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For an automorphic form $f(z)$ on the upper-half-plane with respect to a
Fuchsian group $\Gamma$ , we can consider the Fourier expansion of $f(z)$ at each
parabolic cusp of $\Gamma$ . In a certain case, as we shall see in this paper, there is
a simple relation among the Fourier coefficients at the various cusps. We
treat the case where $\Gamma=\Gamma_{0}(N)$ and $f(z)$ is a new form of Neben type in the
sense of Atkin, Lehner and Miyake ([2], [7]). We assume that the level $N$ is
square-free. Then, the Fourier coefficients are canonically defined, since a
cusp is transformed to any other cusp by an element of the normalizer of $\Gamma$ .
In this situation, we can state the relation in an explicit form (Theorems 1
and 2), namely if the coefficients at one cusp are given then we can immediately

know all n-th coefficients at other cusps, whether $n$ and the level $N$ are co-
prime or not.

In the latter part (\S 2), after some preparations on Eisenstein series we
shall give some applications of the above result to Rankin’s convolution of
Dirichlet series, namely we generalize a result of Ogg [10] to a case of Neben
type (Theorem 3), and we also try to remove the condition of Prime discrimi-
nant in Naganuma’s work [8] (Theorem 4). On Rankin’s convolution, Jacquet
([5]) seems to have treated in a more general point of view, and his theory
may contain our results in essential.

NOTATION. As usual, by $Z,$ $Q,$ $C$, we denote the ring of rational integers,
the field of rational numbers and the field of complex numbers, respectively.
$SL_{2}(A)$ is the special linear group of degree two over a ring $A$ . We denote
a linear fractional transformation by $\sigma z=(az+b)(cz+d)^{-1}$ for a real matrix
$\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ of positive determinant, and write $f|_{k}\sigma=(\det\sigma)^{k/2}(cz+d)^{-k}f(\sigma z)$ for

a function $f(z)$ on the upper-half-plane, while the number $k$ may be often
omitted in $ f|_{k}\sigma$ . For general notions of automorphic forms, we may refer to
Shimura’s book [12].
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1.1. Let $N$ be a square-free positive integer, and consider the group

$\Gamma=\Gamma_{0}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z);c\equiv 0(mod N)\}$ .

The set of all cusps of $\Gamma$ is $Q^{*}=Q\cup\{\infty\}$ . Every element of $Q^{*}$ is uniquely
expressed as a reduced fraction with positive numerator, $e$ . $g$ . $\infty=1/0$ , with
only one exception $0=0/1$ , and these expressions will be kept throughout this
paper. Two cusps are equivalent (relative to $\Gamma$ ) if and only if the deno-
minators have the same greatest common divisor with $N$, so each equivalence
class of cusps is in one-to-one correspondence with each ordered decomposition
$N=MM_{1}$ of two positive divisors. We may say a cusp $\kappa=\kappa_{2}/\kappa_{1}$ belongs to
$M_{1}$ -class if $g$ . $c.d$ . of $\kappa_{1}$ and $N$ is $M_{1},$ $e.g$ . $\infty$ belongs to N-class. For each
decomposition $N=MM_{1}$ and any cusp $\kappa=\kappa_{2}/\kappa_{1}$ of $M_{1}$-class, we can take a
typical matrix $\omega_{\kappa}$ which transforms $\kappa$ to $\infty$ :

(1) $\omega.=\left(1 & M\right)a$. with $\alpha_{\kappa}=\left(\begin{array}{ll}M\lambda_{1} & \lambda_{2}\\-\kappa_{1} & \kappa_{2}\end{array}\right)\in SL_{2}(Z)$ and $\lambda_{i}\in Z$ .

In general, for a divisor $M$ of $N$, we define the matrix $W_{M}$ , which exists uni-
quely up to right or left $\Gamma$ -multiplication, by

(2) $W_{M}=(_{N\zeta}^{M\xi}$ $M\rho\eta)$ with the determinant $M$, and $\xi,$
$\eta,$

$\zeta,$ $\rho\in Z$ .

This $W_{M}$ normalizes the group $\Gamma$ and $ M^{-1}W_{M}^{2}\in\Gamma$ , furthermore $W_{M}=W_{M^{\prime}}W_{M^{\prime}}$

if $M=M^{\prime}M^{\prime\prime}$ divides $N$. Since $\omega_{\kappa}$ is one of such type (2), we see that every
cusp can be transformed to any other cusp by an element of the normalizer
of $\Gamma$ .

Let us consider a congruence equation

(3) $u+v\equiv 1(mod N)$ and $uv\equiv 0(mod N)$ .
Each solution $(mod N)$ is also in one-to-one correspondence with each ordered
decomposition $N=MM_{1}$ , in such way as $u\equiv 0(mod M)$ and $v\equiv 0(mod M_{1})$ . Let
$(u, v)$ be the solution of (3) corresponding to $N=MM_{1}$ . The map $m\mapsto um+vm^{\prime}$ ,
where $mm^{\prime}\equiv 1(mod N)$ , is an involutive automorphism of the group $(Z/NZ)^{x}$

of reduced residue classes mod $N$, which we denote by $\gamma_{M}$ . Similarly we denote
by $\beta_{M}$ the canonical injection $m-u+vm$ of $(Z/MZ)^{\times}$ into $(Z/NZ)^{\times}$ . The
meaning of these maps is clear if we recall the isomorphism $(Z/NZ)^{\times}\cong$

$(Z/MZ)^{x}\times(Z/M_{1}Z)^{x}$ . For an arbitrary Dirichlet character $\chi mod N$, so a
character of $(Z/NZ)^{\times}$ , we define

