Structure of a single pseudo-differential equation in a real domain

By Masaki Kashiwara, Takahiro Kawai ${ }^{(*)}$
and Toshio Oshima

(Received Nov. 11, 1974)

We investigate the micro-local structure of a single pseudo-differential equation in a real domain under the assumption that their characteristic variety has singularities of normal crossing type. (Precise conditions are given in the below.)

We note that the micro-local structure of a single pseudo-differential equation of this type has been completely investigated in a complex domain by Kashiwara, Kawai and Oshima [2]. (See Theorem 1 in the below.)

The most interesting phenomenon peculiar to the problem in a real domain is that new invariant (the function h appearing in Theorem 2) appears.

Firstly we recall the theorem which clarifies the structure in a complex domain of a single pseudo-differential equation $\mathscr{M}=\mathscr{P} / \mathscr{F}$ whose characteristic variety V has the singularity of normal crossing type. Precise conditions on \mathscr{M} and V are the following:
(1) The symbol ideal J of g is reduced.
(2) V has the form $V_{1} \cup V_{2}$, where V_{1} and V_{2} are regular submanifolds of a ($2 n-1$)-dimensional complex contact manifold (X^{c}, ω) and cross transversally.
(3) The canonical 1-form ω restricted to $V_{1} \cap V_{2}$ never vanishes.

Then a suitable "quantized" contact transformation will bring micro-locally the generator P of g to $z_{1} D_{1}+Q\left(z^{\prime}, D_{z^{\prime}}\right)$. Here z^{\prime} and $D_{z^{\prime}}$ denote (z_{2}, \cdots, z_{n}) and $\left(\frac{\partial}{\partial z_{2}}, \cdots, \frac{\partial}{\partial z_{n}}\right)$ respectively and $Q\left(z^{\prime}, D_{z^{\prime}}\right)$ is a pseudo-differential operator of order at most zero. (Theorem 3 of Kashiwara, Kawai and Oshima [2]). Moreover $\kappa=\sigma_{0}(Q) /\left.\left\{\zeta_{1}, z_{1}\right\}\right|_{V_{1} \cap V_{2}}$ is invariant under contact transformation. Then using this invariant κ we have the following theorem.

Theorem 1. Assume conditions (1)~(3). Further assume that

$$
\begin{equation*}
\left.(d \kappa \wedge \omega)\right|_{V_{1} \cap V_{2}} \neq 0 . \tag{4}
\end{equation*}
$$

[^0]Then a suitable "quantized" contact transformation brings micro-locally the generator $P(z, D)$ of g to $z_{1} D_{1}+z_{2}$.

Thus we have seen the micro-local structure of \mathscr{M} satisfying conditions (1) $\sim(4)$ in a complex domain. So the most important step in the investigation of the structure of the microfunction solutions of \mathscr{M} is to know the microlocal structure of \mathscr{M} in a real domain. Hence in this note we concentrate ourselves to the study of real contact geometry related to the interaction of V_{1} and V_{2}. As for the investigation of the structure of cohomology groups having microfunction solution sheaves of \mathscr{M} as coefficients, we refer the reader to Kashiwara, Kawai and Oshima [2], [3].

The first case that we are concerned with is the following.
Theorem 2. Let $V_{j}=\left\{f_{j}=0\right\} \quad(j=1,2)$ be regular hypersurfaces of a complex contact manifold (X^{c}, ω), complexification of a purely imaginary contact manifold (X, ω). Assume following conditions (5) and (6).

$$
\begin{equation*}
\left\{f_{j}, f_{k}^{c}\right\} \neq 0(j, k=1,2) \quad \text { and } \quad\left\{f_{j}, f_{k}\right\} \neq 0(j \neq k) . \tag{5}
\end{equation*}
$$

For the definiteness' sake we assume that $\left\{f_{1}, f_{\mathrm{1}}^{c}\right\}>0$.

$$
\begin{equation*}
V_{1} \cap V_{1}^{c}=V_{2} \cap V_{2}^{c} . \tag{6}
\end{equation*}
$$

