On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution

Dedicated to Professor Tikao Tatuzawa on his 60th birthday

By Tetsuya AsAi
(Received Sept. 3, 1974)

For an automorphic form $f(z)$ on the upper-half-plane with respect to a Fuchsian group Γ, we can consider the Fourier expansion of $f(z)$ at each parabolic cusp of Γ. In a certain case, as we shall see in this paper, there is a simple relation among the Fourier coefficients at the various cusps. We treat the case where $\Gamma=\Gamma_{0}(N)$ and $f(z)$ is a new form of Neben type in the sense of Atkin, Lehner and Miyake ([2], [7]). We assume that the level N is square-free. Then, the Fourier coefficients are canonically defined, since a cusp is transformed to any other cusp by an element of the normalizer of Γ. In this situation, we can state the relation in an explicit form (Theorems 1 and 2), namely if the coefficients at one cusp are given then we can immediately know all n-th coefficients at other cusps, whether n and the level N are coprime or not.

In the latter part (§ 2), after some preparations on Eisenstein series we shall give some applications of the above result to Rankin's convolution of Dirichlet series, namely we generalize a result of Ogg [10] to a case of Neben type (Theorem 3), and we also try to remove the condition of prime discriminant in Naganuma's work [8] (Theorem 4). On Rankin's convolution, Jacquet ([5]) seems to have treated in a more general point of view, and his theory may contain our results in essential.

Notation. As usual, by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{C}$, we denote the ring of rational integers, the field of rational numbers and the field of complex numbers, respectively. $S L_{2}(A)$ is the special linear group of degree two over a ring A. We denote a linear fractional transformation by $\sigma z=(a z+b)(c z+d)^{-1}$ for a real matrix $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of positive determinant, and write $\left.f\right|_{k} \sigma=(\operatorname{det} \sigma)^{k / 2}(c z+d)^{-k} f(\sigma z)$ for a function $f(z)$ on the upper-half-plane, while the number k may be often omitted in $\left.f\right|_{k} \sigma$. For general notions of automorphic forms, we may refer to Shimura's book [12].
1.1. Let N be a square-free positive integer, and consider the group

$$
\Gamma=\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\boldsymbol{Z}) ; c \equiv 0(\bmod N)\right\}
$$

The set of all cusps of Γ is $\boldsymbol{Q}^{*}=\boldsymbol{Q} \cup\{\infty\}$. Every element of \boldsymbol{Q}^{*} is uniquely expressed as a reduced fraction with positive numerator, e.g. $\infty=1 / 0$, with only one exception $0=0 / 1$, and these expressions will be kept throughout this paper. Two cusps are equivalent (relative to Γ) if and only if the denominators have the same greatest common divisor with N, so each equivalence class of cusps is in one-to-one correspondence with each ordered decomposition $N=M M_{1}$ of two positive divisors. We may say a cusp $\kappa=\kappa_{2} / \kappa_{1}$ belongs to M_{1}-class if g.c.d. of κ_{1} and N is M_{1}, e.g. ∞ belongs to N-class. For each decomposition $N=M M_{1}$ and any cusp $\kappa=\kappa_{2} / \kappa_{1}$ of M_{1}-class, we can take a typical matrix ω_{κ} which transforms κ to ∞ :

$$
\omega_{\kappa}=\left(\begin{array}{ll}
1 & M
\end{array}\right) \alpha_{\kappa} \quad \text { with } \alpha_{\kappa}=\left(\begin{array}{cc}
M \lambda_{1} & \lambda_{2} \tag{1}\\
-\kappa_{1} & \kappa_{2}
\end{array}\right) \in S L_{2}(\boldsymbol{Z}) \text { and } \quad \lambda_{i} \in \boldsymbol{Z} .
$$

In general, for a divisor M of N, we define the matrix W_{M}, which exists uniquely up to right or left Γ-multiplication, by

$$
W_{M}=\left(\begin{array}{cc}
M \xi & \eta \tag{2}\\
N \zeta & M \rho
\end{array}\right) \text { with the determinant } M, \text { and } \xi, \eta, \zeta, \rho \in Z .
$$

This W_{M} normalizes the group Γ and $M^{-1} W_{M}^{2} \in \Gamma$, furthermore $W_{M}=W_{M}, W_{M}$, if $M=M^{\prime} M^{\prime \prime}$ divides N. Since ω_{κ} is one of such type (2), we see that every cusp can be transformed to any other cusp by an element of the normalizer of Γ.

Let us consider a congruence equation

$$
\begin{equation*}
u+v \equiv 1(\bmod N) \quad \text { and } \quad u v \equiv 0(\bmod N) . \tag{3}
\end{equation*}
$$

Each solution $(\bmod N)$ is also in one-to-one correspondence with each ordered decomposition $N=M M_{1}$, in such way as $u \equiv 0(\bmod M)$ and $v \equiv 0\left(\bmod M_{1}\right)$. Let (u, v) be the solution of (3) corresponding to $N=M M_{1}$. The map $m \mapsto u m+v m^{\prime}$, where $m m^{\prime} \equiv 1(\bmod N)$, is an involutive automorphism of the $\operatorname{group}(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$ of reduced residue classes $\bmod N$, which we denote by γ_{M}. Similarly we denote by $\beta_{\boldsymbol{M}}$ the canonical injection $m \mapsto u+v m$ of $(\boldsymbol{Z} / M \boldsymbol{Z})^{\times}$into $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$. The meaning of these maps is clear if we recall the isomorphism $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times} \cong$ $(\boldsymbol{Z} / M \boldsymbol{Z})^{\times} \times\left(\boldsymbol{Z} / M_{1} \boldsymbol{Z}\right)^{\times}$. For an arbitrary Dirichlet character $\chi \bmod N$, so a character of $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$, we define

$$
\begin{equation*}
{ }^{m} \chi=\chi \circ \gamma_{M} \quad \text { and } \quad \chi_{M}=\chi \circ \beta_{M}, \tag{4}
\end{equation*}
$$

then ${ }^{M} \chi\left(\right.$ resp. $\left.\chi_{M}\right)$ is also a character $\bmod N($ resp. $M)$. For example, ${ }^{N} \chi=\bar{\chi}$,
and ${ }^{m} \chi=\chi$ if χ is real. If χ is given by Jacobi's symbol $\left(\frac{*}{N}\right)$ for odd and square-free N, χ_{M} is $\left(\frac{*}{M}\right)$.