(4) $M\chi=\chi\circ\gamma_{M}$ and $\chi_{M}=x\circ\beta_{M}$ ,

then $ H\chi$ (resp. $\chi_{M}$) is also a character mod $N$ (resp. $M$ ). For example, $Nx=\overline{x}$ ,
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and $Mx=x$ if $\chi$ is real. If $\chi$ is given by Jacobi’s symbol $(\frac{*}{N})$ for odd and

square-free $N,$ $\chi_{M}$ is ( $\frac{*}{M}$).
For a decomposition $N=MM_{1}$ , consider (2) and (3) simultaneously, then it

can be seen that $ u=M\xi\rho$ and $ v=-M_{1}\eta\zeta$ . This implies the following relation:

(5) $\pi(W_{M}\sigma W_{M}^{-1})=\gamma_{M}(\pi(\sigma))$ for every $\sigma\in\Gamma$ .
Here $\pi$ denotes the canonical homomorphism of $\Gamma$ to $(Z/NZ)^{x}$ given by $\pi(\sigma)$

$=d$ for $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ .

1.2. We here quote a result by Miyake ([7]) with some generalization.
$S_{k}(N, \chi)$ and $S_{k}^{0}(N, \chi)$ will denote the space of integral cusp forms of Neben
type $\chi$ of weight $k$ with respect to $\Gamma=\Gamma_{0}(N)$ , and the subspace of its essential
part, respectively. In particular, $f|_{k}\sigma=x(\pi(\sigma))f$ for $f\in S_{k}(N, \chi)$ and every $\sigma\in\Gamma$ .

LEMMA 1. By maPping $f$ to $f|_{k}W_{M}$ , we have $S_{k}(N, \chi)\cong S_{k}(N, M\chi)$ and
$S_{k}^{0}(N, \chi)\cong S_{k}^{0}(N, M\chi)$ .

PROOF. By virtue of (5) and the involutive property of $W_{M}$ , the first iso-
morphism is clear. For the second isomorphism, it is enough to show the
same on each complementary space. Namely we show $f|W_{M}$ is an old form

if $f=g|\left(m & 1\right)$ for some $g\in S_{k}(N_{0}, \chi),$ $N_{0}|N,$ $N_{0}\neq N$ and $m|(N/N_{0})$ (so that $\chi$

is defined mod $N_{0}$). Let us define $N=N_{0}mm_{1},$ $(N_{0}, M)=M_{0},$ $(m, M)=m_{3},$ $(m_{1}, M)$

$=m_{4},$ $M=M_{0}m_{3}m_{4},$ $ m=m_{3}\mu$ and $m_{1}=m_{4}\mu_{1}$ , then for $ W_{M}=(N\zeta M\xi$ $ M\rho\eta$), $\left(m & 1\right)W_{M}$

$=W_{M_{0^{0)}}}^{(N}\left(m_{4}\mu & 1\right)\left(m_{3} & m_{3}\right)$ , where $W_{M_{0}}^{(N0)}=(M_{0}\xi^{\prime}M_{0}\rho\eta^{\prime})$ with $\xi^{\prime}=m_{3}\xi,$ $\eta^{\prime}=\mu\eta,$ $\zeta^{\prime}=$

$\mu_{1}\zeta$ and $\rho^{\prime}=m_{4}\rho$ . Thus $f|W_{M}=(g|W_{M_{0}}^{(N0)})|\left(m_{4}\mu & 1\right)$ and here $g|W_{M_{0}}^{(N0)}\in S_{k}(N_{0}, M\chi)$ .
The last relation follows from the fact that the solution of (3) corresponding
to $M|N$ is also the solution corresponding to a divisor $M_{0}$ of the lower level
$N_{0}$ . $q$ . $e$ . $d$ .

1.3. For a prime number $p$ , we mean by Hecke operator $T(P, \chi)$ the endo-
morphism of $S_{k}(N, \chi)$ given by

$f|T(p, \chi)=p^{k/2-1}\{\chi(p)f|\left(p & 1\right)+\sum_{j=0}^{p-1}f|\left(\begin{array}{ll}1 & j\\ & p\end{array}\right)\}$ .
The following relation is elementary:

LEMMA 2. For each decomposition $N=MM_{1}$ ,

(6) $\tau(p, \chi)\circ W_{M}=x_{M}(p)W_{M}\circ T(p, Mx)$ for every prime $p\nmid M$ .
PROOF. The relation does not depend on a choice of $W_{M}$ of (2), hence we
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may add the condition $\eta\equiv\zeta\equiv 0(mod p)$ . This is possible, since $(M, M_{1}p^{2})=1$ .
First, we can see $\left(p & 1\right)W_{M}\left(p & 1\right)W_{M}^{-1}=\sigma_{1}\in\Gamma$ and $\pi(\sigma_{1})=M\xi\rho-M_{1}\eta\zeta p- 1$ so
we have

$\chi(p)f|\left(p & 1\right)W_{M}=x_{M}(p)^{M}\chi(p)f|W_{M}\left(p & 1\right)$ .

Next, for $0\leqq j\leqq P-1$ , let us determine $0\leqq l\leqq P-1$ by $i\rho\equiv l\xi(mod P)$ (this is

one-to-one correspondence), then $\left(\begin{array}{ll}1 & j\\ & p\end{array}\right)W_{M}\left(\begin{array}{ll}1 & l\\ & p\end{array}\right)W_{M}^{-1}=\sigma_{2}\in\Gamma$ and $\pi(\sigma_{2})=$

$M\xi\rho-M_{1}\eta\zeta p$ , so we have
$f|\left(\begin{array}{ll}1 & j\\ & p\end{array}\right)W_{M}=x_{M}(p)f|W_{M}\left(\begin{array}{ll}1 & l\\ & p\end{array}\right)$ .

