-\frac{g^{\prime}}{g}F)+P_{n- 2}(F)=0$ ,

where $P_{n- 2}(F)$ is a polynomial in $F$ and its derivatives, with coefficients $a(z)$

satisfying

(14) $T(r, a(z))=0T(r, F)$

as $ r\rightarrow\infty$ outside a set of $r$ of finite measure.
We wish to show that $nF^{\prime}-(g^{\prime}/g)F\equiv 0$ . Suppose that $nF^{\prime}-(g^{\prime}/g)F\not\equiv O$ .

Then according to the well-known “lemma on the logarithmic derivative” [22]

and the fact that $T(r, g)=O\{T(r, F)\}$ as $\gamma\rightarrow\infty n.e$ . (see [30, p. 199]) we have

(15) $m(r,$ $nF^{\prime}-\frac{g^{\prime}}{g}F)=0\{T(r, F)\}$ ,

as $r\rightarrow\infty n$ . $e$ .
Clearly

(16) $N(r,$ $nF^{\prime}-\frac{g^{\prime}}{g}F)\leqq N(r, F^{\prime})+N(r, g)+N(r,$ $\frac{1}{g})$

$\leqq N(r, f^{\prime})+N(r, a_{1}(z)/n)+N(r, g)+N(r,$ $\frac{1}{g})$

$=0\{T(r, f)\}$

$=0\{T(r, F)\}$

as $n\rightarrow\infty,$ $n$ . $e$ . by hypothesis (9).
This and (15) give

(17) $T(r,$ $nF^{\prime}-\frac{g^{\prime}}{g}F)=0\{T(r, F)\}$

as $r\rightarrow\infty,$ $n.e$ .
On the other hand, from (13) we have
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(18) $T(r,$ $nF^{\prime}-\frac{g^{\prime}}{g}F)\geqq T(r,$ $\frac{1}{F^{n-1}})-T(r, P_{n-2}(F))$

$\geqq(1-0(1))T(r, F)$

as $ r\rightarrow\infty$ n.e. since $T(r, P_{n- 2}(F))\leqq(n-2+o(1))T(r, F)$ as $r\rightarrow\infty n$ . $e$ . (see $e$ . $g$ .
[30, p. 198]).

This contradicts (17). Hence, we have to conclude that

(19) $nF^{\prime}-\frac{g^{\prime}}{g}F\equiv 0$

and

(20) $g=cF^{n}$

where $c$ is a constant, and $c$ must be equal to one. Lemma 4 is thus proved.
LEMMA 5 (Gross [13]). If $F(z)$ is non-periodic, entire, and Prime, when

only entire factors are considered, then it remains prime even when meromorphic

factors are permitted.
REMARK. This lemma enables us to consider only entire factors in the

proof of Theorem 2.
SKETCH PROOF. Suppose that $F(z)=f(g)$ , where $f$ is meromorphic. If $f$

is transcendental, then it can have at most one pole, say $a$ , and $g$ must be of
the form $e^{\alpha(z)}+a$ , where $\alpha$ is entire. Then we can express $F(z)$ by

(21) $F(z)=h(e^{\alpha(z)})$ ,

where $h$ is of the form
$h(\omega)=h_{1}(\omega)/\omega^{n}$

and where $h_{1}$ is entire and $n$ is an integer. Thus

$h(e^{a(z)})=h_{1}(e^{a(z)})/e^{na(z)}$

will have two entire functions $h_{1}(e^{z})/e^{nz}$ , and $\alpha(z)$ as its left and right factors
respectively. Hence, by hypothesis $\alpha$ must be linear. Then from (21), $F$ would
be periodic, contrary to the assumption. For the case where $f$ is rational, the
discussion is similar.

LEMMA 6 (Borel [5]). Let $a_{i}(z)$ be an entire function of order $\rho$ , let $g_{i}(z)$

also be entire and let $g_{j}(z)-g_{i}(z)(i\neq])$ be a transcendental function or poly-
nomial of degree higher than $\rho$ . Then

$\sum_{i=1}^{n}a_{t}(z)e^{g_{i}(z)}=a_{0}(z)$

holds only when $a_{0}(z)=a_{1}(z)=\ldots=a_{n}(z)=0$ .
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\S 5. The proofs of the main results.

