C^{∞} -approximation of continuous ovals of constant width

By Shûkichi TANNO

(Received May 26, 1975)

§1. Introduction.

Let M be an oval (i.e., a closed convex curve) in a Euclidean 2-space E^2 . For a point x of M a straight line l passing through x is called a supporting line at x if M is contained in one of the half planes determined by l. If Mis a C^1 -curve, then tangent lines are supporting lines. M is said to have constant width, if the distance between each pair of parallel supporting lines is constant. Examples of continuous ovals of constant width are Reuleaux triangles, Sallee constructions (cf. [7], and also B. B. Peterson [4]), and so on.

We prove C^{∞} -approximation theorem:

THEOREM A. Let M be a continuous oval of constant width H in E^2 . Then, for any positive number δ , we can construct a C^{∞} -oval M^* of constant width H in the δ -neighborhood of M in E^2 .

THEOREM B. In Theorem A, if M is symmetric with respect to a straight line m in E^2 , then M^* can be constructed so that M^* is symmetric with respect to m.

A generalization of an oval of constant width to higher dimension is a hypersurface of constant width in a Euclidean *n*-space E^n . If M is a continuous oval of constant width in $E^2 \subset E^n$, which is symmetric with respect to the x^1 axis, then one gets a continuous hypersurface of constant width in E^n as its revolution hypersurface with respect to the x^1 -axis in E^n .

By Theorem B we obtain

THEOREM C. If a continuous hypersurface M of constant width H is a revolution hypersurface in E^n , then for any positive number δ , we can construct a revolution C^{∞} -hypersurface M^* of constant width H in the δ -neighborhood of M in E^n .

In the last section we mension about twin hypersurfaces which are generalizations of hypersurface of constant width.

§2. Preliminaries.

Let E^2 be a Euclidean 2-space with the natural coordinates (x^1, x^2) . Let $M = \{x(s)\}$ be a C^3 -curve (i. e., continuously thrice differentiable curve) in E^2 with arc-length parameter s. $\xi_1(s) = dx(s)/ds$ is the unit tangent vector field on $\{x(s)\}$. Then $d\xi_1(s)/ds = k(s)\xi_2(s)$ holds, where k(s) is the curvature of x(s) and $(\xi_1(s), \xi_2(s))$ is the right handed orthonormal frame field on $\{x(s)\}$. A curve $*M = \{*y(s)\}$ defined by

(2.1)
$$*y(s) = x(s) + \rho(s)\xi_2(s)$$

is called the evolute of $M = \{x(s)\}$, where $\rho(s) = 1/k(s)$. The curvature k of y(s) is given by [if $\rho(s)$ is of class C^2 and $d\rho(s)/ds \neq 0$]

(2.2)
$$*k(s) = \frac{1}{\rho(s) \left| \frac{d\rho(s)}{ds} \right|}.$$

Conversely, for a C²-curve $M^* = \{y^*(s^*)\}$ with arc-length parameter s^* , the curve $M = \{x(s^*)\}$ defined by

(2.3)
$$x(s^*) = y^*(s^*) + (c - s^*)\xi_1^*(s^*)$$

for some constant c is called the involute of $M^* = \{y^*(s^*)\}$. The evolute and the involute are dual.

Now we define a (+00-)-model. Let k(s) be a C^{∞} -function on an open interval (s_1, s_4) such that dk(s)/ds > 0 for $s_1 < s < s_2$, dk(s)/ds = 0 for $s_2 \le s \le s_3$, and dk(s)/ds < 0 for $s_3 < s < s_4$. Let D be the C^{∞} -curve with k(s) as its curvature and with s as its arc-length parameter. Let *D be the evolute of D. We call *D a (+00-)-model, if $s_2 \ne s_3$.

