Tensor products of $C(X)$-spaces and their conjugate spaces

By Sadahiro SAEKI

(Received Aug. 28, 1974)

For any locally compact (Hausdorff) space X, we denote by $C(X)$ and $C_{0}(X)$ the Banach algebra of all bounded continuous functions on X and the ideal of those $f \in C(X)$ which vanish at infinity, respectively. Thus the conjugate space $C_{0}(X)^{\prime}$ of $C_{0}(X)$ can be identified with the space $M(X)$ of all bounded regular measures on X. Now let X_{1}, \cdots, X_{N} be finitely many locally compact spaces, and X the product space thereof. Given a Banach space B, we consider

$$
V_{0}(X) \hat{\otimes} B=C_{0}\left(X_{1}\right) \hat{\otimes} \cdots \hat{\otimes} C_{0}\left(X_{N}\right) \hat{\otimes} B
$$

the (complete) projective tensor product of $C_{0}\left(X_{1}\right), \cdots, C_{0}\left(X_{N}\right)$, and B (cf. [10]). Notice that the Banach space $V_{0}(X) \hat{\otimes} B$ can be regarded as a linear subspace of $C(X: B)$, the space of all B-valued bounded continuous functions on X.

The main purpose of this paper is to prove that, under a certain condition on B^{\prime}, the space $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ has a natural decomposition which is similar to the well-known decomposition $M(X)=M_{c}(X)+M_{d}(X)$. As a special case of this result it is shown that $M(X)$ is norm-dense in $V_{0}(X)^{\prime}$ if and only if all except at most one X_{j} are residual (i.e., contain no perfect sets). We also give an application of the latter result to the study of Fourier restriction algebras.

Let $V_{0}(X) \hat{\otimes} B$ be as above. Then $V_{0}(X) \hat{\otimes} B$ has a natural Banach $V(X)$. module structure, where $V(X)=C\left(X_{1}\right) \hat{\otimes} \cdots \hat{\otimes} C\left(X_{N}\right) \subset C(X)$:

$$
(\phi F)(x)=\phi(x) F(x) \quad\left(\phi \in V(X), F \in V_{0}(X) \hat{\otimes} B, x \in X\right) .
$$

We define the product $\phi P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ of a $\phi \in V(X)$ and a $P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ by setting

$$
\langle F, \phi P\rangle=\langle\phi F, P\rangle \quad \forall F \in V_{0}(X) \hat{\otimes} B .
$$

Notice that the imbedding $V_{0}(X) \subset V(X)$ is isometric. We also define the X support of $P, S_{X}(P)$, to be the smallest closed subset S of X such that $\langle F, P\rangle$ $=0$ whenever $F \in V_{0}(X) \hat{\otimes} B$ and $F=0$ on some neighborhood of S (cf. [5; p. 31]).

Definitions. Let $P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ be given.
(a) We call P point-mass-like if $S_{X}(P)$ is either a singleton or empty.
(b) We call P discrete if it belongs to the closed linear span of all point-mass-like elements in $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$.
(c) We say that P is continuous at a point $x \in X$ if to each $\varepsilon>0$ there corresponds a neighborhood W of x such that

$$
\phi \in V(X) \text { and } \operatorname{supp} \phi \subset W \Rightarrow\|\phi P\| \leqq \varepsilon\|\phi\|_{V(X)}
$$

The element P is called continuous (on X) if it is continuous at every point of X.

Finally we introduce the following property of a Banach space A:

$$
\left\{\begin{array}{l}
\text { For any sequence }\left(P_{n}\right)_{1}^{\infty} \text { of elements of } A \text { with norms } \geqq 1 \\
\text { and any } 0<R<\infty \text { there exist finitely many complex } \\
\text { numbers } \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \text { of absolute values } \leqq 1 \text { such that } \tag{P}\\
\qquad\left\|\alpha_{1} P_{1}+\alpha_{2} P_{2}+\cdots+\alpha_{n} P_{n}\right\|_{A}>R^{-}
\end{array}\right.
$$

Our main result is stated as follows.
THEOREM 1. Let B be a Banach space whose conjugate space B^{\prime} has Property (\mathscr{P}), and let $P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ be given.
(i) P can be uniquely written as $P=P_{c}+P_{d}$, where $P_{c} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ is continuous and $P_{d} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ is discrete. Moreover, $\left\|P_{d}\right\| \leqq\|P\|$.
(ii) There exists a unique family $\left\{P_{x}: x \in X\right\} \subset\left(V_{0}(X) \widehat{\otimes} B\right)^{\prime}$, with $S_{X}\left(P_{x}\right) \subset$ $\{x\} \forall x \in X$, such that

$$
\lim _{\Phi}\left\|P_{d}-\sum_{x \in E} P_{x}\right\|=0
$$

Here \mathscr{F} denotes the directed family of all finite product subsets E of X.
To prove this, we need a lemma.
Lemma 1. Let B be as in Theorem 1. Let also $P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ and $x \in X$ be given. Then there exists a unique $P_{x} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ with the following property: to each $0<\varepsilon<1$ there corresponds a neighborhood W of x such that $\left\|\phi P-P_{x}\right\| \leqq \varepsilon\|\phi\|_{V(X)}$ whenever $\phi \in V(X)$, supp $\phi \subset W$, and $\phi(x)=1$.

Proof. Write $x=\left(x_{1}, x_{2}, \cdots x_{N}\right)$,

$$
E_{j}=E_{j}(x)=X_{1} \times \cdots \times X_{j-1} \times\left\{x_{j}\right\} \times X_{j+1} \times \cdots \times X_{N}
$$

and $E=E(x)=E_{1} \cup \ldots \cup E_{N}$.
We first prove that given $\varepsilon>0$ there exists a neighborhood U of x such that

$$
\begin{equation*}
\phi \in V(X) \text { and } \operatorname{supp} \phi \subset U \backslash E \Rightarrow\|\phi P\| \leqq \varepsilon\|\phi\|_{V(X)} . \tag{1}
\end{equation*}
$$

Suppose this is false. Then there exists $\varepsilon>0$ such that (1) does not hold for any neighborhood U of x. We shall construct a sequence $\left(\phi^{(n)}\right)_{1}^{\infty}$ of elements of $V_{0}(X)$ as follows. Put $\phi^{(0)}=0$, and suppose that $\phi^{(0)}, \cdots, \phi^{(n-1)}$ have been
defined for some natural number n so that supp $\phi^{(k)}$ is compact and is disjoint from $E(0 \leqq k<n)$. Choose any compact (product) neighborhood $U=U^{(n)}=$ $U_{1} \times \cdots \times U_{n}$ of x such that

$$
\begin{equation*}
U_{j} \cap \pi_{j}\left[\operatorname{supp} \phi^{(k)}\right]=\emptyset \quad(1 \leqq j \leqq N, 0 \leqq k<n) . \tag{2}
\end{equation*}
$$

Here each π_{j} is the natural projection from X onto X_{j}. Since (1) is assumed not to hold, we can find a $\psi=\psi^{(n)} \in V(X)$ such that

$$
\begin{equation*}
\operatorname{supp} \psi \subset(\operatorname{int} U) \backslash E,\|\psi\|_{V(X)}<1, \text { and }\|\psi P\|>\varepsilon . \tag{3}
\end{equation*}
$$