Then locally we may take f_{1} and f_{2} so that they satisfy

$$
\begin{equation*}
\left\{f_{1}, f_{\mathrm{i}}^{c}\right\}=1 . \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& f_{2}=f_{1}-h f_{2}^{c} \text {, where } h \text { is real valued on } X \text { and } \tag{8}\\
& \text { satisfies }\left\{f_{1}, h\right\}=\left\{f_{1}^{c}, h\right\}=0 .
\end{align*}
$$

Here $f^{c}(x, i \eta)$ denotes $\overline{f(\bar{x}, i \bar{\eta})}$ using the canonical coordinate system $(x, i \eta)$ on X.
Remark. Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4] says that we can choose a canonical coordinate system $(x, i \eta)$ on X so that f_{1} has the form

$$
\frac{\eta_{1}}{\sqrt{i \eta_{n}}}+x_{1} \sqrt{i \eta_{n}}
$$

near $(x, i \eta)=(0 ; i(0, \cdots, 0,1))$. Then condition (8) asserts that f_{2} has the form

$$
\frac{\eta_{1}}{\sqrt{i \eta_{n}}}+h x_{1} \sqrt{i \eta_{n}}
$$

with $h=h\left(x_{n}-\frac{x_{1} \eta_{1}}{2 \eta_{n}}, x_{2}, \cdots, x_{n}, \eta_{2}, \cdots, \eta_{n}\right)$.
Proof of Theorem 2. All the problems in the below are considered in a neighborhood U of x_{0} in $V_{1} \cap V_{1}^{c}=V_{2} \cap V_{2}^{c} \subset X^{c}$. Firstly we note that we can find a holomorphic function k so that $f_{2}=f_{1}-k f_{i}^{c}$ with $k \neq 0$ because of conditions (5) and (6). If we define θ_{1} so that it satisfies

$$
\exp \left(2 i \theta_{1}\right)=\frac{k}{\sqrt{k k^{c}}}
$$

and replace f_{1} by $\exp \left(i \theta_{1}\right) f_{1}$, then the corresponding k, denoted by k_{1} is real valued on $V_{2} \cap V_{2}^{c}$. Moreover, by solving the differential equation $\left\{f_{2}, k_{2}\right\}=0$ with initial data k_{1} on $V_{2} \cap V_{2}^{c}$ and replacing k_{1} by k_{2}, we may assume from the beginning that f_{2} has the form $f_{1}-k f_{1}^{c}$ where $\left.k\right|_{V_{1} \cap V_{2}}$ is real and k is constant along any bicharacteristics of V_{2}. In fact, it is sufficient to replace f_{1} by $e^{i \theta_{2}} f_{1}$ with θ_{2} satisfying $\exp \left(2 i \theta_{2}\right)=\frac{k_{1}}{k_{2}}$.

On the other hand the condition that $\left\{f_{1}, f_{1}^{c}\right\} \neq 0$ allows us to find φ which is real valued on X and satisfies $\left\{\varphi f_{1}, \varphi f_{1}^{c}\right\}=1$. (Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4]). Therefore we may assume from the beginning that $\left\{f_{1}, f_{1}^{c}\right\}=1$.

Now consider the function $k-k^{c}$. Since $\left\{f_{2}, f_{2}^{c}\right\} \neq 0$, we can find holomorphic functions a and b so that $k-k^{c}=a f_{2}+b f_{2}^{c}$. Then clearly we have $k-k^{c}$ $=\frac{a-b^{c}}{2} f_{2}+\frac{b-a^{c}}{2} f_{2}^{c}$, since $k-k^{c}=-b^{c} f_{2}-a^{c} f_{2}^{c}$.

Let us define h_{0} by $k-\frac{a-b^{c}}{2} f_{2}$. The function h_{0} thus defined clearly coincides with k on $V_{2}=\left\{f_{2}=0\right\}$ and is real valued on X. It is also clear that $\left.\left\{f_{2}, h_{0}\right\}\right|_{V_{2}}=0$ because $\left.\left\{f_{2}, k\right\}\right|_{V_{2}}=0$.

