J. Math. Soc. Japan
Vol. 28, No. 1, 1976

Tensor products of ((X)-spaces and
their conjugate spaces

By Sadahiro SAEKI

(Received Aug. 28, 1974)

For any locally compact (Hausdorff) space X, we denote by C(X) and
Cy(X) the Banach algebra of all bounded continuous functions on X and the
ideal of those feC(X) which vanish at infinity, respectively. Thus the con-
jugate space Cy(X)’ of Co(X) can be identified with the space M(X) of all
bounded regular measures on X. Now let X, -+, Xy be finitely many locally
compact spaces, and X the product space thereof. Given a Banach space B,
we consider

Vi(X)QB=Cy(X)&® - RC(Xx)® B,

the (complete) projective tensor product of Cy(X,), ---, Co(Xy), and B (cf. [10]).
Notice that the Banach space V(X )®B can be regarded as a linear subspace
of C(X: B), the space of all B-valued bounded continuous functions on X.

The main purpose of this paper is to prove that, under a certain condition
on B’, the space (V(X )®B)’ has a natural decomposition which is similar to
the well-known decomposition M(X)=M (X)+ M, X). As a special case of
this result it is shown that M(X) is norm-dense in V,(X)’ if and only if all
except at most one X; are residual (i.e., contain no perfect sets). We also
give an application of the latter result to the study of Fourier restriction
algebras.

Let VO(X)®B be as above. Then VO(X)@)B has a natural Banach V(X)-
module structure, where V(X)=C(X,)® - @C(Xy)CC(X):

(P =g(F(x) ($V(X), FEVy(X)RB, xeX).

We define the product ¢P < (Vo(X)QB) of a ¢=V(X) and a Pe(V,(X)& B)
by setting
(F,$Py=(¢F, Py YFeV,(X)®B.

Notice that the imbedding V(X)CV(X) is isometric. We also define the X-
support of P, Sx(P), to be the smallest closed subset S of X such that {F, P}
=0 whenever Fe VO(X)@)B and F=0 on some neighborhood of S (cf. [5; p. 31]).
DEFINITIONS. Let P(V,(X)QB)’ be given.
(a) We call P point-mass-like if Sx(P) is either a singleton or empty.
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(b) We call P discrete if it belongs to the closed linear span of all point-
mass-like elements in (V(X )@B)’.

(c) We say that P is continuous at a point x=X if to each ¢>0 there
corresponds a neighborhood W of x such that

pcV(X) and supppCW = 6P| =Zeldlvexs-

The element P is called continuous (on X) if it is continuous at every point
of X.

Finally we introduce the following property of a Banach space A:

For any sequence (P,) of elements of A with norms =1
and any 0 < R < co there exist finitely many complex
() 1 numbers «,, «,, ---, @, of absolute values =<1 such that

leP o, Pyt -+ +a,Poll s> R

Our main result is stated as follows.
THEOREM 1. Let B be a Banach space whose conjugate space B’ has Pro-
perty (P), and let P=(V{(X)QB)' be given.
(i) P can be uniquely written as P=P,+ P, where PCE(VO(X)@)B)’ is con-
tinuous and P,e(Vo(X)®B) is discrete. Moreover, | Py <|P].
(ii) There exists a unique family {P,: xeX}C(Vo(X)®B)’, with Sx(P,)C
{x} VxeX, such that
lim |Py— > P, =0.
F xEE

Here & denotes the directed family of all finite product subsets E of X.

To prove this, we need a lemma.

LEMMA 1. Let B be as in Theorem 1. Let also P=(V(X)®B)' and xeX
be given. Then there exists a unique Pze(VO(X)@)B)’ with the following pro-
perty: to each 0<e<1 there corresponds a neighborhood W of x such that
¢ P—P,||Zellpllyx, whenever g V(X), supp pCW, and ¢(x)=1.