For a decomposition $N=M M_{1}$, consider (2) and (3) simultaneously, then it can be seen that $u=M \xi \rho$ and $v=-M_{1} \eta \zeta$. This implies the following relation:

$$
\begin{equation*}
\pi\left(W_{M} \sigma W_{M}^{-1}\right)=\gamma_{M}(\pi(\sigma)) \quad \text { for every } \sigma \in \Gamma . \tag{5}
\end{equation*}
$$

Here π denotes the canonical homomorphism of Γ to $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times}$given by $\pi(\sigma)$ $=d$ for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
1.2. We here quote a result by Miyake ([7]) with some generalization. $\mathcal{S}_{k}(N, \chi)$ and $\mathcal{S}_{k}^{0}(N, \chi)$ will denote the space of integral cusp forms of Neben type χ, of weight k with respect to $\Gamma=\Gamma_{0}(N)$, and the subspace of its essential part, respectively. In particular, $\left.f\right|_{k} \sigma=\chi(\pi(\sigma)) f$ for $f \in \mathcal{S}_{k}(N, \chi)$ and every $\sigma \in \Gamma$.

Lemma 1. By mapping f to $\left.f\right|_{k} W_{M}$, we have $\mathcal{S}_{k}(N, \chi) \cong \mathcal{S}_{k}\left(N,{ }^{\mu} \chi\right)$ and $\mathcal{S}_{k}^{0}(N, \chi) \cong \mathcal{S}_{k}^{0}\left(N,{ }^{\boldsymbol{M} \chi}\right)$.

Proof. By virtue of (5) and the involutive property of W_{M}, the first isomorphism is clear. For the second isomorphism, it is enough to show the same on each complementary space. Namely we show $f \mid W_{M}$ is an old form if $f=g \left\lvert\,\left(\begin{array}{cc}m & \\ & 1\end{array}\right)\right.$ for some $g \in \mathcal{S}_{k}\left(N_{0}, \chi\right), N_{0} \mid N, N_{0} \neq N$ and $m \mid\left(N / N_{0}\right)$ (so that χ is defined $\left.\bmod N_{0}\right)$. Let us define $N=N_{0} m m_{1},\left(N_{0}, M\right)=M_{0},(m, M)=m_{3},\left(m_{1}, M\right)$ $=m_{4}, M=M_{0} m_{3} m_{4}, m=m_{3} \mu$ and $m_{1}=m_{4} \mu_{1}$, then for $W_{M}=\left(\begin{array}{cc}M \xi & \eta \\ N \zeta & M \rho\end{array}\right),\left(\begin{array}{cc}n & \\ & 1\end{array}\right) W_{M}$ $=W_{M 0^{\prime}}^{\left(N_{0}\right)}\left(\begin{array}{ll}m_{4} \mu & \\ & 1\end{array}\right)\left(\begin{array}{ll}m_{3} & \\ & m_{3}\end{array}\right)$, where $W_{M_{0}}^{\left(N_{0}\right)}=\left(\begin{array}{ll}M_{0} \xi_{0}^{\prime} & \eta^{\prime} \\ N_{0} \xi^{\prime} & M_{0} \rho^{\prime}\end{array}\right)$ with $\xi^{\prime}=m_{3} \xi, \eta^{\prime}=\mu \eta, \zeta^{\prime}=$ $\mu_{1} \zeta$ and $\rho^{\prime}=m_{4} \rho$. Thus $f\left|W_{M}=\left(g \mid W_{M 0^{\prime}}^{\left(N_{0}\right)}\right)\right|\left(\begin{array}{cc}m_{4} \mu & \\ & 1\end{array}\right)$ and here $g \mid W_{M 0^{\prime}}^{\left(N_{0}\right)} \in \mathcal{S}_{k}\left(N_{0},{ }^{M} \chi\right)$. The last relation follows from the fact that the solution of (3) corresponding to $M \mid N$ is also the solution corresponding to a divisor M_{0} of the lower level N_{0}.
q.e.d.
1.3. For a prime number p, we mean by Hecke operator $T(p, \chi)$ the endomorphism of $\mathcal{S}_{k}(N, \chi)$ given by

$$
f \left\lvert\, T(p, \chi)=p^{k / 2-1}\left\{\chi(p) f\left|\left(\begin{array}{ll}
p & 1
\end{array}\right)+\sum_{j=0}^{p-1} f\right|\left(\begin{array}{ll}
1 & j \\
p
\end{array}\right)\right\} .\right.
$$

The following relation is elementary:
Lemma 2. For each decomposition $N=M M_{1}$,

$$
\begin{equation*}
T(p, \chi) \circ W_{M}=\chi_{M}(p) W_{M} \circ T\left(p,{ }^{M} \chi\right) \quad \text { for every prime } p \nmid M . \tag{6}
\end{equation*}
$$

Proof. The relation does not depend on a choice of W_{M} of (2), hence we
may add the condition $\eta \equiv \zeta \equiv 0(\bmod p)$. This is possible, since $\left(M, M_{1} p^{2}\right)=1$. First, we can see $\left(\begin{array}{cc}p & \\ & 1\end{array}\right) W_{M}\left(\begin{array}{ll}p & 1\end{array}\right)^{-1} W_{M}^{-1}=\sigma_{1} \in \Gamma$ and $\pi\left(\sigma_{1}\right)=M \xi \rho-M_{1} \eta \zeta p^{-1}$, so we have

$$
\chi(p) f\left|\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right) W_{M}=\chi_{M}(p)^{M} \chi(p) f\right| W_{M}\left(\begin{array}{ll}
p & \\
& 1
\end{array}\right)
$$

Next, for $0 \leqq j \leqq p-1$, let us determine $0 \leqq l \leqq p-1$ by $j \rho \equiv l \xi(\bmod p)$ (this is one-to-one correspondence), then $\left(\begin{array}{ll}1 & j \\ & p\end{array}\right) W_{M}\left(\begin{array}{ll}1 & l^{\prime} \\ & p\end{array}\right)^{-1} W_{M}^{-1}=\sigma_{2} \in \Gamma$ and $\pi\left(\sigma_{2}\right)=$ $M \xi \rho-M_{1} \eta \zeta p$, so we have

$$
f\left|\left(\begin{array}{ll}
1 & j \\
p
\end{array}\right) W_{M}=\chi_{M}(p) f\right| W_{M}\left(\begin{array}{cc}
1 & l \\
p
\end{array}\right)
$$

q. e. d.