PROOF OF THEOREM 1:
Suppose that $f(g)$ has only finitely many fix-points. That is

$f(g)(z)-z=P(z)e^{Q(z)}$ ,

where $p(z),$ $Q(z)$ are polynomials.
Then

$P(z)e^{Q^{(z)}}+z=f(g)$ .
This is impossible by Lemma 2.

PROOF OF THEOREM 2. Clearly, according to Lemma 2, the function
$p_{1}(z)e^{z}+h(z)$ must be pseudo-prime. Now suppose that there exist a non-linear
polynomial $p(z)$ of degree $k$ and a transcendental entire function $g(z)$ such
that

(22) $P_{1}(z)e^{z}+h(z)=p(g)$ $(=p_{0}g^{k}+p_{1}g^{k- 1}+\cdots+p_{k})$ .
If we rewrite this as $P(g)-h(z)=P_{1}(z)e^{z}$ , then all the hypotheses of Lemma 4
are satisPed. Thus we deduce that

(23) $p_{1}(z)e^{z}=p_{0}(g+\frac{p_{1}}{p_{0}k})^{k}$

Thus

(24) $p_{0}g^{k}+p_{1}g^{k-1}+\cdots+p_{k}-h(z)\equiv p_{0}(g+\frac{p_{1}}{p_{0}k})^{k}$

By equating the coefficients of both sides, we have

(25) $p_{k}-h(z)\equiv p_{0}(\frac{p_{1}}{p_{0}k})^{k}$

Hence

(26) $h(z)\equiv p_{k}+p_{0}(\frac{p_{1}}{p_{0}k})^{k}$

a constant, contrary to the assumption.
Now suppose that there exist a non-linear polynomial $p$ and a transcendental

entire function $f$ such that
$p_{1}e^{z}+h=f(p)$ .

By examining the geometric distribution of the zeros of $p_{1}e^{z}+h$ we find
that for any $\epsilon>0$ , the zeros will eventually lie outside the sector $S=$

$\{re^{i\theta}|r\geqq 0,$ $-\frac{\pi}{2}+\epsilon\leqq\theta\leqq\frac{\pi}{2}-\epsilon\}$ . If the degree of $p\geqq 3$ , then for sufficiently

large zero $a_{i}$ of $f$ at least one zero of $p(z)-a$ will lie in $S$, a contradiction.
Thus we conclude that the degree of $P=2$ . Then we may assume that $p$ has
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the form $p(z)=(z+c)^{2}+d$ . Hence

$f(p(z))\equiv f(p(-z-2c))$ .
Therefore,

$p_{1}(z)e^{z}+h(z)\equiv p_{1}(-z-2c)e^{-z-2c}+h(-z-2c)$ .
This is impossible, by examining $ z\rightarrow\infty$ , say along the positive real axis.

The theorem is thus proved.
PROOF OF THEOREM 3. Suppose our assertion is false: $i.e.,$ $p(f)$ has only

finitely many fix-points. Then according to Lemma 3, $f(p)$ also has only finitely
many fix-points.

Let

(27) $f(z)=\frac{f}{f}1\frac{(z)}{(z)}2$

where $f_{1},$ $f_{2}$ are entire and have no common zeros. Then

(28) $f(P)-z=\frac{Q_{1}(z)}{h_{1}(z)}e^{a_{1}(z)}$

or
(29) $\frac{f_{1}(p)-zf_{2}(p)}{f_{2}(p)}=\frac{Q_{1}(z)e^{\alpha_{1}(z)}}{h_{1}(z)}$ ,

where $Q_{1}(z)$ is a polynomial and $h_{1},$
$\alpha_{1}$ are entire functions, and $h_{1},$ $Q_{1}$ have

no common zeros. Hence,

(30) $f_{1}(p)-zf_{2}(p)=Q_{1}(z)e^{\alpha(z)}$

where $\alpha$ is entire.
Also we have

(31) $P(f)-z=\frac{Q_{2}(z)}{h_{2}(z)}e^{\beta_{1}(z)}$ ,

where $Q_{2}$ is a polynomial, $\beta_{1},$ $h_{2}$ are entire and $Q_{2},$ $h_{2}$ have no common zeros.
Let

(32) $P(z)=z^{n}+A_{n-1}z^{n-1}+A_{n-2}z^{n- 2}+\cdots+A_{0}$ .
Then from this and (31) we have

(33) $(\frac{f_{1}(z)}{f_{2}(z)})^{n}+A_{n-1}(\frac{f_{1}(z)}{f_{2}(z)})^{n-1}+\cdots+A_{0}-z=\frac{Q_{2}(z)}{h_{2}(z)}e^{\beta_{1}(z)}$ .
Multiplying both sides of (33) by $f_{2}^{n}$ we obtain