By (2) and the definition of $V(X)$, we may assume that ψ has the form $\psi=$ $\psi_{1} \otimes \cdots \otimes \psi_{N}$ with $\psi_{j} \in C_{0}\left(X_{j}\right), 1 \leqq j \leqq N$. Therefore, by (3) and the definition of $V_{0}(X) \hat{\otimes} B$, there exists an element

$$
F^{(n)}=f_{1}^{(n)} \otimes \cdots \otimes f_{N}^{(n)} \otimes b^{(n)} \in V_{0}(X) \hat{\otimes} B
$$

such that

$$
\begin{align*}
& \operatorname{supp} F^{(n)} \subset U \backslash E,\left|\left\langle F^{(n)}, P\right\rangle\right|>\varepsilon \tag{4}\\
& \left\|f_{j}^{(n)}\right\|_{\infty}=1=\left\|b^{(n)}\right\|_{B} \quad(1 \leqq j \leqq N) \tag{5}
\end{align*}
$$

Set $\phi^{(n)}=f_{1}^{(n)} \otimes \cdots \otimes f_{N}^{(n)}$, which completes the induction.
We now prove that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \alpha_{k} \phi^{(k)}\right\|_{V_{0}(X)} \leqq 1 \tag{6}
\end{equation*}
$$

for all $n \in N$, and all complex numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ of absolute values $\leqq 1$. First choose any complex numbers β_{k} with $\beta_{k}^{N}=\alpha_{k}, 1 \leqq k \leqq n$, and notice that $f_{j}^{(1)}, f_{j}^{(2)}, \cdots, f_{j}^{(n)}$ have disjoint supports by (2) and (4), $1 \leqq j \leqq N$. Since $\left|\beta_{k}\right| \leqq 1$, it follows from (5) that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \omega_{k} \beta_{k} f_{j}^{(k)}\right\|_{\infty} \leqq 1 \quad \forall \omega_{k} \in \boldsymbol{C},\left|\omega_{k}\right| \leqq 1,1 \leqq k \leqq n \tag{7}
\end{equation*}
$$

for all j. On the other hand, we have

$$
\left\{\begin{array}{l}
\sum_{k=1}^{n} \alpha_{k} \phi^{(k)} \tag{8}\\
=N^{-n} \sum_{\omega}\left(\sum_{k=1}^{n} \omega_{k} \beta_{k} f_{1}^{(k)}\right) \otimes \cdots \otimes\left(\sum_{k=1}^{n} \omega_{k} \beta_{k} f_{N}^{(k)}\right),
\end{array}\right.
$$

where the last sum is taken over all n-tuples $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$ of complex numbers with $\omega_{k}^{N}=1(1 \leqq k \leqq n)$. We conclude from (7) and (8) that (6) holds.

Now define a $\Phi_{k} \in B^{\prime}$ by setting

$$
\begin{equation*}
\left\langle b, \Phi_{k}\right\rangle=\left\langle\phi^{(k)} \otimes b, P\right\rangle \quad \forall b \in B \tag{9}
\end{equation*}
$$

for each $k=1,2, \cdots$. Since $F^{(k)}=\phi^{(k)} \otimes b^{(k)}$, we have $\left\|\Phi_{k}\right\|_{B^{\prime}}>\varepsilon$ by (4), (5) and
(9). Since B^{\prime} has Property (\mathscr{P}), it follows that there are finitely many complex numbers $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ of absolute values $\leqq 1$ and an element $b \in B$, with norm $\leqq 1$, such that

$$
\begin{equation*}
\left|\left\langle b, \sum_{k=1}^{n} \alpha_{k} \Phi_{k}\right\rangle\right|>\|P\| . \tag{10}
\end{equation*}
$$

We infer from (9) and (10) that

$$
\begin{equation*}
\left|\left\langle\left(\sum_{k=1}^{n} \alpha_{k} \phi^{(k)}\right) \otimes b, P\right\rangle\right|>\|P\|, \tag{11}
\end{equation*}
$$

which contradicts (6) since b has norm $\leqq 1$. We have thus established (1).
Next we prove that given $\varepsilon>0$, there exists a neighborhood W of x such that

$$
\begin{equation*}
\operatorname{supp} \phi \subset W_{\varepsilon} \text { and } \phi(x)=0 \Rightarrow\|\phi P\| \leqq \varepsilon\|\phi\|_{V(X)} \tag{12}
\end{equation*}
$$

whenever $\phi \in V(X)$. Notice that this is an easy consequence of (1) if $N=1$. So, assume that $N \geqq 2$ and the desired conclusion is true with N replaced by $N-1$. Given $\varepsilon>0$, choose a compact neighborhood U_{ε} of x as in (1). Also fix any $\psi_{\varepsilon} \in V(X)$ such that $\operatorname{supp} \psi_{\varepsilon} \subset U_{\varepsilon}$ and $\left\|\psi_{\varepsilon}\right\|_{V(X)}=1=\psi_{\varepsilon}$ in some neighborhood $V_{\varepsilon} \subset U_{\varepsilon}$ of x. Let \mathcal{K} be the directed family of all compact subsets of $X \backslash E=$ $\left(X_{1} \backslash\left\{x_{1}\right\}\right) \times \cdots \times\left(X_{N} \backslash\left\{x_{N}\right\}\right)$. With each $K \in \mathcal{K}$ we shall associate an element $\phi_{K} \in V(X)$ such that $\left\|\phi_{K}\right\|_{V(X)}=1=\phi_{K}$ on K and $\left(\operatorname{supp} \phi_{K}\right) \cap E=\emptyset$. Then

$$
\left\|\phi_{K} \psi_{\varepsilon} P\right\| \leqq \varepsilon\left\|\phi_{K} \psi_{s}\right\|_{V(X)} \leqq \varepsilon
$$

by (1). Therefore, for each fixed $\varepsilon>0$, the net $\left\{\phi_{K} \psi_{\varepsilon} P: K \in \mathcal{K}\right\}$ has a weak-* cluster point $Q_{\varepsilon} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ with $\left\|Q_{\varepsilon}\right\| \leqq \varepsilon$. It is easy to see that $R_{\varepsilon}=\psi_{\varepsilon} P-Q_{\varepsilon}$ is supported by E. Moreover, we claim that R_{ε} has a decomposition of the form $R_{\varepsilon}=R_{1}+\cdots+R_{N}$, where the X-support of R_{j} is contained in $E_{j}(1 \leqq j \leqq N)$. In fact, first consider the elements of $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ of the form $\left(f_{1} \otimes 1 \otimes \cdots \otimes 1\right) R_{\varepsilon}$ with $f_{1} \in C_{0}\left(X_{1}\right)$ and $\left\|f_{1}\right\|_{\infty}=1=f_{1}\left(x_{1}\right)$. Let R_{1} be any weak-* cluster point of such elements as $\operatorname{supp} f_{1}$ approaches x_{1}. Then obviously $R_{\varepsilon}-R_{1}$ is supported by $E_{2} \cup \cdots \cup E_{N}$. It suffices to repeat this process with R_{s} and x_{1} replaced by $R_{\varepsilon}-R_{1}$ and x_{2}, respectively, and so on. Notice that each R_{j} can be regarded as an element of $\left(V_{0}\left(Y_{j}\right) \widehat{\otimes} B\right)^{\prime}$, where $Y_{j}=X_{1} \times \cdots \times X_{j-1} \times X_{j+1} \times \cdots \times X_{N}$. It follows from the inductive hypothesis that the required condition holds for every R_{j}, and hence for R_{ε}. Finally we choose a neighborhood $W_{\varepsilon} \subset V_{\varepsilon}$ of x so that (12) holds with P replaced by R_{ε}. If $\phi \in V(X)$ and $\operatorname{supp} \phi \subset W_{\varepsilon}$, then $\phi \psi_{\varepsilon}=\phi$ and so