In a particular case $M=N$, (6) is the well known formula:

$$
\begin{equation*}
T(p, \chi) \circ W_{N}=\chi(p) W_{N} \circ T(p, \bar{\chi}) \quad \text { for every prime } p \nmid N . \tag{7}
\end{equation*}
$$

Now, let $f \in \mathcal{S}_{k}^{0}(N, \chi)$ be a new form, that is, a common eigen function of all $T(p, \chi): f \mid T(p, \chi)=a_{p} f$ for each prime p. Put $g=f \mid W_{N}$, then by (7) and the well known relation (see [12], p. 87): $\bar{\chi}(p) a_{p}=\bar{a}_{p}$ for $p \nmid N$, we have $g \mid T(p, \bar{\chi})=\bar{a}_{p} g$ for $p \nmid N$. On the other hand, for the operator $f \mid K=\overline{f(-\bar{z})}$, it holds that $T(p, \chi) \circ K=K \circ T(p, \bar{\chi})$. So the theory of new form ([7], p. 188) combined with the above fact implies that g coincides with $f \mid K$ up to a constant multiple. Namely, we have

$$
\begin{equation*}
g \mid T(p, \bar{\chi})=\bar{a}_{p} g \quad \text { for every prime } p . \tag{8}
\end{equation*}
$$

This classical result by Hecke can be generalized in the following way.
For each decomposition $N=M M_{1}$, in addition to the relation (6), the complementary relation

$$
\begin{equation*}
T(p, \bar{\chi}) \circ W_{M_{1}}=\bar{\chi}_{M_{1}}(p) W_{M_{1}} \circ T\left(p,{ }^{n} \chi\right) \quad \text { for every prime } p \nmid M_{1} \tag{9}
\end{equation*}
$$

holds (note ${ }^{m} \chi={ }^{M_{1}} \bar{\chi}$). On one hand, (6) implies

$$
\left(f \mid W_{M}\right) \mid T\left(p,{ }^{M} \chi\right)=\bar{\chi}_{M}(p) a_{p}\left(f \mid W_{M}\right)
$$

for $p \nmid M$. On the other hand, since $f \mid W_{M}$ coincides with $g \mid W_{M_{1}}$ up to a constant multiple, we obtain, by (8) and (9),

$$
\left(f \mid W_{M}\right) \mid T\left(p,{ }^{M} \chi\right)=\chi_{M_{1}}(p) \bar{a}_{p}\left(f \mid W_{M}\right),
$$

for $p \nmid M_{1}$. Here it should be remarked that $\bar{\chi}_{M}(p) a_{p}=\chi_{M_{1}}(p) \bar{a}_{p}$ if $p \nmid N$. Thus we have proved the following

Theorem 1. Let $f(z)$ be a new form of $\mathcal{S}_{k}(N, \chi)$ and $f \mid T(p, \chi)=a_{p} f$ for every prime p. For each decomposition $N=M M_{1}$, put $f_{M}=f \mid W_{M}$. Then, f_{M} is
also a new form of $\mathcal{S}_{k}\left(N,{ }^{M} \chi\right)$, and $f_{M} \mid T\left(p,{ }^{M} \chi\right)=a_{p}^{(M)} f_{M}$ for every prime p. The eigen value $a_{p}^{(M)}$ is given by

$$
a_{p}^{(M)}= \begin{cases}\bar{\chi}_{M}(p) a_{p} & \text { if } p \nmid M, \\ \chi_{M_{1}}(p) \bar{a}_{p} & \text { if } p \nmid M_{1} .\end{cases}
$$

1.4. We now treat the Fourier coefficients of new forms. Let $f(z)$ be again a new form of $\mathcal{S}_{k}(N, \chi)$ with the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \quad\left(a_{1}=1\right)
$$

so that we have

$$
f \mid T(p, \chi)=a_{p} f \quad \text { for every } p
$$

For each decomposition $N=M M_{1}$, let us define $a_{n}^{(M)}$ by

$$
\begin{cases}a_{n}^{(M)}=\bar{\chi}_{M}(n) a_{n} & \text { if } \quad(n, M)=1, \tag{10}\\ a_{n}^{(M)}=\chi_{M_{1}}(n) \bar{a}_{n} & \text { if } \quad\left(n, M_{1}\right)=1, \\ a_{n m}^{(M)}=a_{n}^{(M)} a_{m}^{(M)} & \text { if } \quad(n, m)=1,\end{cases}
$$

and put

$$
\begin{equation*}
f^{(M)}(z)=\sum_{n=1}^{\infty} a_{n}^{(M)} e^{2 \pi i n z}, \tag{11}
\end{equation*}
$$

then, by virtue of Theorem 1, we can easily see

$$
\begin{equation*}
f \mid W_{M}=\lambda f^{(M)} \tag{12}
\end{equation*}
$$

with some constant λ. It should be remarked that the relation (10) is compatible with

$$
\sum_{n=1}^{\infty} a_{n}^{(M)} n^{-s}=\prod_{p}\left(1-a_{p}^{(M)} p^{-s}+{ }^{M} \chi(p) p^{k-1-2 s}\right)^{-1} .
$$

By definition, the Fourier coefficients of $f(z)$ at a cusp $\kappa=\kappa_{2} / \kappa_{1}$ of M_{1}-class are those of $f \mid \omega_{\kappa}$ at the cusp ∞, where ω_{κ} is given by (1). Obviously, the coefficients do not depend on a choice of ω_{κ}. In view of Theorem 1, together with (10) and (11), the problem is reduced to a computation of the value of λ in (12).

In the case of prime level N and primitive character χ, the value of λ is known, e.g. due to Hecke or Miyake in [8] p. 553, and the latter method is applicable to our case when the divisor M is prime. Namely,

Lemma 3. For a decomposition $N=q Q$ with a prime factor q, let $W_{q}=$ $\left(\begin{array}{ll}q & 1 \\ N \zeta & q \rho\end{array}\right)$ with the determinant q and $\zeta, \rho \in \boldsymbol{Z}$. Then $f \mid W_{q}=\lambda_{q} f^{(q)}$ and the value λ_{q} is given by

$$
\lambda_{q}= \begin{cases}C\left(\chi_{q}\right) q^{-k / 2} \bar{a}_{q} & \text { if } \chi_{q} \text { is primitive }, \tag{13}\\ -q^{1-k / 2} \bar{a}_{q} & \text { if } \chi_{q} \text { is principal },\end{cases}
$$

where $C\left(\chi_{q}\right)=\sum_{n(\bmod q)} \chi_{q}(h) e^{2 \pi i(h / q)}$. In either case, $\left|\lambda_{q}\right|=1$ and in the latter case $\lambda_{q}^{2}=\bar{\chi}_{Q}(q)$.