(34) $[f_{1}(z)]^{n}+A_{n-1}[f_{1}(z)]^{n-1}f_{2}(z)+\cdots+A_{0}[f_{2}(z)]^{n}-z[f_{2}(z)]^{n}$

$=Q_{2}(z)e^{\beta(z)}$

where $\beta$ is entire and we note that all the zeros of $h_{2}(z)$ are zeros of $f_{2}^{n}$ .
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Replacing $z$ by $p(z)$ in the above identity, we have

(35) $[f_{1}(p)]^{n}+A_{n- 1}[f_{1}(p)]^{n- 1}f_{2}(p)+\cdots+A_{1}f_{1}(p)[f_{2}(p)]^{n- 1}$

$+A_{0}[f_{2}(p)]^{n}-p(z)[f_{2}(p)]^{n}=Q_{2}(p)e^{\beta(p)}$ .

Substituting $f_{1}(p)=zf_{2}(p)+Q_{1}(z)e^{\alpha(z)}$ into the above identity, we have

$(zf_{2}(p)+Q_{1}e^{\alpha})^{n}+A_{n- 1}(zf_{2}(p)+Q_{1}e^{a})^{n- 1}f_{2}(p)+\cdots$

$+\cdots+A_{1}(zf_{2}(p)+Q_{1}e^{a})[f_{2}(p)]^{n- 1}+A_{0}[f_{2}(p)]^{n}$

$-p(z)[f_{2}(p)]^{n}=Q_{2}(p)e^{\beta(p)}$ .

Expanding and combining terms, we arrive at

(36) $(z^{n}+A_{n- 1}z^{n- 1}+\cdots+A_{1}z+A_{0}-p(z))[f_{2}(p)]^{n}$

$+(nz^{n-1}+(n-1)A_{n- 1}z^{n- 2}+\cdots)[f_{2}(p)]^{n-1}[Q_{1}e^{\alpha}]$

$+(\frac{n(n-1)}{2}z^{n- 2}+\frac{(n-1)(n-2)}{2}A_{n- 1}z^{n- 3}+\cdots)[f_{2}(p)]^{n-2}[Q_{1}e^{\alpha}]^{2}$

$+\cdots+[Q_{1}e^{a}]^{n}=Q_{2}(p)e^{\beta(p)}$ .

The left hand side of (36) is a homogeneous polynomial in $f_{2}(p)$ and $Q_{1}e^{\alpha}$ with
degree $n$ . We note further that the coefficient of $[f_{2}(p)]^{n}$ vanishes by (32).

Dividing $[Q_{1}e^{\alpha}]^{n}$ on both sides of (36) and setting

(37) $F(z)=\frac{f_{2}(p)}{Q_{1}e^{\alpha}}$

we obtain

(38) $p^{\prime}(z)F^{n-1}(z)+\frac{p^{\nu}(z)}{2}F^{n-2}(z)+\cdots+1=\frac{Q_{2}(z)}{Q_{1}(z)^{n}}e^{\beta(p)- na}$ ,

or
(39) $F^{n- 1}(z)+\frac{p^{r}(z)}{2p’(z)}F^{n- 2}(z)+\cdots+\frac{1}{p^{\prime}(z)}=R(z)e^{\beta(p)- na}$ ,

where $R(z)=Q_{2}(z)/Q_{1}^{n}(z)\cdot p^{\prime}(z)$ , a rational function.
The left hand side of (34) is a polynomial in $f$ with rational functions as

its coefficients. Thus, Lemma 3 is applicable unless $F$ is a rational function.
Suppose $F$ is a rational function. Then from (37), it follows that

$f_{2}(p)=Q_{1}(z)R_{1}(z)e^{\alpha}$

where $R_{1}(z)$ is a rational function.
Then from (30) we have

$f_{1}(p)=R_{2}(z)e^{\alpha(z)}$ ,
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where $R_{2}(z)$ is a rational function. Thus

$\frac{f_{1}(p)}{f_{2}(p)}=\frac{Q_{1}R}{R_{2}}=a$ rational function,

which of course is impossible.
Alternately, we conclude that $F$ is transcendental. We note that $F$ has

only finitely many poles. Thus applying Lemma 3 to the identity (39), we have

(40) $[F(z)+\frac{1}{n-1}\frac{p^{\nu}}{2p’}T^{-1}=R(z)e^{\beta(p)-n\alpha}$

Comparing this with (39) and equating the coefficients of both sides of (39) and
(40) we obtain

