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\S 1. Introduction.

Let $M$ be an oval ( $i$ . $e.$ , a closed convex curve) in a Euclidean 2-space $E^{2}$ .
For a point $x$ of $M$ a straight line $l$ passing through $x$ is called a supporting
line at $x$ if $M$ is contained in one of the half planes determined by $l$ . If $M$

is a $C^{1}$-curve, then tangent lines are supporting lines. $M$ is said to have con-
stant width, if the distance between each pair of parallel supporting lines is
constant. Examples of continuous ovals of constant width are Reuleaux
triangles, Sallee constructions (cf. [7], and also B. B. Peterson [4]), and so on.

We prove $C^{\infty}$-approximation theorem:
THEOREM A. Let $M$ be a continuous oval of constant widih $H$ in $E^{2}$ .

Then, for any Positive number $\delta$ , we can construct a $C^{\infty}$-oval $M^{\#}$ of constant
width $H$ in the $\delta$-neighborhood of $M$ in $E^{2}$ .

THEOREM B. In Theorem $A$ , if $M$ is symmetric with respect to a straight
line $m$ in $E^{2}$ , then $M^{\#}$ can be constructed so that $M^{*}$ is symmetric with respect
to $m$ .

A generalization of an oval of constant width to higher dimension is a
hypersurface of constant width in a Euclidean n-space $E^{n}$ . If $M$ is a continuous
oval of constant width in $E^{2}\subset E^{n}$ , which is symmetric with respect to the $x^{1}-$

axis, then one gets a continuous hypersurface of constant width in $E^{n}$ as its
revolution hypersurface with respect to the $x^{1}$ -axis in $E^{n}$ .

By Theorem $B$ we obtain
THEOREM C. If a continuous hypersurface $M$ of constant width $H$ is a

revolution hypersurface in $E^{n}$ , then for any Positive number $\delta$ , we can construct
a revolution $C^{\infty}$-hyPersurface $M^{\#}$ of constant width $H$ in the $\delta$-neighborhood of
$M$ in $E^{n}$ .

In the last section we mension about twin hypersurfaces which are gener-
alizations of hypersurface of constant width.
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\S 2. Preliminaries.

Let $E^{2}$ be a Euclidean 2-space with the natural coordinates $(x^{1}, x^{2})$ . Let
$M=\{x(s)\}$ be a $C^{3}$-curve ( $i.e.$ , continuously thrice differentiable curve) in $E^{2}$

with arc-length parameter $s$ . $\xi_{1}(s)=dx(s)/ds$ is the unit tangent vector field on
$\{x(s)\}$ . Then $d\xi_{1}(s)/ds=k(s)\xi_{2}(s)$ holds, where $k(s)$ is the curvature of $x(s)$ and
$(\xi_{1}(s), \xi_{2}(s))$ is the right handed orthonormal frame field on $\{x(s)\}$ . A curve
$*M=\{^{*}y(s)\}$ defined by

(2.1) $*y(s)=x(s)+\rho(s)\xi_{2}(s)$

is called the evolute of $M=\{x(s)\}$ , where $\rho(s)=1/k(s)$ . The curvature $*k$ of
$*y(s)$ is given by [if $\rho(s)$ is of class $C^{2}$ and $d\rho(s)/ds\neq 0$]

(2.2)
$*k(s)=\frac{1}{\rho(s)|\frac{d\rho(s)}{ds}|}$

,

Conversely, for a $C^{2}$-curve $M^{*}=\{y^{*}(s^{*})\}$ with arc-length parameter $s^{*}$ , the curve
$M=\{x(s^{*})\}$ defined by

(2.3) $x(s^{*})=y^{*}(s^{*})+(c-s^{*})\xi_{1}^{*}(s^{*})$

for some constant $c$ is called the involute of $M^{*}=\{y^{*}(s^{*})\}$ . The evolute and
the involute are dual.

Now we define a (+00–)-model. Let $k(s)$ be a $C^{\infty}$-function on an open
interval $(s_{1}, s_{4})$ such that $dk(s)/ds>0$ for $s_{1}<s<s_{2},$ $dk(s)/ds=0$ for $s_{2}\leqq s\leqq s_{3}$ , and
$dk(s)/ds<0$ for $s_{3}<s<s_{4}$ . Let $D$ be the $C^{\infty}$-curve with $k(s)$ as its curvature
and with $s$ as its arc-length parameter. Let $D$ be the evolute of $D$ . We call
$*D$ a (+00–)-model, if $s_{2}\neq s_{3}$ .