Putting $s_2=s_3$, we call *D a (+0-)-model. 00 means that dk(s)/ds=0 holds on some interval, and 0 means that dk(s)/ds=0 holds at a single point. Taking some part of a (+00-)-model or a (+0-)-model, we have a (+00)-model, or a (+0)-model. A (00-)-model or a (0-)-model is equivalent to a (+00)-model or (+0)-model. Notice that, for example in a (+0-)-model *D, the point corresponding to x(s) where dk(s)/ds=0 (and hence $d\rho(s)/ds=0$) is very complicated because of (2.2).

§3. Proofs of Theorems.

For a continuous oval $M = \{x(s)\}$ of constant width H in E^2 , two points x(s) and x(s') of M are called pair points, if |x(s)-x(s')|=H, where | | denotes the Euclidean length of vectors in E^2 .

LEMMA 3.1. Assume that x(s') and $x(s_1)$, and, x(s') and $x(s_2)$, are pair points such that $s_1 < s_2$. Then the subarc $\{x(s): s_1 \leq s \leq s_2\}$ is a piece of the circle of radius H with x(s') as its center.

PROOF. First we notice that every supporting line has only one point in common with M by constancy of width. Let l'_1 and l_1 be the parallel supporting lines at x(s') and $x(s_1)$, and let l'_2 and l_2 be the parallel supporting lines at x(s') and $x(s_2)$. Let $C[x(s_1)x(s_2)]$ be the part from $x(s_1)$ to $x(s_2)$ of the circle of radius H with x(s') as its center. Considering supporting lines at x(s') between l'_1 and l'_2 , we see that $\{x(s): s_1 \leq s \leq s_2\} = C[x(s_1)x(s_2)]$. Q. E. D.

We call such a point x(s') a corner point of M, and we call $C[x(s_1)x(s_2)]$ the subarc corresponding to x(s'), if it is maximal [that is, it is not a proper subset of a subarc of the circle in M]. If we pick up all corner points w_b , generally the set $\{w_b\}$ may be an infinite set. Let C_b be the subarc corresponding to w_b . By $\{w_\beta, C_\beta\}$ we mean the subset of $\{w_b, C_b\}$ such that the length of C_β is greater than $\varepsilon/4$, where ε is a sufficiently small positive number < H/2.

Let l_0 and l'_0 be the parallel supporting lines at x(0) and $x(s_0)$. We decompose the subarc $M_0 = \{x(s) : 0 \le s \le s_0\}$ into

$$M_{ extsf{o}} = \{w_{m{\lambda}}\} \cup \{C_{\mu} igcarrow M_{ extsf{o}}\} \cup \{F_{m{i}}\}$$
 ,

where $\{w_{\lambda}\}$ is the subset of $\{w_{\beta}\}$ such that $w_{\lambda} \in M_0$, $\{C_{\mu}\}$ is the subset of $\{C_{\beta}\}$ such that $C_{\mu} \cap M_0$ is non-empty, and $F_i = \{x(s) : s_i \leq s \leq t_i\}$ such that

(i) $0 < |x(s_i) - x(t_i)| < \varepsilon$,

(ii) $\{x(s): s_i < s < t_i\}$ does not intersect with $\{w_i\}$ nor $\{C_{\mu}\}$, nor F_j $(j \neq i)$,

(iii) for pair points $x(s_i)$ and $x(s'_i)$, and, $x(t_i)$ and $x(t'_i), |x(s'_i)-x(t'_i)| < \varepsilon$ holds [in this case, if $x(s_i)$ is a corner point, we assume that the point $x(s'_i)$ is a boundary point of a piece of a circle].

Since M is compact, $\{w_{\lambda}\}$ and $\{C_{\mu}\}$ are finite sets, and we can choose F_i so that $\{F_i\}$ is a finite set. We assume $i=1, \dots, h$. The possibility for (i), (ii) and (iii) comes from the fact that subarcs corresponding to corner points $\{w_b\}$ in $M - \{w_{\beta}, C_{\beta}\}$ have length $\leq \varepsilon/4$.

