C^{∞}-approximation of continuous ovals of constant width

By Shûkichi TAnno

(Received May 26, 1975)

§ 1. Introduction.

Let M be an oval (i. e., a closed convex curve) in a Euclidean 2 -space E^{2}. For a point x of M a straight line l passing through x is called a supporting line at x if M is contained in one of the half planes determined by l. If M is a C^{1}-curve, then tangent lines are supporting lines. M is said to have constant width, if the distance between each pair of parallel supporting lines is constant. Examples of continuous ovals of constant width are Reuleaux triangles, Sallee constructions (cf. [7], and also B. B. Peterson [4]), and so on.

We prove C^{∞}-approximation theorem:
Theorem A. Let M be a continuous oval of constant width H in E^{2}. Then, for any positive number δ, we can construct a C^{∞}-oval $M^{\#}$ of constant width H in the δ-neighborhood of M in E^{2}.

Theorem B. In Theorem A, if M is symmetric with respect to a straight line m in E^{2}, then $M^{\#}$ can be constructed so that $M^{\#}$ is symmetric with respect to m.

A generalization of an oval of constant width to higher dimension is a hypersurface of constant width in a Euclidean n-space E^{n}. If M is a continuous oval of constant width in $E^{2} \subset E^{n}$, which is symmetric with respect to the x^{1} axis, then one gets a continuous hypersurface of constant width in E^{n} as its revolution hypersurface with respect to the x^{1}-axis in E^{n}.

By Theorem B we obtain
Theorem C. If a continuous hypersurface M of constant width H is a revolution hypersurface in E^{n}, then for any positive number δ, we can construct a revolution C^{∞}-hypersurface $M^{\#}$ of constant width H in the δ-neighborhood of M in E^{n}.

In the last section we mension about twin hypersurfaces which are generalizations of hypersurface of constant width.

§ 2. Preliminaries.

Let E^{2} be a Euclidean 2-space with the natural coordinates (x^{1}, x^{2}). Let $M=\{x(s)\}$ be a C^{3}-curve (i. e., continuously thrice differentiable curve) in E^{2} with arc-length parameter $s . \quad \xi_{1}(s)=d x(s) / d s$ is the unit tangent vector field on $\{x(s)\}$. Then $d \xi_{1}(s) / d s=k(s) \xi_{2}(s)$ holds, where $k(s)$ is the curvature of $x(s)$ and ($\xi_{1}(s), \xi_{2}(s)$) is the right handed orthonormal frame field on $\{x(s)\}$. A curve ${ }^{*} M=\left\{{ }^{*} y(s)\right\}$ defined by

$$
\begin{equation*}
* y(s)=x(s)+\rho(s) \xi_{2}(s) \tag{2.1}
\end{equation*}
$$

is called the evolute of $M=\{x(s)\}$, where $\rho(s)=1 / k(s)$. The curvature ${ }^{*} k$ of $* y(s)$ is given by [if $\rho(s)$ is of class C^{2} and $d \rho(s) / d s \neq 0$]

$$
\begin{equation*}
* k(s)=\frac{1}{\rho(s)\left|\frac{d \rho(s)}{d s}\right|} . \tag{2.2}
\end{equation*}
$$

Conversely, for a C^{2}-curve $M^{*}=\left\{y^{*}\left(s^{*}\right)\right\}$ with arc-length parameter s^{*}, the curve $M=\left\{x\left(s^{*}\right)\right\}$ defined by

$$
\begin{equation*}
x\left(s^{*}\right)=y^{*}\left(s^{*}\right)+\left(c-s^{*}\right) \xi_{1}^{*}\left(s^{*}\right) \tag{2.3}
\end{equation*}
$$

for some constant c is called the involute of $M^{*}=\left\{y^{*}\left(s^{*}\right)\right\}$. The evolute and the involute are dual.

Now we define a ($+00-$)-model. Let $k(s)$ be a C^{∞}-function on an open interval (s_{1}, s_{4}) such that $d k(s) / d s>0$ for $s_{1}<s<s_{2}, d k(s) / d s=0$ for $s_{2} \leqq s \leqq s_{3}$, and $d k(s) / d s<0$ for $s_{3}<s<s_{4}$. Let D be the C^{∞}-curve with $k(s)$ as its curvature and with s as its arc-length parameter. Let ${ }^{*} D$ be the evolute of D. We call ${ }^{*} D$ a ($+00-$)-model, if $s_{2} \neq s_{3}$.

Putting $s_{2}=s_{3}$, we call $* D$ a ($+0-$-model. 00 means that $d k(s) / d s=0$ holds on some interval, and 0 means that $d k(s) / d s=0$ holds at a single point. Taking some part of a ($+00-$)-model or a $(+0-)$-model, we have a $(+00)$-model, or a $(+0)$-model. A ($00-$)-model or a ($0-$)-model is equivalent to a (+00)-model or $(+0)$-model. Notice that, for example in a $(+0-)$-model $* D$, the point corresponding to $x(s)$ where $d k(s) / d s=0$ (and hence $d \rho(s) / d s=0$) is very complicated because of (2.2).