$$
\begin{aligned}
\|\phi P\| & =\left\|\phi \psi_{\varepsilon} P\right\|=\left\|\phi R_{\varepsilon}+\phi Q_{\varepsilon}\right\| \\
& \leqq \varepsilon\|\phi\|_{V(X)}+\|\phi\|_{V(X)}\left\|Q_{\varepsilon}\right\| \leqq 2 \varepsilon\|\phi\|_{V(X)} .
\end{aligned}
$$

This establishes (12) with ε replaced by 2ε.

Now let $\varepsilon>0$ be given, and let W_{ε} be any neighborhood of x as in (12), If $\phi=\phi^{\prime}$ and $\phi^{\prime \prime} \in V(X)$ satisfy $\operatorname{supp} \phi \subset W_{\varepsilon}$ and $\phi(x)=1$, then

$$
\begin{equation*}
\left\|\phi^{\prime} P-\phi^{\prime \prime} P\right\|=\left\|\left(\phi^{\prime}-\phi^{\prime \prime}\right) P\right\| \leqq \varepsilon\left(\left\|\phi^{\prime}\right\|_{V(X)}+\left\|\phi^{\prime \prime}\right\|_{V(X)}\right) \tag{13}
\end{equation*}
$$

by (12). Since $\varepsilon>0$ is arbitrary and W_{ε} can be taken arbitrarily small, it follows from (13) that there exists a point-mass-like element $P_{x} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ such that

$$
\left\|\phi P-P_{x}\right\| \leqq \varepsilon\left(\|\phi\|_{V(X)}+1\right) \leqq 2 \varepsilon\|\phi\|_{V(X)}
$$

whenever $\phi \in V(X), \phi(x)=1$, and $\operatorname{supp} \phi \subset W_{\varepsilon}$. This completes the proof, since the uniqueness of P_{x} is obvious.

Proof of Theorem 1. Let B and \mathscr{F} be as in Theorem 1, and let $P \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ be given. With each $x \in X$ we associate a point-mass-like element $P_{x} \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ as in Lemma 1.

We first prove that

$$
\begin{equation*}
\left\|\sum_{x \in E} P_{x}\right\| \leqq\|P\| \quad \forall E \in \mathscr{F} . \tag{1}
\end{equation*}
$$

Fix any $E \in \mathscr{F}$. Given a neighborhood U of E, we can find a $\phi \in V_{0}(X)$ such that supp $\phi \subset U,\|\phi\|_{V(X)}=1$, and $\phi=1$ on E, since E is a compact product set. If U is sufficiently small and ϕ is as above, then we have by Lemma 1

$$
\left\|\phi P-\sum_{x \in \varepsilon} P_{x}\right\|<\varepsilon
$$

where ε is an arbitrary, but preassigned, real positive number. Since $\|\phi P\| \leqq$ $\|P\|$, this establishes (1).

To complete the proof, it clearly suffices to confirm that the net $\sum_{E} P_{x}$, $E \in \mathcal{F}$, converges to some element of $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$. (Then the other assertions of the theorem can be proved very easily.) Notice that each P_{x} is written as $P_{x}=\delta_{x} \otimes \Phi_{x}$ for a unique $\Phi_{x} \in B^{\prime}$, where δ_{x} is the unit point-mass at x.

Let $\left(X_{j}\right)_{d}$ be the set X_{j} with the discrete topology, and $Y_{j}=\left(X_{j}\right)_{d} \cup\left\{p_{j}\right\}$ its one-point compactification ($1 \leqq j \leqq N$). We consider

$$
V(Y) \hat{\otimes} B=C\left(Y_{1}\right) \hat{\otimes} \cdots \hat{\otimes} C\left(Y_{N}\right) \hat{\otimes} B
$$

By the above remark, we can identify each P_{x} with $\delta_{x} \otimes \Phi_{x} \in(V(Y) \hat{\otimes} B)^{\prime}$. Then the linear span of all point-mass-like elements in $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ can be isometrically imbedded in $(V(Y) \hat{\otimes} B)^{\prime}$. Therefore (1) assures that the net under consideration has a weak-* cluster point $Q \in(V(Y) \hat{\otimes} B)^{\prime}$.

Suppose for a moment that Q is discrete and let $\varepsilon>0$ be given. Then there exists a finitely supported element $R \in(V(Y) \hat{\otimes} B)^{\prime}$ such that $\|Q-R\|<\varepsilon$. We can define the restriction R^{\prime} of R to $X \subset Y$ in the obvious way. If $E \in \mathscr{F}$
contains the Y-support of R^{\prime}, then we have

$$
\begin{equation*}
\left\|\sum_{x \in E} Q_{x}-R^{\prime}\right\|=\left\|\sum_{x \in E}(Q-R)_{x}\right\| \leqq\|Q-R\|<\varepsilon . \tag{2}
\end{equation*}
$$

This follows from (1) with X and P replaced by Y and $Q-R$, respectively. On the other hand, it is obvious that $Q_{x}=P_{x}$ for all $x \in X$, since every point of X is isolated in Y. Therefore (2) implies that the net $\sum_{E} P_{x}, E \in \mathscr{F}$, forms a Cauchy net in $\left(V_{0}(Y) \hat{\otimes} B\right)^{\prime}$ and hence in $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$. This completes the proof, provided that Q is discrete.

