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We investigate the micro-local structure of a single pseudo-differential
equation in a real domain under the assumption that their characteristic variety
has singularities of normal crossing type. (Precise conditions are given in the
below.)

We note that the micro-local structure of a single pseudo-differential equa-
tion of this type has been completely investigated in a complex domain by
Kashiwara, Kawai and Oshima [2]. (See Theorem 1 in the below.)

The most interesting phenomenon peculiar to the problem in a real domain
is that new invariant (the function $h$ appearing in Theorem 2) appears.

Firstly we recall the theorem which clarifies the structure in a complex
domain of a single pseudo-differential equation $\mathcal{M}=\mathcal{P}/\mathcal{J}$ whose characteristic
variety $V$ has the singularity of normal crossing type. Precise conditions on
$\mathcal{M}$ and $V$ are the following:

(1) The symbol ideal $J$ of $\mathcal{J}$ is reduced.
(2) $V$ has the form $V_{1}\cup V_{2}$ , where $V_{1}$ and $V_{2}$ are regular submanifolds of a

$(2n-1)$ -dimensional complex contact manifold $(X^{c}, \omega)$ and cross trans-
versally.

(3) The canonical l-form $\omega$ restricted to $V_{1}\cap V_{2}$ never vanishes.

Then a suitable “quantized” contact transformation will bring micro-locally
the generator $P$ of $\mathcal{J}$ to $z_{1}D_{1}+Q(z^{\prime}, D_{z^{\prime}})$ . Here $z^{\prime}$ and $D_{z^{\prime}}$ denote $(z_{2}, \cdots , z_{n})$

and ( $\frac{\partial}{\partial z_{2}},$ $\cdots$ , $\frac{\partial}{\partial z_{n}}$) respectively and $Q(z^{\prime}, D_{z^{\prime}})$ is a pseudo-differential opera-

tor of order at most zero. (Theorem 3 of Kashiwara, Kawai and Oshima [2]).

Moreover $\kappa=\sigma_{0}(Q)/\{\zeta_{1}, z_{1}\}|_{V_{1}\cap V_{2}}$ is invariant under contact transformation.
Then using this invariant $\kappa$ we have the following theorem.

THEOREM 1. Assume conditions (1)\sim (3). Further assume that

(4) $(d\kappa\wedge\omega)|_{V_{1}\cap V_{2}}\neq 0$ .
(*) Supported by Miller Institute for Basic Research in Science.
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Then a suitable ”quantized” contact transformation brings micro-locally the gen-
erator $P(z, D)$ of $\mathcal{J}$ to $z_{1}D_{1}+z_{2}$ .

Thus we have seen the micro-local structure of $\mathcal{M}$ satisfying conditions
(1) $\sim(4)$ in a complex domain. So the most important step in the investigation
of the structure of the microfunction solutions of $\mathcal{M}$ is to know the micro-
local structure of $\mathcal{M}$ in a real domain. Hence in this note we concentrate
ourselves to the study of real contact geometry related to the interaction of
$V_{1}$ and $V_{2}$ . As for the investigation of the structure of cohomology groups
having microfunction solution sheaves of $\mathcal{M}$ as coefficients, we refer the reader
to Kashiwara, Kawai and Oshima [2], [3].

The first case that we are concerned with is the following.
THEOREM 2. Let $V_{j}=\{f_{j}=0\}(j=1,2)$ be regular hypersurfaces of a com-

plex contact manifold $(X^{c}, \omega),$ comPlexification of a purely imaginary contact
manifold (X, $\omega$). Assume following conditions (5) and (6).

(5) $\{f_{j}, f_{k}^{c}\}\neq 0(j, k=1,2)$ and $\{f_{j}, f_{k}\}\neq 0(j\neq k)$ .

For the definiteness’ sake we assume that $\{f_{1}, f_{1}^{c}\}>0$ .

(6) $V_{1}\cap V_{1}^{c}=V_{2}\cap V_{2}^{c}$ .

Then locally we may take $f_{1}$ and $f_{2}$ so that they satisfy

(7) $\{f_{1}, f_{1}^{c}\}=1$ .

(8) $f_{2}=f_{1}-hf_{2}^{c}$ , where $h$ is real valued on $X$ and
satisfies $\{f_{1}, h\}=\{f_{1}^{c}, h\}=0$ .

Here $f^{c}(x, i\eta)$ denotes $\overline{f(\overline{x},i\overline{\eta}}$) using the canonical coordinate system $(x, i\eta)$ on $X$.
REMARK. Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [4]

says that we can choose a canonical coordinate system $(x, i\eta)$ on $X$ so that $f_{1}$

has the form

$\frac{\eta_{1}}{\sqrt{i\eta_{n}}}+x_{1}\sqrt{i\eta_{n}}$

near $(x, i\eta)=(O;i(0, \cdots , 0,1))$ . Then condition (8) asserts that $f_{2}$ has the form

$\frac{\eta_{1}}{\sqrt{i\eta_{n}}}+hx_{1}\sqrt{i\eta_{n}}$

with $h=h$( $x_{n^{-\frac{x_{1}\underline{\eta}}{2\eta}}}^{1}n$ , $x_{2},$ $\cdots$ , $x_{n},$ $\eta_{2},$
$\cdots$ , $\eta_{n}$).