PRoof. Since $Q \zeta \equiv-1(\bmod q)$, there exists l such that $l(1+j Q \zeta) \equiv 1(\bmod q)$ if $j \not \equiv 1(\bmod q)$. Thus each $0 \leqq j \leqq q-1(j \neq 1)$ is in one-to-one correspondence with each $1 \leqq l \leqq q-1$. And then we can see $\left(\begin{array}{ll}1 & j \\ & q\end{array}\right) W_{q}=\sigma_{1}\left(\begin{array}{ll}1 & l \\ & q\end{array}\right)\left(\begin{array}{ll}q & 1\end{array}\right)$ with $\sigma_{1} \in \Gamma$ and $\pi\left(\sigma_{1}\right)=q \rho-Q \zeta l$, so that $\chi\left(\pi\left(\sigma_{1}\right)\right)=\chi_{q}(l)$. If $j=1,\left(\begin{array}{ll}1 & 1 \\ & \end{array}\right) W_{q}=$ $\sigma_{2} W_{q}\left(\begin{array}{ll}q & 1\end{array}\right)$ with $\sigma_{2} \in \Gamma$ and $\pi\left(\sigma_{2}\right)=q^{2} \rho-Q \zeta$, so that $\chi\left(\pi\left(\sigma_{2}\right)\right)=\chi_{Q}(q)$. Hence we have

$$
\begin{align*}
f \mid T(q, \chi) \circ W_{q}= & q^{k / 2-1} \sum_{j=1}^{q-1} f \left\lvert\,\left(\begin{array}{ll}
1 & j \\
\hline
\end{array}\right) W_{q}\right. \tag{14}\\
= & q^{k / 2-1} \sum_{n=1}^{\infty} a_{n}\left\{\sum_{l=1}^{q-1} \chi_{q}(l) e^{2 \pi i(n l / q)}\right\} e^{2 \pi i n z} \\
& +q^{k-1} \chi_{Q}(q) \lambda_{q} \sum_{n=1}^{\infty} a_{n}^{(q)} e^{2 \pi i n q z} .
\end{align*}
$$

We must here consider two cases. If χ_{q} is a primitive character $\bmod q$ (i.e. q divides the conductor of χ), then $\sum_{i=1}^{q-1} \chi_{q}(l) e^{2 \pi i(n l / q)}=C\left(\chi_{q}\right) \bar{\chi}_{q}(n)$, so that the right-hand-side of (14) becomes

$$
\begin{equation*}
q^{k / 2-1} C\left(\chi_{q}\right) \sum_{n=1}^{\infty} \bar{\chi}_{q}(n) a_{n} e^{2 \pi i n z}+q^{k-1} \chi_{Q}(q) \lambda_{q} \sum_{n=1}^{\infty} a_{n}^{(q)} e^{2 \pi i n q z} . \tag{15}
\end{equation*}
$$

If χ_{q} is a principal character $\bmod q$ (i.e. q does not divide the conductor of χ), then $\sum_{l=1}^{q-1} \chi_{q}(l) e^{2 \pi i(n l / q)}=q-1$ or -1 according as $q \mid n$ or not, so that (14) is equal to

$$
\begin{equation*}
-q^{k / 2-1} \sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}+\sum_{n=1}^{\infty}\left\{q^{k / 2} a_{n q}+q^{k-1} \chi_{Q}(q) \lambda_{q} a_{n}^{(q)}\right\} e^{2 \pi i n q z} . \tag{16}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
f\left|T(q, \chi) \circ W_{q}=a_{q} f\right| W_{q}=a_{q} \lambda_{q} \sum_{n=1}^{\infty} a_{n}^{(q)} e^{2 \pi i n z} . \tag{17}
\end{equation*}
$$

Comparing (15) and (16) with (17) in the coefficients of $e^{2 \pi i z}$ and also $e^{2 \pi i q z}$, we obtain (13) and so forth.
q.e.d.

For a general $W_{q}=\left(\begin{array}{cc}q \xi & \eta \\ N \zeta & q \rho\end{array}\right)$, it holds that $W_{q}=\sigma\left(\begin{array}{cc}q & 1 \\ N \eta \zeta & q \xi \rho\end{array}\right)$ with $\sigma \in \Gamma$, and $\pi(\sigma)=q \rho-Q \zeta$, hence it can be seen that the value λ in $f \mid W_{q}=\lambda f^{(q)}$ is equal to $\chi(q \rho-Q \zeta) \lambda_{q}$, where λ_{q} is given by (13). Moreover, for a general divisor M of N, we can compute the value λ of (12) inductively by means of the
relation $W_{M}=W_{M}, W_{M}$, for $M=M^{\prime} M^{\prime \prime}$. In fact, we can prove the following by induction with respect to the number of prime factors of M, but we shall omit the detail.

Theorem 2. Let $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}\left(a_{1}=1\right)$ be a new form of $\mathcal{S}_{k}(N, \chi)$. For each decomposition $N=M M_{1}$, define W_{M} and $f^{(M)}(z)$ by (2) and (11), respectively. Then $f \mid W_{M}=\lambda f^{(M)}$ and λ is given by

$$
\lambda=\chi\left(M \rho-M_{1} \zeta\right) \prod_{q \mid M}\left\{\chi_{q}(M / q) \lambda_{q}\right\}
$$

where λ_{q} is the value given by (13).
If we take ω_{κ} of (1) instead of W_{M}, we can put $\chi_{M}\left(\kappa_{1}\right) \chi_{M_{1}}\left(M \kappa_{2}\right)$ for $\chi\left(M \rho-M_{1} \xi\right)$. Thus, Theorems 1 and 2 altogether give a rule to compute the Fourier coefficients at various cusps for a new form. A similar problem for a modular form given by a theta series of a positive definite quadratic form has been treated by Kitaoka [6].