Putting $s_{2}=s_{3}$ , we call $*D$ a (+0–)-model. 00 means that $dk(s)/ds=0$ holds
on some interval, and $0$ means that $dk(s)/ds=0$ holds at a single point. Taking
some part of a (+00–)-model or a (+0–)-model, we have a (+00)-model, or a
(+0)-model. A (00–)-model or a (O–)-model is equivalent to a (+00)-model

or (+0)-model. Notice that, for example in a $(+0-)- model^{*}D$ , the point cor-
responding to $x(s)$ where $dk(s)/ds=0$ (and hence $d\rho(s)/ds=0$) is very complic-
ated because of (2.2).

\S 3. Proofs of Theorems.

For a continuous oval $M=\{x(s)\}$ of constant width $H$ in $E^{2}$ , two points
$x(s)$ and $x(s^{\prime})$ of $M$ are called pair points, if $|x(s)-x(s^{\prime})|=H$, where $||$ denotes
the Euclidean length of vectors in $E^{2}$ .
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LEMMA 3.1. Assume that $x(s^{\prime})$ and $x(s_{1})$ , and, $x(s^{\prime})$ and $x(s_{2})$ , are pair
points such that $s_{1}<s_{2}$ . Then the subarc $\{x(s):s_{1}\leqq s\leqq s_{2}\}$ is a piece of the circle
of radius $H$ with $x(s^{\prime})$ as its center.

PROOF. First we notice that every supporting line has only one point in
common with $M$ by constancy of width. Let $l_{1}^{\prime}$ and $l_{1}$ be the parallel support-
ing lines at $x(s^{\prime})$ and $x(s_{1})$ , and let $l_{2}^{\prime}$ and $l_{2}$ be the parallel supporting lines
at $x(s^{\prime})$ and $x(s_{2})$ . Let $C[x(s_{1})x(s_{2})]$ be the part from $x(s_{1})$ to $x(s_{2})$ of the
circle of radius $H$ with $x(s^{\prime})$ as its center. Considering supporting lines at
$x(s^{\prime})$ between $l_{1}^{\prime}$ and $l_{2}^{\prime}$ , we see that $\{x(s):s_{1}\leqq s\leqq s_{2}\}=C[x(s_{1})x(s_{2})]$ . Q. E. D.

We call such a point $x(s^{\prime})$ a corner point of $M$, and we call $C[x(s_{1})x(s_{2})]$

the subarc corresponding to $x(s^{\prime})$ , if it is maximal [that is, it is not a proper
subset of a subarc of the circle in $M$ ]. If we pick up all corner points $w_{b}$ ,
generally the set $\{w_{b}\}$ may be an inPnite set. Let $C_{b}$ be the subarc corre-
sponding to $w_{b}$ . By $\{w_{\beta}, C_{\beta}\}$ we mean the subset of $\{w_{b}, C_{b}\}$ such that the
length of $C_{\beta}$ is greater than $\epsilon/4$ , where $\epsilon$ is a sufficiently small positive number
$<H/2$ .

Let $l_{0}$ and $l_{0}^{\prime}$ be the parallel supporting lines at $x(O)$ and $x(s_{0})$ . We decom-
pose the subarc $M_{0}=\{x(s):0\leqq s\leqq s_{0}\}$ into

$M_{0}=\{w_{\lambda}\}\cup\{C_{\mu}\cap M_{0}\}\cup\{F_{i}\}$ ,

where $\{w_{\lambda}\}$ is the subset of $\{w_{\beta}\}$ such that $w_{\lambda}\in M_{0},$ $\{C_{\mu}\}$ is the subset of $\{C_{\beta}\}$

such that $C_{\mu}\cap M_{0}$ is non-empty, and $F_{i}=\{x(s):s_{i}\leqq s\leqq t_{i}\}$ such that
(i) $ 0<|x(s_{i})-x(t_{i})|<\epsilon$ ,

(ii) $\{x(s):s_{i}<s<t_{i}\}$ does not intersect with $\{w_{\lambda}\}$ nor $\{C_{\mu}\}$ , nor $F_{j}(j\neq i)$ ,
(iii) for pair points $x(s_{i})$ and $x(s_{i}^{\prime})$ , and, $x(t_{i})$ and $x(t_{i}^{\prime}),$ $|x(s_{i}^{\prime})-x(t_{i}^{\prime})|<\epsilon$

holds [in this case, if $x(s_{i})$ is a corner point, we assume that the point $x(s_{i}^{\prime})$

is a boundary point of a piece of a circle].

