J. Math. Soc. Japan Vol. 28, No. 1, 1976

Tensor products of C(X)-spaces and their conjugate spaces

By Sadahiro SAEKI

(Received Aug. 28, 1974)

For any locally compact (Hausdorff) space X, we denote by C(X) and $C_0(X)$ the Banach algebra of all bounded continuous functions on X and the ideal of those $f \in C(X)$ which vanish at infinity, respectively. Thus the conjugate space $C_0(X)'$ of $C_0(X)$ can be identified with the space M(X) of all bounded regular measures on X. Now let X_1, \dots, X_N be finitely many locally compact spaces, and X the product space thereof. Given a Banach space B, we consider

$$V_0(X) \widehat{\otimes} B = C_0(X_1) \widehat{\otimes} \cdots \widehat{\otimes} C_0(X_N) \widehat{\otimes} B,$$

the (complete) projective tensor product of $C_0(X_1)$, \cdots , $C_0(X_N)$, and B (cf. [10]). Notice that the Banach space $V_0(X) \otimes B$ can be regarded as a linear subspace of C(X:B), the space of all *B*-valued bounded continuous functions on *X*.

The main purpose of this paper is to prove that, under a certain condition on B', the space $(V_0(X) \widehat{\otimes} B)'$ has a natural decomposition which is similar to the well-known decomposition $M(X) = M_c(X) + M_d(X)$. As a special case of this result it is shown that M(X) is norm-dense in $V_0(X)'$ if and only if all except at most one X_j are residual (i.e., contain no perfect sets). We also give an application of the latter result to the study of Fourier restriction algebras.

Let $V_0(X) \widehat{\otimes} B$ be as above. Then $V_0(X) \widehat{\otimes} B$ has a natural Banach V(X)module structure, where $V(X) = C(X_1) \widehat{\otimes} \cdots \widehat{\otimes} C(X_N) \subset C(X)$:

$$(\phi F)(x) = \phi(x)F(x)$$
 $(\phi \in V(X), F \in V_0(X) \widehat{\otimes} B, x \in X).$

We define the product $\phi P \in (V_0(X) \widehat{\otimes} B)'$ of a $\phi \in V(X)$ and a $P \in (V_0(X) \widehat{\otimes} B)'$ by setting

$$\langle F, \phi P \rangle = \langle \phi F, P \rangle \quad \forall F \in V_0(X) \widehat{\otimes} B.$$

Notice that the imbedding $V_0(X) \subset V(X)$ is isometric. We also define the Xsupport of P, $S_X(P)$, to be the smallest closed subset S of X such that $\langle F, P \rangle$ =0 whenever $F \in V_0(X) \otimes B$ and F=0 on some neighborhood of S (cf. [5; p. 31]).

DEFINITIONS. Let $P \in (V_0(X) \widehat{\otimes} B)'$ be given.

(a) We call P point-mass-like if $S_X(P)$ is either a singleton or empty.

(b) We call P discrete if it belongs to the closed linear span of all pointmass-like elements in $(V_0(X)\widehat{\otimes}B)'$.

(c) We say that P is *continuous* at a point $x \in X$ if to each $\varepsilon > 0$ there corresponds a neighborhood W of x such that

$$\phi \in V(X)$$
 and $\operatorname{supp} \phi \subset W \implies ||\phi P|| \leq \varepsilon ||\phi||_{V(X)}$.

The element P is called *continuous* (on X) if it is continuous at every point of X.

Finally we introduce the following property of a Banach space A:

For any sequence $(P_n)_1^\infty$ of elements of A with norms ≥ 1 and any $0 < R < \infty$ there exist finitely many complex numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ of absolute values ≤ 1 such that

$$\|\alpha_1 P_1 + \alpha_2 P_2 + \cdots + \alpha_n P_n\|_A > R.$$

Our main result is stated as follows.

THEOREM 1. Let B be a Banach space whose conjugate space B' has Property (\mathcal{P}) , and let $P \in (V_0(X) \widehat{\otimes} B)'$ be given.

(i) P can be uniquely written as $P=P_c+P_d$, where $P_c \in (V_0(X)\widehat{\otimes}B)'$ is continuous and $P_d \in (V_0(X)\widehat{\otimes}B)'$ is discrete. Moreover, $||P_d|| \leq ||P||$.

(ii) There exists a unique family $\{P_x : x \in X\} \subset (V_0(X) \widehat{\otimes} B)'$, with $S_x(P_x) \subset \{x\} \quad \forall x \in X$, such that

$$\lim_{\mathcal{F}} \|P_d - \sum_{x \in E} P_x\| = 0$$

Here \mathcal{F} denotes the directed family of all finite product subsets E of X.

To prove this, we need a lemma.

LEMMA 1. Let B be as in Theorem 1. Let also $P \in (V_0(X) \widehat{\otimes} B)'$ and $x \in X$ be given. Then there exists a unique $P_x \in (V_0(X) \widehat{\otimes} B)'$ with the following property: to each $0 < \varepsilon < 1$ there corresponds a neighborhood W of x such that $\|\phi P - P_x\| \leq \varepsilon \|\phi\|_{V(X)}$ whenever $\phi \in V(X)$, supp $\phi \subset W$, and $\phi(x) = 1$.

PROOF. Write $x = (x_1, x_2, \cdots, x_N)$,

$$E_j = E_j(x) = X_1 \times \cdots \times X_{j-1} \times \{x_j\} \times X_{j+1} \times \cdots \times X_N,$$

and $E = E(x) = E_1 \cup \cdots \cup E_N$.