Now consider the following first order differential equation (9).
(9)

$$
\left\{\begin{array}{l}
\left\{f_{1}^{c}, h\right\}=0 \\
\left.h\right|_{V_{2}}=\left.h_{0}\right|_{V_{2}}
\end{array}\right.
$$

Since $\left\{f_{1}^{c}, f_{2}\right\} \neq 0$, this constitutes a non-characteristic Cauchy problem for h. Therefore equation (9) admits a unique solution h. By the initial condition given in (9) asserts that $V_{2}=\left\{f_{1}-h f_{1}^{c}=0\right\}$ holds.

Now we want to show that the function h thus defined satisfies condition (8).

In order to see this, we first note the following

$$
\begin{equation*}
\left\{f_{1}^{c},\left\{f_{1}, h\right\}\right\}=0 \tag{10}
\end{equation*}
$$

In fact, the Jacobi identity implies that

$$
\begin{equation*}
\left\{f_{1}^{c},\left\{f_{1}, h\right\}\right\}=\left\{f_{1},\left\{h, f_{1}^{c}\right\}\right\}+\left\{h,\left\{f_{1}^{c}, f_{1}\right\}\right\} \tag{11}
\end{equation*}
$$

On the other hand equation (9) implies $\left\{h, f_{1}^{c}\right\}=0$ and the choice of f_{1} explained before asserts $\left\{f_{1}^{c}, f_{1}\right\}=-1$. Therefore (11) implies (10).

Moreover we can easily verify that $\left.\left\{f_{1}, h\right\}\right|_{V_{2}}=0$ holds. In fact, $\left.\left\{f_{1}, h\right\}\right|_{V_{2}}$ $=\left.\left\{f_{1}-h f_{1}^{c}, h\right\}\right|_{V_{2}}+\left.\left\{h f_{1}^{c}, h\right\}\right|_{V_{2}}=0$ holds, because $\left.\left\{f_{2}, h\right\}\right|_{V_{2}}=\left.\left\{f_{2}, h_{0}\right\}\right|_{V_{2}}=0$ and because $V_{2}=\left\{f_{1}-h f_{1}^{c}=0\right\}$.

Then, using again the fact that $\left\{f_{\mathrm{i}}^{\mathrm{c}}, f_{2}\right\} \neq 0$, we can conclude by the uniqueness of the solution of the non-characteristic Cauchy problem that $\left\{f_{1}, h\right\}=0$.

Lastly we show that $h=h^{c}$. As we have proved in the above, $\left\{f_{1}, h\right\}=$ $\left\{f_{\mathrm{c}}^{\mathrm{c}}, h\right\}=0$. Therefore $\left\{f_{1}, h-h^{c}\right\}=\left\{f_{1}^{c}, h-h^{c}\right\}=0$ holds. On the other hand $\left.\left(h-h^{c}\right)\right|_{V_{2} \cap V_{2}^{c}}=\left.\left(h_{0}-h_{0}^{c}\right)\right|_{V_{2} \cap V_{2}^{c}}=0$. Moreover, as we see later in Lemma 3,

$$
\operatorname{det}\left(\begin{array}{ll}
\left\{f_{1}, f_{2}\right\} & \left\{f_{1}, f_{2}^{c}\right\} \tag{12}\\
\left\{f_{1}^{c}, f_{2}\right\} & \left\{f_{1}^{c}, f_{2}^{c}\right\}
\end{array}\right) \neq 0
$$

holds.
Therefore the submanifold $V_{2} \cap V_{2}^{c}$ is non-characteristic with respect to the system of equations $\left\{f_{1}, u\right\}=\left\{f_{1}^{c}, u\right\}=0$. This fact implies that $h=h^{c}$ holds identically because of the uniqueness of solutions for non-characteristic Cauchy problem. This ends the proof of Theorem 2 except for the proof of the relation (12).

Lemma 3. Assumptions (5) and (6) imply (12).
Proof. Firstly note that assumptions (5) and (6) allow us to assume that f_{1} takes the form $\eta_{1}-i x_{1} \eta_{n}$ and that f_{2} takes the form $\eta_{1}-i x_{1} \varphi \eta_{n}$ with $\varphi=\varphi^{c}$ near $(x, i \eta)=(0, i(0, \cdots, 0,1))$.