PROOF OF THEOREM 2. All the problems in the below are considered in a
neighborhood $U$ of $x_{0}$ in $V_{1}\cap V_{1}^{c}=V_{2}\cap V_{2}^{c}\subset X^{c}$ . Firstly we note that we can
find a holomorphic function $k$ so that $f_{2}=f_{1}-kf_{1}^{c}$ with $k\neq 0$ because of condi-
tions (5) and (6). If we define $\theta_{1}$ so that it satisfies
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exp $(2i\theta_{1})=\frac{k}{\sqrt{kk^{c}}}$

and replace $f_{1}$ by exp $(i\theta_{1})f_{1}$ , then the corresponding $k$ , denoted by $k_{1}$ is real
valued on $V_{2}\cap V_{2}^{c}$ . Moreover, by solving the differential equation $\{f_{2}, k_{2}\}=0$

with initial data $k_{1}$ on $V_{2}\cap V_{2}^{c}$ and replacing $k_{1}$ by $k_{2}$ , we may assume from
the beginning that $f_{2}$ has the form $f_{1}-kf_{1}^{c}$ where $k|_{V_{1}\cap V_{2}}$ is real and $k$ is con-
stant along any bicharacteristics of $V_{2}$ . In fact, it is sufficient to replace $f_{1}$

by $e^{i\theta_{2}}f_{1}$ with $\theta_{2}$ satisfying exp $(2i\theta_{2})=\frac{k_{1}}{k_{2}}$ .
On the other hand the condition that $\{f_{1}, f_{1}^{c}\}\neq 0$ allows us to find $\varphi$ which

is real valued on $X$ and satisfies $\{\varphi f_{1}, \varphi f_{1}^{c}\}=1$ . (Lemma 2.3.3 in Chapter III of
Sato, Kawai and Kashiwara [4]). Therefore we may assume from the beginning
that $\{f_{1}, f_{1}^{c}\}=1$ .

Now consider the function $k-k^{c}$ . Since $\{f_{2}, f_{2}^{c}\}\neq 0$ , we can find holomor-
phic functions $a$ and $b$ so that $k-k^{c}=af_{2}+bf_{2}^{c}$ . Then clearly we have $k-k^{c}$

$=\frac{a-b^{c}}{2}f_{2}+\frac{b-a^{c}}{2}f_{2}^{c}$ , since $k-k^{c}=-b^{c}f_{2}-a^{c}f_{2}^{c}$ .
Let us define $h_{0}$ by $k-\frac{a-b^{c}}{2}f_{2}$ . The function $h_{0}$ thus defined clearly

coincides with $k$ on $V_{2}=\{f_{2}=0\}$ and is real valued on $X$. It is also clear that
$\{f_{2}, h_{0}\}|_{V_{2}}=0$ because $\{f_{2}, k\}|_{V_{2}}=0$ .

Now consider the following first order differential equation (9).

(9) $\{$

$\{f_{1}^{c}, h\}=0$

$h|_{V_{2}}=h_{0}|_{V_{2}}$ .
Since $\{f_{1}^{c}, f_{2}\}\neq 0$ , this constitutes a non-characteristic Cauchy problem for

$h$ . Therefore equation (9) admits a unique solution $h$ . By the initial condition
given in (9) asserts that $V_{2}=\{f_{1}-hff=0\}$ holds.

Now we want to show that the function $h$ thus defined satisfies condition
\langle 8).

In order to see this, we Prst note the following

\langle 10) $\{f_{1}^{c}, \{f_{1}, h\}\}=0$ .
In fact, the Jacobi identity implies that

(11) $\{f_{4}^{c}, \{f_{1}, h\}\}=\{f_{1}, \{h, f_{1}^{c}\}\}+\{h, \{f_{1}^{c}, f_{1}\}\}$ .
On the other hand equation (9) implies $\{h, f_{1}^{c}\}=0$ and the choice of $f_{1}$ explained
before asserts $\{f_{1}^{c}, f_{1}\}=-1$ . Therefore (11) implies (10).