We first prove that given $\varepsilon > 0$ there exists a neighborhood U of x such that

(1)
$$\phi \in V(X) \text{ and } \operatorname{supp} \phi \subset U \setminus E \implies \|\phi P\| \leq \varepsilon \|\phi\|_{V(X)}.$$

Suppose this is false. Then there exists $\varepsilon > 0$ such that (1) does not hold for any neighborhood U of x. We shall construct a sequence $(\phi^{(n)})_1^{\infty}$ of elements of $V_0(X)$ as follows. Put $\phi^{(0)}=0$, and suppose that $\phi^{(0)}, \dots, \phi^{(n-1)}$ have been

 (\mathcal{P})

defined for some natural number n so that $\operatorname{supp} \phi^{(k)}$ is compact and is disjoint from E $(0 \le k < n)$. Choose any compact (product) neighborhood $U = U^{(n)} = U_1 \times \cdots \times U_n$ of x such that

(2)
$$U_j \cap \pi_j[\operatorname{supp} \phi^{(k)}] = \emptyset \qquad (1 \le j \le N, \ 0 \le k < n).$$

Here each π_j is the natural projection from X onto X_j . Since (1) is assumed not to hold, we can find a $\phi = \phi^{(n)} \in V(X)$ such that

(3)
$$\operatorname{supp} \psi \subset (\operatorname{int} U) \setminus E, \ \|\psi\|_{V(X)} < 1, \ \text{and} \ \|\psi P\| > \varepsilon.$$

By (2) and the definition of V(X), we may assume that ϕ has the form $\phi = \phi_1 \otimes \cdots \otimes \phi_N$ with $\phi_j \in C_0(X_j)$, $1 \leq j \leq N$. Therefore, by (3) and the definition of $V_0(X) \otimes B$, there exists an element

$$F^{(n)} = f_1^{(n)} \otimes \cdots \otimes f_N^{(n)} \otimes b^{(n)} \in V_0(X) \widehat{\otimes} B$$

such that

(4)
$$\operatorname{supp} F^{(n)} \subset U \setminus E, |\langle F^{(n)}, P \rangle| > \varepsilon,$$

(5)
$$\|f_{j}^{(n)}\|_{\infty} = 1 = \|b^{(n)}\|_{B}$$
 $(1 \le j \le N)$

Set $\phi^{(n)} = f_1^{(n)} \otimes \cdots \otimes f_N^{(n)}$, which completes the induction.

We now prove that

(6)
$$\|\sum_{k=1}^{n} \alpha_{k} \phi^{(k)}\|_{V_{0}(X)} \leq 1$$

for all $n \in N$, and all complex numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ of absolute values ≤ 1 . First choose any complex numbers β_k with $\beta_k^N = \alpha_k$, $1 \leq k \leq n$, and notice that $f_j^{(1)}, f_j^{(2)}, \dots, f_j^{(n)}$ have disjoint supports by (2) and (4), $1 \leq j \leq N$. Since $|\beta_k| \leq 1$, it follows from (5) that

(7)
$$\|\sum_{k=1}^{n} \omega_k \beta_k f_j^{(k)}\|_{\infty} \leq 1 \qquad \forall \omega_k \in C, \ |\omega_k| \leq 1, \ 1 \leq k \leq n$$

for all j. On the other hand, we have

(8)
$$\begin{cases} \sum_{k=1}^{n} \alpha_{k} \phi^{(k)} \\ = N^{-n} \sum_{\omega} (\sum_{k=1}^{n} \omega_{k} \beta_{k} f_{1}^{(k)}) \otimes \cdots \otimes (\sum_{k=1}^{n} \omega_{k} \beta_{k} f_{N}^{(k)}), \end{cases}$$

where the last sum is taken over all *n*-tuples $\omega = (\omega_1, \omega_2, \dots, \omega_n)$ of complex numbers with $\omega_k^N = 1$ $(1 \le k \le n)$. We conclude from (7) and (8) that (6) holds.

Now define a $\Phi_k \in B'$ by setting

(9)
$$\langle b, \Phi_k \rangle = \langle \phi^{(k)} \otimes b, P \rangle \quad \forall b \in B$$

for each $k=1, 2, \cdots$. Since $F^{(k)} = \phi^{(k)} \otimes b^{(k)}$, we have $\| \boldsymbol{\Phi}_k \|_{B'} > \varepsilon$ by (4), (5) and

S. SAEKI

(9). Since B' has Property (\mathcal{P}) , it follows that there are finitely many complex numbers $\alpha_1, \alpha_2, \cdots, \alpha_n$ of absolute values ≤ 1 and an element $b \in B$, with norm ≤ 1 , such that

(10)
$$|\langle b, \sum_{k=1}^{n} \alpha_{k} \Phi_{k} \rangle| > ||P||.$$

We infer from (9) and (10) that

(11)
$$|\langle (\sum_{k=1}^{n} \alpha_{k} \phi^{(k)}) \otimes b, P \rangle| > ||P||,$$

which contradicts (6) since b has norm ≤ 1 . We have thus established (1).

Next we prove that given $\varepsilon > 0$, there exists a neighborhood W of x such that

(12)
$$\operatorname{supp} \phi \subset W_{\varepsilon} \text{ and } \phi(x) = 0 \implies ||\phi P|| \leq \varepsilon ||\phi||_{V(X)}$$

whenever $\phi \in V(X)$. Notice that this is an easy consequence of (1) if N=1. So, assume that $N \ge 2$ and the desired conclusion is true with N replaced by N-1. Given $\varepsilon > 0$, choose a compact neighborhood U_{ε} of x as in (1). Also fix any $\phi_{\varepsilon} \in V(X)$ such that $\operatorname{supp} \phi_{\varepsilon} \subset U_{\varepsilon}$ and $\|\phi_{\varepsilon}\|_{V(X)} = 1 = \phi_{\varepsilon}$ in some neighborhood $V_{\varepsilon} \subset U_{\varepsilon}$ of x. Let \mathcal{K} be the directed family of all compact subsets of $X \setminus E = (X_1 \setminus \{x_1\}) \times \cdots \times (X_N \setminus \{x_N\})$. With each $K \in \mathcal{K}$ we shall associate an element $\phi_K \in V(X)$ such that $\|\phi_K\|_{V(X)} = 1 = \phi_K$ on K and $(\operatorname{supp} \phi_K) \cap E = \emptyset$. Then

$$\|\phi_{K}\psi_{\varepsilon}P\| \leq \varepsilon \|\phi_{K}\psi_{\varepsilon}\|_{V(X)} \leq \varepsilon$$