Consequently, in order to reach the desired conclusion, it suffices to prove that every $Q \in(V(Y) \hat{\otimes} B)^{\prime}$ is discrete. We do this by induction on N. Fix Q and $\varepsilon>0$. Since Y is totally disconnected, it follows from Lemma 1 that there exists a clopen neighborhood $U=U_{1} \times \cdots \times U_{N}$ of $p=\left(p_{1}, \cdots, p_{N}\right) \in Y$ such that

$$
\begin{equation*}
\left\|\xi_{U} Q-Q_{p}\right\|<\varepsilon \tag{3}
\end{equation*}
$$

where ξ_{U} denotes the characteristic function of U. Write

$$
Y^{j}=Y_{1} \times \cdots \times Y_{j-1} \times\left(Y_{j} \backslash U_{j}\right) \times Y_{j+1} \times \cdots \times Y_{N}
$$

for $1 \leqq j \leqq N$. These sets are clopen in Y and cover $Y \backslash U$. Therefore we can write $\left(1-\xi_{U}\right) Q=R_{1}+\cdots+R_{N}$, where $R_{j} \in(V(Y) \hat{\otimes} B)^{\prime}$ has Y-support $\subset Y^{j}, 1 \leqq j$ $\leqq N$. Notice that each $Y_{j} \backslash U_{j}$ is a finite set, since p_{j} is the only one (possible) accumulation point in Y_{j}. If $N=1$, this implies that $\left(1-\xi_{U}\right) Q$ is finitely supported. If $N \geqq 2$ and if we assume the result for $N-1$, it follows that every R_{j} is a finite sum of discrete elements and is therefore a discrete element. Finally, we have

$$
\begin{equation*}
\left\|Q-\left(Q_{p}+R_{1}+\cdots+R_{N}\right)\right\|=\left\|\xi_{U} Q-Q_{p}\right\|<\varepsilon \tag{4}
\end{equation*}
$$

by (3). Since $\varepsilon>0$ is arbitrary, this yields the desired conclusion.
Theorem 2. Suppose that at least one of the spaces X_{j} is infinite. Then the linear span of all continuous and discrete elements of $\left(V_{0}(X) \widehat{\otimes} B\right)^{\prime}$ is dense in $\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ if and only if B^{\prime} satisfies ($\left.\mathscr{P}\right)$.

Proof. One direction of the above assertion is a trivial consequence of Theorem 1. To prove the non-trivial part, we may assume $N=1$.

Suppose that B^{\prime} does not satisfy (\mathscr{P}), but that the linear span of all discrete and continuous elements is dense in $\left(C_{0}(X) \hat{\otimes} B\right)^{\prime}$. Then there exist a finite constant C and a sequence $\left(\Phi_{k}\right)_{1}^{\infty}$ of elements of B^{\prime} such that

$$
\begin{equation*}
\left\|\Phi_{k}\right\|_{B^{\prime}} \geqq 1 \quad \forall k \in N, \quad \text { and } \quad\left\|\sum_{k=1}^{n} \alpha_{k} \Phi_{k}\right\|_{B^{\prime}} \leqq C \sup _{k}\left|\alpha_{k}\right| \tag{1}
\end{equation*}
$$

for all finite sequences $\alpha_{1}, \cdots, \alpha_{n}$ of complex numbers. The space X contains
a countable set $E=\left\{x_{k}\right\}_{1}^{\infty}$ of distinct elements such that every x_{k} is isolated in \bar{E}.

Define

$$
\begin{equation*}
P_{n}=\sum_{k=1}^{n} \delta_{x_{k}} \otimes \Phi_{k} \in\left(C_{0}(X) \hat{\otimes} B\right)^{\prime} \tag{2}
\end{equation*}
$$

for all $n \in \boldsymbol{N}$. It is an easy consequence of (1) that $\left(P_{n}\right)_{1}^{\infty}$ is a bounded sequence in $\left(C_{0}(X) \hat{\otimes} B\right)^{\prime}$. Let $P \in\left(C_{0}(X) \hat{\otimes} B\right)^{\prime}$ be any weak-* cluster point of $\left(P_{n}\right)_{1}^{\infty}$. Obviously P is supported by \bar{E}, and

$$
\begin{equation*}
\text { the } X \text {-support of } P-P_{n} \subset \bar{E} \backslash\left\{x_{k}\right\}_{1}^{n} \tag{3}
\end{equation*}
$$

for all n. By one of the assumptions, there exist a continuous element Q and a discrete element $R \in\left(V_{0}(X) \hat{\otimes} B\right)^{\prime}$ such that $\|P-Q-R\|<1 / 3$. We may assume that the X-support of Q is contained in a finite set $F \subset X$. Choose any $m \in N$ so that $F \cap E \subset\left\{x_{k}\right\}_{1}^{m}$, and let R^{\prime} be the "restriction" of R to $F \cap E$. Since Q is a continuous element, it follows from (3) that

$$
\begin{equation*}
\left\|P_{n}-R^{\prime}\right\| \leqq 1 / 3 \quad \forall n \geqq m . \tag{4}
\end{equation*}
$$

The proof of this fact is similar to that of (1) in the proof of Theorem 1. But (4) implies

$$
\begin{aligned}
\left\|\Phi_{n}\right\|_{B^{\prime}} & =\left\|\delta_{x_{n}} \otimes \Phi_{n}\right\|=\left\|P_{n}-P_{n-1}\right\| \\
& \leqq\left\|P_{n}-R^{\prime}\right\|+\left\|P_{n-1}-R^{\prime}\right\| \leqq 2 / 3
\end{aligned}
$$

for all $n>m+1$. This contradicts (1), and the proof is complete.
The following result must be well-known. Since we do not know any adequate reference about it, we give a complete proof.

Lemma 2. Let $(S, \mathscr{B}, \lambda)$ be a measure space, and $M(S)=M(S, \mathscr{B})$ the Banach space of all countably additive complex measures on \mathscr{B}. Then $M(S)$ and all the spaces $L^{p}=L^{p}(S, \mathscr{B}, \lambda), 1 \leqq p<\infty$, have Property (\mathscr{P}).

Proof. Let $1 \leqq p<\infty$, and $f_{1}, \cdots, f_{n} \in L^{p}$. Let also $\Omega=\Omega_{n}$ be the set of all n-tuples $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$ of ± 1. For any function ϕ on Ω, define

$$
\mathcal{E}(\phi)=2^{-n} \sum_{\varepsilon \in \Omega} \phi(\varepsilon)
$$

Then we have

$$
\begin{equation*}
\left(\mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|^{p}\right)^{1 / p} \leqq C_{p} \mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right| \tag{1}
\end{equation*}
$$

for some absolute constant C_{p} depending only on p (see Theorem (8.4) of Chap. V of [13: p, 213]); we need (1) only for $p=2$.

First suppose $1 \leqq p \leqq 2$. Then we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|f_{k}\right|^{p} \leqq n^{(2-p) / 2}\left(\sum_{k=1}^{n}\left|f_{k}\right|^{2}\right)^{p / 2} \tag{2}
\end{equation*}
$$

by Hölder's inequality. Hence

$$
\begin{aligned}
n^{-(p-1) / p} \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} & \leqq\left(\sum_{k=1}^{n} \int\left|f_{k}\right|^{p} d \lambda\right)^{1 / p} \quad \text { by Hölder } \\
& \leqq n^{(2-p) / 2 p}\left\{\int\left(\sum_{k=1}^{n}\left|f_{k}\right|^{2}\right)^{p / 2} d \lambda\right\}^{1 / p} \quad \text { by (2) } \\
& =n^{(2-p) / 2 p}\left\{\int\left(\mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|^{2}\right)^{p / 2} d \lambda\right\}^{1 / p} \\
& \leqq C_{2} n^{(2-p) / 2 p}\left\{\int\left(\mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|\right)^{p} d \lambda\right\}^{1 / p} \quad \text { by (1) } \\
& \leqq C_{2} n^{(2-p) / 2 p} \mathcal{E}\left\|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right\|_{p} \quad \text { by Minkowski. }
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
n^{-1 / 2} \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} \leqq C_{2}\left\|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right\|_{p} \tag{3}
\end{equation*}
$$