$q$ . $e$ . $d$ .
In a particular case $M=N,$ (6) is the well known formula:

(7) $T(P, \chi)\circ W_{N}=\chi(p)W_{N}\circ T(P, 7)$ for every prime $p\nmid N$ .
Now, let $f\in S_{k}^{0}(N, \chi)$ be a new form, that is, a common eigen function of

all $T(p, \chi):f|T(P, \chi)=a_{p}f$ for each prime $p$ . Put $g=f|W_{N}$ , then by (7) and
the well known relation (see [12], p. 87): $\overline{x}(p)a_{p}=\overline{a}_{p}$ for $p\nmid N$, we have
$g|T(p,\overline{\chi})=\overline{a}_{p}g$ for $p\nmid N$. On the other hand, for the operator $f|K=\overline{f(-\overline{z})}$, it
holds that $\tau(p, \chi)\circ K=K\circ T(P,\overline{x})$ . So the theory of new form ([7], p. 188)

combined with the above fact implies that $g$ coincides with $f|K$ up to a con-
stant multiple. Namely, we have

(8) $g|T(p, X)=\overline{a}_{p}g$ for every prime $p$ .
This classical result by Hecke can be generalized in the following way.

For each decomposition $N=MM_{1}$ , in addition to the relation (6), the com-
plementary relation

(9) $\tau(p, X)\circ W_{M_{1}}=7_{M_{1}}(p)W_{M_{1^{\circ}}}T(p, M\chi)$ for every prime $p\nmid M_{1}$ ,

holds (note $Mx=^{M_{1}}\overline{x}$ ). On one hand, (6) implies

$(f|W_{M})|T(p, M\chi)=X_{M}(p)a_{p}(f|W_{M})$ ,

for $p\nmid M$. On the other hand, since $f|W_{M}$ coincides with $g|W_{M_{1}}$ up to a con-
stant multiple, we obtain, by (8) and (9),

$(f|W_{M})|T(p, Mx)=x_{M_{1}}(p)\overline{a}_{p}(f|W_{M})$ ,

for $p\nmid M_{1}$ . Here it should be remarked that $X_{M}(p)a_{p}=x_{M_{1}}(p)a_{p}$ if $p\nmid N$. Thus
we have proved the following

THEOREM 1. Let $f(z)$ be a new form of $S_{k}(N, \chi)$ and $f|T(p, \chi)=a_{p}f$ for
every prime P. For each decomposition $N=MM_{1}$ , put $f_{M}=f|W_{M}$ . Then, $f_{M}$ is
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also a new form of $S_{k}(N, M\chi)$ , and $f_{M}|T(p, M\chi)=a_{p}^{(\Pi)}f_{M}$ for every prime P. The
eigen value $a_{p}^{CM)}$ is given by

$a_{p}^{(w}=\{$

$X_{M}(p)a_{p}$ if $P\nmid M$ ,

$x_{M_{1}}(p)\overline{a}_{p}$ if $P\nmid M_{1}$ .
1.4. We now treat the Fourier coefficients of new forms. Let $f(z)$ be

again a new form of $S_{k}(N, \chi)$ with the Fourier expansion

$f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}$ $(a_{1}=1)$ ,

so that we have
$f|T(p, \chi)=a_{p}f$ for every $p$ .

For each decomposition $N=MM_{1}$ , let us define $a_{n}^{(M)}$ by

(10) $\left\{\begin{array}{ll}a_{n}^{(M)}=\overline{x}_{M}(n)a_{n} & if (n, M)=1,\\a_{n}^{(w}=x_{M_{1}}(n)\overline{a}_{n} & if (n, M_{1})=1 ,\\a_{nm}^{(w}=a_{n}^{(w}a_{m}^{(w} & if (n, m)=1,\end{array}\right.$

and put

(11) $f^{(M)}(z)=\sum_{n=1}^{\infty}a_{n}^{(M)}e^{2\pi inz}$

then, by virtue of Theorem 1, we can easily see

(12) $f|W_{M}=\lambda f^{(M)}$

with some constant $\lambda$ . It should be remarked that the relation (10) is com-
patible with

$\sum_{n=1}^{\infty}a_{n}^{(M)}n^{-s}=\prod_{p}(1-a_{p}^{(w}p^{-s}+M\chi(p)p^{k- 1-2s})^{-1}$

By definition, the Fourier coefficients of $f(z)$ at a cusp $\kappa=\kappa_{2}/\kappa_{1}$ of $M_{1}$ -class
are those of $f|\omega_{\kappa}$ at the cusp $\infty$ , where $\omega_{\kappa}$ is given by (1). Obviously, the
coefficients do not depend on a choice of $\omega_{\kappa}$ . In view of Theorem 1, together
with (10) and (11), the problem is reduced to a computation of the value of $\lambda$

in (12).

In the case of prime level $N$ and primitive character $\chi$ the value of $\lambda$ is
known, $e$ . $g$ . due to Hecke or Miyake in [8] p. 553, and the latter method is
applicable to our case when the divisor $M$ is prime. Namely,

LEMMA 3. For a decomPosition $N=qQ$ with a Prime factor $q$ , let $W_{q}=$

( $q\rho 1$) with the determinant $q$ and $\zeta,$ $\rho\in Z$. Then $f|W_{q}=\lambda_{q}f^{(q)}$ and the

value $\lambda_{q}$ is given by



Fourier coefficients of automorphic forms 53

(13) $\lambda_{q}=\{$

$C(\chi_{q})q^{-k/2}\overline{a}_{q}$ if $\chi_{q}$ is primitive,

$-q^{1-k/2}\overline{a}_{q}$ if $\chi_{q}$ is Principal,

where $C(\chi_{q})=\sum_{h(mod q)}\chi_{q}(h)e^{2\pi i(h/q)}$ . In either case, $|\lambda_{q}|=1$ and in the latter case
$\lambda_{q}^{2}=\overline{x}_{Q}(q)$ .