Let F_i be any one of $\{F_i\}$, and let l_i , l'_i and \overline{l}_i , \overline{l}'_i be the parallel supporting lines at $x(s_1)$, $x(s'_i)$ and $x(t_i)$, $x(t'_i)$, respectively. If we draw a convex curve from $x(s_i)$ to $x(t_i)$ in the triangle defined by l_i , \overline{l}_i and the segment $[x(s_i)x(t_i)]$, then the curve is in the ε -neighborhood of M by virtue of (i), (iii) and $\varepsilon < H/2$. This is the same for $x(s'_i)$ and $x(t'_i)$.

LEMMA 3.2. Each $F_i = \{x(s) : s_i \leq s \leq t_i\}$ and the corresponding subarc $\{x(s) : s'_i \leq s \leq t'_i\}$ can be replaced by a C^{∞} -curve $(x(s_i)x(t_i))$ and the corresponding subarc $(x(s'_i)x(t'_i))$ so that the resulting oval is of constant width H.

PROOF. If $|x(s'_i)-x(t'_i)|=0$, then F_i is itself of class C^{∞} . So we consider

the following two cases. Let Q be the intersection of the segments $[x(s_i)x(s'_i)]$ and $[x(t_i)x(t'_i)]$.

(I-1) If $|x(s_i)-Q|$ and $|x(t_i)-Q|$ are both equal to a real number R, we draw the circle with Q as its center and R as its radius. We replace F_i by the part between $x(s_i)$ and $x(t_i)$ of the circle. Similarly we replace the corresponding subarc of F_i by the part between $x(t'_i)$ and $x(s'_i)$ of the circle with Q as its center and H-R as its radius. The parallel supporting lines at $x(s_i)$ and $x(t_i)$, $x(s'_i)$ and $x(t'_i)$ are the same with respect to M and with respect to the new oval. Therefore the resulting oval is of constant width H and is in the ε -neighborhood of M.

(I-2) If $|x(s_i)-Q| > |x(t_i)-Q|$, then $|x(t'_i)-Q| > |x(s'_i)-Q|$, since $|x(s_i)-x(s'_i)| = H = |x(t_i)-x(t'_i)|$. Hence, we obtain

$$H < |x(s_i) - Q| + |Q - x(t'_i)|.$$

On the other hand, we have $|x(s_i)-x(t'_i)| \leq H$. If $|x(s_i)-x(t'_i)|=H$, then F_i is of class C^{∞} , and hence we can assume that

$$|x(s_i)-x(t'_i)| < H$$
.

Then we can choose a point u of the segment $[x(s_i)Q]$ and a point v of the segment $[Qx(t'_i)]$ and we can draw a concave C^{∞} -curve (uv) from u to v in the triangle $[x(s_i)Qx(t'_i)]$ such that (uv) is tangent to two segments at u and v, and such that

$$|x(s_i)-u|+|(uv)|+|v-x(t'_i)|=H$$
,

where |(uv)| means the arclength of (uv). Then the involute of (uv) with the initial vector $x(s_i)-u$ at u is a convex C^{∞} -curve from $x(s_i)$ to $x(t_i)$, because

$$|x(s_i)-u|+|(uv)| = H - |x(t_i)-v| = |x(t_i)-v|.$$

Similarly we have the involute from $x(t'_i)$ to $x(s'_i)$. We replace F_i and the corresponding subarc by these involutes. The parallel supporting lines at $x(s_i)$ and $x(t_i)$, $x(s'_i)$ and $x(t'_i)$ are the same with respect to M and with respect to the new curves. Hence, the new oval is of constant width H and is in the ε -neighborhood of M. Q. E. D.

By Lemma 3.2 we obtain a piecewise C^{∞} -oval M_1 of constant width H in the ε -neighborhood of M.

LEMMA 3.3. M_1 can be approximated by a C^{∞} -oval M_2 of constant width H_2 in the 2 ε -neighborhood of M_1 .