At the end of this section we add an immediate consequence of Lemma 3:
Corollary. Let a_{q} be an eigen value of $T(q, \chi)$ on $\mathcal{S}_{k}^{0}(N, \chi)$ for each prime factor q of N. Then $\left|a_{q}\right|^{2}$ is q^{k-1} or q^{k-2} according as q divides the conductor of χ or not. In the latter case, $a_{q}^{2}=\chi^{\prime}(q) q^{k-2}$, where χ^{\prime} is the primitive character associated with χ.

A similar result of this can be found in Ogg [9].
2.1. For later use, we here introduce the Eisenstein (and Epstein) series, and we deal only with the case of $\Gamma=\Gamma_{0}(N)$ with a square-free level N, so that the situation is the same as in 1.1. We also use the following notations: $y(\sigma z)=\operatorname{Im} \sigma z=(a d-b c) y|c z+d|^{-2}, J(\sigma, z)=e^{i \arg (c z+d)}$ for $z=x+i y(y>0)$, and a real matrix $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of positive determinant. Let χ be a character $\bmod N$, then χ is naturally regarded as a character of Γ by $\chi(\sigma)=\chi(\pi(\sigma))$. Let r be an integer with the same parity of χ, i. e. $\chi(-1)=(-1)^{r}$. For a cusp $\kappa=\kappa_{2} / \kappa_{1}$ of M_{1}-class, an Eisenstein series at κ is defined by

$$
\begin{equation*}
E_{\kappa}(z, s, r, \chi)_{N}=\sum_{\sigma \in \Gamma_{\kappa} \backslash \Gamma} \chi(\sigma) J\left(\alpha_{\kappa} \sigma, z\right)^{r} y\left(\alpha_{\kappa} \sigma z\right)^{s}, \tag{18}
\end{equation*}
$$

where α_{κ} is defined in (1), $s \in C$ with $\operatorname{Re} s>1$ and Γ_{κ} denotes the stabilizer of κ in Γ. For abbreviation we use the notation:

$$
E_{\kappa}(z, s, r, \chi)_{N} \mid \sigma=J(\sigma, z)^{r} E_{\kappa}(\sigma z, s, r, \chi)_{N},
$$

for a real matrix σ of positive determinant. We have

$$
\begin{equation*}
E_{\kappa}(z, s, r, \chi)_{N} \mid \sigma=\bar{\chi}(\sigma) E_{\kappa}(z, s, r, \chi)_{N} \tag{19}
\end{equation*}
$$

for every $\sigma \in \Gamma$, and

$$
\begin{equation*}
E_{\kappa}(z, s, r, \chi)_{N}=M^{s} E_{\infty}\left(z, s, r,{ }^{M} \chi\right)_{N} \mid \omega_{\kappa}, \tag{20}
\end{equation*}
$$

where we should recall that ω_{κ} of (1) normalizes Γ and its determinant is M, as well as the relations (4) and (5). On the other hand, let us define another function by

$$
\begin{equation*}
E_{M}(z, s, r, \chi)_{N}=y^{s} \sum_{\nu / \mu} \bar{\chi}_{M}(\mu) \chi_{M_{1}}(\nu)(\mu z+\nu)^{r}|\mu z+\nu|^{-(2 s+r)}, \tag{21}
\end{equation*}
$$

where in the summation ν / μ runs over all cusps of M_{1}-class, i.e. $\nu / \mu \in \boldsymbol{Q}^{*}$ such that $(\mu, N)=M_{1}$. Then by a simple computation we have

$$
\begin{equation*}
E_{M}(z, s, r, \chi)_{N}=\bar{\chi}_{M}\left(-\kappa_{1}\right) \chi_{M_{1}}\left(\kappa_{2}\right) E_{\kappa}(z, s, r, \chi)_{N} \tag{22}
\end{equation*}
$$

Consequently we obtain

$$
\begin{equation*}
E_{M}(z, s, r, \chi)_{N}=\bar{\chi}_{M}\left(M_{1} \zeta\right) \chi_{M_{1}}(\rho) M^{s} E_{1}\left(z, s, r,{ }^{M} \chi\right)_{N} \mid W_{M}, \tag{23}
\end{equation*}
$$

for an arbitrary W_{M} of type (2).
In order to get the functional equation of $E_{M}(z, s, r, \chi)_{N}$, we first treat a case of primitive character. To avoid confusion, we replace the letters N, M and χ by A, B and φ, respectively.

Lemma 4. Let φ be a primitive character $\bmod A$ and let $r \in \boldsymbol{Z}$ such that $\varphi(-1)=(-1)^{r}$. For a coprime decomposition $A=B B_{1}$, put

$$
\begin{align*}
& E_{B}^{*}(z, s, r, \varphi)_{A} \tag{24}\\
& =\varphi_{B}(-1) C\left(\varphi_{B}\right) B^{-s-1 / 2} A^{(3 / 2 s} \pi^{-s} \Gamma\left(s+\frac{|r|}{2}\right) L(2 s, \varphi) E_{B}(z, s, r, \varphi)_{A},
\end{align*}
$$

where L is the Dirichlet L-function. Then $E_{B}^{*}(z, s, r, \varphi)_{A}$ can be analytically continued to the whole complex s-plane and is entire if either $A \neq 1$ or $r \neq 0$. In the case $A=1$ and $r=0$, it has two simple poles at $s=1$ and 0 . Moreover, it satisfies the functional equation

$$
\begin{equation*}
E_{B}^{*}(z, s, r, \varphi)_{A}=E_{B_{1}}^{*}(z, 1-s, r, \varphi)_{A} . \tag{25}
\end{equation*}
$$

Proof. There are several ways to prove this, and it is rather well known in a special case of $B=A$ and $B_{1}=1$ (e.g. [13]). So we assume this case, then the general case follows immediately by operating W_{B} (of level A) to both sides. q. e. d.

Now we return to the case of N and χ. Let A be the conductor of χ, so that χ_{A} is the primitive character $(\bmod A)$ associated with χ. Then we can easily show by definition

$$
\begin{equation*}
E_{B}\left(z, s, r, \chi_{A}\right)_{A}=\sum_{B \mid M B, 1^{\mid} M_{1}} E_{M}(z, s, r, \chi)_{N} \tag{26}
\end{equation*}
$$

for a decomposition $A=B B_{1}$. In this sum, M runs over all factors of N with
the condition that M and the cofactor M_{1} are divisible by B and B_{1}, respectively. The number of such M 's is always that of positive divisors of N / A. Thus we have

Lemma 5. The functional equation (25), for $\varphi=\chi_{A}$, in Lemma 4 is also valid when E_{B} in (24) is replaced by the right-hand-side of (26).