In order to see this, we use the inhomogeneous coordinate system (x, p), i. e., $p_{j}=-\eta_{j} / \eta_{n}(j=1, \cdots, n-1)$. Assumptions (5) and (6) then imply that f_{2} has the form

$$
\left(p_{1}+\psi_{1} x_{1}\right) \pm i\left(\psi_{2} p_{1}+\theta x_{1}\right)
$$

where $\theta(0) \neq 0$ and ψ_{1}, ψ_{2} and θ are real valued on X. Multiplying f_{2} by $\left(1 \pm i \psi_{1} / \theta\right)$, we may assume from the beginning that $\psi_{1}=0$.

Now we try to find the required φ by multiplying f_{1} and f_{2} by $\left(1 \pm i \alpha_{1}\right)$ and $\left(1 \pm i \alpha_{2}\right)$. It is readily verified that α_{2} / α_{1} can be taken to be φ if $\alpha_{1}\left(1-\psi_{2} \alpha_{2}\right)$ $=\alpha_{2} \theta$ and $\alpha_{1} \theta=\psi_{2}+\alpha_{2}$ hold for α_{1} and α_{2} which are real valued on X. Direct calculations will show that it suffices to take

$$
\alpha_{2}=\frac{1}{\theta}\left(\psi_{2}+\alpha_{1}\right)
$$

and

$$
\alpha_{1}=\frac{1-\psi_{2}^{2}-\theta^{2}+\sqrt{\left(\psi_{2}^{2}+\theta^{2}-1\right)^{2}+4 \psi_{2}^{2}}}{2 \psi_{2}} .
$$

Note that $\theta(0)^{2}-1 \neq 0$ if $\psi_{2}(0)=0$ by assumption (5). So α_{1}, hence α_{2}, is always well-defined and holomorphic. Clearly α_{1} and α_{2} are real valued on X. Thus we have verified that f_{2} may be chosen to be $\eta_{1}-i x_{1} \varphi \eta_{n}$ with $\varphi=\varphi^{c}$.

Now the direct calculations show that

$$
\begin{aligned}
\operatorname{det} & \left(\begin{array}{ll}
\left\{f_{1}, f_{2}\right\} & \left\{f_{1}, f_{2}^{c}\right\} \\
\left\{f_{1}^{c}, f_{2}\right\} & \left\{f_{1}^{c}, f_{2}^{c}\right\}
\end{array}\right) \\
& =\left|\left\{f_{1}, f_{2}\right\}\right|^{2}-\left|\left\{f_{1}^{c}, f_{2}\right\}\right| \\
& =\left|(1-\varphi) \eta_{n}\right|^{2}-\left|(1+\varphi) \eta_{n}\right|^{2}+O\left(\left|x_{1}\right|\right) .
\end{aligned}
$$

Since φ is real valued on X, this shows that (12) holds near $(x, i \eta)=$ ($0, i(0, \cdots, 0,1)$).

This ends the proof of Lemma 3 and, at the same time, completes the proof of Theorem 2.

The case treated by Theorem 2 is, so to speak, the case of crossing of two characteristic varieties of Lewy-Mizohata type. The second case we treat in the following Theorem 4 is the case where a characteristic variety of LewyMizohata type and that of de Rham type cross.

Precise statement is the following.
THEOREM 4. Let V_{1} and V_{2} be regular hypersurfaces in X^{c}. Assume that V_{1} and V_{2} intersect transversally and that $\left.\omega\right|_{V_{1} \mathrm{NV}_{2}} \neq 0$. Assume further that $V_{1}=\left\{f_{1}=0\right\}$ is real and that $V_{2}=\left\{f_{2}=0\right\}$ is of Lewy-Mizohata type, that is, $f_{1}=f_{1}^{c}$ and $\left\{f_{2}, f_{2}^{c}\right\} \neq 0$. Then we can find a suitable canonical coordinate system on X so that $V_{1}=\left\{x_{1}=0\right\}$ and $V_{2}=\left\{\eta_{1} \pm i x_{1} \eta_{2}=0\right\}$ near $(x ;$ iŋ $)=(0 ; i(0,1,0, \cdots, 0))$. Here the sign in the defining function of V_{2} is chosen according to that of $\left\{f_{2}, f_{2}^{c}\right\}$.