PROOF. Let $M_1(\varepsilon)$ be the outer ε -parallel oval of M_1 . At each corner point of M_1 , its ε -parallel means a piece of the circle of radius ε with the corner point as its center. Since M_1 is a piecewise C^{∞} -oval, $M_1(\varepsilon)$ is a C^1 -oval with S. TANNO

piecewise C^{∞} -curves. $M_1(\varepsilon)$ is of constant width $H+2\varepsilon$. Let $*M_1(\varepsilon)$ be the evolute of $M_1(\varepsilon)$. $*M_1(\varepsilon)$ is completely contained in the interior of the domain determined by $M_1(\varepsilon)$, and $*M_1(\varepsilon)$ is composed of concave curves and isolated points. We construct a connected $*M_2(\varepsilon)$ from $*M_1(\varepsilon)$ so that its involute is a C^{∞} -oval of constant width. Let N be the number of parts where connecting process is required. It suffices to consider the following five cases.

(II-1) Two points a, b in $*M_1(\varepsilon)$ appeared as centers of pieces of circles like (1) can be connected by the following way. Let $c \in M_1(\varepsilon) \cap [ab]$, where [ab] denotes the segment or the straight line passing through a, b. Take c_1 and c_2 in $M_1(\varepsilon)$ which are very close to c. Let $d=[c_1a] \cap [c_2b]$. First we attach a (00-)-model to [ad] at a and to [bd] at b in the triangle [abd]. Here by "attaching a (00-)-model to [ad] at a" we mean that the tangent lines to the attached (00-)-model converge to [ad] at a. Next we draw a convex curve $(ab)^*$ from a to b such that

(i) $(ab)^*$ is of class C^{∞} except for a and b,

(ii) $(ab)^*$ coincides with some neighborhoods of a and b in the attached models.

In this case we can assume that $|a-d|+|d-b|-|a-b|<\varepsilon/2N$, and hence we can assume that

$$|(ab)^*|-|a-b|<\varepsilon/2N.$$

(II-2) If (2) is the case (where b is a center of a piece of a circle and (aa_0) is a curve), take c, c_1 and c_2 as before. Let a_1 be the center of curvature at c_1 of $M_1(\varepsilon)$. Let $d=[c_1a_1]\cap[c_2b]$. In the triangle $[a_1db]$ we draw a curve $(a_1b)^*$ such that

(i) $(a_1b)^*$ is of class C^{∞} except for b,

(ii) some neighborhood of b in $(a_1b)^*$ coincides with a (00-)-model attached to $\lfloor bd \rfloor$ at b,

(iii) some neighborhood of a_1 in $(a_1b)^*$ coincides with (aa_0) .

In this case we can assume that

$$-\varepsilon/2N < |(a_0a_1)| + |(a_1b)^*| - |(a_0a)| - |a-b| < \varepsilon/2N.$$

(II-3) If (3) is the case (where (a_0a) and (b_0b) are curves), take c, c_1 and c_2 as before. Let a_1 and b_2 be the centers of curvature at c_1 and c_2 , respectively. Let $d_1 = [c_1a_1] \cap [ab]$, and $d_2 = [c_2b_2] \cap [ab]$. We draw two convex curves $(a_1b)^*$ and $(bb_2)^*$ in the triangles $[a_1d_1b]$ and $[b_2d_2b]$ such that

(i) $(a_1b)^*$ and $(bb_2)^*$ are of class C^{∞} except for b,

(ii) some neighborhood of b in $(a_1b)^*$ and $(bb_2)^*$ coincides with a (+0-)-model attached to [ab] at b,

(iii) some neighborhood of a_1 in $(a_1b)^*$ coincides with (a_0a) ,

(iv) some neighborhood of b_2 in $(bb_2)^*$ coincides with (b_0b) .