for at least one $\varepsilon \in \Omega$, provided that $1 \leqq p \leqq 2$.
Next suppose $2 \leqq p<\infty$. Using the inequality $\|\cdot\|_{l p} \leqq\|\cdot\|_{l^{2}}$, we then have

$$
\begin{aligned}
n^{-(p-1) / p} & \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} \leqq\left(\int_{k=1}^{n}\left|f_{k}\right|^{p} d \lambda\right)^{1 / p} \\
& \leqq\left\{\int\left(\sum_{k=1}^{n}\left|f_{k}\right|^{2}\right)^{p / 2} d \lambda\right\}^{1 / p}=\left\{\int\left(\mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|^{2}\right)^{p / 2} d \lambda\right\}^{1 / p} \\
& \leqq\left\{\int \mathcal{E}\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|^{p} d \lambda\right\}^{1 / p} \quad \text { by Hölder } \\
\quad & =\left\{\mathcal{E} \int\left|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right|^{p} d \lambda\right\}^{1 / p} .
\end{aligned}
$$

Hence $2 \leqq p<\infty$ imply

$$
\begin{equation*}
n^{-(p-1) / p} \sum_{k=1}^{n}\left\|f_{k}\right\|_{p} \leqq\left\|\sum_{k=1}^{n} \varepsilon_{k} f_{k}\right\|_{p} \tag{4}
\end{equation*}
$$

for at least one $\varepsilon \in \Omega$.
By (3) and (4), all the spaces $L^{p}, 1 \leqq p<\infty$, have Property (\mathcal{P}). That $M(S)$ has Property (\mathscr{Q}) follows from the result for $p=1$ combined with the RadonNikodym Theorem. This completes the proof.

Theorem 3. Let $X=X_{1} \times \cdots \times X_{N}$ be as before ($N \geqq 1$). Then each of the following conditions implies the others:
(i) All except at most one X_{j} are residual.
(ii) $\quad M(X)$ is dense in $V_{0}(X)^{\prime}$.
(iii) $V_{0}(X)^{\prime}$ has Property (\mathscr{P}).

Proof. If $N=1$, there is nothing to prove, since then (iii) is a special case of Lemma 2. So suppose $N \geqq 2$.

We first confirm the implication (i) \Rightarrow (ii). Without loss of generality, assume that $X_{1}, X_{2}, \cdots, X_{N-1}$ are residual. Put $Y=X_{1} \times \cdots \times X_{N-1}$ and $B=C_{0}\left(X_{N}\right)$, so that $V_{0}(X)=V_{0}(Y) \hat{\otimes} B$ isometrically. Then the only continuous element of $\left(V_{0}(Y) \hat{\otimes} B\right)^{\prime}$ is the zero element, since Y is residual and the Y-support of any continuous element has no isolated point. On the other hand, $B^{\prime}=M\left(X_{N}\right)$ has Property (\mathscr{P}) by Lemma 2, It follows from Theorem 1 that the set of all discrete elements is dense in $\left(V_{0}(Y) \hat{\otimes} B\right)^{\prime}$. This establishes (ii), since it is trivial that every point-mass-like element of $\left(V_{0}(Y) \hat{\otimes} B\right)^{\prime}=V_{0}(X)^{\prime}$ is given by a measure in $M(X)$.

Suppose now that at least two of the spaces X_{j}, say, X_{1} and X_{2}, contain perfect sets. We want to prove that then neither (ii) nor (iii) holds. Take a compact perfect set $K_{j} \subset X_{j}$ for $j=1,2$, and put $K=K_{1} \times K_{2}$. Then we can imbed $V(K)^{\prime}$ into $V_{0}(X)^{\prime}$ isometrically. If $N=2$, this is trivial; if $N>2$, choose any point $x \in X_{3} \times \cdots \times X_{N}$ and identify K with $K \times\{x\}$ in the obvious way. Notice that if $M(X)$ is given the norm of $V_{0}(X)^{\prime}$, then $\left.\mu \rightarrow \mu\right|_{K}\left(\right.$ or $\left.\left.\mu \rightarrow \mu\right|_{K \times(x)}\right)$ is a norm-decreasing mapping from $M(X)$ into $V(K)^{\prime}$. Therefore, if $M(X)$ were dense in $V_{0}(X)^{\prime}$, then $M(K)$ would be dense in $V(K)^{\prime}$. Now let \boldsymbol{T} be the circle group, and let $\phi_{j}: K_{j} \rightarrow \boldsymbol{T}$ be any continuous surjection ($j=1,2$). Then the product mapping $\phi=\phi_{1} \times \phi_{2}: K \rightarrow \boldsymbol{T}^{2}$ induces an isometric homomorphism $f \rightarrow f \circ \phi: V\left(\boldsymbol{T}^{2}\right) \rightarrow V(K)$ (see [$\mathbf{5}$; Theorem 4.1]). Therefore we shall regard $V\left(\boldsymbol{T}^{2}\right)$ as a closed subalgebra of $V(K)$. Let

$$
\begin{equation*}
A(\boldsymbol{T}) \xrightarrow{M} V\left(\boldsymbol{T}^{2}\right) \xrightarrow{P} A(\boldsymbol{T}) \tag{1}
\end{equation*}
$$

be the mappings defined in [2]: $(M f)(x, y)=f(x+y)$ and $(P g)(x)=\int_{T} g(x-y, y) d y$. Then M is an isometric homomorphism, P is a norm-decreasing mapping, and $P \circ M=$ identity. Consequently we have two isometric imbeddings $A(\boldsymbol{T}) \subset V\left(\boldsymbol{T}^{2}\right)$ $\subset V(K)$. By Corollary 3.13 of [1: p. 35], there exists a $\Phi \in P M(\boldsymbol{T})=A(\boldsymbol{T})^{\prime}$ such that

$$
\begin{equation*}
\|\Phi-\mu\|_{P M}>1 \quad \forall \mu \in M(\boldsymbol{T}) . \tag{2}
\end{equation*}
$$

Let $\widetilde{\Phi} \in V(K)^{\prime}$ be any norm-preserving extension of Φ, and $\nu \in M(K)$. If we denote by $\mu \in P M(\boldsymbol{T})$ the restriction of ν to $A(\boldsymbol{T})$ as a functional, then obviously $\mu \in M(\boldsymbol{T})$, and we have

$$
\begin{equation*}
\|\tilde{\Phi}-\nu\|_{V(K)^{\prime}} \geqq\|\Phi-\mu\|_{P M}>1 \tag{3}
\end{equation*}
$$

by (2). Therefore $M(K)$ is not dense in $V(K)^{\prime}$. By one of the above remarks, this implies that $M(X)$ is not dense in $V_{0}(X)^{\prime}$. Hence (ii) \Rightarrow (i), and we have established the equivalence of (i) and (ii).