PROOF. Write x=(x;, X, --* Xy),

E,=E(x)=X, X -+ X X;_y X {x;} X Xji X - X Xy,

and E=E(x)=E,\J --- UEy.
We first prove that given ¢>0 there exists a neighborhood U of x such
that

ey pV(X) and suppp CUN\E = [Pl =¢ldlvexs.

Suppose this is false. Then there exists ¢>0 such that (1) does not hold for
any neighborhood U of x. We shall construct a sequence (¢*™);° of elements
of Vy(X) as follows. Put ¢‘“=0, and suppose that ¢®, .-+, ¢*"» have been
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defined for some natural number 7 so that supp ¢‘® is compact and is disjoint
from E (0=<k<mn). Choose any compact (product) neighborhood U=U™=
U;x -+ xU, of x such that

@ U,nxsupp 6P1=0 (1<j<N, 0<k<n).

Here each =#; is the natural projection from X onto X;. Since (1) is assumed
not to hold, we can find a ¢=¢ < V(X) such that

3) supp ¢ C(int UNE, |[¢lvxy <1, and [[¢P[>e.

By (2) and the definition of V(X), we may assume that ¢ has the form ¢=
01 Q- Ry with ¢;€C(X;), 1=j<N. Therefore, by (3) and the definition of
VO(X)®B, there exists an element

F(n):ffn)® vee ®f%)®b(n) = V0<X)®B

such that
4 supp FMCU\E, [{<F™, P)| >¢,
(5) [fPle=1=["]g (Q1<j=N).

Set ¢M=f"QR - Qf %, which completes the induction.
We now prove that

(®) | 3 @ Plyon =1

for all n= N, and all complex numbers «,, «,, --+, @, of absolute values =1.
First choose any complex numbers 8, with Yy =a,, 1<k =<n, and notice that
IP, P, -+, f™ have disjoint supports by (2) and (4), 1<7<N. Since |B:|<],
it follows from (5) that

Q) ”kiwkﬁkf_(ik)“wél Vo,eC, lo,)=1, 15k=n
=1

for all j. On the other hand, we have

é ak¢<k)
k=1
(®) i
=N g kﬂkfik))® - Q( 2 0B fF),
where the last sum is taken over all n-tuples w=(w,, w,, -+, ®,) of complex

numbers with wf=1 (1=k=<n). We conclude from (7) and (8) that (6) holds.
Now define a @, B’ by setting

9 b, 0 =<p*Qb, Py VbeB
for each £=1,2,---. Since F®=¢PRbP®, we have |D,llz>¢ by (4), (5) and
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(9). Since B’ has Property (&), it follows that there are finitely many complex

numbers a,, a,, ---, a, of absolute values <1 and an element b= B, with norm
<1, such that
(10) | <0, P2 a @y >|P].

We infer from (9) and that
(1) [ ap®) @b, PY|> 1P,

which contradicts (6) since b has norm <1. We have thus established (1).
Next we prove that given ¢>0, there exists a neighborhood W of x such
that

(12) supp ¢ CW. and ¢(x)=0 = [¢Pl|=¢ldllyn

whenever ¢ V(X). Notice that this is an easy consequence of (1) if N=1.
So, assume that N=2 and the desired conclusion is true with N replaced by
N—1. Given >0, choose a compact neighborhood U. of x as in (1). Also fix
any ¢.= V(X) such that supp ¢.CU. and [¢{.|vxy=1=¢. in some neighborhood
V.cU. of x. Let X be the directed family of all compact subsets of X\E=
(X\{x D) x - X(Xy\{xy}). With each KeX we shall associate an element
dx<V(X) such that |dxllyxy=1=0x on K and (supp ¢x) "\ E=H. Then

