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For any locally compact (Hausdorff) space $X$, we denote by $C(X)$ and
$C_{0}(X)$ the Banach algebra of all bounded continuous functions on $X$ and the
ideal of those $f\in C(X)$ which vanish at infinity, respectively. Thus the con-
jugate space $C_{0}(X)^{\prime}$ of $C_{0}(X)$ can be identified with the space $M(X)$ of all
bounded regular measures on $X$. Now let $X_{1},$ $\cdots$ , $X_{N}$ be finitely many locally
compact spaces, and $X$ the product space thereof. Given a Banach space $B$ ,
we consider

$ V_{0}(X)\otimes B\hat=C_{0}(X_{1})\otimes\hat\ldots\otimes C_{0}(X_{N})\hat\otimes B\hat$ ,

the (complete) projective tensor product of $C_{0}(X_{1}),$ $\cdots$ , $C_{0}(X_{N})$ , and $B$ (cf. [10]).

Notice that the Banach space $ V_{0}(X)\otimes B\hat$ can be regarded as a linear subspace
of $C(X:B)$ , the space of all B-valued bounded continuous functions on $X$.

The main purpose of this paper is to prove that, under a certain condition
on $B^{\prime}$ , the space $(V_{0}(X)\otimes B)^{\prime}\hat$ has a natural decomposition which is similar to
the well-known decomposition $M(X)=M_{c}(X)+M_{a}(X)$ . As a special case of
this result it is shown that $M(X)$ is norm-dense in $V_{0}(X)^{\prime}$ if and only if all
except at most one $X_{j}$ are residual ( $i$ . $e.$ , contain no perfect sets). We also
give an application of the latter result to the study of Fourier restriction
algebras.

Let $ V_{0}(X)\otimes B\hat$ be as above. Then $ V_{0}(X)\otimes B\hat$ has a natural Banach $V(X)-$

module structure, where $ V(X)=C(X_{1})\otimes\hat\ldots\otimes C(X_{N})\subset C(X):\hat$

$(\phi F)(x)=\phi(x)F(x)$ $(\phi\in V(X), F\in V_{0}(X)\otimes B\hat,$ $x\in X$ ).

We define the product $\phi P\in(V_{0}(X)\otimes B)^{\prime}\hat$ of a $\phi\in V(X)$ and a $ P\in(V_{0}(X)\otimes B)^{\prime}\hat$

by setting
$\langle F, \phi P\rangle=\langle\phi F, P\rangle$ $\forall F\in V_{0}(X)\otimes B\hat$ .

Notice that the imbedding $V_{0}(X)\subset V(X)$ is isometric. We also define the X-
support of $P,$ $S_{X}(P)$ , to be the smallest closed subset $S$ of $X$ such that $\langle F, P\rangle$

$=0$ whenever $ F\in V_{0}(X)\otimes B\hat$ and $F=0$ on some neighborhood of $S$ (cf. [5; p. 31]).
DEFINITIONS. Let $ P\in(V_{0}(X)\otimes B)^{\prime}\hat$ be given.
(a) We call $P$ point-maSs-like if $S_{X}(P)$ is either a singleton or empty.
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(b) We call $P$ discrete if it belongs to the closed linear span of all point-
mass-like elements in $(V_{0}(X)\otimes B)^{\prime}\wedge$ .

(c) We say that $P$ is continuous at a point $x\in X$ if to each $\epsilon>0$ there
corresponds a neighborhood $W$ of $x$ such that

$\phi\in V(X)$ and supp $\phi\subset W$ $\Rightarrow$ $\Vert\phi P\Vert\leqq\epsilon\Vert\phi\Vert_{V(X)}$ .
The element $P$ is called continuous (on $X$ ) if it is continuous at every point
of $X$.

Finally we introduce the following property of a Banach space $A$ :

$(andForanyany0<R<\infty thereexistfinitelymanycomp1exsequence(P_{n})_{1}^{\infty}ofe1ementsofAwithnorms\geqq 1$

$(\mathcal{P})$

$|$

numbers $\alpha_{1},$ $\alpha_{2},$
$\cdots$

$\alpha_{n}$ of absolute values- $\leqq 1$ such that

$\Vert\alpha_{1}P_{1}+\alpha_{2}P_{2}+\cdots+\alpha {}_{n}P_{n}\Vert_{A}>R$ .
Our main result is stated as follows.

THEOREM 1. Let $B$ be a Banach space whose conjugate space $B^{\prime}$ has Pro-
Perty $(\mathcal{P})$ , and let $ P\in(V_{0}(X)\otimes B)^{\prime}\wedge$ be given.

(i) $P$ can be uniquely written as $P=P_{c}+P_{d}$ , where $ P_{c}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ is con-
tinuous and $ P_{d}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ is discrete. Moreover, $\Vert P_{d}\Vert\leqq\Vert P\Vert$ .

(ii) There exists a unique family $\{P_{x} : x\in X\}\subset(V_{0}(X)\otimes B)^{\prime}\wedge$ , with $ S_{X}(P_{x})\subset$

$\{x\}\forall x\in X$, such that
$\lim_{\mathcal{F}}\Vert P_{a}-\sum_{x\in E}P_{x}\Vert=0$ .

Here $\mathcal{F}$ denotes the directed family of all finite Product subsets $E$ of $X$.
To prove this, we need a lemma.
LEMMA 1. Let $B$ be as in Theorem 1. Let also $ P\in(V_{0}(X)\otimes B)^{\prime}\wedge$ and $x\in X$

be given. Then there exists a unique $ P_{x}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ with the following Pro-
Perty: to each $0<\epsilon<1$ there corresPonds a neighborhood $W$ of $x$ such that
$\Vert\phi P-P_{x}\Vert\leqq\epsilon\Vert\phi\Vert_{V(X)}$ whenever $\phi\in V(X)$ , supp $\phi\subset W$ , and $\phi(x)=1$ .