§ 3. Proofs of Theorems.

For a continuous oval $M=\{x(s)\}$ of constant width H in E^{2}, two points $x(s)$ and $x\left(s^{\prime}\right)$ of M are called pair points, if $\left|x(s)-x\left(s^{\prime}\right)\right|=H$, where $|\mid$ denotes the Euclidean length of vectors in E^{2}.

Lemma 3.1. Assume that $x\left(s^{\prime}\right)$ and $x\left(s_{1}\right)$, and, $x\left(s^{\prime}\right)$ and $x\left(s_{2}\right)$, are pair points such that $s_{1}<s_{2}$. Then the subarc $\left\{x(s): s_{1} \leqq s \leqq s_{2}\right\}$ is a piece of the circle of radius H with $x\left(s^{\prime}\right)$ as its center.

Proof. First we notice that every supporting line has only one point in common with M by constancy of width. Let l_{1}^{\prime} and l_{1} be the parallel supporting lines at $x\left(s^{\prime}\right)$ and $x\left(s_{1}\right)$, and let l_{2}^{\prime} and l_{2} be the parallel supporting lines at $x\left(s^{\prime}\right)$ and $x\left(s_{2}\right)$. Let $C\left[x\left(s_{1}\right) x\left(s_{2}\right)\right]$ be the part from $x\left(s_{1}\right)$ to $x\left(s_{2}\right)$ of the circle of radius H with $x\left(s^{\prime}\right)$ as its center. Considering supporting lines at $x\left(s^{\prime}\right)$ between l_{1}^{\prime} and l_{2}^{\prime}, we see that $\left\{x(s): s_{1} \leqq s \leqq s_{2}\right\}=C\left[x\left(s_{1}\right) x\left(s_{2}\right)\right]$. Q. E. D.

We call such a point $x\left(s^{\prime}\right)$ a corner point of M, and we call $C\left[x\left(s_{1}\right) x\left(s_{2}\right)\right]$ the subarc corresponding to $x\left(s^{\prime}\right)$, if it is maximal [that is, it is not a proper subset of a subarc of the circle in $M]$. If we pick up all corner points w_{b}, generally the set $\left\{w_{b}\right\}$ may be an infinite set. Let C_{b} be the subarc corresponding to w_{b}. By $\left\{w_{\beta}, C_{\beta}\right\}$ we mean the subset of $\left\{w_{b}, C_{b}\right\}$ such that the length of C_{β} is greater than $\varepsilon / 4$, where ε is a sufficiently small positive number $<H / 2$.

Let l_{0} and l_{0}^{\prime} be the parallel supporting lines at $x(0)$ and $x\left(s_{0}\right)$. We decompose the subarc $M_{0}=\left\{x(s): 0 \leqq s \leqq s_{0}\right\}$ into

$$
M_{0}=\left\{w_{\lambda}\right\} \cup\left\{C_{\mu} \cap M_{0}\right\} \cup\left\{F_{i}\right\},
$$

where $\left\{w_{\lambda}\right\}$ is the subset of $\left\{w_{\beta}\right\}$ such that $w_{\lambda} \in M_{0},\left\{C_{\mu}\right\}$ is the subset of $\left\{C_{\beta}\right\}$ such that $C_{\mu} \cap M_{0}$ is non-empty, and $F_{i}=\left\{x(s): s_{i} \leqq s \leqq t_{i}\right\}$ such that
(i) $0<\left|x\left(s_{i}\right)-x\left(t_{i}\right)\right|<\varepsilon$,
(ii) $\left\{x(s): s_{i}<s<t_{i}\right\}$ does not intersect with $\left\{w_{\lambda}\right\}$ nor $\left\{C_{\mu}\right\}$, nor $F_{j}(j \neq i)$,
(iii) for pair points $x\left(s_{i}\right)$ and $x\left(s_{i}^{\prime}\right)$, and, $x\left(t_{i}\right)$ and $x\left(t_{i}^{\prime}\right),\left|x\left(s_{i}^{\prime}\right)-x\left(t_{i}^{\prime}\right)\right|<\varepsilon$ holds [in this case, if $x\left(s_{i}\right)$ is a corner point, we assume that the point $x\left(s_{i}^{\prime}\right)$ is a boundary point of a piece of a circle].

Since M is compact, $\left\{w_{\lambda}\right\}$ and $\left\{C_{\mu}\right\}$ are finite sets, and we can choose F_{i} so that $\left\{F_{i}\right\}$ is a finite set. We assume $i=1, \cdots, h$. The possibility for (i), (ii) and (iii) comes from the fact that subarcs corresponding to corner points $\left\{w_{b}\right\}$ in $M-\left\{w_{\beta}, C_{\beta}\right\}$ have length $\leqq \varepsilon / 4$.