Since $M$ is compact, $\{w_{\lambda}\}$ and $\{C_{\mu}\}$ are finite sets, and we can choose $F_{i}$

so that $\{F_{i}\}$ is a finite set. We assume $i=1,$ $\cdots$ , $h$ . The possibility for (i), ( $ii\rangle$

and (iii) comes from the fact that subarcs corresponding to corner points $\{w_{b}\}$

in $M-\{w_{\beta}, C_{\beta}\}$ have length $\leqq\epsilon/4$ .
Let $F_{i}$ be any one of $\{F_{i}\}$ , and let $l_{i},$ $l_{i}^{\prime}$ and $\overline{l}_{i},\overline{l}_{i}^{\prime}$ be the parallel supporting

lines at $x(s_{1}),$ $x(s_{i}^{\prime})$ and $x(t_{i}),$ $x(t_{i}^{\prime})$ , respectively. If we draw a convex curve
from $x(s_{i})$ to $x(t_{i})$ in the triangle defined by $l_{i},\overline{l}_{i}$ and the segment $[x(s_{i})x(t_{i})]$ ,

then the curve is in the $\epsilon$-neighborhood of $M$ by virtue of (i), (iii) and $\epsilon<H/2$ .
This is the same for $x(s_{i}^{\prime})$ and $x(t_{t}^{f})$ .

LEMMA 3.2. Each $F_{i}=\{x(s):s_{i}\leqq s\leqq t_{i}\}$ and the corresp0nding subarc { $x(s)$ :
$s_{i}^{\prime}\leqq s\leqq t_{i}^{\prime}\}$ can be replaced by a $C^{\infty}$-curve $(x(s_{i})x(t_{i}))$ and the corresp0nding subarc
$(x(s_{i}^{\prime})x(t_{i}^{\prime}))$ so that the resulting oval is of constant width $H$.

PROOF. If $|x(s_{t}^{\prime})-x(t_{i}^{\prime})|=0$ , then $F_{i}$ is itself of class $C^{\infty}$ . So we consider
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the following two cases. Let $Q$ be the intersection of the segments $[x(s_{i})x(s_{i}^{f})]$

and $[x(t_{i})x(t_{i}^{f})]$ .
(I-1) If $|x(s_{i})-Q|$ and $|x(t_{i})-Q|$ are both equal to a real number $R$ , we

draw the circle with $Q$ as its center and $R$ as its radius. We replace $F_{i}$ by
the part between $x(s_{i})$ and $x(t_{i})$ of the circle. Similarly we replace the cor-
responding subarc of $F_{i}$ by the part between $x(t_{i}^{f})$ and $x(s_{t}^{\prime})$ of the circle
with $Q$ as its center and $H-R$ as its radius. The parallel supporting lines at
$x(s_{i})$ and $x(t_{i}),$ $x(s_{i}^{\prime})$ and $x(t_{i}^{\prime})$ are the same with respect to $M$ and with respect
to the new oval. Therefore the resulting oval is of constant width $H$ and is
in the $\epsilon$-neighborhood of $M$.

(I-2) If $|x(s_{i})-Q|>|x(t_{i})-Q|$ , then $|x(t_{i}^{f})-Q|>|x(s_{i}^{\prime})-Q|$ , since $|x(s_{i})-$

$x(s_{i}^{\prime})|=H=|x(t_{i})-x(t_{i}^{\prime})|$ . Hence, we obtain

$H<|x(s_{i})-Q|+|Q-x(t_{i}^{f})|$ .

On the other hand, we have $|x(s_{i})-x(t_{i}^{f})|\leqq H$. If $|x(s_{i})-x(t_{t}^{\prime})|=H$, then $F_{i}$ is
of class $C^{\infty}$ , and hence we can assume that

$|x(s_{i})-x(t_{i}^{\prime})|<H$ .

Then we can choose a point $u$ of the segment $[x(s_{i})Q]$ and a point $v$ of the
segment $[Qx(t_{i}^{f})]$ and we can draw a concave $C^{\infty}$-curve $(uv)$ from $u$ to $v$ in the
triangle $[x(s_{i})Qx(t_{i}^{\prime})]$ such that $(uv)$ is tangent to two segments at $u$ and $v$ ,
and such that

$|x(s_{i})-u|+|(uv)|+|v-x(t_{i}^{\prime})|=H$ ,

where $|(uv)|$ means the arclength of $(uv)$ . Then the involute of $(uv)$ with
the initial vector $x(s_{i})-u$ at $u$ is a convex $C^{\infty}$-curve from $x(s_{i})$ to $x(t_{i})$ ,
because

$|x(s_{i})-u|+|(uv)|=H-|x(t_{i}^{\prime})-v|=|x(t_{l})-v|$ .

Similarly we have the involute from $x(t_{i}^{\prime})$ to $x(s_{i}^{\prime})$ . We replace $F_{i}$ and the cor-
responding subarc by these involutes. The parallel supporting lines at $x(s_{i})$

and $x(t_{i}),$ $x(s_{i}^{\prime})$ and $x(t_{i}^{\prime})$ are the same with respect to $M$ and with respect to
the new curves. Hence, the new oval is of constant width $H$ and is in the
$\epsilon$-neighborhood of $M$. Q. E. D.