PROOF. Write $x=(x_{1}, x_{2}, \cdots x_{N})$ ,

$E_{j}=E_{j}(x)=X_{1}\times\cdots\times X_{j- 1}\times\{x_{j}\}\times X_{j+1}\times\cdots\times X_{N}$ ,

and $E=E(x)=E_{1}\cup\cdots\cup E_{N}$ .
We first prove that given $\epsilon>0$ there exists a neighborhood $U$ of $x$ such

that

(1) $\phi\in V(X)$ and supp $\phi\subset U\backslash E$ $\Rightarrow$ $\Vert\phi P\Vert\leqq\epsilon\Vert\phi\Vert_{V(X)}$ .
Suppose this is false. Then there exists $\epsilon>0$ such that (1) does not hold for
any neighborhood $U$ of $x$ . We shall construct a sequence $(\phi^{(n)})_{1}^{\infty}$ of elements
of $V_{0}(X)$ as follows. Put $\phi^{(0)}=0$ , and suppose that $\phi^{(0)},$ $\cdots$ , $\phi^{(n- 1)}$ have been



Tensor prOducts of $C(X)\cdot spaces$ 35

defined for some natural number $n$ so that supp $\phi^{(k)}$ is compact and is disjoint
from $E(0\leqq k<n)$ . Choose any compact (product) neighborhood $U=U^{(n)}=$

$U_{1}\times\cdots\times U_{n}$ of $x$ such that

(2) $ U_{j}\cap\pi_{j}[supp\phi^{(k)}]=\emptyset$ $(1 \leqq j\leqq N, 0\leqq k<n)$ .
Here each $\pi_{j}$ is the natural projection from $X$ onto $X_{j}$ . Since (1) is assumed
not to hold, we can find a $\psi=\psi^{(n)}\in V(X)$ such that

(3) supp $\psi\subset(intU)\backslash E,$ $\Vert\psi\Vert_{V(X)}<1$ , and $\Vert\psi P\Vert>\epsilon$ .
By (2) and the definition of $V(X)$ , we may assume that $\psi$ has the form $\psi=$

$\psi_{1}\otimes\cdots\otimes\psi_{N}$ with $\psi_{j}\in C_{0}(X_{j}),$ $1\leqq j\leqq N$. Therefore, by (3) and the definition of
$ V_{0}(X)\otimes B\wedge$ , there exists an element

$ F^{(n)}=ff^{n)}\otimes\cdots\otimes f_{N}^{(n)}\otimes b^{(n)}\in V_{0}(X)\otimes B\wedge$

such that

(4) supp $F^{(n)}\subset U\backslash E,$ $|\langle F^{(n)}, P\rangle|>\epsilon$ ,

(5) $\Vert f_{j}^{(n)}\Vert_{\infty}=1=\Vert b^{(n)}\Vert_{B}$ $(1\leqq j\leqq N)$ .
Set $\phi^{(n)}=f_{1}^{(n)}\otimes\cdots\otimes f_{N}^{(n)}$ , which completes the induction.

We now prove that

(6) $\Vert\sum_{k=1}^{n}\alpha_{k}\phi^{(k)}\Vert_{V_{0}(X)}\leqq 1$

for all $n\in N$, and all complex numbers $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{n}$ of absolute values $\leqq 1$ .

First choose any complex numbers $\beta_{k}$ with $\beta_{k}^{N}=\alpha_{k},$ $1\leqq k\leqq n$ , and notice that
$f_{j}^{(1)},$ $f_{j}^{(2)},$ $\cdots$ , $f_{j}^{(n)}$ have disjoint supports by (2) and (4), $1\leqq j\leqq N$. Since $|\beta_{k}|\leqq 1$ ,
it follows from (5) that

(7) $\Vert\sum_{k=1}^{n}\omega_{k}\beta_{k}f_{j}^{(k)}\Vert_{\infty}\leqq 1$ $\forall\omega_{k}\in C,$ $|\omega_{k}|\leqq 1,1\leqq k\leqq n$

for all $j$ . On the other hand, we have

(8) $\left\{\begin{array}{l}\sum_{k=1}^{n}\alpha_{k}\phi^{(k)}\\=N^{-n}\sum_{\omega}(\sum_{k=1}^{n}\omega_{k}\beta_{k}f_{1}^{(k)})\otimes\cdots\otimes(\sum_{k=1}^{n}\omega_{k}\beta_{k}f_{N}^{(k)}),\end{array}\right.$

where the last sum is taken over all n-tuples $\omega=(\omega_{1}, \omega_{2}, \cdots , \omega_{n})$ of complex
numbers with $\omega_{k}^{N}=1(1\leqq k\leqq n)$ . We conclude from (7) and (8) that (6) holds.

Now define a $\Phi_{k}\in B^{\prime}$ by setting

(9) $\langle b, \Phi_{k}\rangle=\langle\phi^{(k)}\otimes b, P\rangle$ $\forall b\in B$

for each $k=1,2,$ $\cdots$ Since $F^{(k)}=\phi^{(k)}\otimes b^{(k)}$ , we have $\Vert\Phi_{k}\Vert_{B^{\prime}}>\epsilon$ by (4), (5) and
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(9). Since $B^{\prime}$ has Property $(\mathcal{P})$ , it follows that there are finitely many complex
numbers $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ of absolute values $\leqq 1$ and an element $b\in B$ , with norm
$\leqq 1$ , such that

(10) $|\langle b,\sum_{k=1}^{n}\alpha_{k}\Phi_{k}\rangle|>\Vert P\Vert$ .

We infer from (9) and (10) that

(11) $|\langle(\sum_{k=1}^{n}\alpha_{k}\phi^{(k)})\otimes b, P\rangle|>\Vert P\Vert$ ,

which contradicts (6) since $b$ has norm $\leqq 1$ . We have thus established (1).

Next we prove that given $\epsilon>0$ , there exists a neighborhood $W$ of $x$ such
that

(12) supp $\phi\subset W.$ and $\phi(x)=0$ $\Rightarrow$ $\Vert\phi P\Vert\leqq\epsilon\Vert\phi\Vert_{V(X)}$

whenever $\phi\in V(X)$ . Notice that this is an easy consequence of (1) if $N=1$ .
So, assume that $N\geqq 2$ and the desired conclusion is true with $N$ replaced by
$N-1$ . Given $\epsilon>0$ , choose a compact neighborhood $U_{\epsilon}$ of $x$ as in (1). Also Px
any $\psi_{\epsilon}\in V(X)$ such that supp $\psi_{\epsilon}\subset U_{\epsilon}$ and $\Vert\psi_{\epsilon}\Vert_{V(X)}=1=\psi_{\epsilon}$ in some neighborhood
$V_{\epsilon}\subset U_{\epsilon}$ of $x$ . Let $c\chi$ be the directed family of all compact subsets of $X\backslash E=$

$(X_{1}\backslash \{x_{1}\})\times\cdots\times(X_{N}\backslash \{x_{N}\})$ . With each $K\in JC$ we shall associate an element
$\phi_{K}\in V(X)$ such that $\Vert\phi_{K}\Vert_{V(X)}=1=\phi_{K}$ on $K$ and $(supp\phi_{K})\cap E=\emptyset$ . Then