Let F_{i} be any one of $\left\{F_{i}\right\}$, and let l_{i}, l_{i}^{\prime} and $\bar{l}_{i}, l_{i}^{\prime}$ be the parallel supporting lines at $x\left(s_{1}\right), x\left(s_{i}^{\prime}\right)$ and $x\left(t_{i}\right), x\left(t_{i}^{\prime}\right)$, respectively. If we draw a convex curve from $x\left(s_{i}\right)$ to $x\left(t_{i}\right)$ in the triangle defined by l_{i}, \bar{l}_{i} and the segment $\left[x\left(s_{i}\right) x\left(t_{i}\right)\right]$, then the curve is in the ε-neighborhood of M by virtue of (i), (iii) and $\varepsilon<H / 2$. This is the same for $x\left(s_{i}^{\prime}\right)$ and $x\left(t_{i}^{\prime}\right)$.

Lemma 3.2. Each $F_{i}=\left\{x(s): s_{i} \leqq s \leqq t_{i}\right\}$ and the corresponding subarc $\{x(s)$: $\left.s_{i}^{\prime} \leqq s \leqq t_{i}^{\prime}\right\}$ can be replaced by a C^{∞}-curve ($x\left(s_{i}\right) x\left(t_{i}\right)$) and the corresponding subarc $\left(x\left(s_{i}^{\prime}\right) x\left(t_{i}^{\prime}\right)\right)$ so that the resulting oval is of constant width H.

Proof. If $\left|x\left(s_{i}^{\prime}\right)-x\left(t_{i}^{\prime}\right)\right|=0$, then F_{i} is itself of class C^{∞}. So we consider
the following two cases. Let Q be the intersection of the segments $\left[x\left(s_{i}\right) x\left(s_{i}^{\prime}\right)\right]$ and $\left[x\left(t_{i}\right) x\left(t_{i}^{\prime}\right)\right]$.
(I-1) If $\left|x\left(s_{i}\right)-Q\right|$ and $\left|x\left(t_{i}\right)-Q\right|$ are both equal to a real number R, we draw the circle with Q as its center and R as its radius. We replace F_{i} by the part between $x\left(s_{i}\right)$ and $x\left(t_{i}\right)$ of the circle. Similarly we replace the corresponding subarc of F_{i} by the part between $x\left(t_{i}^{\prime}\right)$ and $x\left(s_{i}^{\prime}\right)$ of the circle with Q as its center and $H-R$ as its radius. The parallel supporting lines at $x\left(s_{i}\right)$ and $x\left(t_{i}\right), x\left(s_{i}^{\prime}\right)$ and $x\left(t_{i}^{\prime}\right)$ are the same with respect to M and with respect to the new oval. Therefore the resulting oval is of constant width H and is in the ε-neighborhood of M.
(I-2) If $\left|x\left(s_{i}\right)-Q\right|>\left|x\left(t_{i}\right)-Q\right|$, then $\left|x\left(t_{i}^{\prime}\right)-Q\right|>\left|x\left(s_{i}^{\prime}\right)-Q\right|$, since $\mid x\left(s_{i}\right)-$ $x\left(s_{i}^{\prime}\right)\left|=H=\left|x\left(t_{i}\right)-x\left(t_{i}^{\prime}\right)\right|\right.$. Hence, we obtain

$$
H<\left|x\left(s_{i}\right)-Q\right|+\left|Q-x\left(t_{i}^{\prime}\right)\right| .
$$

On the other hand, we have $\left|x\left(s_{i}\right)-x\left(t_{i}^{\prime}\right)\right| \leqq H$. If $\left|x\left(s_{i}\right)-x\left(t_{i}^{\prime}\right)\right|=H$, then F_{i} is of class C^{∞}, and hence we can assume that

$$
\left|x\left(s_{i}\right)-x\left(t_{i}^{\prime}\right)\right|<H .
$$

Then we can choose a point u of the segment $\left[x\left(s_{i}\right) Q\right]$ and a point v of the segment $\left[Q x\left(t_{i}^{\prime}\right)\right]$ and we can draw a concave C^{∞}-curve (uv) from u to v in the triangle $\left[x\left(s_{i}\right) Q x\left(t_{i}^{\prime}\right)\right]$ such that $(u v)$ is tangent to two segments at u and v, and such that

$$
\left|x\left(s_{i}\right)-u\right|+|(u v)|+\left|v-x\left(t_{i}^{\prime}\right)\right|=H,
$$

where $|(u v)|$ means the arclength of (uv). Then the involute of (uv) with the initial vector $x\left(s_{i}\right)-u$ at u is a convex C^{∞}-curve from $x\left(s_{i}\right)$ to $x\left(t_{i}\right)$, because

$$
\left|x\left(s_{i}\right)-u\right|+|(u v)|=H-\left|x\left(t_{i}^{\prime}\right)-v\right|=\left|x\left(t_{i}\right)-v\right| .
$$

Similarly we have the involute from $x\left(t_{i}^{\prime}\right)$ to $x\left(s_{i}^{\prime}\right)$. We replace F_{i} and the corresponding subarc by these involutes. The parallel supporting lines at $x\left(s_{i}\right)$ and $x\left(t_{i}\right), x\left(s_{i}^{\prime}\right)$ and $x\left(t_{i}^{\prime}\right)$ are the same with respect to M and with respect to the new curves. Hence, the new oval is of constant width H and is in the ε-neighborhood of M. Q.E.D.