Furthermore, we can get the complete system of the functional equations for the Eisenstein series E_{M} 's in the case of $\Gamma_{0}(N)$, i. e. the equation of matric type whose size is the number of positive divisors of N, by operating W_{L} (of level $N), L \mid(N / A)$, to both sides of (26), (24) and (25). For later use we restate Lemma 5, operated by W_{N}, in the convenient form in the case of the trivial character i. e. $A=1$.

Lemma 5'. Let $\Gamma=\Gamma_{0}(N)$ with the square-free level N, and define

$$
E_{1}(z, s, r)_{N}=\sum_{\sigma \in \Gamma_{\infty} \backslash \Gamma} J(\sigma, z)^{r} y(\sigma z)^{s},
$$

and put

$$
E^{*}(z, s, r)_{N}=(N / \pi)^{s} \Gamma\left(s+\frac{|r|}{2}\right) \zeta(2 s)\left\{\sum_{M \backslash N} M^{-s} E_{1}(z, s, r)_{N} \mid W_{M}\right\}
$$

with the Riemann zeta function ζ, then $E^{*}(z, s, r)_{N}$ can be analytically continued to the whole complex s-plane and is entire for every non-zero integer r. If $r=0$, it has two simple poles at $s=1$ and 0. Moreover, it satisfies the functional equation: $E^{*}(z, s, r)_{N}=E^{*}(z, 1-s, r)_{N}$.
2.2. It seems that so-called Rankin's method (or convolution), as well as Mellin's transform, has nowadays become one of the most fundamental ways of treating Dirichlet series and automorphic forms (see [1], [3], [8], [13], and [14], for example). Rankin ([11]) has treated originally the cases of $S L_{2}(\boldsymbol{Z})$ and the principal congruence subgroups. The case of $\Gamma_{0}(N)$ is considered by Ogg ([10]) on Haupt type. As an application of our argument in the preceding sections we can now deal with such a general case as $f(z)$ and $g(z)$ are new forms of arbitrarily different levels, weights and characters, under only one condition that the least common multiple of two levels is square-free. We, however, explain only a typical case as an example in this section.

Let N be a square-free, positive integer, χ be a real, primitive character $\bmod N$, and $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}\left(a_{1}=1\right)$ be a common eigen cusp form of all Hecke operators on $\mathcal{S}_{k}(N, \chi)$. Let us put

$$
\begin{equation*}
A_{p}=a_{p^{2}}-\chi(p) p^{k-1} \quad \text { for every prime } p \nmid N, \tag{27}
\end{equation*}
$$

and define an Euler product $\psi(s)$ by

$$
\begin{equation*}
\psi(s)=\prod_{p} \psi_{p}(s) ; \tag{28}
\end{equation*}
$$

$$
\psi_{p}(s)=\left\{\begin{array}{l}
\left(1-A_{p} p^{-s}+p^{2 k-2-2 s}\right)^{-1}\left(1-\chi(p) p^{k-1-s}\right)^{-2} \quad \text { if } p \nmid N, \\
\left(1-a_{p}^{2} p^{-s}\right)^{-1}\left(1-\bar{a}_{p}^{2} p^{-s}\right)^{-1} \quad \text { if } p \mid N,
\end{array}\right.
$$

where p runs over all primes, and $s \in \boldsymbol{C}$ with $\operatorname{Re} s>k$. Further we put

$$
\begin{equation*}
\psi^{*}(s)=N^{s}(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+1) \psi(s), \tag{29}
\end{equation*}
$$

then we have the following
ThEOREM 3. $\psi^{*}(s)$ can be analytically continued to the whole complex splane and is entire if $N \neq 1$. In the case of $N=1$, it has two simple poles at $s=k$ and $k-1$. Moreover, it satisfies the functional equation $\psi^{*}(s)=\psi^{*}(2 k-1-s)$.

Proof. Let $g(z)=\overline{f(-\bar{z})}=\sum_{n=1}^{\infty} \bar{a}_{n} e^{2 \pi i n z}$, and consider an integral

$$
J\left(s_{1}\right)=\int_{\mathscr{D}} y^{k} f(z) \overline{g(z)} E^{*}\left(z, s_{1}, 0\right)_{N} y^{-2} d x d y
$$

where $z=x+i y(y>0), \mathscr{D}$ is a fundamental domain of $\Gamma=\Gamma_{0}(N)$ and $E^{*}\left(z, s_{1}, 0\right)_{N}$ is given in Lemma 5^{\prime}. The integral is well defined independently of a choice of \mathscr{D}, and is absolutely convergent for all $s_{1} \in \boldsymbol{C}$ with possible simple poles at $s_{1}=1$ and 0 (see [11] or [13]). In fact, $J\left(s_{1}\right)$ is entire if $N \neq 1$, because $\int_{\mathscr{Q}^{k-2}} y^{k-2} f(z) \overline{g(z)} d x d y=0$, while it has simple poles at $s_{1}=1$ and 0 if $N=1$. Also by means of Lemma 5^{\prime}, we have

$$
\begin{equation*}
J\left(s_{1}\right)=J\left(1-s_{1}\right) . \tag{30}
\end{equation*}
$$

On the other hand, $J\left(s_{1}\right)=(N / \pi)^{s_{1}} \Gamma\left(s_{1}\right) \zeta\left(2 s_{1}\right)_{M \backslash N} I_{M}\left(s_{1}\right)$ with

$$
I_{M}\left(s_{1}\right)=M^{-s_{1}} \int_{\mathscr{D}} y^{k} f(z) \overline{g(z)}\left\{E_{1}\left(z, s_{1}, 0\right)_{N} \mid W_{M}\right\} y^{-2} d x d y
$$

