J. Math. Soc. Japan Vol. 28, No. 1, 1976

Structure of a single pseudo-differential equation in a real domain

By Masaki KASHIWARA, Takahiro KAWAI^(*) and Toshio OSHIMA

(Received Nov. 11, 1974)

We investigate the micro-local structure of a single pseudo-differential equation in a real domain under the assumption that their characteristic variety has singularities of normal crossing type. (Precise conditions are given in the below.)

We note that the micro-local structure of a single pseudo-differential equation of this type has been completely investigated in a complex domain by Kashiwara, Kawai and Oshima [2]. (See Theorem 1 in the below.)

The most interesting phenomenon peculiar to the problem in a real domain is that new invariant (the function h appearing in Theorem 2) appears.

Firstly we recall the theorem which clarifies the structure in a complex domain of a single pseudo-differential equation $\mathcal{M}=\mathcal{D}/\mathcal{S}$ whose characteristic variety V has the singularity of normal crossing type. Precise conditions on \mathcal{M} and V are the following:

- (1) The symbol ideal J of \mathcal{F} is reduced.
- (2) V has the form $V_1 \cup V_2$, where V_1 and V_2 are regular submanifolds of a (2n-1)-dimensional complex contact manifold (X^c, ω) and cross transversally.
- (3) The canonical 1-form ω restricted to $V_1 \cap V_2$ never vanishes.

Then a suitable "quantized" contact transformation will bring micro-locally the generator P of \mathscr{G} to $z_1D_1+Q(z', D_{z'})$. Here z' and $D_{z'}$ denote (z_2, \dots, z_n) and $\left(\frac{\partial}{\partial z_2}, \dots, \frac{\partial}{\partial z_n}\right)$ respectively and $Q(z', D_{z'})$ is a pseudo-differential operator of order at most zero. (Theorem 3 of Kashiwara, Kawai and Oshima [2]). Moreover $\kappa = \sigma_0(Q)/\{\zeta_1, z_1\}|_{V_1 \cap V_2}$ is invariant under contact transformation. Then using this invariant κ we have the following theorem.

THEOREM 1. Assume conditions (1) \sim (3). Further assume that

(4)
$$(d\kappa \wedge \omega)|_{V_1 \cap V_2} \neq 0$$

^(*) Supported by Miller Institute for Basic Research in Science.

Then a suitable "quantized" contact transformation brings micro-locally the generator P(z, D) of \mathcal{G} to $z_1D_1+z_2$.

Thus we have seen the micro-local structure of \mathcal{M} satisfying conditions $(1)\sim(4)$ in a complex domain. So the most important step in the investigation of the structure of the microfunction solutions of \mathcal{M} is to know the micro-local structure of \mathcal{M} in a real domain. Hence in this note we concentrate ourselves to the study of real contact geometry related to the interaction of V_1 and V_2 . As for the investigation of the structure of cohomology groups having microfunction solution sheaves of \mathcal{M} as coefficients, we refer the reader to Kashiwara, Kawai and Oshima [2], [3].

The first case that we are concerned with is the following.

THEOREM 2. Let $V_j = \{f_j=0\}$ (j=1, 2) be regular hypersurfaces of a complex contact manifold (X^c, ω) , complexification of a purely imaginary contact manifold (X, ω) . Assume following conditions (5) and (6).

(5)
$$\{f_j, f_k^c\} \neq 0 \ (j, k=1, 2) \text{ and } \{f_j, f_k\} \neq 0 \ (j \neq k).$$

For the definiteness' sake we assume that $\{f_1, f_1^c\} > 0$.

$$V_1 \cap V_1^c = V_2 \cap V_2^c.$$

Then locally we may take f_1 and f_2 so that they satisfy

(7)
$$\{f_1, f_1^c\} = 1$$

(8)
$$f_2 = f_1 - hf_2^c$$
, where h is real valued on X and satisfies $\{f_1, h\} = \{f_1^c, h\} = 0$.

Here $f^{c}(x, i\eta)$ denotes $\overline{f(\overline{x}, i\overline{\eta})}$ using the canonical coordinate system $(x, i\eta)$ on X.