By Lemma 3.2 we obtain a piecewise $C^{\infty}$-oval $M_{1}$ of constant width $H$ in
the $\epsilon$-neighborhood of $M$.

LEMMA 3.3. $M_{1}$ can be appr0ximated by a $C^{\infty}$-oval $M_{2}$ of constant width
$H_{2}$ in the $ 2\epsilon$ -neighborhood of $M_{1}$ .

PROOF. Let $M_{1}(\epsilon)$ be the outer $\epsilon$-parallel oval of $M_{1}$ . At each corner point
of $M_{1}$ , its $\epsilon$-parallel means a piece of the circle of radius $\epsilon$ with the corner
point as its center. Since $M_{1}$ is a piecewise $C^{\infty}$-oval, $M_{1}(\epsilon)$ is a $C^{1}$-oval with
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piecewise $C^{\infty}$-curves. $M_{1}(\epsilon)$ is of constant width $ H+2\epsilon$ . Let $*M_{1}(\epsilon)$ be the
evolute of $M_{1}(\epsilon)$ . $*M_{1}(\epsilon)$ is completely contained in the interior of the domain
determined by $M_{1}(\epsilon)$ , and $*M_{1}(\epsilon)$ is composed of concave curves and isolated
points. We construct a connected $*M_{2}(\epsilon)$ from $*M_{1}(\epsilon)$ so that its involute is a
$C^{\infty}$-oval of constant width. Let $N$ be the number of parts where connecting
process is required. It suffices to consider the following Pve cases.

(II-1) Two points $a,$
$b$ in $*M_{1}(\epsilon)$ appeared as centers of pieces of circles

like (1) can be connected by the following way. Let $c\in M_{1}(\epsilon)\cap[ab]$ , where
[ab] denotes the segment or the straight line passing through $a,$

$b$ . Take $c_{1}$

and $c_{2}$ in $M_{1}(\epsilon)$ which are very close to $c$ . Let $d=[c_{1}a]\cap[c_{2}b]$ . First we
attach a (00–)-model to $[ad]$ at $a$ and to $[bd]$ at $b$ in the triangle $[abd]$ .
Here by ”attaching a (00–)-model to $[ad]$ at $a$

’ we mean that the tangent
lines to the attached (00–)-model converge to $[ad]$ at $a$ . Next we draw a
convex curve $(ab)^{*}$ from $a$ to $b$ such that

(i) $(ab)^{*}$ is of class $C^{\infty}$ except for $a$ and $b$ ,
(ii) $(ab)^{*}$ coincides with some neighborhoods of $a$ and $b$ in the attached

models.
In this case we can assume that $|a-d|+|d-b|-|a-b|<\epsilon/2N$, and hence

we can assume that
$|(ab)^{*}|-|a-b|<\epsilon/2N$ .
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(II-2) If (2) is the case (where $b$ is a center of a piece of a circle and
$(aa_{0})$ is a curve), take $c,$ $c_{1}$ ane $C_{2}$ as before. Let $a_{1}$ be the center of curva-
ture at $c_{1}$ of $M_{1}(\epsilon)$ . Let $d=[c_{1}a_{1}]\cap[c_{2}b]$ . In the triangle $[a_{1}db]$ we draw a
curve $(a_{1}b)^{*}$ such that

(i) $(a_{1}b)^{*}$ is of class $C^{\infty}$ except for $b$ ,
(ii) some neighborhood of $b$ in $(a_{1}b)^{*}$ coincides with a (00–)-model attached

to $[bd]$ at $b$ ,
(iii) some neighborhood of $a_{1}$ in $(a_{1}b)^{*}$ coincides with $(aa_{0})$ .
In this case we can assume that

$-\epsilon/2N<|(a_{0}a_{1})|+|(a_{1}b)^{*}|-|(a_{0}a)|-|a-b|<\epsilon/2N$ .

(II-3) If (3) is the case (where $(a_{0}a)$ and $(b_{0}b)$ are curves), take $c,$ $c_{1}$ and
$c_{2}$ as before. Let $a_{1}$ and $b_{2}$ be the centers of curvature at $c_{1}$ and $c_{2}$ , respec-
tively. Let $d_{1}=[c_{1}a_{1}]\cap[ab]$ , and $d_{2}=[c_{2}b_{2}]\cap[ab]$ . We draw two convex curves
$(a_{1}b)^{*}$ and $(bb_{2})^{*}$ in the triangles $[a_{1}d_{1}b]$ and $[b_{2}d_{2}b]$ such that
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(i) $(a_{1}b)^{*}$ and $(bb_{2})^{*}$ are of class $C^{\infty}$ except for $b$ ,
(ii) some neighborhood of $b$ in $(a_{1}b)^{*}$ and $(bb_{2})^{*}$ coincides with a $(+0-)-$

model attached to [ab] at $b$ ,
(iii) some neighborhood of $a_{1}$ in $(a_{1}b)^{*}$ coincides with $(a_{0}a)$ ,
(iv) some neighborhood of $b_{2}$ in $(bb_{2})^{*}$ coincides with $(b_{0}b)$ .
In this case we can assume that