Next we prove that $V_{0}(X)^{\prime}$ does not have Property (\mathcal{P}) under the assumption given in the above paragraph. After imbedding $V\left(\boldsymbol{T}^{2}\right)$ into $V(K)$ as
above, we take any net $\left\{L_{\alpha}\right\}$ of norm-decreasing linear mappings from $V(K)$ into $V\left(\boldsymbol{T}^{2}\right)$ such that

$$
\begin{equation*}
\lim _{\alpha}\left\|L_{\alpha} f-f\right\|_{V(Y)}=0 \quad f \in V\left(\boldsymbol{T}^{2}\right) ; \tag{4}
\end{equation*}
$$

such a net exists (cf. [5; p. 28]). Let L_{α}^{\prime} be the adjoint mapping of L_{α}. Since every L_{α}^{\prime} has norm $\leqq 1$, there exists a norm-decreasing linear mapping $L^{\prime}: V\left(\boldsymbol{T}^{2}\right)^{\prime} \rightarrow V(K)^{\prime}$ such that

$$
\begin{equation*}
\lim _{\beta}\left\langle f, L_{\beta}^{\prime} \Phi\right\rangle=\left\langle f, L^{\prime} \Phi\right\rangle \quad \forall f \in V(K) \text { and } \forall \Phi \in V\left(\boldsymbol{T}^{2}\right)^{\prime} \tag{5}
\end{equation*}
$$

for some subnet $\left\{L_{\beta}\right\}$ of $\left\{L_{\alpha}\right\}$. Since the imbedding $V\left(\boldsymbol{T}^{2}\right) \subset V(K)$ is isometric, we infer from (4) and (5) that L^{\prime} is an isometry. On the other hand, it is trivial that $P^{\prime}: P M(\boldsymbol{T}) \rightarrow V\left(\boldsymbol{T}^{2}\right)^{\prime}$ is an isometry. Therefore, all the mappings

$$
P M(\boldsymbol{T}) \xrightarrow{P^{\prime}} V\left(\boldsymbol{T}^{2}\right)^{\prime} \xrightarrow{L^{\prime}} V(K)^{\prime} \subseteq V_{0}(X)^{\prime}
$$

are isometries. Since $P M(\boldsymbol{T}) \cong l^{\infty}(\boldsymbol{Z})$ does not have Property (\mathscr{P}), it follows that $V_{0}(X)^{\prime}$ does not have (\mathscr{P}), either. Here \boldsymbol{Z} denotes the group of integers. This establishes the implication (iii) \Rightarrow (i).

It only remains to prove (i) \Rightarrow (iii). Consider

$$
\begin{equation*}
C_{0}(\boldsymbol{Z}) \hat{\otimes} V_{0}(X)=C_{0}(\boldsymbol{Z}) \hat{\otimes} C_{0}\left(X_{1}\right) \hat{\otimes} \cdots \hat{\otimes} C_{0}\left(X_{N}\right) . \tag{6}
\end{equation*}
$$

If we assume (i), it follows from the implication (i) \Rightarrow (ii) that $M(\boldsymbol{Z} \times X)$ is dense in $\left(C_{0}(\boldsymbol{Z}) \hat{\otimes} V_{0}(X)\right)^{\prime}$. Therefore $V_{0}(X)^{\prime}$ must have Property (\mathscr{P}) by Theorem 2.

This completes the proof.
Corollary 1. Suppose that all the spaces $X_{j}, 1 \leqq j \leqq N$, are residual. Then the second conjugate space of $V_{0}(X)$ is isometrically isomorphic to the Banach space of all $f \in l^{\circ}(X)$ such that

$$
\|f\|_{\Re}=\sup _{E}\|f\|_{V(E)}<\infty .
$$

Here the supremum is taken over all finite product subsets E of X.
Proof. Notice that $M(X)=M_{d}(X)$ is dense in $V_{0}(X)^{\prime}$ by hypothesis and Theorem 3.

Given $F \in V_{0}(X)^{\prime \prime}$, define an $f \in l^{\infty}(X)$ by setting $f(x)=\left\langle\delta_{x}, F\right\rangle$ for all $x \in X$. Since $M_{d}(X)$ is dense in $V_{0}(X)^{\prime}, F$ is completely determined by f, and we have

$$
\begin{aligned}
\|F\| & =\sup _{E}\left\{|\langle\mu, F\rangle|: \mu \in M(E) \text { and }\|\mu\|_{V(E)^{\prime}} \leqq 1\right\} \\
& =\sup _{E}\left\{\left|\int f d \mu\right|: \mu \in M(E) \text { and }\|\mu\|_{V(E)^{\prime}} \leqq 1\right\} \\
& =\sup _{E}\|f\|_{V(E)}=\|f\|_{r} .
\end{aligned}
$$

The converse part is obvious, and this completes the proof.
Notice that for any locally compact spaces X_{j}, a function $f \in l^{\circ}(X)$ is a multiplier of $V_{0}(X)$ if and only if f belongs to $V_{0}(X)$ locally at every point of X and $\|f\|_{\mathscr{r}}<\infty$. Moreover, if f is a multiplier of $V_{0}(X)$, then the multiplier norm of f is equal to $\|f\|_{\boldsymbol{r}}$. (See [12: Lemma 1.1] and [6: Theorem 4.5].) Therefore Theorems 1,3 and Corollary 1 yield the following.

Corollary 2. Suppose that all the spaces $X_{j}, 1 \leqq j \leqq N$, are discrete. Then we have:
(a) For each $\Phi \in V_{0}(X)^{\prime}$,

$$
\lim _{\Phi}\left\|\Phi-\sum_{x \in E}\left\langle\xi_{(x)}, \Phi\right\rangle \delta_{x}\right\|=0 .
$$

(b) $\quad V_{0}(X)^{\prime \prime}$ is isometrically isomorphic to the Banach space of all multipliers of $V_{0}(X)$.

Now let G be a LCA group, Γ its character group, and $A(\Gamma)$ the Fourier algebra on Γ (cf. [4]). For any closed subset X of $\Gamma, A(X)$ denotes the Fourier restriction algebra $\left.A(\Gamma)\right|_{x}$ with the natural quotient norm. Let \bar{X} be the closure of X in $\bar{\Gamma}$, the Bohr compactification of Γ. We consider $A_{d}(\Gamma)=$ $M_{d}(G)^{\wedge} \cong A(\bar{\Gamma}), A_{d}(X)=\left.A_{d}(\Gamma)\right|_{x} \cong A(\bar{X})$, and $A_{0}(X)=A_{d}(X) \cap C_{0}(X)$.