In this case we can assume that

$$-\varepsilon/2N < |(a_1a)| + |a-b| + |(bb_2)| - |(a_1b)^*| - |(bb_2)^*| < \varepsilon/2N.$$

(II-4) If (4) is the case, take c, c_1 and c_2 as before. Let a_1 and b_2 be the centers of curvature at c_1 and c_2 , respectively. Let $d=[c_1a_1]\cap[c_2b_2]$. We draw a convex C^{∞} -curve $(a_1b_2)^*$ which coincides with some neighborhoods of a_1 in (a_0a) and of b_2 in (b_0b) . In this case we can assume that

$$-\varepsilon/2N < |(a_1a)| + |a-b| + |(bb_2)| - |(a_1b_2)^*| < \varepsilon/2N$$
.

(II-5) If (5) is the case, take c, c_1, c_2, a_1 , and b_2 as before. Let $d_1 = \lfloor c_1 a_1 \rfloor \cap \lfloor ab \rfloor$ and $d_2 = \lfloor c_2 b_2 \rfloor \cap \lfloor ab \rfloor$. Let m_1 and m_2 be the middle points of $\lfloor a_1 d_1 \rfloor$ and $\lfloor b_2 d_2 \rfloor$, respectively. Let $d_3 = \lfloor am_1 \rfloor \cap \lfloor bm_2 \rfloor$. We draw three convex curves $(a_1a)^*$, $(ab)^*$ and $(bb_2)^*$ in the triangles $\lfloor a_1m_1a \rfloor$, $\lfloor abd_3 \rfloor$ and $\lfloor m_2 bb_2 \rfloor$ such that

(i) three curves are of class C^{∞} except for a, b,

(ii) some neighborhood of a_1 in $(a_1a)^*$ coincides with (a_0a) ,

(iii) some neighborhood of a in $(a_1a)^*$ and $(ab)^*$ coincides with a (+0-)-model attached to $[ad_3]$ at a,

(iv) some neighborhood of b is similar to the case (iii),

(v) some neighborhood of b_2 in $(bb_2)^*$ coincides with (bb_0) .

In this case we can assume that

$$-\varepsilon/2N < |(a_1a)| + |a-b| + |(bb_2)| - |(a_1a)^*| - |(ab)^*| - |(bb_2)^*| < \varepsilon/2N.$$

Applying (II-1 \sim 5) we have $*M_2(\varepsilon)$. We construct the involute M_2 with some initial vector, where we assume that the end point of the initial vector is in $M_1(\varepsilon)$. Then, by our construction we see that M_2 is of class C^{∞} and, lies in the 2 ε -neighborhood of M_1 , and that it has constant width H_2 , $H+\varepsilon < H_2 <$ $H+3\varepsilon$. Q. E. D.

PROOF OF THEOREM A. By a similar deformation of M_2 , we have a C^{∞} oval M_3 of constant width H. By taking ε sufficiently small, we see that M_3 can be constructed in the δ -neighborhood of M. This proves Theorem A.

Next we prove Theorem B. Let $M = \{x(s)\}$ be a continuous oval with constant width H, which is symmetric with respect to a straight line m in E^2 . Let $M \cap m = \{x(0), x(s_0)\}$. Let $x(s_1)$ and $x(s_2)$ be the pair points in M such that $x(s_1)-x(s_2)$ is orthogonal to m, $s_1 < s_2$. In this case the subarc

$$M_4 = \{x(s): 0 \leq s \leq s_1\}$$

is essential. The subarc corresponding to M_4 is $M'_4 = \{x(s) : s_0 \leq s \leq s_2\}$. By SM_4 and SM'_4 we denote the symmetries of M_4 and M'_4 with respect to m. Clearly,

$$M = M_4 \cup SM'_4 \cup M'_4 \cup SM_4.$$

Let l_0 and l'_0 be the parallel supporting lines at x(0) and $x(s_0)$, and let l_1 and l'_1 be the parallel supporting lines at $x(s_1)$ and $x(s_2)$. The difference between proofs of Theorems A and B is in handling neighborhoods of x(0) and $x(s_1)$.