(41) $[\frac{1}{2(n-1)}\frac{p^{r}}{p’}]^{n- 1}=\frac{1}{p^{\prime}(z)}$

or
(42) $[p^{\nu}]^{n-1}=[2(n-1)]^{n-1}[p^{\prime}]^{n-2}$

By a simple degree argument, we have

$P^{\prime}(z)=c(z-a)^{n-1}$

where $c,$ $a$ are constants.
It follows that

(43) $P(z)=c_{1}(z-a)^{n}+c_{2}$

for some constants $c_{1},$ $c_{2}$ .
Substituting this into equation (31), we get

(44) $c_{1}(f-a)^{n}+c_{2}-z=\frac{Q_{2}}{h_{2}}e^{\beta_{1}}$ .

Changing variables in (44), by setting $c_{2}-z=w$ , we obtain

(45) $c_{1}(f(c_{2}-w)-a)^{n}+w=\frac{Q_{a}(c_{2}+w)}{h_{2}(c_{2}+w)}e^{\beta_{1}(c_{2}+w)}$

or
(46) $[f_{0}(w)]^{n}+w=\frac{Q_{3}(w)}{h_{0}(w)}e^{\beta_{2}(w)}$ ,

where $f_{0}(w)=c_{1}^{1/n}(f(c_{2}-w)-a),$ $h_{0}(w)=h_{2}(c_{2}+w),$ $Q_{3}(w)=Q_{2}(c_{2}+w)$ , and $\beta_{2}(w)=$

$\beta_{1}(c_{2}+w)$ .
Let $w=z^{n}$ . Then

(47) $f_{0}^{n}(z^{n})+z^{n}=\frac{Q_{3}(z^{n})}{h_{0}(z^{n})}e^{\beta_{2}(z^{n})}$ .
Thus when $n\geqq 3$ , this implies that
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(48) $\frac{f_{0}(z^{n})}{z}+\rho_{i}=0$ ( $\rho_{1},$ $\rho_{2},$
$\cdots$ , $\rho_{n}$ are $n$ distinct roots of unity).

has only finitely many zeros, for $i=1,2,$ $\cdots$ , $n$ .
According to Nevanlinna’s second fundamental theorem (or Picard’s theorem)

we conclude at once that $f_{0}(z^{n})/z$ must be a rational function. This will lead
to the conclusion that $f(z)$ is rational, contrary to the hypothesis. The theorem
is thus proved.

PROOF OF THEOREM 4. We may assume without loss of generality that

$p(z)=(z-a)^{2}+c$ .
Then if $p(f)$ has only finitely many fix-points, we will have

(49) $(f(z)-a)^{2}+c-z=\frac{Q_{4}(z)}{h(z)}e^{\beta_{0}(z)}$ , .

where $Q_{4}$ is a polynomial, $h(z)$ and $\beta_{0}(z)$ are entire functions. Changing vari-
ables by setting $z-c=w$ , we get

(50) $(f(c+w)-a)^{2}-w=\frac{Q_{4}(c+w)}{h(c+w)}e^{\beta 0^{(c+w)}}$

or
(51) $f_{0}^{2}(w)-w=\frac{Q_{0}(w)e^{\beta_{5}(w)}}{h_{0}(w)}$ ,

where $f_{0}(w)=(f(c+w)-a),$ $h_{0}(w)=h(c+w),$ $Q_{0}(w)=Q_{4}(c+w)$ , and $\beta_{5}(w)=\beta_{0}(c+w)$ .
Let $f_{0}(w)=f_{1}(w)/f_{2}(w)$ . Then we have

(52) $f_{1}^{2}(w)-wf_{2}^{2}(w)=Q_{0}(w)e^{\alpha(w)}$ ,

where $Q_{0}(w)$ is a polynomial and $\alpha(w)$ is an entire function. Replacing $w$ by
$w^{2}$ in the above identity we have

(53) $f_{1}^{2}(w^{2})-w^{2}f_{2}^{2}(w^{2})=Q_{0}(w^{2})e^{\alpha(w^{2})}$

or
(54) $[f_{1}(w^{2})+wf_{2}(w^{2})][f_{1}(w^{2})-wf_{2}(w^{2})]=Q_{0}(w^{2})\alpha(w^{2})$ .
Hence we conclude:

(55) $f_{1}(w^{2})+wf_{2}(w^{2})=Q(w)e^{\gamma(w)}$

and

(56) $f_{1}(w^{2})-wf_{2}(w^{2})=L(w)e^{\beta_{4}(w)}$ ,

where $Q,$ $L$ are polynomials, and $\gamma,$
$\beta_{4}$ are entire functions.