l¢pxP:-Pl =ellpxellvexr =

by (1). Therefore, for each fixed ¢>0, the net {¢x¢.P: KX} has a weak-*
cluster point Q.€(Vo(X)®B)" with [|Q.[<e. Itis easy to see that R.=¢.P—Q.
is supported by E. Moreover, we claim that R. has a decomposition of the
form R.=R,+ --- +Ry, where the X-support of R; is contained in E; (1=<j=<N).
In fact, first consider the elements of (VO(X)®B)’ of the form (f,R1R --- Q1)R.
with f;€Cy(X,) and | fill-=1=f,(x,). Let R, be any weak-* cluster point of
such elements as supp f; approaches x;. Then obviously R.—R, is supported
by E,\J-.- UEy. It suffices to repeat this process with K. and x, replaced by
R.—R, and x,, respectively, and so on. Notice that each R; can be regarded
as an element of (VO(Y;-)@‘B)’, where Y,;=X,X -+ XX; ;X X;;; X - X Xy. It
follows from the inductive hypothesis that the required condition holds for
every R;, and hence for R.. Finally we choose a neighborhood W.C V. of x
so that holds with P replaced by R.. If ¢=V(X) and supp ¢CW.,, then
¢p.—=¢ and so
|6P| = $4.P| = [$R.ASQ.|

= 5”¢||V(X)+H¢||V<X>||Qe” <2|olvex -
This establishes with ¢ replaced by 2e.
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Now let ¢>0 be given, and let W, be any neighborhood of x as in (12). If
¢o=¢’ and ¢”< V(X) satisfy supp ¢CW. and ¢(x)=1, then

(13) ¢’ P—¢"Pll=|I(¢’—¢")PIl = (¢’ llvcxy+9" v ex>)

by [12). Since ¢>0 is arbitrary and W, can be taken arbitrarily small, it follows
from that there exists a point-mass-like element P, (V,(X)® B)’ such
that

¢ P—P.| §5(H¢“V(X>+1) =2¢||dllvex

whenever ¢ V(X), ¢(x)=1, and supp ¢CW.. This completes the proof, since
the uniqueness of P, is obvious.

PROOF OF THEOREM 1. Let B and ¢ be as in [Theorem 1, and let
Pe(V(X )®B)’ be given. With each x X we associate a point-mass-like ele-
ment P,e(V,(X)®B) as in Lemma 1.

We first prove that

ey | = PA=IPl  VE=Z.

Fix any E€ <. Given a neighborhood U of E, we can find a ¢ V,(X) such
that supp ¢C U, [lvycxy=1, and ¢=1 on E, since E is a compact product set.
If U is sufficiently small and ¢ is as above, then we have by

|6P—  Pul <e,

where ¢ is an arbitrary, but preassigned, real positive number. Since |¢P| <
P, this establishes (1).
To complete the proof, it clearly suffices to confirm that the net X P,,
i

Ec= g, converges to some element of (Vy(X )@B)’. (Then the other assertions
of the theorem can be proved very easily.) Notice that each P, is written as
P,=06,QP, for a unique @, B’, where J, is the unit point-mass at x.

Let (X;)s be the set X; with the discrete topology, and Y,;=(X,),\J {p;}
its one-point compactification (1 =;j<N). We consider

VIV)®B=CY)® - CY»&B.

By the above remark, we can identify each P, with 5z®(Dxe(V(Y)®B)/. Then
the linear span of all point-mass-like elements in (V(X )®B)’ can be isometrically
imbedded in (V(Y)@B)’. Therefore (1) assures that the net under considera-
tion has a weak-* cluster point Qe(V(Y)@B)’.

Suppose for a moment that @ is discrete and let ¢>0 be given. Then
there exists a finitely supported element Re(V(Y)RB)’ such that |Q—R|<e.
We can define the restriction R’ of R to XCVY in the obvious way. If E€F
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contains the Y-support of R/, then we have

@ | 2.0~ RI=1 SQ—R%.I=IQ—R| <.