$\Vert\phi_{K}\psi_{\epsilon}P\Vert\leqq\epsilon\Vert\phi_{K}\psi_{\epsilon}\Vert_{V(X)}\leqq\epsilon$

by (1). Therefore, for each fixed $\epsilon>0$ , the net $\{\phi_{K}\psi_{\epsilon}P:K\in cX\}$ has a weak-*
cluster point $ Q_{\epsilon}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ with $\Vert Q_{\epsilon}\Vert\leqq\epsilon$ . It is easy to see that $R_{\epsilon}=\psi_{\epsilon}P-Q_{\epsilon}$

is supported by $E$ . Moreover, we claim that $R_{\epsilon}$ has a decomposition of the
form $R_{\epsilon}=R_{1}+\cdots+R_{N}$ , where the X-support of $R_{j}$ is contained in $E_{j}(1\leqq j\leqq N)$ .
In fact, first consider the elements of $(V_{0}(X)\otimes B)^{\prime}\wedge$ of the form $(f_{1}\otimes 1\otimes\cdots\otimes 1)R_{\epsilon}$

with $f_{1}\in C_{0}(X_{1})$ and $\Vert f_{1}\Vert_{\infty}=1=f_{1}(x_{1})$ . Let $R_{1}$ be any $weak-*cluster$ point of
such elements as supp $f_{1}$ approaches $X_{1}$ . Then obviously $R.-R_{1}$ is supported
by $E_{2}\cup\cdots\cup E_{N}$ . It suffices to repeat this process with $R_{\epsilon}$ and $x_{1}$ replaced by
$R_{\epsilon}-R_{1}$ and $x_{2}$ , respectively, and so on. Notice that each $R_{j}$ can be regarded
as an element of $(V_{0}(Y_{j})\otimes B)^{\prime}\wedge$ , where $Y_{j}=X_{1}\times\cdots\times X_{j- 1}\times X_{j+1}\times\cdots\times X_{N}$ . It
follows from the inductive hypothesis that the required condition holds for
every $R_{j}$ , and hence for $R_{\epsilon}$ . Finally we choose a neighborhood $W_{\text{\’{e}}}\subset V_{\epsilon}$ of $x$

so that (12) holds with $P$ replaced by $R_{\epsilon}$ . If $\phi\in V(X)$ and $supp\phi\subset W_{\epsilon}$ , then
$\phi\psi_{\epsilon}=\phi$ and so

$\Vert\phi P\Vert=\Vert\phi\psi_{\epsilon}P\Vert=\Vert\phi R_{\epsilon}+\phi Q_{\epsilon}\Vert$

$\leqq\epsilon$ Il $\phi\Vert_{V(X)}+\Vert\phi\Vert_{V(X)}\Vert Q_{\epsilon}\Vert\leqq 2\epsilon\Vert\phi\Vert_{V(X)}$ .

This establishes (12) with $\epsilon$ replaced by $ 2\epsilon$ .
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Now let $\epsilon>0$ be given, and let $W_{\epsilon}$ be any neighborhood of $x$ as in (12). If
$\phi=\phi^{\prime}$ and $\phi^{\prime\prime}\in V(X)$ satisfy supp $\phi\subset W_{\text{\’{e}}}$ and $\phi(x)=1$ , then

(13) $\Vert\phi^{\prime}P-\phi^{\prime\prime}P\Vert=\Vert(\phi^{\prime}-\phi^{\prime\prime})P\Vert\leqq\epsilon(\Vert\phi^{\prime}\Vert_{V(X)}+\Vert\phi^{\prime\prime}\Vert_{V(X)})$

by (12). Since $\epsilon>0$ is arbitrary and $W_{\epsilon}$ can be taken arbitrarily small, it follows
from (13) that there exists a point-mass-like element $ P_{x}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ such
that

I $\phi P-P_{x}\Vert\leqq\epsilon(\Vert\phi\Vert_{V(X)}+1)\leqq 2\epsilon\Vert\phi\Vert_{V(X)}$

whenever $\phi\in V(X),$ $\phi(x)=1$ , and supp $\phi\subset W_{\epsilon}$ . This completes the proof, since
the uniqueness of $P_{x}$ is obvious.

PROOF OF THEOREM 1. Let $B$ and $\mathcal{F}$ be as in Theorem 1, and let
$ P\in(V_{0}(X)\otimes B)^{\prime}\wedge$ be given. With each $x\in X$ we associate a point-mass-like ele-
ment $ P_{x}\in(V_{0}(X)\otimes B)^{\prime}\wedge$ as in Lemma 1.

We first prove that

(1) $\Vert\sum_{x\in E}P_{x}\Vert\leqq\Vert P\Vert$
$\forall E\in \mathcal{F}$ .

Fix any $E\in \mathcal{F}$ . Given a neighborhood $U$ of $E$, we can find a $\phi\in V_{0}(X)$ such
that supp $\phi\subset U,$ $\Vert\phi\Vert_{V(X)}=1$ , and $\phi=1$ on $E$ , since $E$ is a compact product set.
If $U$ is sufficiently small and $\phi$ is as above, then we have by Lemma 1

$\Vert\phi P-\sum_{x\in L^{\neg}}P_{x}\Vert<\epsilon$ ,

where $\epsilon$ is an arbitrary, but preassigned, real positive number. Since $\Vert\phi P\Vert\leqq$

$\Vert P\Vert$ , this establishes (1).

To complete the proof, it clearly suffices to confirm that the net $\sum_{L}P_{x}$ ,
$E\in \mathcal{F}$ , converges to some element of $(V_{0}(X)\otimes B)^{\prime}\wedge$ . (Then the other assertions
of the theorem can be proved very easily.) Notice that each $P_{x}$ is written as
$P_{x}=\delta_{x}\otimes\Phi_{x}$ for a unique $\Phi_{x}\in B^{\prime}$ , where $\delta_{x}$ is the unit point-mass at $x$ .

Let $(X_{j})_{a}$ be the set $X_{j}$ with the discrete topology, and $Y_{j}=(X_{j})_{d}\cup\{p_{j}\}$

its one-point compactification $(1 \leqq i\leqq N)$ . We consider

$ V(Y)\otimes B\wedge=C(Y_{1})\otimes\wedge\ldots\otimes C(Y_{N})\wedge\otimes B\wedge$ .

By the above remark, we can identify each $P_{x}$ with $\delta_{x}\otimes\Phi_{x}\in(V(Y)\otimes B)^{\prime}\wedge$ . Then
the linear span of all point-mass-like elements in $(V_{0}(X)\otimes B)^{\prime}\wedge$ can be isometrically
imbedded in $(V(Y)\otimes B)^{\prime}\wedge$ . Therefore (1) assures that the net under considera-
tion has a $weak-*cluster$ point $ Q\in(V(Y)\otimes B)^{\prime}\wedge$ .

Suppose for a moment that $Q$ is discrete and let $\epsilon>0$ be given. Then
there exists a finitely supported element $ R\in(V(Y)\otimes B)^{\prime}\wedge$ such that $\Vert Q-R\Vert<\epsilon$ .
We can define the restriction $R^{\prime}$ of $R$ to $X\subset Y$ in the obvious way. If $E\in \mathcal{F}$
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contains the Y-support of $R^{\prime}$ , then we have

(2) $\Vert\sum_{x\in E}Q_{x}-R^{\prime}\Vert=\Vert\sum_{x\in E}(Q-R)_{x}\Vert\leqq\Vert Q-R\Vert<\epsilon$ .