$-\epsilon/2N<|(a_{1}a)|+|a-b|+|(bb_{2})|-|(a_{1}b)^{*}|-|(bb_{2})^{*}|<\epsilon/2N$ .
(II-4) If (4) is the case, take $c,$ $c_{1}$ and $C_{2}$ as before. Let $a_{1}$ and $b_{2}$ be the

centers of curvature at $c_{1}$ and $C_{2}$ , respectively. Let $d=[c_{1}a_{1}]\cap[c_{2}b_{2}]$ . We
draw a convex $C^{\infty}$-curve $(a_{1}b_{2})^{*}$ which coincides with some neighborhoods of
$a_{1}$ in $(a_{0}a)$ and of $b_{2}$ in $(b_{0}b)$ . In this case we can assume that

$-\epsilon/2N<|(a_{1}a)|+|a-b|+|(bb_{2})|-|(a_{1}b_{2})^{*}|<\epsilon/2N$ .
(II-5) If (5) is the case, take $c,$ $c_{1},$ $c_{2},$ $a_{1}$ , and $b_{2}$ as before. Let $d_{1}=$

$[c_{1}a_{1}]\cap[ab]$ and $d_{2}=[c_{2}b_{2}]\cap[ab]$ . Let $m_{1}$ and $m_{2}$ be the middle points of
$[a_{1}d_{1}]$ and $[b_{2}d_{2}]$ , respectively. Let $d_{3}=[am_{1}]\cap[bm_{2}]$ . We draw three convex
curves $(a_{1}a)^{*},$ $(ab)^{*}$ and $(bb_{2})^{*}$ in the triangles $[a_{1}m_{1}a],$ $[abd_{3}]$ and $[m_{2}bb_{2}]$ such
that

(i) three curves are of class $C^{\infty}$ except for $a,$
$b$ ,

(ii) some neighborhood of $a_{1}$ in $(a_{1}a)^{*}$ coincides with $(a_{0}a)$ ,
(iii) some neighborhood of $a$ in $(a_{1}a)^{*}$ and (ab)* coincides with a $(+0-)-$

model attached to $[ad_{3}]$ at $a$ ,
(iv) some neighborhood of $b$ is similar to the case (iii),
(v) some neighborhood of $b_{2}$ in $(bb_{2})^{*}$ coincides with $(bb_{0})$ .

In this case we can assume that

$-\epsilon/2N<|(a_{1}a)|+|a-b|+|(bb_{2})|-|(a_{1}a)^{*}|-|(ab)^{*}|-|(bb_{2})^{*}|<\epsilon/2N$ .

Applying (II-1\sim 5) we have $*\Lambda f_{2}(\epsilon)$ . We construct the involute $M_{2}$ with
some initial vector, where we assume that the end point of the initial vector
is in $M_{1}(\epsilon)$ . Then, by our construction we see that $M_{2}$ is of class $C^{\infty}$ and, lies
in the 26-neighborhood of $M_{1}$ , and that it has constant width $H_{2},$ $H+\epsilon<H_{2}<$

$ H+3\epsilon$ . Q. E. D.
PROOF OF THEOREM A. By a similar deformation of $M_{2}$ , we have a $C^{\infty}-$

oval $M_{3}$ of constant width $H$. By taking $\epsilon$ sufficiently small, we see that $M_{3}$

can be constructed in the $\delta$ -neighborhood of $M$. This proves Theorem A.
Next we prove Theorem B. Let $M=\{x(s)\}$ be a continuous oval with

constant width $H$, which is symmetric with respect to a straight line $m$ in $E^{2}$ .
Let $M\cap m=\{x(0), x(s_{0})\}$ . Let $x(s_{1})$ and $x(s_{2})$ be the pair points in $M$ such that
$x(s_{1})-x(s_{2})$ is orthogonal to $m,$ $s_{1}<s_{2}$ . In this case the subarc
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$M_{4}=\{x(s):0\leqq s\leqq s_{1}\}$

is essential. The subarc corresponding to $M_{4}$ is $M_{4}^{\prime}=\{x(s):s_{0}\leqq s\leqq s_{2}\}$ . By $SM_{4}$

and $SM_{4}^{\prime}$ we denote the symmetries of $M_{4}$ and $M_{4}^{\prime}$ with respect to $m$ . Clearly,

$M=M_{4}\cup SM_{4}^{f}\cup M_{4}^{\prime}\cup SM_{4}$ .
Let $l_{0}$ and $l_{0}^{\prime}$ be the parallel supporting lines at $x(O)$ and $x(s_{0})$ , and let $l_{1}$ and
$l_{1}^{\prime}$ be the parallel supporting lines at $x(s_{1})$ and $x(s_{2})$ . The difference between
proofs of Theorems A and $B$ is in handling neighborhoods of $x(O)$ and $x(s_{1})$ .