Corollary 3. Suppose that G is compact, and that $X_{1}, X_{2}, \cdots, X_{N}(N \geqq 1)$ are finitely many, disjoint subsets of Γ with dissociate union. Put $X=X_{1} \cdot X_{2}$. $\cdots \cdot X_{N} \subset \Gamma$, and identify X with the product space of the $X_{j}, 1 \leqq j \leqq N$.
(a) Then $A(X)=V_{0}(X)$ and $A_{0}(X) \subset A(X)$.
(b) $B(X)=\left.M(G)^{\wedge}\right|_{X}$ is (isomorphic to) the second conjugate space of $A(X)$.
(c) If $\phi \in L^{\infty}(G)$ and $\operatorname{supp} \hat{\phi} \subset X$, then

$$
\lim _{\mathscr{F}}\left\|\phi-\sum_{\gamma \in E} \hat{\phi}(\gamma) \gamma\right\|_{\infty}=0,
$$

where \mathscr{F} denotes the directed family of all finite subsets E of X of the form $E=E_{1} \cdot E_{2} \cdot \cdots \cdot E_{N}$ with $E_{j} \subset X_{j}$ for $1 \leqq j \leqq N$.

Proof. That $A(X)=V_{0}(X)$ is an easy consequence of Theorem 3.2 in [3]. Since the proof is quite routine, we omit it. To prove $A_{0}(X) \subset A(X)$, first notice that $A_{d}(X) \subset V(X)$ by the definition of $A_{d}(X)$. Let Y_{j} be the one-point compactification of $X_{j}, 1 \leqq j \leqq N$, and $Y=Y_{1} \times \cdots \times Y_{N}$. Then $C_{0}(X) \subset C(Y)$, and $V(Y) \subset V(X)$ with obvious identifications. On the other hand, we have $C_{0}(X)$ $\cap V(X) \subset V(Y)$ by Theorem 4.3 in [5]. Therefore

$$
A_{0}(X) \subset C_{0}(X) \cap V(X)=C_{0}(X) \cap V(Y)
$$

so that $A_{0}(X) \subset A(X)$, since evidently $V_{0}(X)=C_{0}(X) \cap V(Y)$. This establishes (a).

Notice that $A(X)^{\prime}$ is $L_{X}^{\infty}(G)=\left\{\phi \in L^{\infty}(G): \operatorname{supp} \hat{\phi} \subset X\right\}$, as is well-known.

Therefore part (c) is an easy consequence of part (a) combined with Corollary 2.

Part (b) follows from part (c), because $B(X)$ is the conjugate space of $C_{X}(G)=C(G) \cap L_{X}^{\infty}(G)$ for any $X \subset \Gamma$.

Now let $\varepsilon>0$ be given. A closed subset K of G is said to be a K_{ε}-set if to each $f \in C(K)$ with $|f|=1$ there correspond a character $\gamma \in \Gamma$ and a complex number $c \in \boldsymbol{T}=\{|z|=1\}$ such that $|f(x)-c \gamma(x)| \leqq \varepsilon$ for all $x \in K$. Although the following result is similar to Varopoulos' Theorem 4.4.1 in [11:p.78], his proof does not work in our case.

Proposition 1. Let E_{1}, \cdots, E_{N} be disjoint compact subsets of a LCA group G whose union is a K_{ε}-set for some $0<\varepsilon<(2 / N) \sin (\sqrt{6}-2)$, and let $E=E_{1}+\cdots$ $+E_{N} \subset G$. Then E is a set of bounded synthesis for $A(G)$.

PROOF. The curious restriction for $\varepsilon>0$ is used only to assure that every point x of E has a unique expression of the form $x=x_{1}+\cdots+x_{N}$ with $x_{j} \in E_{j}$ $(1 \leqq j \leqq N)$, and that there exists a $\phi \in A(\boldsymbol{T})$ such that

$$
\begin{equation*}
\|\phi\|_{A(\boldsymbol{T})}=\sum_{m=-\infty}^{\infty}|\hat{\phi}(m)|=C<1, \quad \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\phi(z)=z-1 \quad \text { if } \quad z \in T \text { and }|z-1|<N \varepsilon \tag{2}
\end{equation*}
$$

For the latter fact, we refer the reader to Remark (b) at the end of [9].
We prove the above assertion only for $N=2$, since the proof for the general case is similar. We also assume that all the sets E_{j} are totally disconnected, since we are only interested in this case. (However, if some of the sets E_{j} contain non-trivial connected sets, then the proof becomes very complicated.)

For $i=1,2$ and $n \in \boldsymbol{N}$, let $E_{i}=E_{i 1} \cup \ldots \cup E_{i n}$ be any partition of E_{i} into disjoint clopen subsets. Choose and fix $2 n$ points $x_{j} \in E_{1 j}$ and $y_{j} \in E_{2 j}, 1 \leqq j \leqq n$. We define a linear mapping $L: P M(E) \rightarrow M_{d}(E)$ by setting

$$
\begin{equation*}
L P=\sum_{j, k=1}^{n} \hat{P}_{j_{k}}(1) \delta_{x_{j}+y_{j}} \quad \forall P \in P M(E) \tag{3}
\end{equation*}
$$

where $P_{j_{k}} \in P M(E)$ is the part of $P \in P M(E)$ carried by $E_{1 j}+E_{2 k}$. Notice that the sets $E_{1 j}+E_{2 k}(1 \leqq j, k \leqq n)$ are disjoint by the above remark.

We then claim that $\|L P\|_{P M} \leqq(1-C)^{-1}\|P\|_{P M}$ for all $P \in P M(E)$, where C is as in (1). To prove this, let $\|L\|$ be the norm of L as an operator on $P M(E)$, and notice that

$$
\begin{equation*}
\widehat{L P}\left(\gamma^{-1}\right)=\sum_{j, k=1}^{n} \gamma\left(x_{j}+y_{j}\right) \widehat{P_{j k}}(1) \quad \forall \gamma \in \Gamma \tag{3}
\end{equation*}
$$

for all $P \in P M(E)$. Fix an arbitrary $\gamma \in \Gamma$. Since E_{1} and E_{2} are disjoint and their union is a K_{ε}-set, there exist $\chi \in \Gamma$ and $\alpha=c^{2} \in T$ such that

$$
\begin{equation*}
\sup \left\{\left|\gamma\left(x_{j}+y_{k}\right)-\alpha \chi(x+y)\right|: x \in E_{1 j}, y \in E_{2 k}\right\}<2 \varepsilon \tag{4}
\end{equation*}
$$

for all $1 \leqq j, k \leqq n$. It follows from (2) with $N=2$ and (4) that for each pair (j, k) we have

$$
\begin{aligned}
\gamma\left(x_{j}+y_{k}\right)-\alpha \chi & =\alpha \chi\left\{\bar{\alpha} \gamma\left(x_{j}+y_{k}\right) \bar{\chi}-1\right\} \\
& =\sum_{m=-\infty}^{\infty} \hat{\phi}(m) \alpha^{1-m} r^{m}\left(x_{j}+y_{k}\right) \chi^{1-m}
\end{aligned}
$$

on some neighborhood of $E_{1 j}+E_{2 k}$. Therefore

$$
\begin{align*}
& \left|\widehat{L P}\left(\gamma^{-1}\right)-\alpha \hat{P}\left(\chi^{-1}\right)\right|=\left|\sum_{j, k=1}^{n}\left\langle\gamma\left(x_{j}+y_{k}\right)-\alpha \chi, P_{j k}\right\rangle\right| \tag{5}\\
& \quad \leqq \sum_{m=-\infty}^{\infty}|\hat{\phi}(m)| \cdot\left|\sum_{j, k=1}^{n}\left\langle\gamma^{m}\left(x_{j}+y_{k}\right) \chi^{1-m}, P_{j k}\right\rangle\right| \\
& \quad=\sum_{m=-\infty}^{\infty}|\hat{\phi}(m)| \cdot\left|L\left(\chi^{1-m} P\right)^{\wedge}\left(\gamma^{-m}\right)\right| \\
& \quad \leqq \sum_{m=-\infty}^{\infty}|\hat{\phi}(m)| \cdot\|L\| \cdot\|P\|_{P M} \leqq C\|L\| \cdot\|P\|_{P M}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left|\widehat{L P}\left(\gamma^{-1}\right)\right| \leqq(1+C\|L\|)\|P\|_{P M} \tag{6}
\end{equation*}
$$