This follows from (1) with $X$ and $P$ replaced by $Y$ and $Q-R$ , respectively.
On the other hand, it is obvious that $Q_{x}=P_{x}$ for all $x\in X$, since every point
of $X$ is isolated in $Y$ . Therefore (2) implies that the net $\sum_{E}P_{x},$

$E\in \mathcal{F}$ , forms a
Cauchy net in $(V_{0}(Y)\otimes B)^{\prime}\hat$ and hence in $(V_{0}(X)\otimes B)^{\prime}\hat$ . This completes the
proof, provided that $Q$ is discrete.

Consequently, in order to reach the desired conclusion, it suffices to prove
that every $ Q\in(V(Y)\otimes B)^{\prime}\hat$ is discrete. We do this by induction on $N$. Fix $Q$

and $\epsilon>0$ . Since $Y$ is totally disconnected, it follows from Lemma 1 that there
exists a clopen neighborhood $U=U_{1}\times\cdots\times U_{N}$ of $p=(p_{1}, \cdots p_{N})\in Y$ such that

(3) $\Vert\xi_{U}Q-Q_{p}\Vert<\epsilon$ ,

where $\xi_{U}$ denotes the characteristic function of $U$ . Write

$Y^{f}=Y_{1}\times\cdots\times Y_{f-1}\times(Y_{f}\backslash U_{j})\times Y_{j+1}\times\cdots\times Y_{N}$

for $1\leqq j\leqq N$. These sets are clopen in $Y$ and cover $Y\backslash U$ . Therefore we can
write $(1-\xi_{U})Q=R_{1}+\cdots+R_{N}$ , where $ R_{j}\in(V(Y)\otimes B)^{\prime}\hat$ has $Y- support\subset Y^{j},$ $1\leqq i$

$\leqq N$. Notice that each $Y_{j}\backslash U_{j}$ is a finite set, since $p_{j}$ is the only one (possible)

accumulation point in $Y_{j}$ . If $N=1$ , this implies that $(1-\xi_{U})Q$ is finitely sup-
ported. If $N\geqq 2$ and if we assume the result for $N-1$ , it follows that every
$R_{j}$ is a finite sum of discrete elements and is therefore a discrete element.
Finally, we have

(4) $\Vert Q-(Q_{p}+R_{1}+\cdots+R_{N})\Vert=\Vert\xi_{U}Q-Q_{p}\Vert<\epsilon$

by (3). Since $\epsilon>0$ is arbitrary, this yields the desired conclusion.
THEOREM 2. SuPpose that at least one of the spaces $X_{j}$ is infnite, Then

the linear $sPan$ of all continuous and discrete elements of $(V_{0}(X)\otimes B)^{\prime}\hat$ is dense
in $(V_{0}(X)\otimes B)^{\prime}\hat$ if and only if $B^{\prime}$ satisfies $(\mathcal{P})$ .

PROOF. One direction of the above assertion is a trivial consequence of
Theorem 1. To prove the non-trivial part, we may assume $N=1$ .

Suppose that $B^{\prime}$ does not satisfy $(\mathcal{P})$ , but that the linear span of all dis-
crete and continuous elements is dense in $(C_{0}(X)\otimes B)^{\prime}\hat$ . Then there exist a
finite constant $C$ and a sequence $(\Phi_{k})_{1}^{\infty}$ of elements of $B^{\prime}$ such that

(1) $\Vert\Phi_{k}\Vert_{B^{\prime}}\geqq 1$ $\forall k\in N$, and $\Vert\sum_{k=1}^{n}\alpha_{k}\Phi_{k}\Vert_{B^{\prime}}\leqq C\sup_{k}|\alpha_{k}|$

for all finite sequences $\alpha_{1},$
$\cdots$ , $\alpha_{n}$ of complex numbers. The space $X$ contains
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a countable set $E=\{x_{k}\}_{1}^{\infty}$ of distinct elements such that every $x_{k}$ is isolated
in $\overline{E}$ .

Define

(2) $ P_{n}=\sum_{k=1}^{n}\delta_{x_{k}}\otimes\Phi_{k}\in(C_{0}(X)\otimes B)^{\prime}\wedge$

for all $n\in N$. It is an easy consequence of (1) that $(P_{n})_{1}^{\infty}$ is a bounded sequence
in $(C_{0}(X)\otimes B)^{\prime}\wedge$ . Let $ P\in(C_{0}(X)\otimes B)^{\prime}\wedge$ be any weak-* cluster point of $(P_{n})_{1}^{\infty}$ .
Obviously $P$ is supported by $\overline{E}$ , and

(3) the X-support of $P-P_{n}\subset\overline{E}\backslash \{x_{k}\}_{1}^{n}$

for all $n$ . By one of the assumptions, there exist a continuous element $Q$ and
a discrete element $ R\in(V_{0}(X)\otimes B)^{\prime}\wedge$ such that $\Vert P-Q-R\Vert<1/3$ . We may assume
that the X-support of $Q$ is contained in a finite set $F\subset X$. Choose any $m\in N$

so that $F\cap E\subset\{x_{k}\}_{1}^{m}$ , and let $R^{\prime}$ be the “restriction” of $R$ to $F\cap E$ . Since $Q$

is a continuous element, it follows from (3) that

(4) $\Vert P_{n}-R^{\prime}\Vert\leqq 1/3$ $\forall n\geqq m$ .
The proof of this fact is similar to that of (1) in the proof of Theorem 1.
But (4) implies

$\Vert\Phi_{n}\Vert_{B^{\prime}}=\Vert\delta_{x_{n}}\otimes\Phi_{n}\Vert=\Vert P_{n}-P_{n- 1}||$

$\leqq\Vert P_{n}-R^{\prime}\Vert+\Vert P_{n- 1}-R^{\prime}\Vert\leqq 2/3$

for all $n>m+1$ . This contradicts (1), and the proof is complete.
The following result must be well-known. Since we do not know any

adequate reference about it, we give a complete proof.
LEMMA 2. Let $(S, \mathcal{B}, \lambda)$ be a measure sPace, and $M(S)=M(S, \mathcal{B})$ the Banach

sPace of all countably additive comPlex measures on $\mathcal{B}$ . Then $M(S)$ and all
the spaces $L^{p}=L^{p}(S, \mathcal{B}, \lambda),$ $ 1\leqq P<\infty$ , have Property $(\mathcal{P})$ .