by (1). Therefore, for each fixed $\varepsilon > 0$, the net $\{\phi_K \phi_\varepsilon P : K \in \mathcal{K}\}$ has a weak-* cluster point $Q_\varepsilon \in (V_0(X) \otimes B)'$ with $||Q_\varepsilon|| \leq \varepsilon$. It is easy to see that $R_\varepsilon = \phi_\varepsilon P - Q_\varepsilon$ is supported by E. Moreover, we claim that R_ε has a decomposition of the form $R_\varepsilon = R_1 + \cdots + R_N$, where the X-support of R_j is contained in E_j $(1 \leq j \leq N)$. In fact, first consider the elements of $(V_0(X) \otimes B)'$ of the form $(f_1 \otimes 1 \otimes \cdots \otimes 1) R_\varepsilon$ with $f_1 \in C_0(X_1)$ and $||f_1||_\infty = 1 = f_1(x_1)$. Let R_1 be any weak-* cluster point of such elements as $\operatorname{supp} f_1$ approaches x_1 . Then obviously $R_\varepsilon - R_1$ is supported by $E_2 \cup \cdots \cup E_N$. It suffices to repeat this process with R_ε and x_1 replaced by $R_\varepsilon - R_1$ and x_2 , respectively, and so on. Notice that each R_j can be regarded as an element of $(V_0(Y_j) \otimes B)'$, where $Y_j = X_1 \times \cdots \times X_{j-1} \times X_{j+1} \times \cdots \times X_N$. It follows from the inductive hypothesis that the required condition holds for every R_j , and hence for R_ε . Finally we choose a neighborhood $W_\varepsilon \subset V_\varepsilon$ of xso that (12) holds with P replaced by R_ε . If $\phi \in V(X)$ and $\operatorname{supp} \phi \subset W_\varepsilon$, then $\phi \phi_\varepsilon = \phi$ and so

$$\|\phi P\| = \|\phi \psi_{\varepsilon} P\| = \|\phi R_{\varepsilon} + \phi Q_{\varepsilon}\|$$
$$\leq \varepsilon \|\phi\|_{V(X)} + \|\phi\|_{V(X)} \|Q_{\varepsilon}\| \leq 2\varepsilon \|\phi\|_{V(X)}$$

This establishes (12) with ε replaced by 2ε .

36

Now let $\varepsilon > 0$ be given, and let W_{ε} be any neighborhood of x as in (12). If $\phi = \phi'$ and $\phi'' \in V(X)$ satisfy supp $\phi \subset W_{\varepsilon}$ and $\phi(x) = 1$, then

(13)
$$\|\phi' P - \phi'' P\| = \|(\phi' - \phi'')P\| \leq \varepsilon (\|\phi'\|_{V(X)} + \|\phi''\|_{V(X)})$$

by (12). Since $\varepsilon > 0$ is arbitrary and W_{ε} can be taken arbitrarily small, it follows from (13) that there exists a point-mass-like element $P_x \in (V_0(X) \widehat{\otimes} B)'$ such that

$$\|\phi P - P_x\| \leq \varepsilon (\|\phi\|_{V(X)} + 1) \leq 2\varepsilon \|\phi\|_{V(X)}$$

whenever $\phi \in V(X)$, $\phi(x)=1$, and $\operatorname{supp} \phi \subset W_{\varepsilon}$. This completes the proof, since the uniqueness of P_x is obvious.

PROOF OF THEOREM 1. Let B and \mathcal{F} be as in Theorem 1, and let $P \in (V_0(X) \widehat{\otimes} B)'$ be given. With each $x \in X$ we associate a point-mass-like element $P_x \in (V_0(X) \widehat{\otimes} B)'$ as in Lemma 1.

We first prove that

(1)
$$\|\sum_{x \in E} P_x\| \leq \|P\| \quad \forall E \in \mathcal{F}.$$

Fix any $E \in \mathcal{F}$. Given a neighborhood U of E, we can find a $\phi \in V_0(X)$ such that supp $\phi \subset U$, $\|\phi\|_{V(X)} = 1$, and $\phi = 1$ on E, since E is a compact product set. If U is sufficiently small and ϕ is as above, then we have by Lemma 1

$$\|\phi P - \sum\limits_{x \in \mathcal{E}} P_x\| < arepsilon$$
 ,

where ε is an arbitrary, but preassigned, real positive number. Since $\|\phi P\| \leq \|P\|$, this establishes (1).

To complete the proof, it clearly suffices to confirm that the net $\sum_{E} P_x$, $E \in \mathcal{F}$, converges to some element of $(V_0(X) \widehat{\otimes} B)'$. (Then the other assertions of the theorem can be proved very easily.) Notice that each P_x is written as $P_x = \delta_x \otimes \Phi_x$ for a unique $\Phi_x \in B'$, where δ_x is the unit point-mass at x.

Let $(X_j)_d$ be the set X_j with the discrete topology, and $Y_j = (X_j)_d \cup \{p_j\}$ its one-point compactification $(1 \le j \le N)$. We consider

$$V(Y) \widehat{\otimes} B = C(Y_1) \widehat{\otimes} \cdots \widehat{\otimes} C(Y_N) \widehat{\otimes} B.$$

By the above remark, we can identify each P_x with $\delta_x \otimes \Phi_x \in (V(Y) \otimes B)'$. Then the linear span of all point-mass-like elements in $(V_0(X) \otimes B)'$ can be isometrically imbedded in $(V(Y) \otimes B)'$. Therefore (1) assures that the net under consideration has a weak-* cluster point $Q \in (V(Y) \otimes B)'$.

Suppose for a moment that Q is discrete and let $\varepsilon > 0$ be given. Then there exists a finitely supported element $R \in (V(Y) \widehat{\otimes} B)'$ such that $||Q-R|| < \varepsilon$. We can define the restriction R' of R to $X \subset Y$ in the obvious way. If $E \in \mathcal{F}$ contains the Y-support of R', then we have

(2)
$$\|\sum_{x\in E}Q_x - R'\| = \|\sum_{x\in E}(Q-R)_x\| \leq \|Q-R\| < \varepsilon$$
.

This follows from (1) with X and P replaced by Y and Q-R, respectively. On the other hand, it is obvious that $Q_x = P_x$ for all $x \in X$, since every point of X is isolated in Y. Therefore (2) implies that the net $\sum_E P_x$, $E \in \mathcal{F}$, forms a Cauchy net in $(V_0(Y) \otimes B)'$ and hence in $(V_0(X) \otimes B)'$. This completes the proof, provided that Q is discrete.