REMARK. Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4] says that we can choose a canonical coordinate system $(x, i\eta)$ on X so that f_1 has the form

$$\frac{\eta_1}{\sqrt{i\eta_n}} + x_1\sqrt{i\eta_n}$$

near $(x, i\eta) = (0; i(0, \dots, 0, 1))$. Then condition (8) asserts that f_2 has the form

$$\frac{\eta_1}{\sqrt{i\eta_n}} + hx_1\sqrt{i\eta_n}$$

with $h=h\left(x_n-\frac{x_1\eta_1}{2\eta_n}, x_2, \cdots, x_n, \eta_2, \cdots, \eta_n\right)$.

PROOF OF THEOREM 2. All the problems in the below are considered in a neighborhood U of x_0 in $V_1 \cap V_1^c = V_2 \cap V_2^c \subset X^c$. Firstly we note that we can find a holomorphic function k so that $f_2 = f_1 - kf_1^c$ with $k \neq 0$ because of conditions (5) and (6). If we define θ_1 so that it satisfies

$$\exp\left(2i\theta_1\right) = \frac{k}{\sqrt{kk^c}}$$

and replace f_1 by $\exp(i\theta_1)f_1$, then the corresponding k, denoted by k_1 is real valued on $V_2 \cap V_2^c$. Moreover, by solving the differential equation $\{f_2, k_2\} = 0$ with initial data k_1 on $V_2 \cap V_2^c$ and replacing k_1 by k_2 , we may assume from the beginning that f_2 has the form $f_1 - kf_1^c$ where $k|_{V_1 \cap V_2}$ is real and k is constant along any bicharacteristics of V_2 . In fact, it is sufficient to replace f_1 by $e^{i\theta_2}f_1$ with θ_2 satisfying $\exp(2i\theta_2) = \frac{k_1}{k_2}$.

On the other hand the condition that $\{f_1, f_1^c\} \neq 0$ allows us to find φ which is real valued on X and satisfies $\{\varphi f_1, \varphi f_1^c\} = 1$. (Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4]). Therefore we may assume from the beginning that $\{f_1, f_1^c\} = 1$.

Now consider the function $k-k^c$. Since $\{f_2, f_2^c\} \neq 0$, we can find holomorphic functions a and b so that $k-k^c = af_2 + bf_2^c$. Then clearly we have $k-k^c = \frac{a-b^c}{2}f_2 + \frac{b-a^c}{2}f_2^c$, since $k-k^c = -b^cf_2 - a^cf_2^c$.

Let us define h_0 by $k - \frac{a-b^c}{2}f_2$. The function h_0 thus defined clearly coincides with k on $V_2 = \{f_2=0\}$ and is real valued on X. It is also clear that $\{f_2, h_0\}|_{V_2} = 0$ because $\{f_2, k\}|_{V_2} = 0$.

Now consider the following first order differential equation (9).

(9)
$$\begin{cases} \{f_1^c, h\} = 0 \\ h|_{V_2} = h_0|_{V_2} \end{cases}$$

Since $\{f_1^c, f_2\} \neq 0$, this constitutes a non-characteristic Cauchy problem for *h*. Therefore equation (9) admits a unique solution *h*. By the initial condition given in (9) asserts that $V_2 = \{f_1 - hf_1^c = 0\}$ holds.

Now we want to show that the function h thus defined satisfies condition (8).

In order to see this, we first note the following

(10)
$$\{f_1^c, \{f_1, h\}\} = 0.$$

In fact, the Jacobi identity implies that

(11)
$$\{f_{i}^{c}, \{f_{1}, h\}\} = \{f_{1}, \{h, f_{1}^{c}\}\} + \{h, \{f_{1}^{c}, f_{1}\}\}$$

On the other hand equation (9) implies $\{h, f_1^c\}=0$ and the choice of f_1 explained before asserts $\{f_1^c, f_1\}=-1$. Therefore (11) implies (10).

Moreover we can easily verify that $\{f_1, h\}|_{v_2}=0$ holds. In fact, $\{f_1, h\}|_{v_2}=\{f_1-hf_1^c, h\}|_{v_2}+\{hf_1^c, h\}|_{v_2}=0$ holds, because $\{f_2, h\}|_{v_2}=\{f_2, h_0\}|_{v_2}=0$ and because $V_2=\{f_1-hf_1^c=0\}$.

82

Then, using again the fact that $\{f_1^c, f_2\} \neq 0$, we can conclude by the uniqueness of the solution of the non-characteristic Cauchy problem that $\{f_1, h\}=0$.