By the way similar to the proof of Theorem $A$ , we can replace $M_{4}$ and its
corresponding subarc $M_{4}^{f}$ by a piecewise $C^{\infty}$-curve $M_{5}$ and its corresponding
subarc $M_{5}^{\prime}$ in the $\epsilon$ -neighborhood of $M$, where $M_{5}$ is a curve from $x(O)$ to $x(s_{1})$

and $M_{5}^{\prime}$ is a curve from $x(s_{0})$ to $x(s_{2})$ . Then

$M_{6}=M_{5}\cup SM_{5}^{f}\cup M_{5}^{\prime}\cup SM_{5}$

is a piecewise $C^{\infty}$-oval of constant width $H$.
Let $M_{6}(\epsilon)$ be the outer $\epsilon$-parallel of $M_{6}$ , and let $*M_{6}(\epsilon)$ be its evolute.

$*M_{6}(\epsilon)$ is symmetric with respect to $m$ . We construct a connected $*M_{7}(\epsilon)$

from $*M_{6}(\epsilon)$ so that
(i) its involute $M_{8}$ is a $C^{\infty}$-oval of constant width,

(ii) $M_{8}$ is symmetric with respect to $m$ , and
(iii) $M_{8}$ is in the $ 2\epsilon$-neighborhood of $M_{6}$ .
Let $z(O),$ $z(s_{0})\in m\cap M_{6}(\epsilon)$ be the $\epsilon$-parallel points of $x(O),$ $x(s_{0})$ , respectively.
(III-I) If $x(O)$ is a corner point of $M_{6}$ , then some neighborhood of $z(O)$ in

$M_{6}(\epsilon)$ is a piece of the circle with $x(O)$ as its center, and hence it is of class $C^{\infty}$ .
(III-2) If $x(O)$ is not a corner point of $M_{6}$ , we replace some neighborhood

of $w(O)$ in $*M_{6}(\epsilon)$ by a (+0–)-model attached to $m$ at $w(O)$ , where $w(O)$ denotes
the center of curvature at $z(O)$ of $M_{6}(\epsilon)$ . In this case this (+0–)-model can
be chosen so that it is symmetric with respect to $m$ .

Next let $z(s_{1}),$ $z(s_{2})\in[x(s_{1})x(s_{2})]\cap M_{6}(\epsilon)$ be the $\epsilon$-parallel points of $x(s_{1})$ ,
$x(s_{2})$ , respectively.

(III-3) Assume that the center $w(s_{1})$ of curvature at $z(s_{1})$ of $M_{6}(\epsilon)$ is in
$m$ . If $*M_{6}(\epsilon)$ is of class $C^{\infty}$ near $w(s_{1})$ , then no modification is necessary at
this step.

If $M_{6}(\epsilon)$ is a piece of a circle near $z(s_{1})$ , then no modification is necessary
at this step.

If $*M_{6}(\epsilon)$ is not of class $C^{\infty}$ at $w(s_{1})$ , we replace some neighborhood of
$w(s_{1})$ in $*M_{6}(\epsilon)$ by a piece of a circle with center in $m$ , which is tangent to
$[x(s_{1})x(s_{2})]$ at $w(s_{1})$ .

(III-4) Assume that the center $w(s_{1})$ of curvature at $z(s_{1})$ does not lie in
$m$ . In this case it suffices to consider the following two cases.
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$(III-4-i)$ Assume that the subarc from $e$ to $z(s_{1})$ of $M_{6}(\epsilon)$ is a piece of the
circle with $w(s_{1})$ as its center. Take a point $d$ in $M_{6}(\epsilon)$ sufficiently near $z(s_{1})$

like (4-i). Put $p=[w(s_{1})d]\cap m$ and $q=[w(s_{1})z(s_{1})]\cap m$ . Let $r$ be the middle
point of $[pq]$ . Let $l$ be a straight line passing through $r$ and orthogonal to $m$ .
Put $u=l\cap[w(s_{1})d]$ . We draw a convex curve $(w(s_{1})r)^{*}$ from $w(s_{1})$ to $r$ in the
triangle $[w(s_{1})ur]$ such that

(i) $(w(s_{1})r)^{*}$ is of class $C^{\infty}$ except for $w(s_{1})$ ,
(ii) some neighborhood of $w(s_{1})$ in $(w(s_{1})r)^{*}$ is a (00–)-model attached to