This follows from (1) with X and P replaced by Y and Q—R, respectively.
On the other hand, it is obvious that Q,= P, for all x X, since every point
of X is isolated in Y. Therefore (2) implies that the net %Pz, Ece g, forms a

Cauchy net in (Vo(Y)®B) and hence in (Vo(X)®B). This completes the
proof, provided that @ is discrete.

Consequently, in order to reach the desired ceonclusion, it suffices to prove
that every Qe(V(Y)@B)’ is discrete. We do this by induction on N. Fix Q
and ¢>0. Since Y is totally disconnected, it follows from that there
exists a clopen neighborhood U=U,X --- XUy of p=(p,, -, pxy)€Y such that

®3) 160Q—0Q5ll <e,

where &, denotes the characteristic function of U. Write

Yi=Y,X o+ XY, X(YAUHXY 11X -+ XYy

for 1<j<N. These sets are clopen in Y and cover Y\U. Therefore we can
write (1—&y)Q=R,+ -+ +Ry, where R;=(V(Y)®B)’ has Y-supportC Y/, 1<
< N. Notice that each Y;\U, is a finite set, since p, is the only one (possible)
accumulation point in Y, If N=1, this implies that (1—&;)Q is finitely sup-
ported. If N=2 and if we assume the result for N—1, it follows that every
R; is a finite sum of discrete elements and is therefore a discrete element.
Finally, we have

4) 1Q—(Qp+Ry+ -+ +Ry)I=150Q—Qyl <e

by (3). Since ¢>0 is arbitrary, this yields the desired conclusion.

THEOREM 2. Suppose that at least one of the spaces X; is infinite, Then
the linear span of all continuous and discrete elements of (VO(X)®B)’ 1s dense
in (Vo(X)QB) if and only if B’ satisfies (P).

PrROOF. One direction of the above assertion is a trivial consequence of
fTheorem 1. To prove the non-trivial part, we may assume N=1.

Suppose that B’ does not satisfy (&), but that the linear span of all dis-
crete and continuous elements is dense in (CO(X)@)B)’. Then there exist a
finite constant C and a sequence (@,) of elements of B’ such that

W [@4lz=1 VkeN, and | 3ai0ila<Csuplayl

for all finite sequences a;,, -+, a, of complex numbers. The space X contains
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a countable set E={x,}7 of distinct elements such that every x, is isolated
in E.
Define

@ Py= 30,00, (C(X) OB

for all neN. It is an easy consequence of (1) that (P,)f is a bounded sequence
in (Cy(X)®B)'. Let P=(C(X)®B) be any weak-* cluster point of (P,).
Obviously P is supported by E, and

(3) the X-support of P—P,C E\{x}?

for all n. By one of the assumptions, there exist a continuous element @ and
a discrete element RE(VO(X)@)B)’ such that |P—Q—R||<1/3. We may assume
that the X-support of Q is contained in a finite set FCX. Choose any meN
so that FAEC{x,}, and let R’ be the “restriction” of R to FNE. Since Q
is a continuous element, it follows from (3) that

(4) IP,—R'|<1/3 Vnzm.
The proof of this fact is similar to that of (1) in the proof of [Theorem 1.
But (4) implies

SPo—R+Ppy—R'=2/3

for all n>m-+1. This contradicts (1), and the proof is complete.

The following result must be well-known. Since we do not know any
adequate reference about it, we give a complete proof.

LEMMA 2. Let (S, 8, A) be a measure space, and M(S)=M(S, B) the Banach
space of all countably additive complex measures on B, Then M(S) and all
the spaces LP=LP(S, B, 1), 1<p<oo, have Property ().