Since $\gamma \in \Gamma$ and $P \in P M(E)$ are arbitrary, (6) implies $\|L\| \leqq 1+C\|L\|$. Since $C<1$, we conclude $\|L\| \leqq(1-C)^{-1}$.

To complete the proof, it suffices to show that given $P \in P M(E)$ and $\gamma \in \Gamma$, $\widehat{L P}\left(\gamma^{-1}\right)$ approaches $P\left(\gamma^{-1}\right)$ as the partitions $\left\{E_{i j}\right\}_{j}$ of E_{i} become finer and finer. Notice that $\|\phi\|_{A(T)}$ can be made arbitrarily small if we require (2) for a sufficiently small $\varepsilon>0$ (cf. Lemma 1 of [7: p. 290]). Therefore we can do this easily by arguing as in (5) with $\alpha=1$ and $\chi=\gamma$ after replacing $\phi \in A(\boldsymbol{T})$ by other suitable functions in $A(\boldsymbol{T})$.

This completes the proof.
Corollary 4. Suppose that G is compact, and that X_{1}, \cdots, X_{N} are finitely many, disjoint subsets of Γ whose union is a K_{ε}-set for some $0<\varepsilon<$ $(2 / N) \sin (\sqrt{6}-2)$. If we put $X=X_{1} \cdot X_{2} \cdot \cdots \cdot X_{N} \subset \Gamma$, then $A(X)=A_{0}(X)$ and \bar{X} is a set of bounded synthesis for the algebra $A(\bar{\Gamma})=A_{d}(\Gamma)$.

Proof. By hypothesis and Theorem 3.1 of [12], we have $A_{d}(X)=V(X)$ and $A(X)=V_{0}(X)$. Since $V_{0}(X)=C_{0}(X) \cap V(X)$ as was observed in the proof of Corollary 3, we have $A(X)=A_{0}(X)$.

It is easy to prove that under our hypothesis the sets $\bar{X}_{1}, \cdots, \bar{X}_{N}$ are disjoint and their union is an extremally disconnected K_{ε}-set in $\bar{\Gamma}$. This, combined with Proposition 1, completes the proof.

Corollary 5. Let G and $X \subset \Gamma$ be as in Corollary 4. Suppose $N \geqq 2$ and every X_{j} is infinite. Then X contains a subset E such that
(i) $A(E) \subset A_{0}(E) \subset B_{0}(E) \equiv B(E) \cap C_{0}(E)$.
(ii) $A_{0}(E)\left(\right.$ resp. $B_{0}(E)$) contains a function f such that $\Phi \circ f \oplus A(E)$ (resp. $\left.\Phi \circ f \oplus A_{0}(E)\right)$ for all non-constant entire functions Φ.

Proof. This is an easy consequence of Theorem 2 and its proof in [8]. We omit the details.

Remarks. Let $X=X_{1} \times \cdots \times X_{N}$ and B be as before.
(I) If B^{\prime} satisfies (\mathscr{P}), then the set of all compactly supported elements is dense in $\left(V_{0}(X) \otimes B\right)^{\prime}$. The proof is similar to that of Lemma 1.
(II) Suppose that B^{\prime} satisifies $(\mathscr{P}), P \in\left(C_{0}(X) \hat{\otimes} B\right)^{\prime}$, and $E \subset X$ is closed. Then there exists a unique $P_{E} \in\left(C_{0}(X) \widehat{\otimes} B\right)^{\prime}$, with $S_{X}\left(P_{E}\right) \subset E$, having the following property: to each $\varepsilon>0$ there corresponds a neighborhood W of E such that $\left\|\phi P-P_{E}\right\| \leqq \varepsilon\|\phi\|_{\infty}$ whenever $\phi \in C(X), \phi=1$ on E, and supp $\phi \subset W$.
(III) Suppose $N=2$. Applying (II) twice, we conclude that given $P \in V_{0}(X)^{\prime}$ and $E=E_{1} \times E_{2} \subset X$ closed, there exists a unique $P_{E} \in V_{0}(X)^{\prime}$, with $\operatorname{supp} P_{E} \subset E$, having the following property : to each $\varepsilon>0$ there corresponds a neighborhood W of E such that $\left\|\phi P-P_{E}\right\| \leqq \varepsilon\|\phi\|_{V(X)}$ whenever $\phi \in V(X), \phi=1$ on E, and supp $\phi \subset W$. However, no analog of this holds if $N \geqq 3$, all the spaces X_{j} are infinite, and at least two of them contain perfect sets.
(IV) Under the hypothesis of Corollary 4 the set of all accumulation points of X in $\bar{\Gamma}$ is a set of synthesis.
(V) All the results in this paper were obtained in the last year of the author's sojourn at Kansas State University (1972-1974).

References

[1] C.F. Dunkl and D.E. Ramirez, Topics in harmonic analysis, Appleton-CenturyCrofts, New York, 1971.
[2] S.C. Herz, Remarques sur la note précédente de M. Varopoulos, C. R. Acad. Sci. Paris, 260 (1965), 6001-6004.
[3] E. Hewitt and H. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc., 62 (1966), 399-420.
[4] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962.
[5] S. Saeki, The ranges of certain isometries of tensor products of Banach spaces, J. Math. Soc. Japan, 23 (1971), 27-39.
[6] S. Saeki, Homomorphisms of tensor algebras, Tôhoku Math. J., 23 (1971), 173199.
[7] S. Saeki, Tensor products of Banach algebras and harmonic analysis, Tôhoku Math. J., 24 (1972), 281-299.
[8] S. Saeki, On restriction algebras of tensor algebras, J. Math. Soc. Japan, 25 (1973), 506-522.
[9] S. Saeki, Infinite tensor products in Fourier algebras, submitted to Tôhoku Math. J.,
[10] L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques.

Espaces vectoriels topologiques nucléaires. Applications, Faculté des Sciences de Paris (1953-1954).
[11] N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math., 119 (1967), 51-112.
[12] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Functional Analysis, 3 (1969), 321-335.
[13] A. Zygmund, Trigonometric series, Vol. I, Cambridge University Press, New York, 1959.

Sadahiro SAEKI
Department of Mathematics
Tokyo Metropolitan University
Fukazawa-cho, Setagaya-ku
Tokyo, Japan