Lastly we show that $h=h^c$. As we have proved in the above, $\{f_1, h\} = \{f_1^c, h\} = 0$. Therefore $\{f_1, h-h^c\} = \{f_1^c, h-h^c\} = 0$ holds. On the other hand $(h-h^c)|_{V_2 \cap V_2^c} = (h_0 - h_0^c)|_{V_2 \cap V_2^c} = 0$. Moreover, as we see later in Lemma 3,

(12)
$$\det \begin{pmatrix} \{f_1, f_2\} & \{f_1, f_2^c\} \\ \{f_1^c, f_2\} & \{f_1^c, f_2^c\} \end{pmatrix} \neq 0$$

holds.

Therefore the submanifold $V_2 \cap V_2^c$ is non-characteristic with respect to the system of equations $\{f_1, u\} = \{f_1^c, u\} = 0$. This fact implies that $h = h^c$ holds identically because of the uniqueness of solutions for non-characteristic Cauchy problem. This ends the proof of Theorem 2 except for the proof of the relation (12).

LEMMA 3. Assumptions (5) and (6) imply (12).

PROOF. Firstly note that assumptions (5) and (6) allow us to assume that f_1 takes the form $\eta_1 - ix_1\eta_n$ and that f_2 takes the form $\eta_1 - ix_1\varphi\eta_n$ with $\varphi = \varphi^{\mathfrak{c}}$ near $(x, i\eta) = (0, i(0, \dots, 0, 1)).$

In order to see this, we use the inhomogeneous coordinate system (x, p), i.e., $p_j = -\eta_j/\eta_n$ $(j=1, \dots, n-1)$. Assumptions (5) and (6) then imply that f_2 has the form

$$(p_1+\psi_1x_1)\pm i(\psi_2p_1+\theta x_1)$$

where $\theta(0) \neq 0$ and ψ_1 , ψ_2 and θ are real valued on X. Multiplying f_2 by $(1\pm i\psi_1/\theta)$, we may assume from the beginning that $\psi_1=0$.

Now we try to find the required φ by multiplying f_1 and f_2 by $(1\pm i\alpha_1)$ and $(1\pm i\alpha_2)$. It is readily verified that α_2/α_1 can be taken to be φ if $\alpha_1(1-\psi_2\alpha_2)$ $=\alpha_2\theta$ and $\alpha_1\theta=\psi_2+\alpha_2$ hold for α_1 and α_2 which are real valued on X. Direct calculations will show that it suffices to take

$$\alpha_1 = \frac{1 - \psi_2^2 - \theta^2 + \sqrt{(\psi_2^2 + \theta^2 - 1)^2 + 4\psi_2^2}}{2\psi_2}.$$

 $\alpha_2 = \frac{1}{\theta} (\psi_2 + \alpha_1)$

Note that
$$\theta(0)^2 - 1 \neq 0$$
 if $\psi_2(0) = 0$ by assumption (5). So α_1 , hence α_2 , is always well-defined and holomorphic. Clearly α_1 and α_2 are real valued on X. Thus we have verified that f_2 may be chosen to be $\eta_1 - ix_1\varphi\eta_n$ with $\varphi = \varphi^c$.

Now the direct calculations show that

M. KASHIWARA, T. KAWAI and T. OSHIMA

$$\det \begin{pmatrix} \{f_1, f_2\} & \{f_1, f_2^c\} \\ \{f_1^c, f_2\} & \{f_1^c, f_2^c\} \end{pmatrix}$$

= $|\{f_1, f_2\}|^2 - |\{f_1^c, f_2\}|$
= $|(1 - \varphi)\eta_n|^2 - |(1 + \varphi)\eta_n|^2 + O(|x_1|).$

Since φ is real valued on X, this shows that (12) holds near $(x, i\eta) = (0, i(0, \dots, 0, 1)).$

This ends the proof of Lemma 3 and, at the same time, completes the proof of Theorem 2.

The case treated by Theorem 2 is, so to speak, the case of crossing of two characteristic varieties of Lewy-Mizohata type. The second case we treat in the following Theorem 4 is the case where a characteristic variety of Lewy-Mizohata type and that of de Rham type cross.

Precise statement is the following.