Proof. Under the assumptions of the theorem the real codimension of $V_{2} \cap X$ is 1 in $V_{1} \cap X$. This implies the existence of h_{1} and h_{2} which satisfy the following:

$$
\begin{equation*}
h_{1}=h_{1}^{c} \quad \text { and } \quad h_{2}=h_{2}^{c} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
V_{1}=\left\{h_{1}=0\right\} \quad \text { and } \quad V_{2}=\left\{h_{1}+i h_{2}=0\right\} . \tag{14}
\end{equation*}
$$

Since V_{2} is of Lewy-Mizohata type, we can find $\varphi \neq 0$ so that $\left\{\varphi h_{1}, \varphi h_{2}\right\}$ $= \pm 1$ with $\varphi=\varphi^{c}$. Here the sign is that of $\left\{h_{1}, h_{2}\right\}$. (Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4]). Then $V_{1}=\left\{\varphi h_{1}=0\right\}$ and $V_{2}=\left\{\varphi h_{1}+i \varphi h_{2}\right.$ $=0\}$ with $\left\{\varphi h_{1}, \varphi h_{2}\right\}= \pm 1$. This immediately implies that a suitable choice of canonical coordinate system of X makes $V_{1}=\left\{x_{1}=0\right\}$ and $V_{2}=\left\{\eta_{1} \pm i x_{1} \eta_{2}=0\right\}$ near $(x, i \eta)=(0 ; i(0,1,0, \cdots, 0))$.

Before ending this note we mention the solvability of the pseudo-differential equation $P\left(x, D_{x}\right) u=f$ whose characteristic variety V has the form $V_{1} \cup V_{2}$ where V_{j} satisfies the conditions posed in Theorem 4. We assume that the symbol ideal J of $g=\mathscr{P} P$ is reduced.

In this case the most important point that makes the arguments simpler is the following observation:

The generator $P\left(x, D_{x}\right)$ of g may be chosen to be of the form

$$
\begin{equation*}
x_{1}\left(D_{1}+\alpha x_{1} D_{2}\right)+\lambda\left(x_{2}-\frac{\alpha x_{1}^{2}}{2}, x_{3}, \cdots, x_{n}, D_{2}, \cdots, D_{n}\right) \tag{15}
\end{equation*}
$$

where $\alpha= \pm i$ and λ is of order at most 0 .
This fact is an obvious consequence of Theorem 1, because the lower order term λ of P may be chosen to satisfy $\left[\lambda, x_{1}\right]=\left[\lambda, D_{1}+\alpha x_{1} D_{2}\right]=0$.

The expression of P in the form (15) will allow one to construct the fundamental solution for P if the principal symbol $\sigma_{0}(\lambda)$ of λ restricted to $x_{1}=0$ does not attain integral values, that is, we can assert that the pseudo-differential equation $P\left(x, D_{x}\right) u=f$ is always solvable micro-locally as long as $\sigma_{0}(\lambda)\left(x_{2}, \cdots, x_{n}\right.$, $\eta_{2}, \cdots, \eta_{n}$) does not attain integral values. In fact, it is possible to give the meaning to x_{1+}^{λ} as a boundary value of a pseudo-differential operator if λ is of order at most zero and is independent of D_{1} (cf. Kashiwara and Kawai [1]). This topic will be discussed elsewhere.

References

[1] M. Kashiwara and T. Kawai, On micro-hyperbolic pseudo-differential equations, J. Math. Soc. Japan, 27 (1975), 359-404.
[2] M. Kashiwara, T. Kawai and T. Oshima, Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudo-differential equations with multiple characteristics, I, Proc. Japan Acad., 50 (1974), 420-425.
[3] M. Kashiwara, T. Kawai and T. Oshima, Ibid. II, Proc. Japan Acad., 50 (1974), 549-550.
[4] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations. Lecture Note in Mathematics No. 287, Springer, Berlin-Heidelberg. New York, 1973, 265-529.

Masaki KASHIWARA
Mathematical Institute
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan

Takahiro Kawai
Research Institute for Mathematical Sciences
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto, Japan

Toshio Oshima

Department of Mathematics
Faculty of Sciences
University of Tokyo
Hongo, Bunkyo-ku
Tokyo, Japan

[^0]: (*) Supported by Miller Institute for Basic Research in Science.