PROOF. Let 1=<p<oo, and f}, -+, frEL?. Letalso 2=, be the set of all
n-tuples e=(ey, -+, &,) of =1. For any function ¢ on £, define

eg)y=27" g}gsﬁ(a) .
Then we have

M (€l B esfulV? S el Senfil

for some absolute constant C, depending only on p (see Theorem (8.4) of
Chap. V of [13: p, 213]); we need (1) only for p=2.
First suppose 1<p=<2. Then we have

@ BT =Sy | £y P
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by Holder’s inequality. Hence
—(p-1)/ Lis G 1/p .
D S\, = (33 f1f:17d2) T by Holder
, n 1/p
sn@ 2o {[(S1/,1972d2} T by (2)
:”(Z_m/w{f(é’l Se fk!Z)plzd,z}l/p
k=1 *
n /
=cpeven{fel Beifilyrdil by ()

< C,nl-mzrg) kzn: erfrllp by Minkowski .
=1
Therefore, we have

®) n2 3 fll, S Gl B eafily

for at least one e= {2, provided that 1=<p=2.
Next suppose 2<p<oo. Using the inequality ||*|l;p=| -2, we then have

n—cp—n/pk"g1 1l =< (jk_ﬁz |fk|pd2>l/p
< {J(E 1rammaal " = {1 Bewranprary”
= {jé’l kglﬁkfklpdl}l/p by Hélder

n 1/p
:{8j|k§skfk1pdz} X
Hence 2=p<co imply

@ i TAPET DDA

for at least one e=£.

By (3) and (4), all the spaces L?, 1<p<oo, have Property (¥). That M(S)
has Property (£) follows from the result for p=1 combined with the Radon-
Nikodym Theorem. This completes the proof.

THEOREM 3. Let X=X,X -+ XXy be as before (N=1). Then each of the
following conditions implies the others:

(i) All except at most one X; are residual.

(i) M(X) is dense in Vo (X)'.

(iii) Vo(X)’ has Property (P).

Proor. If N=1, there is nothing to prove, since then (iii) is a special
case of So suppose N =2.
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We first confirm the implication (i)= (ii). Without loss of generality,
assume that X;, X,, ---, Xy, are residual. Put Y=X,X -+ X Xy_; and B=C,(Xy),
so that V(X )=V0(Y)®B isometrically. Then the only continuous element of
(VO(Y)®B)’ is the zero element, since Y is residual and the Y-support of any
continuous element has no isolated point. On the other hand, B'=M(Xy) has
Property (?) by Lemma 2 It follows from [Theorem 1 that the set of all
discrete elements is dense in (VO(Y)®B)/. This establishes (ii), since it is
trivial that every point-mass-like element of (VO(Y)®B)’=V0(X ) is given by a
measure in M(X).

Suppose now that at least two of the spaces Xj, say, X, and X,, contain
perfect sets. We want to prove that then neither (ii) nor (iii) holds. Take a
compact perfect set K;CX; for j=1,2, and put K=K, X K,. Then we can
imbed V(K)’ into Vo(X)’ isometrically. If N=2, this is trivial; if N>2, choose
any point x€ X;X -+ X Xy and identify K with KX {x} in the obvious way.
Notice that if M(X) is given the norm of V,(X)/, then g—plx (or gt— | kxim)
is a norm-decreasing mapping from M(X) into V(K)’. Therefore, if M(X)
were dense in Vy(X)’, then M(K) would be dense in V(K)’. Now let T be
the circle group, and let ¢;: K;—7T be any continuous surjection (=1, 2).
Then the product mapping ¢=¢, X @,: K—T*? induces an isometric homomor-
phism f—fog: V(T*)—V(K) (see [5; Theorem 4.1]). Therefore we shall
regard V(T?) as a closed subalgebra of V(K). Let

M P
1) AT) — V(T*) — A(T)

be the mappings defined in [2]: (Mf)(x, y)=7(x+¥) and (Pg)(x)ijg(x—y,y)dy.
Then M is an isometric homomorphism, P is a norm-decreasing mapping, and
PoM=identity. Consequently we have two isometric imbeddings A(T)CV(T?
CV(K). By Corollary 3.13 of [1: p. 35], there exists a @ PM(T)=A(T)
such that

) IP—plpy>1 YpeMT).