THEOREM 4. Let V_1 and V_2 be regular hypersurfaces in X^c . Assume that V_1 and V_2 intersect transversally and that $\omega|_{V_1 \cap V_2} \neq 0$. Assume further that $V_1 = \{f_1 = 0\}$ is real and that $V_2 = \{f_2 = 0\}$ is of Lewy-Mizohata type, that is, $f_1 = f_1^c$ and $\{f_2, f_2^c\} \neq 0$. Then we can find a suitable canonical coordinate system on X so that $V_1 = \{x_1 = 0\}$ and $V_2 = \{\eta_1 \pm i x_1 \eta_2 = 0\}$ near $(x; i\eta) = (0; i(0, 1, 0, \dots, 0))$. Here the sign in the defining function of V_2 is chosen according to that of $\{f_2, f_2^c\}$.

PROOF. Under the assumptions of the theorem the real codimension of $V_2 \cap X$ is 1 in $V_1 \cap X$. This implies the existence of h_1 and h_2 which satisfy the following:

(13)
$$h_1 = h_1^c \text{ and } h_2 = h_2^c$$

(14)
$$V_1 = \{h_1 = 0\}$$
 and $V_2 = \{h_1 + ih_2 = 0\}$.

Since V_2 is of Lewy-Mizohata type, we can find $\varphi \neq 0$ so that $\{\varphi h_1, \varphi h_2\} = \pm 1$ with $\varphi = \varphi^c$. Here the sign is that of $\{h_1, h_2\}$. (Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4]). Then $V_1 = \{\varphi h_1 = 0\}$ and $V_2 = \{\varphi h_1 + i\varphi h_2 = 0\}$ with $\{\varphi h_1, \varphi h_2\} = \pm 1$. This immediately implies that a suitable choice of canonical coordinate system of X makes $V_1 = \{x_1 = 0\}$ and $V_2 = \{\eta_1 \pm ix_1\eta_2 = 0\}$ near $(x, i\eta) = (0; i(0, 1, 0, \dots, 0))$.

Before ending this note we mention the solvability of the pseudo-differential equation $P(x, D_x)u = f$ whose characteristic variety V has the form $V_1 \cup V_2$ where V_j satisfies the conditions posed in Theorem 4. We assume that the symbol ideal J of $\mathcal{J} = \mathcal{P}P$ is reduced.

In this case the most important point that makes the arguments simpler is the following observation:

The generator $P(x, D_x)$ of \mathcal{J} may be chosen to be of the form

(15)
$$x_1(D_1+\alpha x_1D_2)+\lambda(x_2-\frac{\alpha x_1^2}{2}, x_3, \cdots, x_n, D_2, \cdots, D_n),$$

where $\alpha = \pm i$ and λ is of order at most 0.

This fact is an obvious consequence of Theorem 1, because the lower order term λ of P may be chosen to satisfy $[\lambda, x_1] = [\lambda, D_1 + \alpha x_1 D_2] = 0$.

The expression of P in the form (15) will allow one to construct the fundamental solution for P if the principal symbol $\sigma_0(\lambda)$ of λ restricted to $x_1=0$ does not attain integral values, that is, we can assert that the pseudo-differential equation $P(x, D_x)u=f$ is always solvable micro-locally as long as $\sigma_0(\lambda)(x_2, \dots, x_n,$ $\eta_2, \dots, \eta_n)$ does not attain integral values. In fact, it is possible to give the meaning to x_{1+}^{λ} as a boundary value of a pseudo-differential operator if λ is of order at most zero and is independent of D_1 (cf. Kashiwara and Kawai [1]). This topic will be discussed elsewhere.

References

- M. Kashiwara and T. Kawai, On micro-hyperbolic pseudo-differential equations, J. Math. Soc. Japan, 27 (1975), 359-404.
- [2] M. Kashiwara, T. Kawai and T. Oshima, Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudo-differential equations with multiple characteristics, I, Proc. Japan Acad., 50 (1974), 420-425.
- [3] M. Kashiwara, T. Kawai and T. Oshima, Ibid. II, Proc. Japan Acad., 50 (1974), 549-550.
- [4] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations. Lecture Note in Mathematics No. 287, Springer, Berlin-Heidelberg-New York, 1973, 265-529.

Masaki KASHIWARA Mathematical Institute Nagoya University Furo-cho, Chikusa-ku Nagoya, Japan Takahiro KAWAI Research Institute for Mathematical Sciences Kyoto University Kitashirakawa, Sakyo-ku Kyoto, Japan

Toshio OSHIMA Department of Mathematics Faculty of Sciences University of Tokyo Hongo, Bunkyo-ku Tokyo, Japan