By the way similar to the proof of Theorem A, we can replace M_4 and its corresponding subarc M'_4 by a piecewise C^{∞} -curve M_5 and its corresponding subarc M'_5 in the ε -neighborhood of M, where M_5 is a curve from x(0) to $x(s_1)$ and M'_5 is a curve from $x(s_0)$ to $x(s_2)$. Then

$$M_6 = M_5 \cup SM_5' \cup M_5' \cup SM_5$$

is a piecewise C^{∞} -oval of constant width H.

Let $M_6(\varepsilon)$ be the outer ε -parallel of M_6 , and let $*M_6(\varepsilon)$ be its evolute. $*M_6(\varepsilon)$ is symmetric with respect to m. We construct a connected $*M_7(\varepsilon)$ from $*M_6(\varepsilon)$ so that

- (i) its involute M_8 is a C^{∞} -oval of constant width,
- (ii) M_8 is symmetric with respect to m, and
- (iii) M_8 is in the 2 ε -neighborhood of M_6 .

Let z(0), $z(s_0) \in m \cap M_6(\varepsilon)$ be the ε -parallel points of x(0), $x(s_0)$, respectively. (III-1) If x(0) is a corner point of M_6 , then some neighborhood of z(0) in $M_6(\varepsilon)$ is a piece of the circle with x(0) as its center, and hence it is of class C^{∞} .

(III-2) If x(0) is not a corner point of M_6 , we replace some neighborhood of w(0) in $*M_6(\varepsilon)$ by a (+0-)-model attached to m at w(0), where w(0) denotes the center of curvature at z(0) of $M_6(\varepsilon)$. In this case this (+0-)-model can be chosen so that it is symmetric with respect to m.

Next let $z(s_1)$, $z(s_2) \in [x(s_1)x(s_2)] \cap M_6(\varepsilon)$ be the ε -parallel points of $x(s_1)$, $x(s_2)$, respectively.

(III-3) Assume that the center $w(s_1)$ of curvature at $z(s_1)$ of $M_6(\varepsilon)$ is in m. If $*M_6(\varepsilon)$ is of class C^{∞} near $w(s_1)$, then no modification is necessary at this step.

If $M_6(\varepsilon)$ is a piece of a circle near $z(s_1)$, then no modification is necessary at this step.

If $*M_6(\varepsilon)$ is not of class C^{∞} at $w(s_1)$, we replace some neighborhood of $w(s_1)$ in $*M_6(\varepsilon)$ by a piece of a circle with center in m, which is tangent to $[x(s_1)x(s_2)]$ at $w(s_1)$.

(III-4) Assume that the center $w(s_1)$ of curvature at $z(s_1)$ does not lie in m. In this case it suffices to consider the following two cases.

S. TANNO

(III-4-i) Assume that the subarc from e to $z(s_1)$ of $M_6(\varepsilon)$ is a piece of the circle with $w(s_1)$ as its center. Take a point d in $M_6(\varepsilon)$ sufficiently near $z(s_1)$ like (4-i). Put $p = \lfloor w(s_1)d \rfloor \cap m$ and $q = \lfloor w(s_1)z(s_1) \rfloor \cap m$. Let r be the middle point of $\lfloor pq \rfloor$. Let l be a straight line passing through r and orthogonal to m. Put $u = l \cap \lfloor w(s_1)d \rfloor$. We draw a convex curve $(w(s_1)r)^*$ from $w(s_1)$ to r in the triangle $\lfloor w(s_1)ur \rfloor$ such that

(i) $(w(s_1)r)^*$ is of class C^{∞} except for $w(s_1)$,

(ii) some neighborhood of $w(s_1)$ in $(w(s_1)r)^*$ is a (00-)-model attached to $[w(s_1)u]$ at $w(s_1)$,

(iii) some neighborhood of r in $(w(s_1)r)^*$ coincides with a piece of a circle which is tangent to l.