Consequently, in order to reach the desired conclusion, it suffices to prove that every $Q \in (V(Y) \otimes B)'$ is discrete. We do this by induction on N. Fix Q and $\varepsilon > 0$. Since Y is totally disconnected, it follows from Lemma 1 that there exists a clopen neighborhood $U = U_1 \times \cdots \times U_N$ of $p = (p_1, \cdots, p_N) \in Y$ such that

$$\|\xi_U Q - Q_p\| < \varepsilon,$$

where ξ_U denotes the characteristic function of U. Write

$$Y^{j} = Y_{1} \times \cdots \times Y_{j-1} \times (Y_{j} \setminus U_{j}) \times Y_{j+1} \times \cdots \times Y_{N}$$

for $1 \leq j \leq N$. These sets are clopen in Y and cover $Y \setminus U$. Therefore we can write $(1-\xi_U)Q=R_1+\cdots+R_N$, where $R_j \in (V(Y) \otimes B)'$ has Y-support $\subset Y^j$, $1 \leq j \leq N$. Notice that each $Y_j \setminus U_j$ is a finite set, since p_j is the only one (possible) accumulation point in Y_j . If N=1, this implies that $(1-\xi_U)Q$ is finitely supported. If $N \geq 2$ and if we assume the result for N-1, it follows that every R_j is a finite sum of discrete elements and is therefore a discrete element. Finally, we have

(4)
$$||Q - (Q_p + R_1 + \dots + R_N)|| = ||\xi_U Q - Q_p|| < \varepsilon$$

by (3). Since $\varepsilon > 0$ is arbitrary, this yields the desired conclusion.

THEOREM 2. Suppose that at least one of the spaces X_j is infinite. Then the linear span of all continuous and discrete elements of $(V_0(X) \widehat{\otimes} B)'$ is dense in $(V_0(X) \widehat{\otimes} B)'$ if and only if B' satisfies (\mathcal{P}) .

PROOF. One direction of the above assertion is a trivial consequence of Theorem 1. To prove the non-trivial part, we may assume N=1.

Suppose that B' does not satisfy (\mathcal{P}) , but that the linear span of all discrete and continuous elements is dense in $(C_0(X)\widehat{\otimes}B)'$. Then there exist a finite constant C and a sequence $(\Phi_k)_1^{\infty}$ of elements of B' such that

(1)
$$\| \boldsymbol{\Phi}_k \|_{B'} \ge 1 \quad \forall k \in N, \text{ and } \| \sum_{k=1}^n \alpha_k \boldsymbol{\Phi}_k \|_{B'} \le C \sup_k |\alpha_k|$$

for all finite sequences $\alpha_1, \dots, \alpha_n$ of complex numbers. The space X contains

Define

(2)
$$P_n = \sum_{k=1}^n \delta_{x_k} \otimes \Phi_k \in (C_0(X) \,\widehat{\otimes} \, B)'$$

for all $n \in \mathbb{N}$. It is an easy consequence of (1) that $(P_n)_1^{\infty}$ is a bounded sequence in $(C_0(X) \widehat{\otimes} B)'$. Let $P \in (C_0(X) \widehat{\otimes} B)'$ be any weak-* cluster point of $(P_n)_1^{\infty}$. Obviously P is supported by \overline{E} , and

(3) the X-support of
$$P-P_n \subset \overline{E} \setminus \{x_k\}_1^n$$

for all *n*. By one of the assumptions, there exist a continuous element Q and a discrete element $R \in (V_0(X) \widehat{\otimes} B)'$ such that ||P-Q-R|| < 1/3. We may assume that the X-support of Q is contained in a finite set $F \subset X$. Choose any $m \in N$ so that $F \cap E \subset \{x_k\}_1^m$, and let R' be the "restriction" of R to $F \cap E$. Since Qis a continuous element, it follows from (3) that

(4)
$$||P_n - R'|| \leq 1/3 \qquad \forall n \geq m.$$

The proof of this fact is similar to that of (1) in the proof of Theorem 1. But (4) implies

$$\| \boldsymbol{\Phi}_{n} \|_{B'} = \| \delta_{x_{n}} \otimes \boldsymbol{\Phi}_{n} \| = \| P_{n} - P_{n-1} \|$$
$$\leq \| P_{n} - R' \| + \| P_{n-1} - R' \| \leq 2/3$$

for all n > m+1. This contradicts (1), and the proof is complete.

The following result must be well-known. Since we do not know any adequate reference about it, we give a complete proof.

LEMMA 2. Let $(S, \mathcal{B}, \lambda)$ be a measure space, and $M(S) = M(S, \mathcal{B})$ the Banach space of all countably additive complex measures on \mathcal{B} . Then M(S) and all the spaces $L^p = L^p(S, \mathcal{B}, \lambda), 1 \leq p < \infty$, have Property (\mathcal{P}) .

PROOF. Let $1 \leq p < \infty$, and $f_1, \dots, f_n \in L^p$. Let also $\mathcal{Q} = \mathcal{Q}_n$ be the set of all *n*-tuples $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ of ± 1 . For any function ϕ on \mathcal{Q} , define

$$\mathcal{E}(\phi) = 2^{-n} \sum_{\varepsilon \in \mathcal{Q}} \phi(\varepsilon)$$
.

Then we have

(1)
$$(\mathcal{E} \mid \sum_{k=1}^{n} \varepsilon_{k} f_{k} \mid ^{p})^{1/p} \leq C_{p} \mathcal{E} \mid \sum_{k=1}^{n} \varepsilon_{k} f_{k} \mid$$

for some absolute constant C_p depending only on p (see Theorem (8.4) of Chap. V of [13: p, 213]); we need (1) only for p=2.

First suppose $1 \leq p \leq 2$. Then we have

(2)
$$\sum_{k=1}^{n} |f_{k}|^{p} \leq n^{(2-p)/2} (\sum_{k=1}^{n} |f_{k}|^{2})^{p/2}$$

by Hölder's inequality. Hence

$$n^{-(p-1)/p} \sum_{k=1}^{n} \|f_{k}\|_{p} \leq \left(\sum_{k=1}^{n} \int |f_{k}|^{p} d\lambda\right)^{1/p} \quad \text{by Hölder}$$

$$\leq n^{(2-p)/2p} \left\{ \int \left(\sum_{k=1}^{n} |f_{k}|^{2}\right)^{p/2} d\lambda \right\}^{1/p} \quad \text{by (2)}$$

$$= n^{(2-p)/2p} \left\{ \int (\mathcal{C}|\sum_{k=1}^{n} \varepsilon_{k}f_{k}|^{2})^{p/2} d\lambda \right\}^{1/p}$$

$$\leq C_{2} n^{(2-p)/2p} \left\{ \int (\mathcal{C}|\sum_{k=1}^{n} \varepsilon_{k}f_{k}|)^{p} d\lambda \right\}^{1/p} \quad \text{by (1)}$$

$$\leq C_{2} n^{(2-p)/2p} \mathcal{C} \|\sum_{k=1}^{n} \varepsilon_{k}f_{k}\|_{p} \quad \text{by Minkowski.}$$

Therefore, we have

(3)
$$n^{-1/2} \sum_{k=1}^{n} \|f_k\|_p \leq C_2 \|\sum_{k=1}^{n} \varepsilon_k f_k\|_p$$

for at least one $\varepsilon \in \Omega$, provided that $1 \leq p \leq 2$.