Let d=V(K) be any norm-preserving extension of @, and ve M(K). If we
denote by p= PM(T) the restriction of v to A(T") as a functional, then obviously
peM(T), and we have

®3) 1B—2lly ey Z 11 P—pellpur > 1

by (2). Therefore M(K) is not dense in V(K)’. By one of the above remarks,
this implies that M(X) is not dense in V(X)’. Hence (ii) = (i), and we have
established the equivalence of (i) and (ii).

Next we prove that V,(X)’ does not have Property (£) under the assump-
tion given in the above paragraph. After imbedding V(T'?) into V(K) as
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above, we take any net {L,} of norm-decreasing linear mappings from V(K)
into V(T? such that

4 lim | Laf=fllra,=0  fEV(T?);

such a net exists (cf. [5; p. 28]). Let L, be the adjoint mapping of L,. Since

every L, has norm <1, there exists a norm-decreasing linear mapping
L. V(T?* — V(K)" such that

) ligl {f, Ly®@> =<{f, L'D> Vfie V(K) and VO = V(T?/

for some subnet {Lg} of {L,}. Since the imbedding V(T*)C V(K) is isometric,
we infer from (4) and (5) that L’ is an isometry. On the other hand, it is
trivial that P’: PM(T)— V(T?’ is an isometry. Therefore, all the mappings

/ Ll

PM(T) — V(T?*) — V(K)' G V(X)
are isometries. Since PM(T)=["(Z) does not have Property (&), it follows
that Vo(X)’ does not have (2), either. Here Z denotes the group of integers.
This establishes the implication (iii) = (i).
It only remains to prove (i) = (iii). Consider

(6) CAZ)B Vo X)=CoZ)BCY X)) - BCy(Xy) .

If we assume (i), it follows from the implication (i)= (ii) that M(Zx X) is
dense in (CO(Z)®VO(X))’. Therefore Vo (X)’ must have Property (£) by
Theorem 2

This completes the proof.

COROLLARY 1. Suppose that all the spaces X;, 1<j<N, are residual. Then
the second conjugate space of V,(X) is isometrically isomorphic to the Banach
space of all fel*(X) such that

IIfH:n:sEpllvawKoo .

Here the supremum is taken over all finite product subsets E of X.

PrROOF. Notice that M(X)=»My(X) is dense in V,(X)’ by hypothesis and
Theorem 3

Given FeV(X)”, define an f=l*(X) by setting f(x)=<d,, F) for all xe X,
Since My(X) is dense in V,(X)’, F is completely determined by f, and we have

||Fl|=sgp {IKg, Fol :pe M(E) and |glyy =1}
=sup{|{fdu): pe MB) and Iplyeer =1}

:Sgp [ fllvces=11fll= .
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The converse part is obvious, and this completes the proof.

Notice that for any locally compact spaces X;, a function f/~(X) is a
multiplier of V,(X) if and only if f belongs to V,(X) locally at every point of
X and | fllg<oo. Moreover, if f is a multiplier of V,(X), then the multiplier
norm of f is equal to [flls. (See [12: Lemma 1.1] and [6: Theorem 4.5].)
Therefore Theorems 1, 3 and Corollary 1 yield the following.

COROLLARY 2. Suppose that all the spaces X;, 1<j<N, are discrete. Then
we have:

(a) For each D=V (X),

(b) Vo(X)” is isometrically isomorphic to the Banach space of all multipliers
of Vo(X).

Now let G be a LCA group, I" its character group, and A(I") the Fourier
algebra on I' (cf. [4]). For any closed subset X of I', A(X) denotes the
Fourier restriction algebra A(I")|y with the natural quotient norm. Let X be
the closure of X in I, the Bohr compactification of I'. We consider A,(I")=
My(G)" = A(l), Ay X)=AI")|x=A(X), and Ay(X)=AX)NCy(X).