Moreover we can easily verify that $\{f_{1}, h\}|_{V_{2}}=0$ holds. In fact, $\{f_{1}, h\}|_{V_{2}}$

$=\{f_{1}-hf_{1}^{c}, h\}|_{V_{2}}+\{hf_{1}^{c}, h\}|_{V_{2}}=0$ holds, because $\{f_{2}, h\}|_{V_{2}}=\{f_{2}, h_{0}\}|_{V_{2}}=0$ and
because $V_{2}=\{f_{1}-hf_{1}^{c}=0\}$ .
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Then, using again the fact that $\{ff, f_{2}\}\neq 0$ , we can conclude by the uni-
queness of the solution of the non-characteristic Cauchy problem that $\{f_{1}, h\}=0$ .

Lastly we show that $h=h^{c}$ . As we have proved in the above, $\{f_{1}, h\}=$

$\{ff, h\}=0$ . Therefore $\{f_{1}, h-h^{c}\}=\{f_{1}^{c}, h-h^{c}\}=0$ holds. On the other hand
$(h-h^{c})|_{V_{2}\cap V_{2}^{c=}}(h_{0}-h_{0}^{c})|_{V_{2}\cap V_{2}^{c}}=0$ . Moreover, as we see later in Lemma 3,

(12) det $\left(\begin{array}{llll}\{f_{1}, & f_{2}\} & \{f_{1}, & f_{2}^{c}\}\\\{f_{1}^{c}, & f_{2}\} & \{f_{1}^{c}, & f_{2}^{c}\}\end{array}\right)\neq 0$

holds.
Therefore the submanifold $V_{2}\cap V_{2}^{c}$ is non-characteristic with respect to

the system of equations $\{f_{1}, u\}=\{f_{1}^{c}, u\}=0$ . This fact implies that $h=h^{c}$ holds
identically because of the uniqueness of solutions for non-characteristic Cauchy
problem. This ends the proof of Theorem 2 except for the proof of the rela-
tion (12).

LEMMA 3. Assumptions(5) and (6) imPly (12).

PROOF. Firstly note that assumptions (5) and (6) allow us to assume that
$f_{1}$ takes the form $\eta_{1}-ix_{1}\eta_{n}$ and that $f_{2}$ takes the form $\eta_{1}-ix_{1}\varphi\eta_{n}$ with $\varphi=\varphi^{c}$

near $(x, i\eta)=(O, i(0, \cdots , 0,1))$ .
In order to see this, we use the inhomogeneous coordinate system $(x, p)$ ,

$i$ . $e.,$ $p_{j}=-\eta_{j}/\eta_{n}$ $(i=1, \cdots , n-1)$ . Assumptions (5) and (6) then imply that $f_{2}$

has the form
$(P_{1}+\psi_{1}x_{1})\pm i(\psi_{2}P_{1}+\theta x_{1})$

where $\theta(0)\neq 0$ and $\psi_{1},$ $\psi_{2}$ and $\theta$ are real valued on $X$. Multiplying $f_{2}$ by
$(1\pm i\psi_{1}/\theta)$ , we may assume from the beginning that $\psi_{1}=0$ .

Now we try to find the required $\varphi$ by multiplying $f_{1}$ and $f_{2}$ by $(1\pm i\alpha_{1})$

and $(1\pm i\alpha_{2})$ . It is readily verified that $\alpha_{2}/\alpha_{1}$ can be taken to be $\varphi$ if $\alpha_{1}(1-\psi_{2}\alpha_{2})$

$=\alpha_{2}\theta$ and $\alpha_{1}\theta=\psi_{2}+\alpha_{2}$ hold for $\alpha_{1}$ and $\alpha_{2}$ which are real valued on $X$. Direct
calculations will show that it suffices to take

$\alpha_{2}=\frac{1}{\theta}(\psi_{2}+\alpha_{1})$

and

$\alpha_{1}=\frac{1-\psi_{2}^{2}-\theta^{2}+\sqrt{(\psi_{2}^{2}+\theta^{2}-1)^{2}+4\psi_{2}^{2}}}{2\psi_{2}}$ .

Note that $\theta(0)^{2}-1\neq 0$ if $\psi_{2}(0)=0$ by assumption (5). So $\alpha_{1}$ , hence $\alpha_{2}$ , is always
well-defined and holomorphic. Clearly $\alpha_{1}$ and $\alpha_{2}$ are real valued on $X$. Thus
we have verified that $f_{2}$ may be chosen to be $\eta_{1}-ix_{1}\varphi\eta_{n}$ with $\varphi=\varphi^{c}$ .

Now the direct calculations show that
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det $\left(\begin{array}{lll}\{f_{1}, & f_{2}\} & f_{2}^{c}\{f_{1},\}\\\{f_{1}^{c}, & f_{2}\} & \{f_{1}^{c},f_{2}^{c}\}\end{array}\right)$

$=|\{f_{1}, f_{2}\}|^{2}-|\{f_{1}^{c}, f_{2}\}|$

$=|(1-\varphi)\eta_{n}|^{2}-|(1+\varphi)\eta_{n}|^{2}+O(|x_{1}|)$ .