By Lemma 3.2 we obtain a piecewise C^{∞}-oval M_{1} of constant width H in the ε-neighborhood of M.

Lemma 3.3. M_{1} can be approximated by a C^{∞}-oval M_{2} of constant width H_{2} in the 2ε-neighborhood of M_{1}.

Proof. Let $M_{1}(\varepsilon)$ be the outer ε-parallel oval of M_{1}. At each corner point of M_{1}, its ε-parallel means a piece of the circle of radius ε with the corner point as its center. Since M_{1} is a piecewise C^{∞}-oval, $M_{1}(\varepsilon)$ is a C^{1}-oval with
piecewise C^{∞}-curves. $M_{1}(\varepsilon)$ is of constant width $H+2 \varepsilon$. Let ${ }^{*} M_{1}(\varepsilon)$ be the evolute of $M_{1}(\varepsilon) .{ }^{*} M_{1}(\varepsilon)$ is completely contained in the interior of the domain determined by $M_{1}(\varepsilon)$, and ${ }^{*} M_{1}(\varepsilon)$ is composed of concave curves and isolated points. We construct a connected ${ }^{*} M_{2}(\varepsilon)$ from ${ }^{*} M_{1}(\varepsilon)$ so that its involute is a C^{∞}-oval of constant width. Let N be the number of parts where connecting process is required. It suffices to consider the following five cases.

(II-1) Two points a, b in ${ }^{*} M_{1}(\varepsilon)$ appeared as centers of pieces of circles like (1) can be connected by the following way. Let $c \in M_{1}(\varepsilon) \cap[a b]$, where [ab] denotes the segment or the straight line passing through a, b. Take c_{1} and c_{2} in $M_{1}(\varepsilon)$ which are very close to c. Let $d=\left[c_{1} a\right] \cap\left[c_{2} b\right]$. First we attach a ($00-$)-model to $[a d]$ at a and to $[b d]$ at b in the triangle [abd]. Here by "attaching a ($00-$-model to $[a d]$ at a " we mean that the tangent lines to the attached ($00-$-model converge to $[a d]$ at a. Next we draw a convex curve ($a b)^{*}$ from a to b such that
(i) $(a b)^{*}$ is of class C^{∞} except for a and b,
(ii) ($a b)^{*}$ coincides with some neighborhoods of a and b in the attached models.

In this case we can assume that $|a-d|+|d-b|-|a-b|<\varepsilon / 2 N$, and hence we can assume that

$$
\left|(a b)^{*}\right|-|a-b|<\varepsilon / 2 N .
$$

(3)

(5)
(II-2) If (2) is the case (where b is a center of a piece of a circle and ($a a_{0}$) is a curve), take c, c_{1} ane c_{2} as before. Let a_{1} be the center of curvature at c_{1} of $M_{1}(\varepsilon)$. Let $d=\left[c_{1} a_{1}\right] \cap\left[c_{2} b\right]$. In the triangle $\left[a_{1} d b\right]$ we draw a curve $\left(a_{1} b\right)^{*}$ such that
(i) $\left(a_{1} b\right)^{*}$ is of class C^{∞} except for b,
(ii) some neighborhood of b in $\left(a_{1} b\right)^{*}$ coincides with a (00-)-model attached to $[b d]$ at b,
(iii) some neighborhood of a_{1} in $\left(a_{1} b\right)^{*}$ coincides with $\left(a a_{0}\right)$.

In this case we can assume that

$$
-\varepsilon / 2 N<\left|\left(a_{0} a_{1}\right)\right|+\left|\left(a_{1} b\right)^{*}\right|-\left|\left(a_{0} a\right)\right|-|a-b|<\varepsilon / 2 N .
$$

(II-3) If (3) is the case (where ($a_{0} a$) and ($b_{0} b$) are curves), take c, c_{1} and c_{2} as before. Let a_{1} and b_{2} be the centers of curvature at c_{1} and c_{2}, respectively. Let $d_{1}=\left[c_{1} a_{1}\right] \cap[a b]$, and $d_{2}=\left[c_{2} b_{2}\right] \cap[a b]$. We draw two convex curves $\left(a_{1} b\right)^{*}$ and $\left(b b_{2}\right)^{*}$ in the triangles $\left[a_{1} d_{1} b\right]$ and $\left[b_{2} d_{2} b\right]$ such that
(i) $\left(a_{1} b\right)^{*}$ and $\left(b b_{2}\right)^{*}$ are of class C^{∞} except for b,
(ii) some neighborhood of b in $\left(a_{1} b\right)^{*}$ and $\left(b b_{2}\right)^{*}$ coincides with a (+0-). model attached to $[a b]$ at b,
(iii) some neighborhood of a_{1} in $\left(a_{1} b\right)^{*}$ coincides with ($a_{0} a$),
(iv) some neighborhood of b_{2} in $\left(b b_{2}\right)^{*}$ coincides with $\left(b_{0} b\right)$.