Since W_{M} normalizes Γ, we have

$$
I_{M}\left(s_{1}\right)=M^{-s_{1}} \int_{\mathscr{G}} y^{k} f_{M}(z) \overline{g_{M}(z)} E_{1}\left(z, s_{1}, 0\right)_{N} y^{-2} d x d y
$$

where we put $f_{M}=f \mid W_{M}$, and $g_{M}=g \mid W_{M}$ (note $\left.(f \bar{g})\left|W_{M}=(f \bar{g})\right| W_{M}^{-1}\right)$. So, for s_{1} with $\operatorname{Re} s_{1}>1$,

$$
\begin{aligned}
I_{M}\left(s_{1}\right) & =M^{-s_{1}} \int_{\mathscr{G}} y^{k} f_{M}(z) \overline{g_{M}(z)} \sum_{\sigma \in \Gamma_{\infty} \backslash \Gamma} y\left(\boldsymbol{\sigma z) ^ { s _ { 1 } } y ^ { - 2 } d x d y}\right. \\
& =M^{-s_{1}} \int_{0}^{\infty}\left\{\int_{0}^{1} f_{M}(z) \overline{g_{M}(z)} d x\right\} y^{s_{1}+k-2} d y
\end{aligned}
$$

Thus we need the Fourier coefficients of $f(z)$ and $g(z)$ not only at the infinity but also at all cusps, and they can be obtained by means of Theorems 1 and 2. Namely, we get by putting $s=s_{1}+k-1$,

$$
\begin{aligned}
I_{M}\left(s_{1}\right)= & (4 \pi)^{-s} \Gamma(s) M^{-s} \bar{a}_{M}^{2} \\
& \times \prod_{p \mid M}\left\{\sum_{n=0}^{\infty} \bar{a}_{p n}^{2} p^{-n s}\right\}_{p \backslash M_{1}}\left\{\sum_{n=0}^{\infty} a_{p}^{2} p^{-n s}\right\} \prod_{p+M}\left\{\sum_{n=0}^{\infty} a_{p^{n}}^{2} p^{-n s}\right\},
\end{aligned}
$$

where $a_{p}^{2} n$ in the last factor may be replaced by $\bar{a}_{p}^{2} n$. Since $a_{p n}=a_{p}^{n}$ for $p \mid N$,

$$
\begin{aligned}
& \sum_{M \backslash N} M^{-s} \bar{a}_{M}^{2}\left\{\prod_{p \backslash M}\left[\sum_{n=0}^{\infty} \bar{a}_{p n}^{2} p^{-n s}\right]_{p \backslash M 1} \prod_{n=0}^{\infty}\left[\sum_{n=0}^{\infty} a_{p n}^{2} p^{-n s}\right]\right\} \\
& \quad=\sum_{M \backslash N} M^{-s} \bar{a}_{M}^{2}\left\{\prod_{p \backslash M}\left(1-\bar{a}_{p}^{2} p^{-s}\right)^{-1} \prod_{p \backslash M_{1}}\left(1-a_{p}^{2} p^{-s}\right)^{-1}\right\} \\
& \quad=\prod_{p \backslash N}\left(1-p^{-2 s_{1}}\right)\left(1-a_{p}^{2} p^{-s}\right)^{-1}\left(1-\bar{a}_{p}^{2} p^{-s}\right)^{-1} .
\end{aligned}
$$

For $p \nmid N$, by easy computation,

$$
\sum_{n=0}^{\infty} a_{p}^{2} n p^{-n s}=\left(1-p^{-2 s_{1}}\right)\left(1-A_{p} p^{-s}+p^{-2 s_{1}}\right)^{-1}\left(1-\chi(p) p^{-s_{1}}\right)^{-2} .
$$

Consequently, we have

$$
\psi^{*}(s)=(N / \pi)^{k-1} J\left(s_{1}\right) .
$$

This combined with (30) completes the proof.
We would like to add an corollary of the above theorem which follows immediately by virtue of the functional equation of Dirichlet's $L(s, \chi)$. Let us define

$$
\begin{align*}
& D(s)=\prod_{p} D_{p}(s) ; \tag{31}\\
& D_{p}(s)=\left\{\begin{array}{l}
\left(1-A_{p} p^{-s}+p^{2 k-2-2 s}\right)^{-1}\left(1-\chi(p) p^{k-1-s}\right)^{-1} \\
\left(1-a_{p}^{2} p^{-s}\right)^{-1}\left(1-\bar{a}_{p}^{2} p^{-s}\right)^{-1} \quad \text { if } \quad p \nmid N,
\end{array}\right.
\end{align*}
$$

and put

$$
R(s)=N^{s / 2} \pi^{-(3 / 2) s} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \Gamma\left(\frac{s-k+1+\varepsilon}{2}\right) D(s)
$$

with $\varepsilon=(1+\chi(-1)) / 2$.
Corollary. $R(s)$ can be analytically continued to the whole complex s-plane, and satisfies the functional equation $R(s)=R(2 k-1-s)$.

On the holomorphy of $D(s)$, there is Shimura's work [14], though the functional equation and the Euler factors at $p \mid N$ are not mentioned there.
2.3. Another example is an application to the case of Naganuma [8]. Let F be a real quadratic number field with the discriminant N. We assume that N is odd, while Naganuma has treated the case of prime N. Let χ denote the character given by Jacobi's symbol $\left(\frac{*}{N}\right)$, and \mathfrak{o} be the ring of integers. Let ξ be a grössen-character of F with trivial conductor. Define $\kappa=\pi /\left(\rho \log \varepsilon_{0}\right)$, where ε_{0} denotes the fundamental unit of $F, \varepsilon_{0}>1$, and $\rho=1$ or 2 according
to $N \varepsilon_{0}=1$ or -1 , then at a principal ideal $\mathfrak{a}=(\alpha)$ of $\mathfrak{d}, \xi(\mathfrak{a})$ is given by $\operatorname{sgn}(N \alpha)^{l}\left|\alpha / \alpha^{\prime}\right|^{i m \kappa}$ for some $l=0$ or 1 and $m \in \boldsymbol{Z}$ such that $l \equiv m(\bmod \rho)$. The function of Maass type corresponding to the zeta function $\zeta_{F}(s, \xi)=\Sigma \xi(\mathfrak{a}) N a^{-s}$ is given by

$$
g(z, \xi)=C_{\xi} y^{1 / 2}+\sum_{a \neq 0} \xi(\mathfrak{a}) y^{1 / 2} K_{i m \kappa}(2 \pi N a y)\left\{e^{2 \pi i N a x}+(-1)^{\imath} e^{-2 \pi i N a x}\right\},
$$

where the constant C_{ξ} is zero unless $m=0$, and a runs over all non-zero integral ideals of \mathfrak{D}. We write $g \mid \sigma=g(\sigma z, \xi)$ for a real matrix σ of positive determinant. Then we can see that $g \mid \sigma=\chi(\sigma) g$ for every $\sigma \in \Gamma=\Gamma_{0}(N)$ and $g \mid W_{N}$ $=g$ for a suitably chosen W_{N}. To prove this, there are at least two different ways: by theta series or by Weil's criterion*).