COROLLARY 3. Suppose that G is compact, and that X;, X,, -+, Xy (N=1)
are finitely many, disjoint subsets of I' with dissociate union. Put X=X, X,-
o« XyCI', and identify X with the product space of the X;, 1=<j<N.

(a) Then A(X)=V,(X) and A(X)CA(X).

(b) B(X)=M(G)"|x is (isomorphic to) the second conjugate space of A(X).

(¢c) If $=L=(G) and supp $C X, then

lim¢— 3 ¢(N7l-=0,
5 1€E

where F denotes the directed family of all finite subsets E of X of the form
E=E,-E,- --- -Ey with E;CX; for 1=j<N.

Proor. That A(X)=V,(X) is an easy consequence of Theorem 3.2 in [3].
Since the proof is quite routine, we omit it. To prove A,(X)CA(X), first
notice that A4 X)CV(X) by the definition of A4X). Let Y, be the one-point
compactification of X;, 1<j<N, and Y=Y,X -+ XYy. Then C(X)CC(Y), and
V(Y)Y V(X) with obvious identifications. On the other hand, we have Cy(X)
NV(X)CV(Y) by Theorem 4.3 in [5]. Therefore

AfX) CCX)NV(X)=Co(X)NV(Y),

so that A,(X)CA(X), since evidently V (X)=Co(X)NV(Y). This establishes
(a).
Notice that A(X) is L¥G)={$=L=(G): supp $C X}, as is well-known.
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Therefore part (¢) is an easy consequence of part (a) combined with Corol-
lary 2.

Part (b) follows from part (c), because B(X) is the conjugate space of
Cx(G)=C(G) N\ L%(G) for any XCI'.

Now let ¢>0 be given. A closed subset K of G is said to be a K.-set if
to each feC(K) with |f|=1 there correspond a character y/" and a complex
number ceT={|z|=1} such that |f(x)—cy(x)|<¢ for all x K. Although the

following result is similar to Varopoulos’ Theorem 4.4.1 in [11: p. 78], his
proof does not work in our case.

ProrosiTION 1. Let E,, ---, Ey be disjoint compact subsets of a LCA group
G whose union is a K,-set for some 0<e<(2/N) sin (~/6—2), and let E=E,+ ---
+EyCG. Then E is a set of bounded synthesis for A(G).

PrROOF. The curious restriction for €>0 is used only to assure that every
point x of E has a unique expression of the form x=x,-+ --- +xy with x;€E;
(I=<J=N), and that there exists a ¢= A(T) such that

& 1$luay=_3_|$(m)|=C<1, and

(2) o(z)=2—1 if zeT and |z—1|< Ne.

For the latter fact, we refer the reader to Remark (b) at the end of [9].

We prove the above assertion only for N=2, since the proof for the general
case is similar. We also assume that all the sets E; are totally disconnected,
since we are only interested in this case. (However, if some of the sets E;
contain non-trivial connected sets, then the proof becomes very complicated.)

For i=1,2 and neN, let E;=E;;\V--- UE;, be any partition of E; into
disjoint clopen subsets. Choose and fix 27 points x;€E;; and ¥, E,;, 1<j<n.
We define a linear mapping L: PM(E)— M,E) by setting

(3) LP:”Zn:) Piu(Ddeyey; VP PM(E),

where P;,€ PM(E) is the part of P€ PM(E) carried by E,;-+E,;,. Notice that
the sets E,,+E,, (1=j, k=n) are disjoint by the above remark.