$[w(s_{1})u]$ at $w(s_{1})$ ,
(iii) some neighborhood of $r$ in $(w(s_{1})r)^{*}$ coincides with a piece of a circle

which is tangent to 1.
$(III-4-ii)$ Assume that the subarc from $w(e)$ to $w(s_{1})$ of $M_{6}(\epsilon)$ is like $(4-ii)$

of the figure. Let 1 be a straight line which is orthogonal to $m$ and sufficiently
near $[z(s_{2})z(s_{1})]$ . Put $r=l\cap m$ . Let $v$ be the middle point of $[w(e)r]$ . Put
$k=[w(e)e]\cap[w(s_{1})v]$ and $h=l\cap[w(s_{1})v]$ . We draw two convex curves $(w(e)w(s_{1}))^{*}$

and $(w(s_{1})r)^{*}$ in the triangle $[w(e)w(s_{1})k]$ and $[hw(s_{1})r]$ such that
(i) they are of class $C^{\infty}$ except for $w(s_{1})$ ,

(ii) some neighborhood of $w(e)$ in $(w(e)w(s_{1}))^{*}$ coincides with $(w(e)w(s_{1}))$

of $*M_{6}(\epsilon)$ ,
(iii) some neighborhood of $w(s_{1})$ in $(w(e)w(s_{1}))^{*}\cup(w(s_{1})r)^{*}$ is a (+0–)-model

attached to $[w(s_{1})v]$ at $w(s_{1})$ ,
(iv) some neighborhood of $r$ in $(w(s_{1})r)^{*}$ coincides with a piece of a circle

which is tangent to 1.
Therefore, combining what we have proved in the proof of Theorem $A$ ,

we can construct $*M_{7}(\epsilon)$ such that
(1) its involute $M_{8}$ with some initial vector is a $C^{\infty}$-oval of constant width

$H_{8},$ $ H+\epsilon<H_{8}<H+3\epsilon$ ,
(2) $M_{8}$ is symmetric with respect to $m$ , and
(3) $M_{8}$ is in the $ 2\epsilon$-neighborhood of $M_{6}$ , and hence in the $ 3\epsilon$-neighborhood
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of $M$.
Consequently, if we take $\epsilon$ sufficiently small, we see that we can construct

a $C^{\infty}$-oval $M_{9}$ of constant width $H$, which is symmetric with respect to $m$ and
is in the $\delta$ -neighborhood of $M$. This proves Theorem B.

Theorem $C$ follows from Theorem B.

\S 4. Remarks.

REMARK 1. Let $M$ be a convex $C^{h}$-hypersurface $(h\geqq 4)$ in a Euclidean
$(n+1)$-space $E^{n+1}$ . Assume that the origin $0$ is inside $M$. Let $S^{n}$ be the
standard sphere in $E^{n+1}$ . For a point $\xi\in S^{n}$ , the distances between $0$ and
parallel supporting hyperplanes of $M$ orthogonal to $\xi$ are denoted by $h(\xi)$ and
$h(-\xi)$ , where $h(\xi)$ is one for the positive side of $\xi$ . $h(\xi)$ is called the support
function of M. $M$ is of constant width $H$ if and only if $h(\xi)+h(-\xi)=H$. Let
$-\varphi(\xi)$ be the sum of the principal radii of curvature at the point of $M$ having
normal $\xi$ . J. P. Fillmore [2] studied some relations between $h(\xi)$ and $\varphi(\xi)$ .

Especially, applying Christoffel’s theorem (cf. W. J. Firey [3]) and using
spherical harmonics (of odd degree), one can construct various real analytic
hypersurfaces of constant width in $E^{n+1}$ (J. P. Fillmore [2]).

REMARK 2. For $E^{2}$ and $S^{1}$ we put $\theta=\arg\xi$ . For each equilateral $(2r+1)-$

polygon $(r\geqq 1)$ , there corresponds a Reuleaux polygon as a continuous oval of
constant width. The corresponding real analytic oval of constant width is
given by

$ h(\theta)=a+b\cos(2r+1)\theta$ , or

$1/k=a-4r(r+1)b$ cos $(2r+1)\theta$ ,

where $a$ and $b$ are constant such that $a>4r(r+1)b$ , and $k$ denotes the curva-
ture at the point corresponding to $\theta$ .

Notice that $h(\theta)+h(\theta+\pi)=2a$ and $h(\theta)=h(-\theta)$ . If we imbed $E^{2}$ in $E^{n+1}$

and rotate such ovals with respect to the $x^{1}$ -axis (dePned by $\theta=0$), we obtain
real analytic hypersurfaces of constant width $2a$ .