Next suppose $2 \leq p < \infty$. Using the inequality $\|\cdot\|_{l^p} \leq \|\cdot\|_{l^2}$, we then have

$$n^{-(p-1)/p} \sum_{k=1}^{n} \|f_{k}\|_{p} \leq \left(\int_{k=1}^{n} |f_{k}|^{p} d\lambda \right)^{1/p}$$

$$\leq \left\{ \int \left(\sum_{k=1}^{n} |f_{k}|^{2} \right)^{p/2} d\lambda \right\}^{1/p} = \left\{ \int (\mathcal{E} |\sum_{k=1}^{n} \varepsilon_{k} f_{k}|^{2})^{p/2} d\lambda \right\}^{1/p}$$

$$\leq \left\{ \int \mathcal{E} |\sum_{k=1}^{n} \varepsilon_{k} f_{k}|^{p} d\lambda \right\}^{1/p} \quad \text{by Hölder}$$

$$= \left\{ \mathcal{E} \int |\sum_{k=1}^{n} \varepsilon_{k} f_{k}|^{p} d\lambda \right\}^{1/p}.$$

Hence $2 \leq p < \infty$ imply

(4)
$$n^{-(p-1)/p} \sum_{k=1}^{n} \|f_k\|_p \leq \|\sum_{k=1}^{n} \varepsilon_k f_k\|_p$$

for at least one $\varepsilon \in \Omega$.

By (3) and (4), all the spaces L^p , $1 \le p < \infty$, have Property (\mathcal{P}). That M(S) has Property (\mathcal{P}) follows from the result for p=1 combined with the Radon-Nikodym Theorem. This completes the proof.

THEOREM 3. Let $X = X_1 \times \cdots \times X_N$ be as before $(N \ge 1)$. Then each of the following conditions implies the others:

- (i) All except at most one X_j are residual.
- (ii) M(X) is dense in $V_0(X)'$.
- (iii) $V_0(X)'$ has Property (P).

PROOF. If N=1, there is nothing to prove, since then (iii) is a special case of Lemma 2. So suppose $N \ge 2$.

We first confirm the implication $(i) \Rightarrow (ii)$. Without loss of generality, assume that X_1, X_2, \dots, X_{N-1} are residual. Put $Y = X_1 \times \dots \times X_{N-1}$ and $B = C_0(X_N)$, so that $V_0(X) = V_0(Y) \widehat{\otimes} B$ isometrically. Then the only continuous element of $(V_0(Y) \widehat{\otimes} B)'$ is the zero element, since Y is residual and the Y-support of any continuous element has no isolated point. On the other hand, $B' = M(X_N)$ has Property (\mathcal{P}) by Lemma 2. It follows from Theorem 1 that the set of all discrete elements is dense in $(V_0(Y) \widehat{\otimes} B)'$. This establishes (ii), since it is trivial that every point-mass-like element of $(V_0(Y) \widehat{\otimes} B)' = V_0(X)'$ is given by a measure in M(X).

Suppose now that at least two of the spaces X_j , say, X_1 and X_2 , contain perfect sets. We want to prove that then neither (ii) nor (iii) holds. Take a compact perfect set $K_j \subset X_j$ for j=1, 2, and put $K=K_1 \times K_2$. Then we can imbed V(K)' into $V_0(X)'$ isometrically. If N=2, this is trivial; if N>2, choose any point $x \in X_3 \times \cdots \times X_N$ and identify K with $K \times \{x\}$ in the obvious way. Notice that if M(X) is given the norm of $V_0(X)'$, then $\mu \to \mu|_K$ (or $\mu \to \mu|_{K \times \{x\}}$) is a norm-decreasing mapping from M(X) into V(K)'. Therefore, if M(X)were dense in $V_0(X)'$, then M(K) would be dense in V(K)'. Now let T be the circle group, and let $\phi_j: K_j \to T$ be any continuous surjection (j=1, 2). Then the product mapping $\phi=\phi_1\times\phi_2: K\to T^2$ induces an isometric homomorphism $f \to f \circ \phi: V(T^2) \to V(K)$ (see [5; Theorem 4.1]). Therefore we shall regard $V(T^2)$ as a closed subalgebra of V(K). Let

(1)
$$A(\mathbf{T}) \xrightarrow{M} V(\mathbf{T}^2) \xrightarrow{P} A(\mathbf{T})$$

be the mappings defined in [2]: (Mf)(x, y) = f(x+y) and $(Pg)(x) = \int_T g(x-y, y) dy$. Then M is an isometric homomorphism, P is a norm-decreasing mapping, and $P \circ M$ =identity. Consequently we have two isometric imbeddings $A(T) \subset V(T^2) \subset V(K)$. By Corollary 3.13 of [1: p. 35], there exists a $\Phi \in PM(T) = A(T)'$ such that

(2)
$$\|\boldsymbol{\Phi} - \boldsymbol{\mu}\|_{\boldsymbol{P}\boldsymbol{M}} > 1 \qquad \forall \, \boldsymbol{\mu} \in M(\boldsymbol{T}) \,.$$

Let $\tilde{\boldsymbol{\Phi}} \in V(K)'$ be any norm-preserving extension of $\boldsymbol{\Phi}$, and $\boldsymbol{\nu} \in M(K)$. If we denote by $\boldsymbol{\mu} \in PM(\boldsymbol{T})$ the restriction of $\boldsymbol{\nu}$ to $A(\boldsymbol{T})$ as a functional, then obviously $\boldsymbol{\mu} \in M(\boldsymbol{T})$, and we have

$$\|\tilde{\boldsymbol{\varphi}} - \boldsymbol{\nu}\|_{\boldsymbol{V}(K)'} \ge \|\boldsymbol{\Phi} - \boldsymbol{\mu}\|_{\boldsymbol{P}\boldsymbol{M}} > 1$$

by (2). Therefore M(K) is not dense in V(K)'. By one of the above remarks, this implies that M(X) is not dense in $V_0(X)'$. Hence (ii) \Rightarrow (i), and we have established the equivalence of (i) and (ii).