(III-4-ii) Assume that the subarc from w(e) to $w(s_1)$ of $*M_6(\varepsilon)$ is like (4-ii) of the figure. Let l be a straight line which is orthogonal to m and sufficiently near $[z(s_2)z(s_1)]$. Put $r=l\cap m$. Let v be the middle point of [w(e)r]. Put $k=[w(e)e]\cap[w(s_1)v]$ and $h=l\cap[w(s_1)v]$. We draw two convex curves $(w(e)w(s_1))^*$ and $(w(s_1)r)^*$ in the triangle $[w(e)w(s_1)k]$ and $[hw(s_1)r]$ such that

(i) they are of class C^{∞} except for $w(s_1)$,

(ii) some neighborhood of w(e) in $(w(e)w(s_1))^*$ coincides with $(w(e)w(s_1))$ of $*M_6(\varepsilon)$,

(iii) some neighborhood of $w(s_1)$ in $(w(e)w(s_1))^* \cup (w(s_1)r)^*$ is a (+0-)-model attached to $[w(s_1)v]$ at $w(s_1)$,

(iv) some neighborhood of r in $(w(s_1)r)^*$ coincides with a piece of a circle which is tangent to l.

Therefore, combining what we have proved in the proof of Theorem A, we can construct $*M_7(\varepsilon)$ such that

(1) its involute M_8 with some initial vector is a C^{∞} -oval of constant width H_8 , $H + \varepsilon < H_8 < H + 3\varepsilon$,

(2) M_8 is symmetric with respect to m, and

(3) M_8 is in the 2 ε -neighborhood of M_6 , and hence in the 3 ε -neighborhood

of M.

Consequently, if we take ε sufficiently small, we see that we can construct a C^{∞} -oval M_9 of constant width H, which is symmetric with respect to m and is in the δ -neighborhood of M. This proves Theorem B.

Theorem C follows from Theorem B.

§4. Remarks.

REMARK 1. Let M be a convex C^{h} -hypersurface $(h \ge 4)$ in a Euclidean (n+1)-space E^{n+1} . Assume that the origin 0 is inside M. Let S^{n} be the standard sphere in E^{n+1} . For a point $\xi \in S^{n}$, the distances between 0 and parallel supporting hyperplanes of M orthogonal to ξ are denoted by $h(\xi)$ and $h(-\xi)$, where $h(\xi)$ is one for the positive side of ξ . $h(\xi)$ is called the support function of M. M is of constant width H if and only if $h(\xi)+h(-\xi)=H$. Let $-\varphi(\xi)$ be the sum of the principal radii of curvature at the point of M having normal ξ . J. P. Fillmore [2] studied some relations between $h(\xi)$ and $\varphi(\xi)$.

Especially, applying Christoffel's theorem (cf. W. J. Firey [3]) and using spherical harmonics (of odd degree), one can construct various real analytic hypersurfaces of constant width in E^{n+1} (J. P. Fillmore [2]).

REMARK 2. For E^2 and S^1 we put $\theta = \arg \xi$. For each equilateral (2r+1)polygon $(r \ge 1)$, there corresponds a Reuleaux polygon as a continuous oval of
constant width. The corresponding real analytic oval of constant width is
given by

$$h(\theta) = a + b \cos(2r+1)\theta, \quad \text{or}$$
$$1/k = a - 4r(r+1)b \cos(2r+1)\theta,$$

where a and b are constant such that a>4r(r+1)b, and k denotes the curvature at the point corresponding to θ .

Notice that $h(\theta)+h(\theta+\pi)=2a$ and $h(\theta)=h(-\theta)$. If we imbed E^2 in E^{n+1} and rotate such ovals with respect to the x^1 -axis (defined by $\theta=0$), we obtain real analytic hypersurfaces of constant width 2a.

§5. Twin hypersurfaces.

S. A. Robertson [5], [6] and J. Bolton [1] studied some generalization of hypersurfaces of constant width (transnormal hypersurfaces imbedde in E^{m}).

As another generalization of hypersurfaces of constant width we define twin hypersurfaces.