\S 5. Twin hypersurfaces.

S. A. Robertson [5], [6] and J. Bolton [1] studied some generalization of
hypersurfaces of constant width (transnormal hypersurfaces imbeded in $E^{m}$).

As another generalization of hypersurfaces of constant width we define
twin hypersurfaces.

DEFINITION. Let $(M, g)$ be an n-dimensional $C^{\infty}$-Riemannian manifold with
metric tensor $g$. Let $f_{1}$ and $f_{2}$ be isometric $C^{\infty}$-immersions of $(M, g)$ into $E^{n+1}$ .
Assume that
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(i) $(M, g)$ is orientable and complete,
(ii) there exists a diffeomorphism $\phi$ of $M$ such $f_{1}(x)-f_{2}(\phi x)$ is normal to

$f_{1}(M)$ at $f_{1}(x)$ and to $f_{2}(M)$ at $f_{2}(x)$ , for each $x$ of $M$,
(iii) $f_{1}(x)-f_{2}(\phi x)$ is of constant length for $x\in M$.
Then we call this triplet $((M, g),$ $f_{1},$ $f_{2}$) a twin $C^{\infty}$-hypersurface.

A $C^{\infty}$-hypersurface of constant width in $E^{n+1}$ is a special example such
that

(1) $f_{1}=f_{2}$ ,
(2) $\phi$ is the antipodal diffeomorphism [ $i$ . $e.$ , for pair points $x,$ $y,$ $\phi x=y$].

EXAMPLE. Let $P$ be a closed curve in $E^{2}$ , with two vertices $v_{1}$ and $v_{2}$ ,

and with two convex curves $(v_{1}v_{2})$ and $(v_{2}v_{1})$ such that
(1) $P$ is symmetric with respect to $[v_{1}v_{2}]$ ,
(2) $P$ is symmetric with respect to the $x^{2}$-axis which is orthogonal to

$[v_{1}v_{2}]$ ,
(3) $P$ is of class $C^{\infty}$ except for $v_{1}$ and $v_{2}$ ,
(4) some neighborhoods of $v_{1}$ and $v_{2}$ are (+0–)-models attached to $[v_{1}v_{2}]$

at $v_{1}$ and $v_{2}$ .
Let $M_{1}^{\prime}$ be an involute of $P$ and let $M_{2}^{f}$ be its symmetry with respect to

the $x^{2}$-axis. $M_{2}^{\prime}$ is also an involute of $P$. By our construction of $P,$ $M_{1}^{\prime}$ and
$M_{2}^{\prime}$ are closed, of class $C^{\infty}$ , and there exist a constant $q$ and a transformation
$\varphi:M_{1}^{\prime}\rightarrow M_{2}^{\prime}$ such that $x-\varphi x$ is normal to $M_{1}^{f}$ at xand to $M_{2}^{\prime}$ at $\varphi x$ and $|x-\varphi x|$

$=q$ for all $x$ of $M_{1}^{\prime}$ .

Take the $x^{1}$ -axis so that it does not meet $M_{1}^{\prime}$ . We imbed $E^{2}$ into $E^{n+1}$ .
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By rotating $M_{1}^{\prime}$ and $M_{2}^{\prime}$ with respect to the $x^{1}$ -axis, we obtain two hyper-
surfaces $M_{1}$ and $M_{2}$ . Let $M_{1}=(M, g)$ be a Riemannian manifold with the
induced metric from the Euclidean metric of $E^{n+1}$ . Let $f_{1}$ be the inclusion
map of $M_{1},$ $f_{1}$ : $(M, g)\rightarrow M_{1}\subset E^{n+1}$ . Let $S:M_{1}^{\prime}\leftrightarrow M_{2}^{f}$ be the symmetric trans-
formation with respect to the $x^{2}$-axis in $E^{2}$ and let $f_{2}=S\circ f_{1}$ ; $(M, g)\rightarrow M_{2}\subset E^{n+1}$ ,
where $S$ denotes also its extension: $M_{1}\leftrightarrow M_{2}$ . We extend the diffeomorphism
$\varphi:M_{1}^{\prime}\rightarrow M_{2}^{\prime}$ naturally to the diffeomorphism $\varphi:M_{1}\rightarrow M_{2}$ , denoted by the same
letter $\varphi$ . We define a diffeomorphism $\phi$ of $(M, g)$ by $\phi=f_{1}^{-1}\circ S\circ\varphi\circ f_{1}$ . Then
we get

$f_{1}x-f_{2}\circ\phi x=f_{1}x-\varphi\circ f_{1}x$

for all $x$ of $(M, g)$ . Since $f_{1}x$ is identified with $x,$ $((M, g),$ $f_{1},$ $f_{2}$ ) is a twin
hypersurface.
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