PROOF. Let $ 1\leqq P<\infty$ , and $f_{1},$ $\cdots$ , $f_{n}\in L^{p}$ . Let also $\Omega=\Omega_{n}$ be the set of all
n-tuples $\epsilon=(\epsilon_{1}, \cdots , \epsilon_{n})$ of $\pm 1$ . For any function $\phi$ on $\Omega$ , define

$\mathcal{E}(\phi)=2^{-n}\sum_{\epsilon\in\Omega}\phi(\epsilon)$ .
Then we have

(1) $(\mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|^{p})^{1/p}\leqq C_{p}\mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|$

for some absolute constant $C_{p}$ depending only on $p$ (see Theorem (8.4) of
Chap. V of $[13: p, 213]$); we need (1) only for $P=2$ .

First suppose $1\leqq P\leqq 2$ . Then we have

(2) $\sum_{k=1}^{n}|f_{k}|^{p}\leqq n^{(2-p)/2}(\sum_{k=1}^{n}|f_{k}|^{2})^{p/2}$
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by H\"older’s inequality. Hence

$n^{-(p- 1)/p}\sum_{k-1}^{n}\Vert f_{k}\Vert_{p}\leqq(\sum_{k=1}^{n}\int|f_{k}|^{p}d\lambda)^{1/p}$ by H\"older

$\leqq n^{(2- p)/2p}\{\int(\sum_{k=1}^{n}|f_{k}|^{2})^{p/2}d\lambda\}^{1/p}$ by (2)

$=n^{(2- p)/2p}\{\int(\mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|^{2})^{p/2}d\lambda\}^{1/p}$

$\leqq C_{2}n^{(2-p)/2p}\{\int(\mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|)^{p}d\lambda\}^{1/p}$ by (1)

$\leqq C_{2}n^{(2-p)/2p}\mathcal{E}\Vert\sum_{k=1}^{n}\epsilon_{k}f_{k}\Vert_{p}$ by Minkowski.

Therefore, we have

(3) $n^{-1/2}\sum_{k=1}^{n}\Vert f_{k}\Vert_{p}\leqq C_{2}\Vert\sum_{k=1}^{n}\epsilon_{k}f_{k}\Vert_{p}$

for at least one $\epsilon\in\Omega$ , provided that $1\leqq P\leqq 2$ .
Next suppose $ 2\leqq P<\infty$ . Using the inequality $\Vert\cdot\Vert_{lp}\leqq\Vert\cdot\Vert_{l^{2}}$ , we then have

$n^{-(p- 1)/p}\sum_{k=1}^{n}\Vert f_{k}\Vert_{p}\leqq(\int\sum_{k=\perp}^{n}|f_{k}|^{p}d\lambda)^{1/p}$

$\leqq\{\int(\sum_{k=1}^{n}|f_{k}|^{2})^{p/2}d\lambda\}^{1/p}=\{\int(\mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|^{2})^{p/2}d\lambda\}^{1/p}$

$\leqq\{\int \mathcal{E}|\sum_{k=1}^{n}\epsilon_{k}f_{k}|^{p}d\lambda\}^{1/p}$ by H\"older

$=\{\mathcal{E}\int|\sum_{k=1}^{n}\epsilon_{k}f_{k}|^{p}d\lambda\}^{1/p}$

Hence $ 2\leqq P<\infty$ imply

(4) $n^{-(p- 1)/p}\sum_{k=1}^{n}\Vert f_{k}\Vert_{p}\leqq\Vert\sum_{k=1}^{n}\epsilon_{k}f_{k}\Vert_{p}$

for at least one $\epsilon\in\Omega$ .
By (3) and (4), all the spaces $L^{p},$ $ 1\leqq P<\infty$ , have Property $(\mathcal{P})$ . That $M(S)$

has Property $(\mathcal{P})$ follows from the result for $P=1$ combined with the Radon.
Nikodym Theorem. This completes the proof.

THEOREM 3. Let $X=X_{1}\times\cdots\times X_{N}$ be as before $(N\geqq 1)$ . Then each of the
following conditions implies the others:

(i) All except at most one $X_{j}$ are residual.
(ii) $M(X)$ is dense in $V_{0}(X)^{\prime}$ .

(iii) $V_{0}(X)^{\prime}$ has Property $(\mathcal{P})$ .
PROOF. If $N=1$ , there is nothing to prove, since then (iii) is a special

case of Lemma 2. So suppose $N\geqq 2$ .
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We first confirm the implication $(i)\Rightarrow(ii)$ . Without loss of generality,
assume that $X_{1},$ $X_{2},$

$\cdots,$
$X_{N-1}$ are residual. Put $Y=X_{1}\times\cdots\times X_{N-1}$ and $B=C_{0}(X_{N})$ ,

so that $ V_{0}(X)=V_{0}(Y)\otimes B\hat$ isometrically. Then the only continuous element cf
$(V_{0}(Y)\otimes B)^{\prime}\hat$ is the zero element, since $Y$ is residual and the Y-support of any
continuous element has no isolated point. On the other hand, $B^{\prime}=M(X_{N})$ has
Property $(\mathcal{P})$ by Lemma 2. It follows from Theorem 1 that the set of all
discrete elements is dense in $(V_{0}(Y)\otimes B)^{\prime}\hat$ . This establishes (ii), since it is
trivial that every point-mass-like element of $(V_{0}(Y)\otimes B)^{\prime}=V_{0}(X)^{\prime}\hat$ is given by a
measure in $M(X)$ .

Suppose now that at least two of the spaces $X_{j}$ , say, $X_{1}$ and $X_{2}$ , contain
perfect sets. We want to prove that then neither (ii) nor (iii) holds. Take a
compact perfect set $K_{j}\subset X_{j}$ for $j=1,2$ , and put $K=K_{1}\times K_{2}$ . Then we can
imbed $V(K)^{\prime}$ into $V_{0}(X)^{\prime}$ isometrically. If $N=2$ , this is trivial; if $N>2$ , choose
any point $x\in X_{3}\times\cdots\times X_{N}$ and identify $K$ with $K\times\{x\}$ in the obvious way.
Notice that if $M(X)$ is given the norm of $V_{0}(X)^{\prime}$ , then $\mu\rightarrow\mu|_{K}$ (or $\mu\rightarrow\mu|_{K\times\{x\}}$)

is a norm-decreasing mapping from $M(X)$ into $V(K)^{\prime}$ . Therefore, if $M(X)$

were dense in $V_{0}(X)^{\prime}$ , then $M(K)$ would be dense in $V(K)^{\prime}$ . Now let $T$ be
the circle group, and let $\phi_{j}$ : $K_{j}\rightarrow T$ be any continuous surjection $(j=1,2)$ .
Then the product mapping $\phi=\phi_{1}\times\phi_{2}$ : $K\rightarrow T^{2}$ induces an isometric homomor-
phism $f\rightarrow f\circ\phi:V(T^{2})\rightarrow V(K)$ (see [5; Theorem 4.1]). Therefore we shall
regard $V(T^{2})$ as a closed subalgebra of $V(K)$ . Let