Since $\varphi$ is real valued on $X$, this shows that (12) holds near $(x, i\eta)=$

$(0, i(0, 0,1))$ .
This ends the proof of Lemma 3 and, at the same time, completes the

proof of Theorem 2.
The case treated by Theorem 2 is, so to speak, the case of crossing of

two characteristic varieties of Lewy-Mizohata type. The second case we treat
in the following Theorem 4 is the case where a characteristic variety of Lewy-
Mizohata type and that of de Rham type cross.

Precise statement is the following.
THEOREM 4. Let $V_{1}$ and $V_{2}$ be regular hypersurfaces in $X^{c}$ . Assume

that $V_{1}$ and $V_{2}$ intersect transversally and that $\omega|_{V_{1}\cap V_{2}}\neq 0$ . Assume further
that $V_{1}=\{f_{1}=0\}$ is real and that $V_{2}=\{f_{2}=0\}$ is of Lewy-Mizohata type, that is,
$f_{1}=f_{1}^{c}$ and $\{f_{2}, f_{2}^{c}\}\neq 0$ . Then we can find a suitable canonical coordinate system

on $X$ so that $V_{1}=\{x_{1}=0\}$ and $V_{2}=\{\eta_{1}\pm ix_{1}\eta_{2}=0\}$ near $(x;i\eta)=(O;i(O, 1,0, 0))$ .
Here the sign in the defining function of $V_{2}$ is chosen according to that of
$\{f_{2}, f_{2}^{c}\}$ .

PROOF. Under the assumptions of the theorem the real codimension of
$V_{2}\cap X$ is 1 in $V_{1}\cap X$. This implies the existence of $h_{1}$ and $h_{2}$ which satisfy
the following:

(13) $h_{1}=h_{1}^{c}$ and $h_{2}=h_{2}^{c}$

(14) $V_{1}=\{h_{1}=0\}$ and $V_{2}=\{h_{1}+ih_{2}=0\}$ .

Since $V_{2}$ is of Lewy-Mizohata type, we can find $\varphi\neq 0$ so that $\{\varphi h_{1}, \varphi h_{2}\}$

$=\pm 1$ with $\varphi=\varphi^{c}$ . Here the sign is that of $\{h_{1}, h_{2}\}$ . (Lemma 2.3.3 in Chapter
III of Sato, Kawai and Kashiwara [4]). Then $V_{1}=\{\varphi h_{1}=0\}$ and $V_{2}=\{\varphi h_{1}+i\varphi h_{2}$

$=0\}$ with $\{\varphi h_{1}, \varphi h_{2}\}=\pm 1$ . This immediately implies that a suitable choice of
canonical coordinate system of $X$ makes $V_{1}=\{x_{1}=0\}$ and $V_{2}=\{\eta_{1}\pm ix_{1}\eta_{2}=0\}$

near $(x, i\eta)=(O;i(O, 1,0, \cdots , 0))$ .
Before ending this note we mention the solvability of the pseudo-differential

equation $P(x, D_{x})u=f$ whose characteristic variety $V$ has the form $V_{1}\cup V_{2}$

where $V_{j}$ satisfies the conditions posed in Theorem 4. We assume that the
symbol ideal $J$ of $\mathcal{J}=\mathcal{P}P$ is reduced.

In this case the most important point that makes the arguments simpler is
the following observation:
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The generator $P(x, D_{x})$ of $\mathcal{J}$ may be chosen to be of the form

(15) $x_{1}(D_{1}+\alpha x_{1}D_{2})+\lambda(x_{2}-\frac{\alpha x_{1}^{2}}{2},$
$X_{3},$ $x_{n},$ $D_{2},$ $D_{n})$ ,

where $\alpha=\pm i$ and $\lambda$ is of order at most $0$ .
This fact is an obvious consequence of Theorem 1, because the lower order

term $\lambda$ of $P$ may be chosen to satisfy $[\lambda, x_{1}]=[\lambda, D_{1}+\alpha x_{1}D_{2}]=0$ .
The expression of $P$ in the form (15) will allow one to construct the funda-

mental solution for $P$ if the principal symbol $\sigma_{0}(\lambda)$ of $\lambda$ restricted to $x_{1}=0$ does
not attain integral values, that is, we can assert that the pseudo-differential
equation $P(x, D_{x})u=f$ is always solvable micro-locally as long as $\sigma_{0}(\lambda)(x_{2},$ $\cdots$ , $x_{n}$ ,
$\eta_{2},$

$\cdots$ , $\eta_{n}$) does not attain integral values. In fact, it is possible to give the
meaning to $x_{1+}^{\lambda}$ as a boundary value of a pseudo-differential operator if $\lambda$ is
of order at most zero and is independent of $D_{1}$ (cf. Kashiwara and Kawai [1]).

This topic will be discussed elsewhere.
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