DEFINITION. Let (M, g) be an *n*-dimensional C^{∞} -Riemannian manifold with metric tensor g. Let f_1 and f_2 be isometric C^{∞} -immersions of (M, g) into E^{n+1} . Assume that

(i) (M, g) is orientable and complete,

(ii) there exists a diffeomorphism ϕ of M such $f_1(x) - f_2(\phi x)$ is normal to $f_1(M)$ at $f_1(x)$ and to $f_2(M)$ at $f_2(x)$, for each x of M,

(iii) $f_1(x) - f_2(\phi x)$ is of constant length for $x \in M$.

Then we call this triplet $((M, g), f_1, f_2)$ a twin C^{∞} -hypersurface.

A C^{∞} -hypersurface of constant width in E^{n+1} is a special example such that

(1) $f_1 = f_2$,

(2) ϕ is the antipodal diffeomorphism [i.e., for pair points x, y, $\phi x=y$].

EXAMPLE. Let P be a closed curve in E^2 , with two vertices v_1 and v_2 , and with two convex curves (v_1v_2) and (v_2v_1) such that

(1) P is symmetric with respect to $[v_1v_2]$,

(2) P is symmetric with respect to the x^2 -axis which is orthogonal to $\lfloor v_1 v_2 \rfloor$,

(3) P is of class C^{∞} except for v_1 and v_2 ,

(4) some neighborhoods of v_1 and v_2 are (+0-)-models attached to $[v_1v_2]$ at v_1 and v_2 .

Let M'_1 be an involute of P and let M'_2 be its symmetry with respect to the x^2 -axis. M'_2 is also an involute of P. By our construction of P, M'_1 and M'_2 are closed, of class C^{∞} , and there exist a constant q and a transformation $\varphi: M'_1 \rightarrow M'_2$ such that $x - \varphi x$ is normal to M'_1 at x and to M'_2 at φx and $|x - \varphi x|$ = q for all x of M'_1 .

Take the x¹-axis so that it does not meet M'_1 . We imbed E^2 into E^{n+1} .

By rotating M'_1 and M'_2 with respect to the x^1 -axis, we obtain two hypersurfaces M_1 and M_2 . Let $M_1 = (M, g)$ be a Riemannian manifold with the induced metric from the Euclidean metric of E^{n+1} . Let f_1 be the inclusion map of M_1 , $f_1: (M, g) \rightarrow M_1 \subset E^{n+1}$. Let $S: M'_1 \leftrightarrow M'_2$ be the symmetric transformation with respect to the x^2 -axis in E^2 and let $f_2 = S \circ f_1: (M, g) \rightarrow M_2 \subset E^{n+1}$, where S denotes also its extension: $M_1 \leftrightarrow M_2$. We extend the diffeomorphism $\varphi: M'_1 \rightarrow M'_2$ naturally to the diffeomorphism $\varphi: M_1 \rightarrow M_2$, denoted by the same letter φ . We define a diffeomorphism ϕ of (M, g) by $\phi = f_1^{-1} \circ S \circ \varphi \circ f_1$. Then we get

$$f_1 x - f_2 \circ \phi x = f_1 x - \varphi \circ f_1 x$$

for all x of (M, g). Since f_1x is identified with x, $((M, g), f_1, f_2)$ is a twin hypersurface.

References

- J. Bolton, Transnormal hypersurfaces, Proc. Cambridge Philos. Soc., 74 (1973), 43-48.
- [2] J.P. Fillmore, Symmetries of surfaces of constant width, J. Differential Geometry, 3 (1969), 103-110.
- [3] W.J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematica, 14 (1967), 1-13.
- [4] B.B. Peterson, Intersection properties of curves of constant width, Illinois J. Math., 17 (1973), 411-420.
- [5] S.A. Robertson, Generalized constant width for manifolds, Michigan Math. J., 11 (1964), 97-105.
- [6] S.A. Robertson, On transnormal manifolds, Topology, 6 (1967), 117-123.
- G.T. Sallee, The maximal set of constant width in a lattice, Pacific J. Math., 28 (1969), 669-674.

Shûkichi TANNO Mathematical Institute Tôhoku University Katahira, Sendai Japan