(1)
$A(T)\rightarrow^{M}V(T^{2})\rightarrow^{P}A(T)$

be the mappings defined in [2]: $(Mf)(x, y)=f(x+y)$ and $(Pg)(x)=\int_{T}g(x-y, y)dy$ .
Then $M$ is an isometric homomorphism, $P$ is a norm-decreasing mapping, and
$P\circ M=identity$ . Consequently we have two isometric imbeddings $A(T)\subset V(T^{2})$

$\subset V(K)$ . By Corollary 3.13 of [1: p. 35], there exists a $\Phi\in PM(T)=A(T)^{\prime}$

such that

(2) $\Vert\Phi-\mu\Vert_{PM}>1$ $\forall\mu\in M(T)$ .
Let $\tilde{\Phi}\in V(K)^{\prime}$ be any norm-preserving extension of $\Phi$ , and $\nu\in M(K)$ . If we
denote by $\mu\in PM(T)$ the restriction of $\nu$ to $A(T)$ as a functional, then obviously
$\mu\in M(T)$ , and we have

(3) $\Vert\tilde{\Phi}-\nu\Vert_{V(K)^{\prime}}\geqq\Vert\Phi-\mu\Vert_{PM}>1$

by (2). Therefore $M(K)$ is not dense in $V(K)^{\prime}$ . By one of the above remarks,
this implies that $M(X)$ is not dense in $V_{0}(X)^{\prime}$ . Hence $(ii)\Rightarrow(i)$ , and we have
established the equivalence of (i) and (ii).

Next we prove that $V_{0}(X)^{\prime}$ does not have Property $(\mathcal{P})$ under the assump-
tion given in the above paragraph. After imbedding $V(T^{2})$ into $V(K)$ as
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above, we take any net $\{L_{\alpha}\}$ of norm-decreasing linear mappings from $V(K)$

into $V(T^{2})$ such that

(4) $\lim_{\alpha}\Vert L_{\alpha}f-f\Vert_{V(Y)}=0$ $f\in V(T^{2})$ ;

such a net exists (cf. [5; p. 28]). Let $L_{\alpha}^{\prime}$ be the adjoint mapping of $L_{\alpha}$ . Since
every $L_{\alpha}^{\prime}$ has norm $\leqq 1$ , there exists a norm-decreasing linear mapping
$L^{\prime}$ : $V(T^{2})^{\prime}\rightarrow V(K)^{\prime}$ such that

(5)
$\lim_{\beta}\langle f, L_{\beta}^{\prime}\Phi\rangle=\langle f, L^{\prime}\Phi\rangle$

$\forall f\in V(K)$ and $\forall\Phi\in V(T^{2})^{\prime}$

for some subnet $\{L_{\beta}\}$ of $\{L_{\alpha}\}$ . Since the imbedding $V(T^{2})\subset V(K)$ is isometric,
we infer from (4) and (5) that $L^{\prime}$ is an isometry. On the other hand, it is
trivial that $P^{\prime}$ : $PM(T)\rightarrow V(T^{2})^{\prime}$ is an isometry. Therefore, all the mappings

$PM(T)\rightarrow^{P^{\prime}}V(T^{2})^{\prime}\rightarrow^{L^{\prime}}V(K)^{\prime}\subset V_{0}(X)^{\prime}$

are isometries. Since $PM(T)\cong l^{\infty}(Z)$ does not have Property $(\mathcal{P})$ , it follows
that $V_{0}(X)^{\prime}$ does not have $(\mathcal{P})$ , either. Here $Z$ denotes the group of integers.
This establishes the implication $(iii)\Rightarrow(i)$ .

It only remains to prove $(i)\Rightarrow(iii)$ . Consider

(6) $ C_{0}(Z)\otimes\wedge V_{0}(X)=C_{0}(Z)\otimes C_{0}(X_{1})\wedge\otimes\wedge\ldots\otimes C_{0}(X_{N})\wedge$ .
If we assume (i), it follows from the implication $(i)\Rightarrow(ii)$ that $M(Z\times X)$ is
dense in $(C_{0}(Z)\otimes V_{0}(X))^{\prime}\wedge$ . Therefore $V_{0}(X)^{\prime}$ must have Property $(\mathcal{P})$ by
Theorem 2.

This completes the proof.
COROLLARY 1. Suppose that all the spaces $X_{j},$ $1\leqq j\leqq N$, are residual. Then

the second conjugate space of $V_{0}(X)$ is isometrically isomorphic to the Banach
space of all $f\in l^{\infty}(X)$ such that

$\Vert f\Vert_{\mathfrak{N}}=\sup_{E}\Vert f\Vert_{V(E)}<\infty$ .

Here the supremum is taken over all finite product subsets $E$ of $X$.
PROOF. Notice that $M(X)=M_{a}(X)$ is dense in $V_{0}(X)^{\prime}$ by hypothesis and

Theorem 3.
Given $F\in V_{0}(X)^{\prime\prime}$ , define an $f\in l^{\infty}(X)$ by setting $ f(x)=\langle\delta_{x}, F\rangle$ for all $x\in X$.

Since $M_{d}(X)$ is dense in $V_{0}(X)^{\prime},$ $F$ is completely determined by $f$, and we have

$\Vert F\Vert=\sup_{E}$ { $|\langle\mu,$ $F\rangle|$ : $\mu\in M(E)$ and $\Vert\mu\Vert_{V(E)^{\prime}}\leqq 1$ }

$=\sup_{E}\{|\int fd\mu|$ : $\mu\in M(E)$ and $\Vert\mu\Vert_{V(E)^{\prime}}\leqq 1\}$

$=\sup_{E}\Vert f\Vert_{V(E)}=\Vert f\Vert_{\Re}$ .
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The converse part is obvious, and this completes the proof.
Notice that for any locally compact spaces $X_{j}$ , a function $f\in l^{\infty}(X)$ is a

multiplier of $V_{0}(X)$ if and only if $f$ belongs to $V_{0}(X)$ locally at every point of
$X$ and $\Vert f\Vert_{\Re}<\infty$ . Moreover, if $f$ is a multiplier of $V_{0}(X)$ , then the multiplier
norm of $f$ is equal to $\Vert f\Vert_{\Re}$ . (See [12: Lemma 1.1] and [6: Theorem 4.5].)

Therefore Theorems 1, 3 and Corollary 1 yield the following.
COROLLARY 2. SuppOse that all the spaces $X_{j},$ $1\leqq j\leqq N$, are discrete. Then

we have:
(a) For each $\Phi\in V_{0}(X)^{\prime}$ ,

$\lim_{\mathcal{F}}\Vert\Phi-\sum_{x\in E}\langle\xi_{\{x\}}, \Phi\rangle\delta_{x}\Vert=0$ .