In this case we can assume that

$$
-\varepsilon / 2 N<\left|\left(a_{1} a\right)\right|+|a-b|+\left|\left(b b_{2}\right)\right|-\left|\left(a_{1} b\right)^{*}\right|-\left|\left(b b_{2}\right)^{*}\right|<\varepsilon / 2 N .
$$

(II-4) If (4) is the case, take c, c_{1} and c_{2} as before. Let a_{1} and b_{2} be the centers of curvature at c_{1} and c_{2}, respectively. Let $d=\left[c_{1} a_{1}\right] \cap\left[c_{2} b_{2}\right]$. We draw a convex C^{∞}-curve $\left(a_{1} b_{2}\right)^{*}$ which coincides with some neighborhoods of a_{1} in $\left(a_{0} a\right)$ and of b_{2} in $\left(b_{0} b\right)$. In this case we can assume that

$$
-\varepsilon / 2 N<\left|\left(a_{1} a\right)\right|+|a-b|+\left|\left(b b_{2}\right)\right|-\left|\left(a_{1} b_{2}\right) *\right|<\varepsilon / 2 N .
$$

(II-5) If (5) is the case, take c, c_{1}, c_{2}, a_{1}, and b_{2} as before. Let $d_{1}=$ $\left[c_{1} a_{1}\right] \cap[a b]$ and $d_{2}=\left[c_{2} b_{2}\right] \cap[a b]$. Let m_{1} and m_{2} be the middle points of $\left[a_{1} d_{1}\right]$ and $\left[b_{2} d_{2}\right]$, respectively. Let $d_{3}=\left[a m_{1}\right] \cap\left[b m_{2}\right]$. We draw three convex curves $\left(a_{1} a\right)^{*},(a b)^{*}$ and $\left(b b_{2}\right)^{*}$ in the triangles $\left[a_{1} m_{1} a\right],\left[a b d_{3}\right]$ and $\left[m_{2} b b_{2}\right]$ such that
(i) three curves are of class C^{∞} except for a, b,
(ii) some neighborhood of a_{1} in $\left(a_{1} a\right)^{*}$ coincides with ($a_{0} a$),
(iii) some neighborhood of a in $\left(a_{1} a\right)^{*}$ and ($\left.a b\right)^{*}$ coincides with a ($+0-$). model attached to $\left[a d_{3}\right]$ at a,
(iv) some neighborhood of b is similar to the case (iii),
(v) some neighborhood of b_{2} in $\left(b b_{2}\right)^{*}$ coincides with $\left(b b_{0}\right)$.

In this case we can assume that

$$
-\varepsilon / 2 N<\left|\left(a_{1} a\right)\right|+|a-b|+\left|\left(b b_{2}\right)\right|-\left|\left(a_{1} a\right)^{*}\right|-\left|(a b)^{*}\right|-\left|\left(b b_{2}\right)^{*}\right|<\varepsilon / 2 N .
$$

Applying (II- $1 \sim 5$) we have ${ }^{*} M_{2}(\varepsilon)$. We construct the involute M_{2} with some initial vector, where we assume that the end point of the initial vector is in $M_{1}(\varepsilon)$. Then, by our construction we see that M_{2} is of class C^{∞} and, lies in the 2ε-neighborhood of M_{1}, and that it has constant width $H_{2}, H+\varepsilon<H_{2}<$ $H+3 \varepsilon$.
Q.E.D.

Proof of Theorem A. By a similar deformation of M_{2}, we have a C^{∞}. oval M_{3} of constant width H. By taking ε sufficiently small, we see that M_{3} can be constructed in the δ-neighborhood of M. This proves Theorem A.

Next we prove Theorem B. Let $M=\{x(s)\}$ be a continuous oval with constant width H, which is symmetric with respect to a straight line m in E^{2}. Let $M \cap m=\left\{x(0), x\left(s_{0}\right)\right\}$. Let $x\left(s_{1}\right)$ and $x\left(s_{2}\right)$ be the pair points in M such that $x\left(s_{1}\right)-x\left(s_{2}\right)$ is orthogonal to $m, s_{1}<s_{2}$. In this case the subarc

$$
M_{4}=\left\{x(s): 0 \leqq s \leqq s_{1}\right\}
$$

is essential. The subarc corresponding to M_{4} is $M_{4}^{\prime}=\left\{x(s): s_{0} \leqq s \leqq s_{2}\right\}$. By $S M_{4}$ and $S M_{4}^{\prime}$ we denote the symmetries of M_{4} and M_{4}^{\prime} with respect to m. Clearly,

$$
M=M_{4} \cup S M_{4}^{\prime} \cup M_{4}^{\prime} \cup S M_{4} .
$$

Let l_{0} and l_{0}^{\prime} be the parallel supporting lines at $x(0)$ and $x\left(s_{0}\right)$, and let l_{1} and l_{1}^{\prime} be the parallel supporting lines at $x\left(s_{1}\right)$ and $x\left(s_{2}\right)$. The difference between proofs of Theorems A and B is in handling neighborhoods of $x(0)$ and $x\left(s_{1}\right)$.