Furthermore by a similar argument to $\S 1$ (Theorems 1 and 2), or by using the transformation formula of theta series, we can obtain the following

Lemma 6. For a suitably chosen W_{M} for each decomposition $N=M M_{1}$, it holds that

$$
g(z, \xi) \mid W_{M}=\varepsilon_{M} g^{(M)}(z, \xi),
$$

where $\varepsilon_{M}=1$ or i according to $M \equiv 1$ or $3(\bmod 4)$, and $g^{(M)}$ is given by

$$
g^{(M)}(z, \xi)=C_{\xi \psi \psi_{M}} y^{1 / 2}+\sum_{a \neq 0} \psi_{M} \xi(\mathfrak{a}) y^{1 / 2} K_{i m \kappa}(2 \pi N a y)\left\{e^{2 \pi i N a x}+\left(\frac{-1}{M}\right)(-1)^{l} e^{-2 \pi i N a x}\right\} .
$$

In the above, we denote by $\psi_{M}(\mathfrak{a})$ the genus character corresponding to $N=M M_{1}$, that is, $\psi_{M}(\mathfrak{p})$ is a non-zero value of either $\left(\frac{N \mathfrak{p}}{M}\right)$ or $\left(\frac{N \mathfrak{p}}{M_{1}}\right)$ for each prime ideal \mathfrak{p}. It should be also noticed that $\psi_{M}(\mathfrak{p})$ is $\chi_{M}(N \mathfrak{p})$ if $\mathfrak{p} \nmid M$ and $\chi_{M_{1}}(N \mathfrak{p})$ if $\mathfrak{p} \nmid M_{1}$ by using the notation in 1.1.

Now we take an arbitrary cusp form $f(z)$ in $\mathcal{S}_{k}(N, \chi)$ and put

$$
f(z) \mid W_{M}=\sum_{n=1}^{\infty} A_{M}(n) e^{2 \pi i n z}
$$

for each divisor M of N, with W_{M} as in Lemma 6. For each integral ideal a of \mathfrak{D}, we put

$$
\begin{aligned}
& C(\mathfrak{a})=\sum_{M \backslash N} C_{M}(\mathfrak{a}) \\
& C_{M}(\mathfrak{a})=\varepsilon_{M}^{-1} M^{(k-1) / 2}\left(\frac{M_{1}}{M}\right) \psi_{M}(\mathfrak{a}) \sum_{d \backslash \mathfrak{a}} d^{k-1} A_{M}\left(\frac{N a}{d^{2} M}\right),
\end{aligned}
$$

where d runs over all rational positive integers containing \mathfrak{a}, and $A_{M}(r)=0$ for non-integral r.

By these preparations and after some lengthy but quite similar computa-

[^0]tion as in 2.2., we have
Theorem 4. Define a Dirichlet series $D(s, \xi)$ over F by
$$
D(s, \xi)=\sum_{\mathfrak{a} \neq 0} \xi(\mathfrak{a}) C(\mathfrak{a}) N a^{-s},
$$
then,
(i) $D(s, \xi)$ can be continued to an entire function on the whole complex s-plane and satisfies the functional equation $D^{*}(s, \xi)=D^{*}(k-s, \xi)$, where we put $D^{*}(s, \xi)=N^{s}(2 \pi)^{-s} \Gamma(s+i m \kappa) \Gamma(s-i m \kappa) D(s, \xi)$.
(ii) If $f(z)$ is a new form and ξ is the trivial character $\xi_{0}, D\left(s, \xi_{0}\right)$ splits as follows:
$$
D\left(s, \xi_{0}\right)=\sum_{n=1}^{\infty} A_{1}(n) n^{-s} \cdot \sum_{n=1}^{\infty} \overline{A_{1}(n)} n^{-s} .
$$

By virtue of (i) we are convinced that the Dirichlet series $D\left(s, \xi_{0}\right)$ is associated with a Hilbert modular cusp form of weight k with respect to $G L_{2}(\mathfrak{o})$.

References

[1] A.N. Andrianov, Dirichlet series with Euler product in the theory of Siegel modular forms of genus 2, Proc. Steklov Inst. Math., 112 (1971), 70-93.
[2] A.O. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann., 185 (1970), 134-160.
[3] K. Doi and H. Naganuma, On the functional equation of certain Dirichlet series, Invent. math., 9 (1969), 1-14.
[4] E. Hecke, Mathematische Werke, Vandenhoech und Ruprecht.
[5] H. Jacquet, Automorphic forms on GL(2), II, Lecture notes in math., 278, Springer, 1972.
[6] Y. Kitaoka, On the transformation formula of theta-series, to appear.
[7] T. Miyake, On automorphic forms on $G L_{2}$ and Hecke operators, Ann. of Math., 94 (1971), 174-189.
[8] H. Naganuma, On the coincidence of two Dirichlet series associated with cusp forms of Hecke's Neben-type and Hilbert modular forms over a real quadratic field, J. Math. Soc. Japan, 25 (1973), 547-555.
[9] A.P. Ogg, On the eigenvalues of Hecke operators, Math. Ann., 179 (1969), 101-108.
[10] A. P. Ogg, On a convolution of L-series, Invent. Math., 7 (1969), 297-312.
[11] R.A. Rankin, Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, I, II, Proc. Cambridge Philos. Soc., 35 (1939), 351-372.
[12] G. Shimura, Introduction to the arithmetical theory of automorphic functions, Publ. Math. Soc. Japan, No. 11.
[13] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440-481.
[14] G. Shimura, On the holomorphy of certain Dirichlet series, to appear.

Added in proof. After the preparation of this paper, Professor K. Doi has informed the author that a similar result of Theorem 4 has been also obtained by Don Zagier in his recent article: Modular forms associated to real quadratic fields. His method is quite different from the author's.

Tetsuya Asai
Department of Mathematics
Faculty of Science
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan

[^0]: *) A precise description of the proof by Weil's criterion can be found in S. Nakamoto's master thesis, Univ. of Tokyo, 1974.