PROOF. Since $Q\zeta\equiv-1(mod q)$ , there exists $l$ such that $l(1+jQ\zeta)\equiv 1(mod q)$

if $j\not\equiv 1(mod q)$ . Thus each $0\leqq j\leqq q-1(j\neq 1)$ is in one-to-one correspondence

with each $1\leqq l\leqq q-1$ . And then we can see $\left(\begin{array}{ll}1 & j\\ & q\end{array}\right)W_{q}=\sigma_{1}\left(\begin{array}{ll}1 & l\\ & q\end{array}\right)\left(q & 1\right)$ with

$\sigma_{1}\in\Gamma$ and $\pi(\sigma_{1})=q\rho-Q\zeta l$ , so that $\chi(\pi(\sigma_{1}))=\chi_{q}(l)$ . If $j=1,$ $\left(\begin{array}{ll}1 & 1\\ & q\end{array}\right)W_{q}=$

$\sigma_{2}W_{q}\left(q & 1\right)$ with $\sigma_{2}\in\Gamma$ and $\pi(\sigma_{2})=q^{2}\rho-Q\zeta$ , so that $\chi(\pi(\sigma_{2}))=x_{Q}(q)$ . Hence we
have

(14) $f|T(q, x)\circ W_{q}=q^{k/2-1}\sum_{=J1}^{q-1}f|\left(\begin{array}{ll}1 & j\\ & q\end{array}\right)W_{q}$

$=q^{k/2-1}\sum_{n=1}^{\infty}a_{n}$ $\{ \sum_{l=1}^{q-1}\chi_{q}(l)e^{2\pi i(nl/q)}\}e^{2\pi inz}$

$+q^{k-1}x_{Q}(q)\lambda_{q}\sum_{n=1}^{\infty}a_{n}^{(q)}e^{2\pi inqz}$ .

We must here consider two cases. If $\chi_{q}$ is a primitive character mod $q(i$ . $e$ . $q$

divides the conductor of $\chi$ ), then $\sum_{\iota=1}^{o-1}\chi_{q}(l)e^{2\pi i(nl/q)}=C(\chi_{q})\overline{\chi}_{q}(n)$ , so that the right-

hand-side of (14) becomes

(15) $q^{k/2-1}C(\chi_{q})\sum_{n=1}^{\infty}\overline{x}_{q}(n)a_{n}e^{2\pi inz}+q^{k-1}x_{Q}(q)\lambda_{q}\sum_{n=1}^{\infty}a_{n}^{(q)}e^{2\pi inqz}$

If $\chi_{q}$ is a principal character mod $q$ ( $i$ . $e$ . $q$ does not divide the conductor of $\chi$ ),

then $\sum_{\iota=1}^{q-1_{-}}\chi_{q}(l)e^{2\pi i(nl/q)}=q-1$ or $-1$ according as $q|n$ or not, so that (14) is equal

to

(16) $-q^{k/2- 1}\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}\frac{1}{\{?}\sum_{n=1}^{\infty}\{q^{k/2}a_{nq}+q^{k- 1}x_{Q}(q)\lambda_{q}a_{n}^{(q)}\}e^{2\pi inqz}$

On the other hand,

(17) $f|T(q, \chi)\circ W_{q}=a_{q}f|W_{q}=a_{q}\lambda_{q}\sum_{n=1}^{\infty}a_{n}^{(q)}e^{2\pi inz}$

Comparing (15) and (16) with (17) in the coefficients of $e^{2\pi iz}$ and also $e^{2\pi iqz}$ , we
obtain (13) and so forth. $q$ . $e$ . $d$ .

For a general $W_{q}=\left(\begin{array}{ll}q\xi & \eta\\ N\zeta & q\rho\end{array}\right)$ , it holds that $ W_{q}=\sigma$( $ qN\eta\zeta$ $q\xi\rho 1$) with $\sigma\in\Gamma$ ,

and $\pi(\sigma)=q\rho-Q\zeta$ , hence it can be seen that the value $\lambda$ in $f|W_{q}=\lambda f^{(q)}$ is
equal to $\chi(q\rho-Q\zeta)\lambda_{q}$ , where $\lambda_{q}$ is given by (13). Moreover, for a general divisor
$M$ of $N$, we can compute the value $\lambda$ of (12) inductively by means of the
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relation $W_{M}=W_{M},W_{M}$ for $M=M^{\prime}M^{W}$ . In fact, we can prove the following by
induction with respect to the number of prime factors of $M$, but we shall
omit the detail.

THEOREM 2. Let $f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}(a_{1}=1)$ be a new form of $S_{k}(N, \chi)$ . For

each decompOsitjOn $N=MM_{1}$ , define $W_{M}$ and $f^{(M)}(z)$ by (2) and (11), respectively.
Then $f|W_{M}=\lambda f^{(w}$ and $\lambda$ is given by

$\lambda=x(M\rho-M_{1}\zeta)\prod_{q|M}\{\chi_{q}(M/q)\lambda_{q}\}$ ,

where $\lambda_{q}$ is the value given by (13).
If we take $\omega_{\kappa}$ of (1) instead of $W_{M}$ , we can put $\chi_{M}(\kappa_{1})\chi_{M_{1}}(M\kappa_{2})$ for

$\chi(M\rho-M_{1}\zeta)$ . Thus, Theorems 1 and 2 altogether give a rule to compute the
Fourier coefficients at various cusps for a new form. A similar problem for
a modular form given by a theta series of a positive definite quadratic form
has been treated by Kitaoka [6].