Next we prove that $V_0(X)'$ does not have Property (\mathcal{P}) under the assumption given in the above paragraph. After imbedding $V(\mathbf{T}^2)$ into V(K) as

above, we take any net $\{L_{\alpha}\}$ of norm-decreasing linear mappings from V(K) into $V(T^2)$ such that

(4)
$$\lim_{\alpha} \|L_{\alpha}f - f\|_{V(Y)} = 0 \qquad f \in V(T^2);$$

such a net exists (cf. [5; p. 28]). Let L'_{α} be the adjoint mapping of L_{α} . Since every L'_{α} has norm ≤ 1 , there exists a norm-decreasing linear mapping $L': V(T^2)' \rightarrow V(K)'$ such that

(5)
$$\lim_{\beta} \langle f, L_{\beta}^{\prime} \Phi \rangle = \langle f, L^{\prime} \Phi \rangle \quad \forall f \in V(K) \text{ and } \forall \Phi \in V(T^{2})^{\prime}$$

for some subnet $\{L_{\beta}\}$ of $\{L_{\alpha}\}$. Since the imbedding $V(\mathbf{T}^2) \subset V(K)$ is isometric, we infer from (4) and (5) that L' is an isometry. On the other hand, it is trivial that $P': PM(\mathbf{T}) \to V(\mathbf{T}^2)'$ is an isometry. Therefore, all the mappings

$$PM(\boldsymbol{T}) \xrightarrow{P'} V(\boldsymbol{T}^2)' \xrightarrow{L'} V(K)' \subseteq V_0(X)'$$

are isometries. Since $PM(\mathbf{T}) \cong l^{\infty}(\mathbf{Z})$ does not have Property (\mathcal{P}) , it follows that $V_0(X)'$ does not have (\mathcal{P}) , either. Here \mathbf{Z} denotes the group of integers. This establishes the implication (iii) \Rightarrow (i).

It only remains to prove (i) \Rightarrow (iii). Consider

(6)
$$C_0(\mathbf{Z})\widehat{\otimes} V_0(X) = C_0(\mathbf{Z})\widehat{\otimes} C_0(X_1)\widehat{\otimes} \cdots \widehat{\otimes} C_0(X_N).$$

If we assume (i), it follows from the implication (i) \Rightarrow (ii) that $M(\mathbb{Z} \times X)$ is dense in $(C_0(\mathbb{Z}) \widehat{\otimes} V_0(X))'$. Therefore $V_0(X)'$ must have Property (\mathcal{P}) by Theorem 2.

This completes the proof.

COROLLARY 1. Suppose that all the spaces X_j , $1 \leq j \leq N$, are residual. Then the second conjugate space of $V_0(X)$ is isometrically isomorphic to the Banach space of all $f \in l^{\infty}(X)$ such that

$$||f||_{\pi} = \sup_{n} ||f||_{V(E)} < \infty$$
.

Here the supremum is taken over all finite product subsets E of X.

PROOF. Notice that $M(X) = M_d(X)$ is dense in $V_0(X)'$ by hypothesis and Theorem 3.

Given $F \in V_0(X)''$, define an $f \in l^{\infty}(X)$ by setting $f(x) = \langle \delta_x, F \rangle$ for all $x \in X$. Since $M_d(X)$ is dense in $V_0(X)'$, F is completely determined by f, and we have

$$\begin{split} \|F\| &= \sup_{E} \{ |\langle \mu, F \rangle| : \mu \in M(E) \text{ and } \|\mu\|_{V(E)'} \leq 1 \} \\ &= \sup_{E} \{ \left| \int f d\mu \right| : \mu \in M(E) \text{ and } \|\mu\|_{V(E)'} \leq 1 \} \\ &= \sup_{E} \|f\|_{V(E)} = \|f\|_{\mathfrak{A}} \,. \end{split}$$

The converse part is obvious, and this completes the proof.

Notice that for any locally compact spaces X_j , a function $f \in l^{\infty}(X)$ is a multiplier of $V_0(X)$ if and only if f belongs to $V_0(X)$ locally at every point of X and $||f||_{\mathfrak{N}} < \infty$. Moreover, if f is a multiplier of $V_0(X)$, then the multiplier norm of f is equal to $||f||_{\mathfrak{N}}$. (See [12: Lemma 1.1] and [6: Theorem 4.5].) Therefore Theorems 1, 3 and Corollary 1 yield the following.

COROLLARY 2. Suppose that all the spaces X_j , $1 \leq j \leq N$, are discrete. Then we have:

(a) For each $\Phi \in V_0(X)'$,

$$\lim_{\varphi} \| \boldsymbol{\Phi} - \sum_{x \in E} \langle \boldsymbol{\xi}_{(x)}, \boldsymbol{\Phi} \rangle \delta_x \| = 0.$$

(b) $V_0(X)''$ is isometrically isomorphic to the Banach space of all multipliers of $V_0(X)$.

Now let G be a LCA group, Γ its character group, and $A(\Gamma)$ the Fourier algebra on Γ (cf. [4]). For any closed subset X of Γ , A(X) denotes the Fourier restriction algebra $A(\Gamma)|_X$ with the natural quotient norm. Let \overline{X} be the closure of X in $\overline{\Gamma}$, the Bohr compactification of Γ . We consider $A_d(\Gamma) = M_d(G)^{\hat{}} \cong A(\overline{\Gamma}), A_d(X) = A_d(\Gamma)|_X \cong A(\overline{X})$, and $A_0(X) = A_d(X) \cap C_0(X)$.

COROLLARY 3. Suppose that G is compact, and that X_1, X_2, \dots, X_N $(N \ge 1)$ are finitely many, disjoint subsets of Γ with dissociate union. Put $X = X_1 \cdot X_2 \cdot \dots \cdot X_N \subset \Gamma$, and identify X with the product space of the $X_j, 1 \le j \le N$.