By the way similar to the proof of Theorem A, we can replace M_{4} and its corresponding subarc M_{4}^{\prime} by a piecewise C^{∞}-curve M_{5} and its corresponding subarc M_{5}^{\prime} in the ε-neighborhood of M, where M_{5} is a curve from $x(0)$ to $x\left(s_{1}\right)$ and M_{5}^{\prime} is a curve from $x\left(s_{0}\right)$ to $x\left(s_{2}\right)$. Then

$$
M_{6}=M_{5} \cup S M_{5}^{\prime} \cup M_{5}^{\prime} \cup S M_{5}
$$

is a piecewise C^{∞}-oval of constant width H.
Let $M_{6}(\varepsilon)$ be the outer ε-parallel of M_{6}, and let ${ }^{*} M_{6}(\varepsilon)$ be its evolute. ${ }^{*} M_{6}(\varepsilon)$ is symmetric with respect to m. We construct a connected ${ }^{*} M_{7}(\varepsilon)$ from ${ }^{*} M_{6}(\varepsilon)$ so that
(i) its involute M_{8} is a C^{∞}-oval of constant width,
(ii) M_{8} is symmetric with respect to m, and
(iii) M_{8} is in the 2ε-neighborhood of M_{6}.

Let $z(0), z\left(s_{0}\right) \in m \cap M_{6}(\varepsilon)$ be the ε-parallel points of $x(0), x\left(s_{0}\right)$, respectively.
(III-1) If $x(0)$ is a corner point of M_{6}, then some neighborhood of $z(0)$ in $M_{6}(\varepsilon)$ is a piece of the circle with $x(0)$ as its center, and hence it is of class C^{∞}.
(III-2) If $x(0)$ is not a corner point of M_{6}, we replace some neighborhood of $w(0)$ in ${ }^{*} M_{6}(\varepsilon)$ by a ($\left.+0-\right)$-model attached to m at $w(0)$, where $w(0)$ denotes the center of curvature at $z(0)$ of $M_{6}(\varepsilon)$. In this case this (+0 -)-model can be chosen so that it is symmetric with respect to m.

Next let $z\left(s_{1}\right), z\left(s_{2}\right) \in\left[x\left(s_{1}\right) x\left(s_{2}\right)\right] \cap M_{6}(\varepsilon)$ be the ε-parallel points of $x\left(s_{1}\right)$, $x\left(s_{2}\right)$, respectively.
(III-3) Assume that the center $w\left(s_{1}\right)$ of curvature at $z\left(s_{1}\right)$ of $M_{6}(\varepsilon)$ is in m. If ${ }^{*} M_{6}(\varepsilon)$ is of class C^{∞} near $w\left(s_{1}\right)$, then no modification is necessary at this step.

If $M_{6}(\varepsilon)$ is a piece of a circle near $z\left(s_{1}\right)$, then no modification is necessary at this step.

If ${ }^{*} M_{6}(\varepsilon)$ is not of class C^{∞} at $w\left(s_{1}\right)$, we replace some neighborhood of $w\left(s_{1}\right)$ in $* M_{6}(\varepsilon)$ by a piece of a circle with center in m, which is tangent to $\left[x\left(s_{1}\right) x\left(s_{2}\right)\right]$ at $w\left(s_{1}\right)$.
(III-4) Assume that the center $w\left(s_{1}\right)$ of curvature at $z\left(s_{1}\right)$ does not lie in m. In this case it suffices to consider the following two cases.