We then claim that ||[LP|py < (1—C) Y| P|lpy for all P=e PM(E), where C is
as in (1). To prove this, let |L| be the norm of L as an operator on PM(E),
and notice that

@ LPG= 32y 49)B)  Vrel

for all P PM(E). Fix an arbitrary y=/'. Since E, and E, are disjoint and
their union is a K.-set, there exist X" and a=c*=T such that

(4) sup {1y(x;4+yp)—aX(x+y) i x € Eyj, ye Eyyy <26
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for all 1<j, k=<n. It follows from (2) with N=2 and (4) that for each pair
(J, ) we have
r(xj+yk)_ax:ax{ar(xj+yk)z—1}

i (myat ™y ™(x; 4y ) A

m=-—oco

on some neighborhood of E,;+FE,;,. Therefore

®) LG —aP(r)] =1 3 Gy —al, Pyl

J 1

éméw |§Z;(77'l)l . !j,kzi:l <rm(xj+yk)xl—m’ ij>|

= 3 |$m)|- | LO"P) (™)

£ 3 14| ILI-IPlru SCILI-IPlpy
Hence

(6) | LPG] < (HCILD Pl par -

Since y=!l' and P=PM(E) are arbitrary, (6) implies |[L]|<14-C||L|. Since
C<1, we conclude |L]| =(1—-C)L

To complete the proof, it suffices to show that given PE PM(E) and y<l’,
L/I\J(r‘l) approaches P(y~') as the partitions {E;;}; of E; become finer and
finer. Notice that |¢| 4, can be made arbitrarily small if we require (2) for
a sufficiently small ¢>0 (cf. of [7: p. 290]). Therefore we can do
this easily by arguing as in (5) with a=1 and X=7y after replacing ¢= A(T)
by other suitable functions in A(T).

This completes the proof.

COROLLARY 4. Suppose that G is compact, and that X,, ---, Xy are finitely
many, disjoint subsets of I' whose union is a K.-set for some 0<e<
(2/N) sin (V6 —2). If we put X=X, X,- --- - XyI, then A(X)=A\(X) and X
is a set of bounded synthesis for the algebra A=Ay ).

PrOOF. By hypothesis and Theorem 3.1 of [12], we have A4(X)=V(X)
and A(X)=V,(X). Since Vo (X)=Cyo(X) V(X) as was observed in the proof
of we have A(X)=A,(X).

It is easy to prove that under our hypothesis the sets X, -+, Xy are dis-
joint and their union is an extremally disconnected K.-set in I". This, com-
bined with completes the proof.

COROLLARY 5. Let G and XCI' be as in Corollary 4. Suppose N=2 and
every X, is infinite. Then X contains a subset E such that

(i) A(E)CA(E)CTB(E)=B(E)NC(E).
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(ii) Al(E) (resp. By(E)) contains a function f such that @ofea A(E) (resp.
Qofe AE)) for all non-constant entire functions @.

ProOF. This is an easy consequence of and its proof in [8].
We omit the details.

REMARKS. Let X=X,X --- XXy and B be as before.

() If B’ satisfies (&), then the set of all compactly supported elements is
dense in (Vo(X)®XB)'. The proof is similar to that of Lemma 1.

(I) Suppose that B’ satisifies (&), Pe(CO(X)®B)’, and ECX is closed.
Then there exists a unique PEE(CO(X)®B)’, with Syx(Pz)CE, having the fol-
lowing property: to each ¢>0 there corresponds a neighborhood W of E such
that ||pP—Pg|<¢| |l whenever p=C(X), 6=1 on E, and supp pCW.

(IlT) Suppose N=2. Applying (I) twice, we conclude that given PV (X)’
and E=E,X E,C X closed, there exists a unique Pz V(X)/, with supp PzCE,
having the following property: to each ¢>0 there corresponds a neighborhood
W of E such that ||¢P—Pg|=<e¢|dllycxy; whenever ¢=V(X), =1 on E, and
supp ¢CW. However, no analog of this holds if N=3, all the spaces X; are
infinite, and at least two of them contain perfect sets.

(IV) Under the hypothesis of [Corollary 4, the set of all accumulation
points of X in I' is a set of synthesis.

(V) All the results in this paper were obtained in the last year of the
author’s sojourn at Kansas State University (1972-1974).
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