(b) $V_{0}(X)^{\prime}$ is isometrically isomorphic to the Banach space of all multipliers

of $V_{0}(X)$ .
Now let $G$ be a LCA group, $\Gamma$ its character group, and $A(\Gamma)$ the Fourier

algebra on $\Gamma$ (cf. [4]). For any closed subset $X$ of $\Gamma,$ $A(X)$ denotes the
Fourier restriction algebra $A(\Gamma)|_{X}$ with the natural quotient norm. Let $\overline{X}$ be
the closure of $X$ in $F$, the Bohr compactification of $\Gamma$ . We consider $A_{d}(\Gamma)=$

$M_{a}(G)^{\wedge}\cong A(F),$ $A_{d}(X)=A_{a}(\Gamma)|_{X}\cong A(\overline{X})$ , and $A_{0}(X)=A_{a}(X)\cap C_{0}(X)$ .
COROLLARY 3. SuppOse that $G$ is compact, and that $X_{1},$ $X_{2},$ $\cdots$ , $X_{N}(N\geqq 1)$

are finitely many, disjoint subsets of $\Gamma$ with dissociate union. Put $X=X_{1}\cdot X_{2}$ .
. . $ X_{N}\subset\Gamma$ , and identify $X$ with the product space of the $X_{j},$ $1\leqq j\leqq N$.

(a) Then $A(X)=V_{0}(X)$ and $A_{0}(X)\subset A(X)$ .
(b) $B(X)=M(G)^{\wedge}|_{X}$ is (isomorphic to) the second conjugate space of $A(X)$ .
(c) If $\phi\in L^{\infty}(G)$ and supp $\phi\subset X$, then

$\lim_{\mathcal{F}}\Vert\phi-\sum_{\gamma\in E}\phi(\gamma)\gamma\Vert_{\infty}=0$ ,

where $\mathcal{F}$ denotes the directed family of all finite subsets $E$ of $X$ of the form
$ E=E_{1}\cdot E_{2}\cdot$ $E_{N}$ with $E_{j}\subset X_{j}$ for $1\leqq j\leqq N$.

PROOF. That $A(X)=V_{0}(X)$ is an easy consequence of Theorem 3.2 in [3].

Since the proof is quite routine, we omit it. To prove $A_{0}(X)\subset A(X)$ , Prst
notice that $A_{a}(X)\subset V(X)$ by the dePnition of $A_{d}(X)$ . Let $Y_{j}$ be the one-point
compactification of $X_{j},$ $1\leqq j\leqq N$, and $Y=Y_{1}\times\cdots\times Y_{N}$ . Then $C_{0}(X)\subset C(Y)$ , and
$V(Y)\subset V(X)$ with obvious identiPcations. On the other hand, we have $C_{0}(X)$

$\cap V(X)\subset V(Y)$ by Theorem 4.3 in [5]. Therefore

$A_{0}(X)\subset C_{0}(X)\cap V(X)=C_{0}(X)\cap V(Y)$ ,

so that $A_{0}(X)\subset A(X)$ , since evidently $V_{0}(X)=C_{0}(X)\cap V(Y)$ . This establishes
(a).

Notice that $A(X)^{\prime}$ is $L_{X}^{\infty}(G)=\{\phi\in L^{\infty}(G):supp\hat{\phi}\subset X\}$ , as is well-known.
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Therefore part (c) is an easy consequence of part (a) combined with Corol-
lary 2.

Part (b) follows from part (c), because $B(X)$ is the conjugate space of
$C_{X}(G)=C(G)\cap L_{X}^{\infty}(G)$ for any $ X\subset\Gamma$ .

Now let $\epsilon>0$ be given. A closed subset $K$ of $G$ is said to be a $K_{\epsilon}$-set if
to each $f\in C(K)$ with $|f|=1$ there correspond a character $\gamma\in\Gamma$ and a complex

number $c\in T=\{|z|=1\}$ such that $|f(x)-c\gamma(x)|\leqq\epsilon$ for all $x\in K$. Although the
following result is similar to Varopoulos’ Theorem 4.4.1 in [11: p. 78], his
proof does not work in our case.

PROPOSITION 1. Let $E_{1},$ $\cdots$ , $E_{N}$ be disjoint compact subsets of a LCA group
$G$ whose union is a $K_{\epsilon}$ -set for some $0<\epsilon<(2/N)$ sin $(\sqrt{6}-2)$ , and let $ E=E_{1}+\cdots$

$+E_{N}\subset G$ . Then $E$ is a set of bounded synthesis for $A(G)$ .
PROOF. The curious restriction for $\epsilon>0$ is used only to assure that every

point $x$ of $E$ has a unique expression of the form $x=x_{1}+\cdots+x_{N}$ with $x_{j}\in E_{j}$

$(1\leqq j\leqq N)$ , and that there exists a $\phi\in A(T)$ such that

(1) $\Vert\phi\Vert_{A(T)}=\sum_{m=-\infty}^{\infty}|\hat{\phi}(m)|=C<1$ , and

(2) $\phi(z)=z-1$ if $z\in T$ and $|z-1|<N\epsilon$ .
For the latter fact, we refer the reader to Remark (b) at the end of [9].

We prove the above assertion only for $N=2$ , since the proof for the general
case is similar. We also assume that all the sets $E_{j}$ are totally disconnected,

since we are only interested in this case. (However, if some of the sets $E_{j}$

contain non-trivial connected sets, then the proof becomes very complicated.)

For $i=1,2$ and $n\in N$, let $E_{i}=E_{i1}\cup\cdots\cup E_{in}$ be any partition of $E_{i}$ into
disjoint clopen subsets. Choose and fix $2n$ points $x_{j}\in E_{1j}$ and $y_{j}\in E_{2j},$ $1\leqq j\leqq n$ .
We define a linear mapping $L:PM(E)\rightarrow M_{d}(E)$ by setting

(3) $LP=\sum_{j,k=1}^{n}P_{jk}(1)\delta_{x_{j}+y_{j}}$ $\forall P\in PM(E)$ ,

where $P_{jk}\in PM(E)$ is the part of $P\in PM(E)$ carried by $E_{1j}+E_{2k}$ . Notice that
the sets $E_{1j}+E_{2k}(1\leqq j, k\leqq n)$ are disjoint by the above remark.