- (a) Then $A(X) = V_0(X)$ and $A_0(X) \subset A(X)$.
- (b) $B(X)=M(G)^{|_X}$ is (isomorphic to) the second conjugate space of A(X).
- (c) If $\phi \in L^{\infty}(G)$ and supp $\hat{\phi} \subset X$, then

$$\lim_{\mathfrak{F}} \|\phi - \sum_{\gamma \in E} \hat{\phi}(\gamma) \gamma\|_{\infty} = 0,$$

where \mathcal{F} denotes the directed family of all finite subsets E of X of the form $E = E_1 \cdot E_2 \cdot \cdots \cdot E_N$ with $E_j \subset X_j$ for $1 \leq j \leq N$.

PROOF. That $A(X) = V_0(X)$ is an easy consequence of Theorem 3.2 in [3]. Since the proof is quite routine, we omit it. To prove $A_0(X) \subset A(X)$, first notice that $A_d(X) \subset V(X)$ by the definition of $A_d(X)$. Let Y_j be the one-point compactification of X_j , $1 \leq j \leq N$, and $Y = Y_1 \times \cdots \times Y_N$. Then $C_0(X) \subset C(Y)$, and $V(Y) \subset V(X)$ with obvious identifications. On the other hand, we have $C_0(X) \cap V(X) \subset V(Y)$ by Theorem 4.3 in [5]. Therefore

$$A_0(X) \subset C_0(X) \cap V(X) = C_0(X) \cap V(Y),$$

so that $A_0(X) \subset A(X)$, since evidently $V_0(X) = C_0(X) \cap V(Y)$. This establishes (a).

Notice that A(X)' is $L^{\infty}_{\mathbf{X}}(G) = \{ \phi \in L^{\infty}(G) : \operatorname{supp} \phi \subset X \}$, as is well-known.

Therefore part (c) is an easy consequence of part (a) combined with Corollary 2.

Part (b) follows from part (c), because B(X) is the conjugate space of $C_{\mathbf{X}}(G) = C(G) \cap L^{\infty}_{\mathbf{X}}(G)$ for any $X \subset \Gamma$.

Now let $\varepsilon > 0$ be given. A closed subset K of G is said to be a K_{ε} -set if to each $f \in C(K)$ with |f| = 1 there correspond a character $\gamma \in \Gamma$ and a complex number $c \in T = \{|z| = 1\}$ such that $|f(x) - c\gamma(x)| \leq \varepsilon$ for all $x \in K$. Although the following result is similar to Varopoulos' Theorem 4.4.1 in [11: p. 78], his proof does not work in our case.

PROPOSITION 1. Let E_1, \dots, E_N be disjoint compact subsets of a LCA group G whose union is a K_{ε} -set for some $0 < \varepsilon < (2/N) \sin(\sqrt{6}-2)$, and let $E = E_1 + \dots + E_N \subset G$. Then E is a set of bounded synthesis for A(G).

PROOF. The curious restriction for $\varepsilon > 0$ is used only to assure that every point x of E has a unique expression of the form $x = x_1 + \cdots + x_N$ with $x_j \in E_j$ $(1 \leq j \leq N)$, and that there exists a $\phi \in A(\mathbf{T})$ such that

(1)
$$\|\phi\|_{A(\mathbf{T})} = \sum_{m=-\infty}^{\infty} |\hat{\phi}(m)| = C < 1$$
, and

(2)
$$\phi(z) = z - 1$$
 if $z \in T$ and $|z - 1| < N \varepsilon$.

For the latter fact, we refer the reader to Remark (b) at the end of [9].

We prove the above assertion only for N=2, since the proof for the general case is similar. We also assume that all the sets E_j are totally disconnected, since we are only interested in this case. (However, if some of the sets E_j contain non-trivial connected sets, then the proof becomes very complicated.)

For i=1, 2 and $n \in N$, let $E_i = E_{i1} \cup \cdots \cup E_{in}$ be any partition of E_i into disjoint clopen subsets. Choose and fix 2n points $x_j \in E_{1j}$ and $y_j \in E_{2j}, 1 \leq j \leq n$. We define a linear mapping $L: PM(E) \to M_d(E)$ by setting

(3)
$$LP = \sum_{j,k=1}^{n} \hat{P}_{jk}(1) \delta_{x_j + y_j} \quad \forall P \in PM(E) ,$$

where $P_{jk} \in PM(E)$ is the part of $P \in PM(E)$ carried by $E_{1j} + E_{2k}$. Notice that the sets $E_{1j} + E_{2k}$ $(1 \leq j, k \leq n)$ are disjoint by the above remark.

We then claim that $||LP||_{PM} \leq (1-C)^{-1} ||P||_{PM}$ for all $P \in PM(E)$, where C is as in (1). To prove this, let ||L|| be the norm of L as an operator on PM(E), and notice that

(3)'
$$\widehat{LP}(\gamma^{-1}) = \sum_{j,k=1}^{n} \gamma(x_j + y_j) \widehat{P_{jk}}(1) \quad \forall \gamma \in \Gamma$$

for all $P \in PM(E)$. Fix an arbitrary $\gamma \in \Gamma$. Since E_1 and E_2 are disjoint and their union is a K_{ε} -set, there exist $\chi \in \Gamma$ and $\alpha = c^2 \in T$ such that

(4)
$$\sup \{ |\gamma(x_j+y_k)-\alpha \chi(x+y)| : x \in E_{1j}, y \in E_{2k} \} < 2\varepsilon$$

44

for all $1 \leq j$, $k \leq n$. It follows from (2) with N=2 and (4) that for each pair (j, k) we have

$$\gamma(x_j + y_k) - \alpha \chi = \alpha \chi \{ \bar{\alpha} \gamma(x_j + y_k) \bar{\chi} - 1 \}$$
$$= \sum_{m = -\infty}^{\infty} \hat{\phi}(m) \alpha^{1-m} \gamma^m (x_j + y_k) \chi^{1-m}$$

on some neighborhood of $E_{1j}+E_{2k}$. Therefore

(5)
$$|\widehat{LP}(\gamma^{-1}) - \alpha \widehat{P}(\chi^{-1})| = |\sum_{j,k=1}^{n} \langle \gamma(x_j + y_k) - \alpha \chi, P_{jk} \rangle|$$
$$\leq \sum_{m=-\infty}^{\infty} |\widehat{\phi}(m)| \cdot |\sum_{j,k=1}^{n} \langle \gamma^m(x_j + y_k) \chi^{1-m}, P_{jk} \rangle|$$
$$= \sum_{m=-\infty}^{\infty} |\widehat{\phi}(m)| \cdot |L(\chi^{1-m}P)^{\wedge}(\gamma^{-m})|$$
$$\leq \sum_{m=-\infty}^{\infty} |\widehat{\phi}(m)| \cdot ||L|| \cdot ||P||_{PM} \leq C ||L|| \cdot ||P||_{PM}.$$

Hence

(6)
$$|\hat{LP}(\gamma^{-1})| \leq (1+C||L||)||P||_{PM}$$
.