Solving $f_{1}(w^{2})$ and $f_{2}(w^{2})$ from (55) and (56), we obtain

(57) $f_{1}(w^{2})=\frac{1}{2}(Q(w)e^{\gamma(w)}+L(w)e^{\beta_{4}(w)})$
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and

(58) $f_{2}(w^{2})=\frac{1}{2}(\frac{Q(w)}{w}e^{\gamma(w)}-\frac{L(w)}{w}e^{\beta_{4}(w)})$ .

Since $f_{1}(w^{2})$ is an even function, from (57) and (58), we have

(59) $Q(w)e^{\gamma(w)}+L(w)e^{\beta_{4}(w)}=Q(-w)e^{\gamma(-w)}+L(-w)e^{\beta_{4}(-w)}$

and

(60) $\frac{Q(w)}{w}e^{\gamma(w)}-\frac{L(w)}{w}e^{\beta_{4}(w)}=\frac{Q(-w)}{-w}e^{\gamma(-w)}-\frac{L(-w)}{-w}e^{\beta_{4}(-w)}$ .

By Lemma 6, we conclude from (59) that (i) $\gamma(w)=\beta_{4}(w)+c_{1}$ , (ii) $\gamma(-w)=$

$\gamma(w)+c_{2}$ , or (iii) $\gamma(-w)=\beta_{4}(w)+c_{3}$ ; where $c_{1},$ $c_{2},$ $c_{3}$ are constants.
In case (i), we deduce from (57) and (59) that $f_{1}(w^{2})/f_{2}(w^{2})$ must be rational,

a contradiction. Suppose that case (ii) holds. Then (60) and (59) yield

(61) $e^{c_{2}}Q(-w)=Q(w)$

and

(62) $e^{c_{2}}\frac{Q(-w)}{-w}=\frac{Q(w)}{w}$ ,

which are inconsistent. Thus, we conclude that only case (iii) can be true.
Hence, (59) and (60) yield

(63) $e^{c_{3}}Q(-w)=L(w)$

and

(64) $e^{c_{3}}\frac{Q(-w)}{-w}=\frac{L(w)}{w}$ ,

and so we deduce

(65) $L(w)=Q(-w)$ .

Thus

(66) $f_{1}(w^{2})=\frac{1}{2}(Q(w)e^{\gamma(w)}+Q(-w)e^{\gamma(- w)-c_{3}})$ .

By the evenness of the left hand side of (66), again we conclude by Lemma
6 that $e^{-c_{3}}=1$ . Hence

(67) $f_{1}(w^{2})=\frac{1}{2}(Q(w)e^{\gamma(w)}+Q(-w)e^{\gamma(-w)})$ ,

or

(68) $f_{1}(w)=\frac{1}{2}(Q(\sqrt{w})e^{\gamma w}(\sqrt{}\circ+Q(-\sqrt{w})e^{\gamma(-\sqrt{w})})$ .
Similarly, we conclude that
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(69) $f_{2}(w)=\frac{1}{2}(\frac{Q(\sqrt{w})}{\sqrt{w}}e^{\gamma(-\sqrt{w})}-\frac{Q(-\sqrt{w})}{\sqrt{w}}e^{\gamma(-\sqrt w3}))$ .
The expression (1) will follow from (68) and (69). It is easy to see that

when $p(z)=(z-a)^{2}+c$ and $f$ has the form (1), $f(p)$ has only finitely many fix-
points, and so does $p(f)$ .

\S 6. Question.

We note that if $f$ is a transcendental meromorphic function satisfying

either $N(r, f)=0\{T(r, f)\}$ or $N(r,$ $\frac{1}{f})=0\{T(r, f)\}$ as $ r\rightarrow\infty$ , then by adopting

the argument used in the proof of Theorem 3 one can show that Theorem 3
remains true if $p$ is replaced by a rational function of weight greater than 2.

For arbitrary meromorphic function $f$, we ask the following question: Does
Theorem 3 remain valid if $p$ is replaced by a rational function of weight
greater than 2?
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