We then claim that $\Vert LP\Vert_{PM}\leqq(1-C)^{-1}\Vert P||_{PM}$ for all $P\in PM(E)$ , where $C$ is
as in (1). To prove this, let $\Vert L\Vert$ be the norm of $L$ as an operator on $PM(E)$ ,

and notice that

(3) $ L\cdot P(\gamma^{-1})=\sum_{j,k=1}^{n}\gamma(x_{j}+y_{j})P_{jk}^{\wedge}(1)\wedge$ $\forall\gamma\in\Gamma$

for all $P\in PM(E)$ . Fix an arbitrary $\gamma\in\Gamma$ . Since $E_{1}$ and $E_{2}$ are disjoint and
their union is a $K_{\epsilon}$ -set, there exist $\chi\in\Gamma$ and $\alpha=c^{2}\in T$ such that

(4) $sup\{|(x_{j}+y_{k})\chi(x+y)| : x\in E_{1j}, y\in E_{2k}\}<2\epsilon$
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for all $1\leqq j,$ $k\leqq n$ . It follows from (2) with $N=2$ and (4) that for each pair
$(j, k)$ we have

$\gamma-\alpha\chi\chi\{\overline{\alpha}\gamma(x_{j}+y_{k})X-1\}$

$=\sum_{m=-\infty}^{\infty}\phi(m)\alpha^{1- m}\gamma^{m}(x_{j}+y_{k})\chi^{1-m}$

on some neighborhood of $E_{1j}+E_{2k}$ . Therefore

(5) $|LP(\gamma^{-1})-\alpha P(\chi-1\wedge)|=|\sum_{j,k=1}^{n}\langle\gamma-\alpha$ ,

$\leqq\sum_{m=-\infty}^{\infty}|\phi(m)|\cdot|\sum_{j,k=1}^{n}\langle\gamma^{m}(x_{j}+y_{k})x^{1- m}, P_{jk}\rangle|$

$=\sum_{m=-\infty}^{\infty}|\phi(m)|\cdot|L(x^{1-m}P)^{\wedge}(\gamma^{-m})|$

$\leqq\sum_{m=-\infty}^{\infty}|\hat{\phi}(m)|\cdot\Vert L\Vert\cdot\Vert P\Vert_{PM}\leqq C\Vert L\Vert\cdot\Vert P\Vert_{PM}$ .
Hence

(6) $|LP(\gamma^{-1})\wedge|\leqq(1+C\Vert L\Vert)\Vert P\Vert_{PM}$ .

Since $\gamma\in\Gamma$ and $P\in PM(E)$ are arbitrary, (6) implies $\Vert L\Vert\leqq 1+C\Vert L\Vert$ . Since
$C<1$ , we conclude $\Vert L\Vert\leqq(1-C)^{-1}$ .

To complete the proof, it suffices to show that given $P\in PM(E)$ and $\gamma\in\Gamma$ ,
$ LP(\gamma^{-1})\wedge$ approaches $P(\gamma^{-1})$ as the partitions $\{E_{ij}\}_{j}$ of $E_{t}$ become finer and
finer. Notice that $\Vert\phi\Vert_{A(T)}$ can be made arbitrarily small if we require (2) for
a sufficiently small $\epsilon>0$ (cf. Lemma 1 of [7: p. 290]). Therefore we can do
this easily by arguing as in (5) with $\alpha=1$ and $ x=\gamma$ after replacing $\phi\in A(T)$

by other suitable functions in $A(T)$ .
This completes the proof.
COROLLARY 4. SuppOse that $G$ is compact, and that $X_{1},$ $\cdots$ , $X_{N}$ are finitely

many, disjoint subsets of $\Gamma$ whose union is a $K_{\epsilon}$ -set for some $0<\epsilon<$

$(2/N)$ sin (V6–2). If we put $ X=X_{1}\cdot X_{2}\cdot$ $ X_{N}\subset\Gamma$ , then $A(X)=A_{0}(X)$ and $\overline{X}$

is a set of bounded synthesis for the algebra $A(F)=A_{d}(\Gamma)$ .
PROOF. By hypothesis and Theorem 3.1 of [12], we have $A_{d}(X)=V(X)$

and $A(X)=V_{0}(X)$ . Since $V_{0}(X)=C_{0}(X)\cap V(X)$ as was observed in the proof
of Corollary 3, we have $A(X)=A_{0}(X)$ .

It is easy to prove that under our hypothesis the sets $\overline{X}_{1},$
$\cdots$ , $\overline{X}_{N}$ are dis-

joint and their union is an extremally disconnected K.-set in T. This, com-
bined with Proposition 1, completes the proof.

COROLLARY 5. Let $G$ and $ X\subset\Gamma$ be as in Corollary 4. Suppose $N\geqq 2$ and
every $X_{j}$ is infinite. Then $X$ contains a subset $E$ such that

(i) $A(E)\subset A_{0}(E)\subset B_{0}(E)\equiv B(E)\cap C_{0}(E)$ .
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(ii) $A_{0}(E)(resp. B_{0}(E))$ contains a function $f$ such that $\Phi\circ f\not\in A(E)(resp$

$\Phi\circ f\not\in A_{0}(E))$ for all non-constant entire functions $\Phi$ .
PROOF. This is an easy consequence of Theorem 2 and its proof in [8].

We omit the details.
REMARKS. Let $X=X_{1}\times\cdots\times X_{N}$ and $B$ be as before.
(I) If $B^{\prime}$ satisfies $(\mathcal{P})$ , then the set of all compactly supported elements is

dense in $(V_{0}(X)\otimes B)^{\prime}$ . The proof is similar to that of Lemma 1.
(II) Suppose that $B^{\prime}$ satisifies $(\mathcal{P}),$

$ P\in(C_{0}(X)\otimes B)^{\prime}\wedge$ , and $E\subset X$ is closed.
Then there exists a unique $ P_{E}\in(C_{0}(X)\otimes B)^{\prime}\wedge$ , with $S_{X}(P_{E})\subset E$, having the fol-
lowing property: to each $\epsilon>0$ there corresponds a neighborhood $W$ of $E$ such
that $\Vert\phi P-P_{E}\Vert\leqq\epsilon\Vert\phi\Vert_{\infty}$ whenever $\phi\in C(X),$ $\phi=1$ on $E$, and supp $\phi\subset W$ .

(III) Suppose $N=2$ . Applying (II) twice, we conclude that given $P\in V_{0}(X)^{\prime}$

and $E=E_{1}\times E_{2}\subset X$ closed, there exists a unique $P_{E}\in V_{0}(X)^{\prime}$ , with supp $P_{E}\subset E$,
having the following property: to each $\epsilon>0$ there corresponds a neighborhood
$W$ of $E$ such that $\Vert\phi P-P_{E}\Vert\leqq\epsilon$ I $\phi\Vert_{V(X)}$ whenever $\phi\in V(X),$ $\phi=1$ on $E$, and
supp $\phi\subset W$ . However, no analog of this holds if $N\geqq 3$ , all the spaces $X_{j}$ are
infinite, and at least two of them contain perfect sets.

(IV) Under the hypothesis of Corollary 4, the set of all accumulation
points of $X$ in $F$ is a set of synthesis.

(V) All the results in this paper were obtained in the last year of the
author’s sojourn at Kansas State University (1972-1974).
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