Since $\gamma \in \Gamma$ and $P \in PM(E)$ are arbitrary, (6) implies $||L|| \leq 1+C||L||$. Since C < 1, we conclude $||L|| \leq (1-C)^{-1}$.

To complete the proof, it suffices to show that given $P \in PM(E)$ and $\gamma \in \Gamma$, $\widehat{LP}(\gamma^{-1})$ approaches $P(\gamma^{-1})$ as the partitions $\{E_{ij}\}_j$ of E_i become finer and finer. Notice that $\|\phi\|_{A(\mathbf{T})}$ can be made arbitrarily small if we require (2) for a sufficiently small $\varepsilon > 0$ (cf. Lemma 1 of [7: p. 290]). Therefore we can do this easily by arguing as in (5) with $\alpha = 1$ and $\chi = \gamma$ after replacing $\phi \in A(\mathbf{T})$ by other suitable functions in $A(\mathbf{T})$.

This completes the proof.

COROLLARY 4. Suppose that G is compact, and that X_1, \dots, X_N are finitely many, disjoint subsets of Γ whose union is a K_{ε} -set for some $0 < \varepsilon <$ $(2/N) \sin(\sqrt{6}-2)$. If we put $X = X_1 \cdot X_2 \cdot \cdots \cdot X_N \subset \Gamma$, then $A(X) = A_0(X)$ and \overline{X} is a set of bounded synthesis for the algebra $A(\overline{\Gamma}) = A_d(\Gamma)$.

PROOF. By hypothesis and Theorem 3.1 of [12], we have $A_d(X) = V(X)$ and $A(X) = V_0(X)$. Since $V_0(X) = C_0(X) \cap V(X)$ as was observed in the proof of Corollary 3, we have $A(X) = A_0(X)$.

It is easy to prove that under our hypothesis the sets $\overline{X}_1, \dots, \overline{X}_N$ are disjoint and their union is an extremally disconnected K_{ε} -set in $\overline{\Gamma}$. This, combined with Proposition 1, completes the proof.

COROLLARY 5. Let G and $X \subset \Gamma$ be as in Corollary 4. Suppose $N \ge 2$ and every X_j is infinite. Then X contains a subset E such that

(i) $A(E) \subset A_0(E) \subset B_0(E) \equiv B(E) \cap C_0(E)$.

(ii) $A_0(E)$ (resp. $B_0(E)$) contains a function f such that $\Phi \circ f \in A(E)$ (resp. $\Phi \circ f \in A_0(E)$) for all non-constant entire functions Φ .

PROOF. This is an easy consequence of Theorem 2 and its proof in [8]. We omit the details.

REMARKS. Let $X = X_1 \times \cdots \times X_N$ and B be as before.

(I) If B' satisfies (\mathcal{P}) , then the set of all compactly supported elements is dense in $(V_0(X)\otimes B)'$. The proof is similar to that of Lemma 1.

(II) Suppose that B' satisifies (\mathcal{P}) , $P \in (C_0(X) \otimes B)'$, and $E \subset X$ is closed. Then there exists a unique $P_E \in (C_0(X) \otimes B)'$, with $S_X(P_E) \subset E$, having the following property: to each $\varepsilon > 0$ there corresponds a neighborhood W of E such that $\|\phi P - P_E\| \leq \varepsilon \|\phi\|_{\infty}$ whenever $\phi \in C(X)$, $\phi = 1$ on E, and $\sup \phi \subset W$.

(III) Suppose N=2. Applying (II) twice, we conclude that given $P \in V_0(X)'$ and $E=E_1 \times E_2 \subset X$ closed, there exists a unique $P_E \in V_0(X)'$, with supp $P_E \subset E$, having the following property: to each $\varepsilon > 0$ there corresponds a neighborhood W of E such that $\|\phi P - P_E\| \leq \varepsilon \|\phi\|_{V(X)}$ whenever $\phi \in V(X)$, $\phi=1$ on E, and supp $\phi \subset W$. However, no analog of this holds if $N \geq 3$, all the spaces X_j are infinite, and at least two of them contain perfect sets.

(IV) Under the hypothesis of Corollary 4, the set of all accumulation points of X in $\overline{\Gamma}$ is a set of synthesis.

(V) All the results in this paper were obtained in the last year of the author's sojourn at Kansas State University (1972-1974).

References

- [1] C.F. Dunkl and D.E. Ramirez, Topics in harmonic analysis, Appleton-Century-Crofts, New York, 1971.
- [2] S.C. Herz, Remarques sur la note précédente de M. Varopoulos, C.R. Acad. Sci. Paris, 260 (1965), 6001-6004.
- [3] E. Hewitt and H. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc., 62 (1966), 399-420.
- [4] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962.
- [5] S. Saeki, The ranges of certain isometries of tensor products of Banach spaces, J. Math. Soc. Japan, 23 (1971), 27-39.
- [6] S. Saeki, Homomorphisms of tensor algebras, Tôhoku Math. J., 23 (1971), 173-199.
- [7] S. Saeki, Tensor products of Banach algebras and harmonic analysis, Tôhoku Math. J., 24 (1972), 281-299.
- [8] S. Saeki, On restriction algebras of tensor algebras, J. Math. Soc. Japan, 25 (1973), 506-522.
- [9] S. Saeki, Infinite tensor products in Fourier algebras, submitted to Tôhoku Math. J.,
- [10] L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques.

Espaces vectoriels topologiques nucléaires. Applications, Faculté des Sciences de Paris (1953-1954).

- [11] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.
- [12] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Functional Analysis, 3 (1969), 321-335.
- [13] A. Zygmund, Trigonometric series, Vol. I, Cambridge University Press, New York, 1959.

Sadahiro SAEKI Department of Mathematics Tokyo Metropolitan University Fukazawa-cho, Setagaya-ku Tokyo, Japan