At the end of this section we add an immediate consequence of Lemma 3:
COROLLARY. Let $a_{q}$ be an eigen value of $T(q, \chi)$ on $S_{k}^{0}(N, \chi)$ for each

prime factor $q$ of N. Then $|a_{q}|^{2}$ is $q^{k- 1}$ or $q^{k- 2}$ according as $q$ divides the con-
ductor of $\chi$ or not. In the latter case, $a_{q}^{2}=x’(q)q^{k- 2}$ , where $\chi$ ’ is the Primitive
character associated with $\chi$ .

A similar result of this can be found in Ogg [9].

2.1. For later use, we here introduce the Eisenstein (and Epstein) series,
and we deal only with the case of $\Gamma=\Gamma_{0}(N)$ with a square-free level $N$, so
that the situation is the same as in 1.1. We also use the following notations:
$y(\sigma z)={\rm Im}\sigma z=(ad-bc)y|cz+d|^{-2},$ $J(\sigma, z)=e^{i\arg^{(cz+d)}}$ for $z=x+iy(y>0)$ , and a

real matrix $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ of positive determinant. Let $\chi$ be a character mod $N$,

then $\chi$ is naturally regarded as a character of $\Gamma$ by $\chi(\sigma)=x(\pi(\sigma))$ . Let $r$ be
an integer with the same parity of $\chi i$ . $e$ . $\chi(-1)=(-1)^{r}$ . For a cusp $\kappa=\kappa_{2}/\kappa_{1}$

of $M_{1}$ -class, an Eisenstein series at $\kappa$ is defined by

(18)
$E_{\kappa}(z, s, r, \chi)_{N}=\sum_{\sigma\in\Gamma_{\kappa}\backslash \Gamma}\chi(\sigma)J(\alpha_{\kappa}\sigma, z)^{r}y(\alpha_{\kappa}\sigma z)^{s}$

,

where $\alpha_{\kappa}$ is defined in (1), $s\in C$ with ${\rm Re} s>1$ and $\Gamma_{\kappa}$ denotes the stabilizer of
$\kappa$ in $\Gamma$ . For abbreviation we use the notation:

$E_{\kappa}(z, s, r, \chi)_{N}|\sigma=J(\sigma, z)^{\tau}E_{\kappa}(\sigma z, s, r, \chi)_{N}$ ,

for a real matrix $\sigma$ of positive determinant. We have

(19) $E_{\kappa}(z, s, r, \chi)_{N}|\sigma=7(\sigma)E_{K}(z, s, r, \chi)_{N}$ ,

for every $\sigma\in\Gamma$ , and
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(20) $E_{\kappa}(z, s, r, \chi)_{N}=M^{s}E_{\infty}(z, s, r, M\chi)_{N}|\omega_{\kappa}$ ,

where we should recall that $\omega_{\kappa}$ of (1) normalizes $\Gamma$ and its determinant is $M$,
as well as the relations (4) and (5). On the other hand, let us define another
function by

(21)
$E_{M}(z, s, r, \chi)_{N}=y^{s}\sum_{\nu/\mu}\overline{\chi}_{M}(\mu)\chi_{M_{1}}(\nu)(\mu z+\nu)^{r}|\mu z+\nu|^{-(2s+r)}$ ,

where in the summation $\nu/\mu$ runs over all cusps of $M_{1}$-class, $i$ . $e$ . $\nu/\mu\in Q^{*}$ such
that $(\mu, N)=M_{1}$ . Then by a simple computation we have

(22) $E_{M}(z, s, r, \chi)_{N}=\overline{\chi}_{M}(-\kappa_{1})\chi_{M1}(\kappa_{2})E_{\kappa}(z, s, r, \chi)_{N}$ .
Consequently we obtain

(23) $E_{M}(z, s, r, \chi)_{N}=\overline{x}_{M}(M_{1}\zeta)\chi_{M_{1}}(\rho)M^{s}E_{1}(z, s, r, Mx)_{N}|W_{M}$ ,

for an arbitrary $W_{M}$ of type (2).

In order to get the functional equation of $E_{M}(z, s, r, \chi)_{N}$ , we first treat a
case of primitive character. To avoid confusion, we replace the letters $N,$ $M$

and $\chi$ by $A,$ $B$ and $\varphi$ , respectively.
LEMMA 4. Let $\varphi$ be a primjtive character mod $A$ and let $r\in Z$ such that

$\varphi(-1)=(-1)^{r}$ . For a coprime decomposition $A=BB_{1},$ Put

(24) $E_{B}^{*}(z, s, r, \varphi)_{A}$

$=\varphi_{B}(-1)C(\varphi_{B})B^{-S-1/2}A^{(3/2)s}\pi^{-S}\Gamma(s+\frac{|r|}{2})L(2s, \varphi)E_{B}(z, s, r, \varphi)_{A}$ ,

where $L$ is the Dirichlet L-function. Then $E\mathfrak{F}(z, s, r, \varphi)_{A}$ can be analytically
continued to the whole complex $s$-plane and is entire if either $A\neq 1$ or $r\neq 0$ . In
the case $A=1$ and $r=0$ , it has two simple Poles at $s=1$ and $0$ . Moreover, $it$

satisfies the functional equation

(25) $E_{B}^{*}(z, s, r, \varphi)_{A}=E_{B_{1}}^{*}(z, 1-s, r, \varphi)_{A}$ .

PROOF. There are several ways to prove this, and it is rather well known
in a special case of $B=A$ and $B_{1}=1(e. g. [13])$ . So we assume this case, then
the general case follows immediately by operating $W_{B}$ (of level $A$) to both
sides. $q$ . $e$ . $d$ .