(III-4-i) Assume that the subarc from e to $z\left(s_{1}\right)$ of $M_{6}(\varepsilon)$ is a piece of the circle with $w\left(s_{1}\right)$ as its center. Take a point d in $M_{6}(\varepsilon)$ sufficiently near $z\left(s_{1}\right)$ like (4-i). Put $p=\left[w\left(s_{1}\right) d\right] \cap m$ and $q=\left[w\left(s_{1}\right) z\left(s_{1}\right)\right] \cap m$. Let r be the middle point of [pq]. Let l be a straight line passing through r and orthogonal to m. Put $u=l \cap\left[w\left(s_{1}\right) d\right]$. We draw a convex curve $\left(w\left(s_{1}\right) r\right)^{*}$ from $w\left(s_{1}\right)$ to r in the triangle $\left[w\left(s_{1}\right) u r\right]$ such that
(i) $\left(w\left(s_{1}\right) r\right)^{*}$ is of class C^{∞} except for $w\left(s_{1}\right)$,
(ii) some neighborhood of $w\left(s_{1}\right)$ in $\left(w\left(s_{1}\right) r\right)^{*}$ is a (00-)-model attached to [$\left.w\left(s_{1}\right) u\right]$ at $w\left(s_{1}\right)$,
(iii) some neighborhood of r in $\left(w\left(s_{1}\right) r\right)^{*}$ coincides with a piece of a circle which is tangent to l.
(III-4-ii) Assume that the subarc from $w(e)$ to $w\left(s_{1}\right)$ of $* M_{6}(\varepsilon)$ is like (4-ii) of the figure. Let l be a straight line which is orthogonal to m and sufficiently near $\left[z\left(s_{2}\right) z\left(s_{1}\right)\right]$. Put $r=l \cap m$. Let v be the middle point of $[w(e) r]$. Put $k=[w(e) e] \cap\left[w\left(s_{1}\right) v\right]$ and $h=l \cap\left[w\left(s_{1}\right) v\right]$. We draw two convex curves $\left(w(e) w\left(s_{1}\right)\right)^{*}$ and $\left(w\left(s_{1}\right) r\right)^{*}$ in the triangle $\left[w(e) w\left(s_{1}\right) k\right]$ and $\left[h w\left(s_{1}\right) r\right]$ such that
(i) they are of class C^{∞} except for $w\left(s_{1}\right)$,
(ii) some neighborhood of $w(e)$ in $\left(w(e) w\left(s_{1}\right)\right)^{*}$ coincides with $\left(w(e) w\left(s_{1}\right)\right)$ of $* M_{6}(\varepsilon)$,
(iii) some neighborhood of $w\left(s_{1}\right)$ in $\left(w(e) w\left(s_{1}\right)\right) * \cup\left(w\left(s_{1}\right) r\right)^{*}$ is a (+0-)-model attached to $\left[w\left(s_{1}\right) v\right]$ at $w\left(s_{1}\right)$,
(iv) some neighborhood of r in $\left(w\left(s_{1}\right) r\right)^{*}$ coincides with a piece of a circle which is tangent to l.

Therefore, combining what we have proved in the proof of Theorem A, we can construct ${ }^{*} M_{7}(\varepsilon)$ such that
(1) its involute M_{8} with some initial vector is a C^{∞}-oval of constant width $H_{8}, H+\varepsilon<H_{8}<H+3 \varepsilon$,
(2) M_{8} is symmetric with respect to m, and
(3) M_{8} is in the 2ε-neighborhood of M_{6}, and hence in the 3ε-neighborhood
of M.
Consequently, if we take ε sufficiently small, we see that we can construct a C^{∞}-oval M_{9} of constant width H, which is symmetric with respect to m and is in the δ-neighborhood of M. This proves Theorem B.

Theorem C follows from Theorem B.

§4. Remarks.

Remark 1. Let M be a convex C^{h}-hypersurface ($h \geqq 4$) in a Euclidean $(n+1)$-space E^{n+1}. Assume that the origin 0 is inside M. Let S^{n} be the standard sphere in E^{n+1}. For a point $\xi \in S^{n}$, the distances between 0 and parallel supporting hyperplanes of M orthogonal to ξ are denoted by $h(\xi)$ and $h(-\xi)$, where $h(\xi)$ is one for the positive side of $\xi . h(\xi)$ is called the support function of $M . M$ is of constant width H if and only if $h(\xi)+h(-\xi)=H$. Let $-\varphi(\xi)$ be the sum of the principal radii of curvature at the point of M having normal ξ. J. P. Fillmore [2] studied some relations between $h(\xi)$ and $\varphi(\xi)$.

Especially, applying Christoffel's theorem (cf. W. J. Firey [3]) and using spherical harmonics (of odd degree), one can construct various real analytic hypersurfaces of constant width in E^{n+1} (J. P. Fillmore [2]).

Remark 2. For E^{2} and S^{1} we put $\theta=\arg \xi$. For each equilateral $(2 r+1)$ polygon ($r \geqq 1$), there corresponds a Reuleaux polygon as a continuous oval of constant width. The corresponding real analytic oval of constant width is given by

$$
\begin{aligned}
& h(\theta)=a+b \cos (2 r+1) \theta, \quad \text { or } \\
& 1 / k=a-4 r(r+1) b \cos (2 r+1) \theta,
\end{aligned}
$$

where a and b are constant such that $a>4 r(r+1) b$, and k denotes the curvature at the point corresponding to θ.

Notice that $h(\theta)+h(\theta+\pi)=2 a$ and $h(\theta)=h(-\theta)$. If we imbed E^{2} in E^{n+1} and rotate such ovals with respect to the x^{1}-axis (defined by $\theta=0$), we obtain real analytic hypersurfaces of constant width $2 a$.