Now we return to the case of $N$ and $\chi$ . Let $A$ be the conductor of $\chi$ so
that $\chi_{A}$ is the primitive character $(mod A)$ associated with $\chi$ . Then we can
easily show by dePnition

(26) $E_{B}(z, s, r, \chi_{A})_{A}=\sum_{B|MB_{1}|M_{1}}E_{M}(z, s, r, \chi)_{N}$

for a decomposition $A=BB_{1}$ . In this sum, $M$ runs over all factors of $N$ with
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the condition that $M$ and the cofactor $M_{1}$ are divisible by $B$ and $B_{1}$ , respec-
tively. The number of such $M’ s$ is always that of positive divisors of $N/A$ .
Thus we have

LEMMA 5. The functional equation (25), for $\varphi=x_{A}$ , in Lemma 4 is also
valid when $E_{B}$ in (24) is replaced by the right-hand-side of (26).

Furthermore, we can get the complete system of the functional equationg
for the Eisenstein series $E_{M}’ s$ in the case of $\Gamma_{0}(N),$ $i$ . $e$ . the equation of matric
type whose size is the number of positive divisors of $N$, by operating $W_{L}$ (of

level $N$), $L|(N/A)$ , to both sides of (26), (24) and (25). For later use we restate
Lemma 5, operated by $W_{N}$ , in the convenient form in the case of the trivial
character $i$ . $e$ . $A=1$ .

LEMMA 5’. Let $\Gamma=\Gamma_{0}(N)$ with the square-free level $N$, and define

$E_{1}(z, s, r)_{N}=\sum_{\sigma\in\Gamma_{\infty}\backslash \Gamma}J(\sigma, z)^{r}y(\sigma z)^{s}$
,

and put

$E^{*}(z, s, r)_{N}=(N/\pi)^{s}\Gamma(s+\frac{|r|}{2})\zeta(2s)\{\sum_{M|N}M^{-s}E_{1}(z, s, r)_{N}|W_{M}\}$

with the Riemann zeta function $\zeta$ , then $E^{*}(z, s, r)_{N}$ can be analytically continued
to the whole complex s-plane and is entire for every non-zero integer $r$ . If $r=0$ ,
it has two simple p0les at $s=1$ and $0$ . Moreover, it satisfies the functional
equation: $E^{*}(z, s, r)_{N}=E^{*}(z, 1-s, r)_{N}$ .

2.2. It seems that so-called Rankin’s method (or convolution), as well as
Mellin’s transform, has nowadays become one of the most fundamental ways
of treating Dirichlet series and automorphic forms (see [1], [3], [8], [13], and
[14], for example). Rankin ([11]) has treated originally the cases of $SL_{2}(Z)$

and the principal congruence subgroups. The case of $\Gamma_{0}(N)$ is considered by
Ogg ([10]) on Haupt type. As an application of our argument in the preced-
ing sections we can now deal with such a general case as $f(z)$ and $g(z)$ are
new forms of arbitrarily different levels, weights and characters, under only
one condition that the least common multiple of two levels is square-free. We,
however, explain only a typical case as an example in this section.

Let $N$ be a square-free, positive integer, $\chi$ be a real, $\dot{p}rimitive$ character

mod $N$, and $f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi inz}(a_{1}=1)$ be a common eigen cusp form of all Hecke

operators on $S_{k}(N, \chi)$ . Let us put

(27) $A_{p}=a_{p^{2}}-\chi(p)p^{k-1}$ for every prime $p\nmid N$ ,

and define an Euler product $\psi(s)$ by

(28) $\psi(s)=\prod_{p}\psi_{p}(s)$ ;
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$\psi_{p}(s)=\{$

$(1-A_{p}p^{-S}+p^{2k- 2- 2S})^{-1}(1-\chi(p)p^{k- 1- S})^{-2}$ if $p\nmid N$ ,

$(1-a_{p}^{2}p^{-s})^{-1}(1-\overline{a}_{p}^{2}p^{-S})^{-1}$ if $P|N$ ,

where $p$ runs over all primes, and $s\in C$ with ${\rm Re} s>k$ . Further we put

(29) $\psi^{*}(s)=N^{s}(2\pi)^{-2s}\Gamma(s)\Gamma(s-k+1)\psi(s)$ ,

then we have the following
THEOREM 3. $\psi^{*}(s)$ can be analytically continued to the whole complex s-

Plane and is entire if $N\neq 1$ . In the case of $N=1$ , it has two simple Poles at
$s=k$ and $k-1$ . Moreover, it satisfies the functional equation $\psi^{*}(s)=\psi^{*}(2k-1-s)$ .

PROOF. Let $g(z)=f\overline{(-\overline{z})}=\sum_{n=1}^{\infty}\overline{a}_{n}e^{2\pi inz}$ , and consider an integral

$J(s_{1})=\int_{\mathcal{D}}y^{k}f(z)\overline{g(z})E^{*}(z, s_{1},0)_{N}y^{-2}dxdy$ ,

where $z=x+iy(y>0),$ $\mathcal{D}$ is a fundamental domain of $\Gamma=\Gamma_{0}(N)$ and $E^{*}(z, s_{1},0)_{N}$

is given in Lemma $5^{\prime}$ . The integral is well defined independently of a choice
of $\mathcal{D}$ , and is absolutely convergent for all $s_{1}\in C$ with possible simple poles at
$s_{1}=1$ and $0$ (see [11] or [13]). In fact, $J(s_{1})$ is entire if $N\neq 1$ , because
$\int_{\mathcal{D}}y^{k-2}f(z)\overline{g(z})dxdy=0$ , while it has simple poles at $s_{1}=1$ and $0$ if $N=1$ . Also

by means of Lemma 5’, we have

(30) $J(s_{1})=J(1-s_{1})$ .
On the other hand, $J(s_{1})=(N/\pi)^{s_{1}}\Gamma(s_{1})\zeta(2s_{1})\sum_{M|N}I_{M}(s_{1})$ with

$I_{M}(s_{1})=M^{-s_{1}}\int_{\mathcal{D}}y^{k}f(z)\overline{g(z)}\{E_{1}(z, s_{1},0)_{N}|W_{M}\}y^{-2}dxdy$ .

Since $W_{M}$ normalizes $\Gamma$ , we have

$I_{M}(s_{1})=M^{-s_{1}}\int_{\mathcal{D}}y^{k}f_{M}(z)\overline{g_{M}(z)}E_{1}(z, s_{1},0)_{N}y^{-2}dxdy$ ,

where we put $f_{M}=f|W_{M}$ , and $g_{M}=g|W_{M}$ (note $(f\overline{g})|W_{M}=(f\overline{g})|W_{M}^{-1}$). So, for
$s_{1}$ with ${\rm Re} s_{1}>1$ ,

$I_{M}(s_{1})=M^{-s_{1}}\int_{\Phi}y^{k}f_{M}(z)\overline{g_{M}(z)}\sum_{\sigma\in\Gamma_{\infty}\backslash \Gamma}y(\sigma z)^{s_{1}}y^{-2}dxdy$

$=M^{-s_{1}}\int_{0}^{\infty}\{\int_{0}^{1}f_{M}(z)\overline{g_{M}(z)}dx\}y^{s_{1}+k- 2}dy$ .

Thus we need the Fourier coefficients of $f(z)$ and $g(z)$ not only at the inPnity
but also at all cusps, and they can be obtained by means of Theorems 1 and
2. Namely, we get by putting $s=s_{1}+k-1$ ,
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$I_{M}(s_{1})=(4\pi)^{-\$}\Gamma(s)M^{-s}\overline{a}_{M}^{2}$

$\times\prod_{p|M}\{\sum_{n=0}^{\infty}\overline{a}_{p^{n}}^{2}p^{-ns}\}\prod_{p|M_{1}}\{\sum_{n=0}^{\infty}a_{p^{n}}^{2}p^{-ns}\}\prod_{p+M}\{\sum_{n=0}^{\infty}a_{p^{n}}^{2}p^{-ns}\}$ ,

where $a_{p^{n}}^{2}$ in the last factor may be replaced by $\overline{a}_{p^{n}}^{2}$ . Since $a_{pn}=a_{p}^{n}$ for $P|N$,

$\sum_{M|N}M^{-s}\overline{a}_{M}^{2}\{\prod_{p|M} [\sum_{n=0}^{\infty}\overline{a}_{p^{n}}^{2}p^{-ns}]\prod_{p|M_{1}}[\sum_{n=0}^{\infty}a_{p^{n}}^{2}p^{-ns}]\}$

$=\sum_{M|N}M^{-s}\overline{a}_{M}^{2}\{\prod_{p|M}(1-\overline{a}_{p}^{2}p^{-s})^{-1}\prod_{p|M_{1}}(1-a_{p}^{2}p^{-s})^{-1}\}$

$=\prod_{p|N}(1-p^{-2s_{1}})(1-a_{p}^{2}p^{-s})^{-1}(1-\overline{a}_{p}^{2}p^{-s})^{-1}$

For $p\nmid N$, by easy computation,

$\sum_{n=0}^{\infty}a_{p^{n}}^{2}p^{-ns}=(1-p^{-2s_{1}})(1-A_{p}p^{-s}+p^{-2s_{1}})^{-1}(1-\chi(p)p^{-s_{1}})^{-2}$

Consequently, we have
$\psi^{*}(s)=(N/\pi)^{k-1}J(s_{1})$ .

This combined with (30) completes the proof.
We would like to add an corollary of the above theorem which follows

immediately by virtue of the functional equation of Dirichlet’s $L(s, \chi)$ . Let us
define

(31) $D(s)=\prod_{p}D_{p}(s)$ ;

$D_{p}(s)=\{$

$(1-A_{p}p^{-s}+p^{2k- 2-2s})^{-1}(1-\chi(p)p^{k-1-s})^{-1}$ if $p\nmid N$ ,

$(1-a_{p}^{2}p^{-S})^{-1}(1-\overline{a}_{p}^{2}p^{-S})^{-1}$ if $p|N$ ,
and put

$R(s)=N^{s/2}\pi^{-(3/2)s}\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2})\Gamma(\frac{s-k+1+\epsilon}{2})D(s)$

with $\epsilon=(1+\chi(-1))/2$ .
COROLLARY. $R(s)$ can be analytically continued to the whole complex $s$-plane,

and satisfies the functional equation $R(s)=R(2k-1-s)$ .
On the holomorphy of $D(s)$ , there is Shimura’s work [14], though the func-

tional equation and the Euler factors at $p|N$ are not mentioned there.