§ 5. Twin hypersurfaces.

S. A. Robertson [5], [6] and J. Bolton [1] studied some generalization of hypersurfaces of constant width (transnormal hypersurfaces imbeded in E^{m}).

As another generalization of hypersurfaces of constant width we define twin hypersurfaces.

Definition. Let (M, g) be an n-dimensional C^{∞}-Riemannian manifold with metric tensor g. Let f_{1} and f_{2} be isometric C^{∞}-immersions of (M, g) into E^{n+1}. Assume that
(i) (M, g) is orientable and complete,
(ii) there exists a diffeomorphism ϕ of M such $f_{1}(x)-f_{2}(\phi x)$ is normal to $f_{1}(M)$ at $f_{1}(x)$ and to $f_{2}(M)$ at $f_{2}(x)$, for each x of M,
(iii) $f_{1}(x)-f_{2}(\phi x)$ is of constant length for $x \in M$.

Then we call this triplet $\left((M, g), f_{1}, f_{2}\right)$ a twin C^{∞}-hypersurface.
A C^{∞}-hypersurface of constant width in E^{n+1} is a special example such that
(1) $f_{1}=f_{2}$,
(2) ϕ is the antipodal diffeomorphism [i. e., for pair points $x, y, \phi x=y$].

Example. Let P be a closed curve in E^{2}, with two vertices v_{1} and v_{2}, and with two convex curves ($v_{1} v_{2}$) and ($v_{2} v_{1}$) such that
(1) P is symmetric with respect to [$\left.v_{1} v_{2}\right]$,
(2) P is symmetric with respect to the x^{2}-axis which is orthogonal to [$\left.v_{1} v_{2}\right]$,
(3) P is of class C^{∞} except for v_{1} and v_{2},
(4) some neighborhoods of v_{1} and v_{2} are ($+0-$)-models attached to [$v_{1} v_{2}$] at v_{1} and v_{2}.

Let M_{1}^{\prime} be an involute of P and let M_{2}^{\prime} be its symmetry with respect to the x^{2}-axis. M_{2}^{\prime} is also an involute of P. By our construction of P, M_{1}^{\prime} and M_{2}^{\prime} are closed, of class C^{∞}, and there exist a constant q and a transformation $\varphi: M_{1}^{\prime} \rightarrow M_{2}^{\prime}$ such that $x-\varphi x$ is normal to M_{1}^{\prime} at x and to M_{2}^{\prime} at φx and $|x-\varphi x|$ $=q$ for all x of M_{1}^{\prime}.

Take the x^{1}-axis so that it does not meet M_{1}^{\prime}. We imbed E^{2} into E^{n+1}.

By rotating M_{1}^{\prime} and M_{2}^{\prime} with respect to the x^{1}-axis, we obtain two hypersurfaces M_{1} and M_{2}. Let $M_{1}=(M, g)$ be a Riemannian manifold with the induced metric from the Euclidean metric of E^{n+1}. Let f_{1} be the inclusion map of $M_{1}, f_{1}:(M, g) \rightarrow M_{1} \subset E^{n+1}$. Let $S: M_{1}^{\prime} \leftrightarrow M_{2}^{\prime}$ be the symmetric transformation with respect to the x^{2}-axis in E^{2} and let $f_{2}=S \circ f_{1}:(M, g) \rightarrow M_{2} \subset E^{n+1}$, where S denotes also its extension: $M_{1} \leftrightarrow M_{2}$. We extend the diffeomorphism $\varphi: M_{1}^{\prime} \rightarrow M_{2}^{\prime}$ naturally to the diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$, denoted by the same letter φ. We define a diffeomorphism ϕ of (M, g) by $\phi=f_{1}^{-1} \circ S \circ \varphi \circ f_{1}$. Then we get

$$
f_{1} x-f_{2} \circ \phi x=f_{1} x-\varphi \circ f_{1} x
$$

for all x of (M, g). Since $f_{1} x$ is identified with $x,\left((M, g), f_{1}, f_{2}\right)$ is a twin hypersurface.

References

[1] J. Bolton, Transnormal hypersurfaces, Proc. Cambridge Philos. Soc., 74 (1973), 43-48.
[2] J. P. Fillmore, Symmetries of surfaces of constant width, J. Differential Geometry, 3 (1969), 103-110.
[3] W.J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematica, 14 (1967), 1-13.
[4] B. B. Peterson, Intersection properties of curves of constant width, Illinois J. Math., 17 (1973), 411-420.
[5] S.A. Robertson, Generalized constant width for manifolds, Michigan Math. J., 11 (1964), 97-105.
[6] S. A. Robertson, On transnormal manifolds, Topology, 6 (1967), 117-123.
[7] G. T. Sallee, The maximal set of constant width in a lattice, Pacific J. Math., 28 (1969), 669-674.

Shûkichi Tanno
Mathematical Institute
Tôhoku University
Katahira, Sendai
Japan