2.3. Another example is an application to the case of Naganuma [8]. Let
$F$ be a real quadratic number Peld with the discriminant $N$. We assume that
$N$ is odd, while Naganuma has treated the case of prime $N$. Let $\chi$ denote the

character given by Jacobi’s symbol $(\frac{*}{N})$ , and $0$ be the ring of integers. Let

$\xi$ be a gr\"ossen-character of $F$ with trivial conductor. DePne $\kappa=\pi/$ ( $\rho$ log $\epsilon_{0}$),

where $\epsilon_{0}$ denotes the fundamental unit of $F,$ $\epsilon_{0}>1$ , and $\rho=1$ or 2 according
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to $N\epsilon_{0}=1$ or $-1$ , then at a principal ideal $\mathfrak{a}=(\alpha)$ of $\mathfrak{o},$
$\xi(\mathfrak{a})$ is given by

sgn $(Na)^{l}|a/a^{\prime}|^{im\kappa}$ for some $l=0$ or 1 and $m\in Z$ such that $l\equiv m(mod \rho)$ . The
function of Maass type corresponding to the zeta function $\zeta_{F}(s, \xi)=\sum\xi(\mathfrak{a})N\mathfrak{a}^{-\theta}$

is given by

$g(z, \xi)=C_{\xi}y^{1/2}+f\sum_{f0}\xi(\mathfrak{a})y^{1/2}K_{im\kappa}(2\pi N\mathfrak{a}y)\{e^{2mNox}+(-1)^{l}e^{-2mN\mathfrak{a}x}\}$ ,

where the constant $C_{\xi}$ is zero unless $m=0$ , and $\mathfrak{a}$ runs over all non-zero inte-
gral ideals of $\mathfrak{o}$ . We write $g|\sigma=g(\sigma z, \xi)$ for a real matrix $\sigma$ of positive deter-
minant. Then we can see that $g|\sigma=x(\sigma)g$ for every $\sigma\in\Gamma=\Gamma_{0}(N)$ and $g|W_{N}$

$=g$ for a suitably chosen $W_{N}$ . To prove this, there are at least two different
ways: by theta series or by Weil’s criterion*).

Furthermore by a similar argument to \S 1 (Theorems 1 and 2), or by using
the transformation formula of theta series, we can obtain the following

LEMMA 6. For a suitably chosen $W_{M}$ for each decompOsitiOn $N=MM_{1}$ , it
holds that

$g(z, \xi)|W_{M}=\epsilon_{M}g^{(M)}(z, \xi)$ ,

where $e_{M}=1$ or $i$ according to $M\equiv 1$ or 3 (mod4), and $g^{(M)}$ is given by

$g^{(M)}(z, \xi)=C_{\xi\psi u}y^{1/2}+\sum_{0\neq 0}\psi_{M}\xi(\mathfrak{a})y^{1/2}K_{im\kappa}(2\pi N\mathfrak{a}y)\{e^{2\pi iN\mathfrak{a}x}+(\frac{-1}{M})(-1)^{l}e^{-2\pi iN\mathfrak{a}x}\}$ .

In the above, we denote by $\psi_{M}(\mathfrak{a})$ the genus character corresponding to $N=MM_{1}$ ,

that is, $\psi_{M}(\mathfrak{p})$ is a non-zero value of either $(\frac{N\mathfrak{p}}{M})$ or $(\frac{N\mathfrak{p}}{M_{1}})$ for each prime

ideal $\mathfrak{p}$ . It should be also noticed that $\psi_{M}(\mathfrak{p})$ is $\chi_{M}(N\mathfrak{p})$ if $\mathfrak{p}\nmid M$ and $x_{M_{1}}(N\mathfrak{p})$ if
$\mathfrak{p}\nmid M_{1}$ by using the notation in 1.1.

Now we take an arbitrary cusp form $f(z)$ in $S_{k}(N, \chi)$ and put

$f(z)|W_{M}=\sum_{n=1}^{\infty}A_{M}(n)e^{2\pi inz}$

for each divisor $M$ of $N$, with $W_{M}$ as in Lemma 6. For each integral ideal $\mathfrak{a}$

of $\mathfrak{o}$ , we put
$C(\mathfrak{a})=\sum_{M|N}C_{M}(\mathfrak{a})$ ;

$C_{M}(\mathfrak{a})=\epsilon_{M}^{-1}M^{(k- 1)/2}(\frac{M_{1}}{M})\psi_{M}(\mathfrak{a})\sum_{d|\mathfrak{a}}d^{k- 1}A_{M}(\frac{N\mathfrak{a}}{d^{2}M})$ ,

where $d$ runs over all rational positive integers containing $\mathfrak{a}$ , and $A_{M}(r)=0$ for
non-integral $r$.

By these preparations and after some lengthy but quite similar computa-

$*)$ A precise description of the proof by Weil’s criterion can be found in S. Naka-
moto’s master thesis, Univ. of Tokyo, 1974.
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tion as in 2.2., we have
THEOREM 4. Define a Dirichlet series $D(s, \xi)$ over $F$ by

$D(s, \xi)=\sum_{a\neq 0}\xi(\mathfrak{a})C(\mathfrak{a})N\mathfrak{a}^{-s}$ ,

then,
(i) $D(s, \xi)$ can be continued to an entire function on the whole complex

s-plane and satisfies the functional equation $D^{*}(s, \xi)=D^{*}(k-s, \xi)$ , where we put
$D^{*}(s, \xi)=N^{s}(2\pi)^{-s}\Gamma(s+im\kappa)\Gamma(s-im\kappa)D(s, \xi)$ .

(ii) If $f(z)$ is a new form and $\xi$ is the trivial character $\xi_{0},$ $D(s, \xi_{0})$ splits
as follows:

$D(s, \xi_{0})=\sum_{n=1}^{\infty}A_{1}(n)n^{-s}\cdot\sum_{n=1}^{\infty}A_{1}\overline{(n})n^{-s}$

By virtue of (i) we are convinced that the Dirichlet series $D(s, \xi_{0})$ is associated
with a Hilbert modular cusp form of weight $k$ with respect to $GL_{2}(0)$ .
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Added in proof. After the preparation of this paper, Professor K. Doi
has informed the author that a similar result of Theorem 4 has been also
obtained by Don Zagier in his recent article: Modular forms associated to real
quadratic fields. His method is quite different from the author’s.
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